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Abstract

For the model of two-dimensional random interlacements in the critical
regime (i.e., α = 1), we prove that the vacant set is a.s. infinite, thus solving
an open problem from [8]. Also, we prove that the entrance measure of sim-
ple random walk on annular domains has certain regularity properties; this
result is useful when dealing with soft local times for excursion processes.
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1 Introduction and results

The model of random interlacements, recently introduced by Sznitman [17], has
proved its usefulness for studying fine properties of traces left by simple random
walks on graphs. The “classical” random interlacements is a Poissonian soup of
(transient) simple random walks’ trajectories in Zd, d ≥ 3; we refer to recent
books [5, 12]. Next, the model of two-dimensional random interlacements was
introduced in [8]. Observe that, in two dimensions, even a single trajectory of a
simple random walk is space-filling. Therefore, to define the process in a meaning-
ful way, one uses the SRW’s trajectories conditioned on never hitting the origin,
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see the details below. We observe also that the use of conditioned trajectories to
build the interlacements goes back to Sznitman [19], see the definition of “tilted
random interlacements” there. Then, it is known (Theorem 2.6 of [8]) that, for
random walk on a large torus conditioned on not hitting the origin up to some time
proportional to the mean cover time, the law of the vacant set around the origin
is close to that of random interlacements at the corresponding level. This means
that, similarly to higher-dimensional case, two-dimensional random interlacements
have strong connections to random walks on discrete tori.

Now, let us recall the formal construction of (discrete) two-dimensional random
interlacements.

In the following, ‖ · ‖ denotes the Euclidean norm in R2 or Z2, and B(x, r) =
{y : ‖x− y‖ ≤ r} is the (closed) ball of radius r centered in x.

Let (Sn, n ≥ 0) be two-dimensional simple random walk. Write Px for the law
of the walk started from x and Ex for the corresponding expectation. Let

τ0(A) = inf{k ≥ 0 : Sk ∈ A}, (1)

τ1(A) = inf{k ≥ 1 : Sk ∈ A} (2)

be the entrance and the hitting time of the set A by simple random walk S (we
use the convention inf ∅ = +∞). Define the potential kernel a by

a(x) =
∞∑
k=0

(
P0[Sk=0]− Px[Sk=0]

)
. (3)

It can be shown that the above series indeed converges and we have a(0) = 0,
a(x) > 0 for x 6= 0, and

a(x) =
2

π
ln ‖x‖+

2γ + ln 8

π
+O(‖x‖−2) (4)

as x → ∞, where γ = 0.5772156 . . . is the Euler-Mascheroni constant, cf. Theo-
rem 4.4.4 of [14]. Also, the function a is harmonic outside the origin, i.e.,

1

4

∑
y:y∼x

a(y) = a(x) for all x 6= 0. (5)

Observe that (5) implies that a(Sk∧τ0(0)) is a martingale.
The harmonic measure of a finite A ⊂ Z2 is the entrance law “starting at

infinity”1,
hmA(x) = lim

‖y‖→∞
Py[Sτ1(A) = x]. (6)

1observe that the harmonic measure can be defined in almost the same way in higher dimen-
sions, one only has to condition that A is eventually hit, cf. Proposition 6.5.4 of [14]
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For a finite set A containing the origin, we define its capacity by

cap(A) =
∑
x∈A

a(x) hmA(x); (7)

in particular, cap
(
{0}
)

= 0 since a(0) = 0. For a set not containing the origin, its
capacity is defined as the capacity of a translate of this set that does contain the
origin. Indeed, it can be shown that the capacity does not depend on the choice of
the translation. Some alternative definitions are available, cf. Section 6.6 of [14].

Next, we define another random walk (Ŝn, n ≥ 0) on Z2 \ {0} in the following

way: the transition probability from x 6= 0 to y equals a(y)
4a(x)

for all x ∼ y. Note

that (5) implies that the random walk Ŝ is indeed well defined, and, clearly, it is an
irreducible Markov chain on Z2 \ {0}. It can be easily checked that it is reversible
with the reversible measure a2(·), and transient (for a quick proof of transience,

just verify that 1/a(Ŝ) is a martingale outside the origin and its four neighbors,
and use e.g. Theorem 2.5.8 of [15]).

For a finite A ⊂ Z2, define the equilibrium measure with respect to the walk Ŝ:

êA(x) = 1{x ∈ A}Px
[
Ŝk /∈ A for all k ≥ 1

]
a2(x),

and the harmonic measure (again, with respect to the walk Ŝ)

ĥmA(x) = êA(x)
(∑
y∈A

êA(y)
)−1

.

Also, note that (13) and (15) of [8] imply that êA(x) = a(x) hmA(x) in the case

0 ∈ A, that is, the harmonic measure for Ŝ is the usual harmonic measure biased
by a(·). Now, we use the general construction of random interlacements on a
transient weighted graph introduced in [20]. In the following few lines we briefly
summarize this construction. Let W be the space of all doubly infinite nearest-
neighbour transient trajectories in Z2,

W =
{
% = (%k)k∈Z : %k ∼ %k+1 for all k;

the set {m : %m = y} is finite for all y ∈ Z2
}
.

We say that % and %′ are equivalent if they coincide after a time shift, i.e., % ∼ %′

when there exists k such that %m+k = %m for all m. Then, let W∗ = W/ ∼
be the space of trajectories modulo time shift, and define χ∗ to be the canonical
projection from W to W∗. For a finite A ⊂ Z2, let WA be the set of trajectories
in W that intersect A, and we write W∗A for the image of WA under χ∗. One
then constructs the random interlacements as Poisson point process on W∗ × R+
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with the intensity measure ν ⊗ du, where ν is described in the following way. It is
the unique sigma-finite measure on the cylindrical sigma-field of W∗ such that for
every finite A

1W∗A · ν = χ∗ ◦QA,

where the finite measure QA on WA is determined by the following equality:

QA

[
(%k)k≥1∈F, %0 =x, (%−k)k≥1∈G

]
= êA(x)Px[Ŝ ∈ F ]Px[Ŝ ∈ G | τ̂1(A)=∞].

The existence and uniqueness of ν was shown in Theorem 2.1 of [20].

Definition 1.1. For a configuration
∑

λ δ(w∗λ,uλ) of the above Poisson process, the
process of two-dimensional random interlacements at level α (which will be referred
to as RI(α)) is defined as the set of trajectories with label less than or equal to πα,
i.e., ∑

λ:uλ≤πα

δw∗λ .

As mentioned in [8], in the above definition it is convenient to pick the points
with the u-coordinate at most πα (instead of just α, as in the “classical” random
interlacements model), since the formulas become generally cleaner.

It can be shown (see Section 2.1 of [8], in particular, Proposition 2.2 there) that
the law of the vacant set Vα (i.e., the set of all sites not touched by the trajectories)
of the two-dimensional random interlacements can be uniquely characterized by
the following equality:

P[A ⊂ Vα] = exp
(
− πα cap(A)

)
, for all A ⊂ Z2 such that 0 ∈ A. (8)

It is important to have in mind the following “constructive” description of the
trace of RI(α) on a finite set A ⊂ Z2. Namely,

• take a Poisson(πα cap(A)) number of particles;

• place these particles on the boundary of A independently, with distribution
eA =

(
(capA)−1êA(x), x ∈ A

)
;

• let the particles perform independent Ŝ-random walks (since Ŝ is transient,
each walk only leaves a finite trace on A).

In particular, note that (8) is a direct consequence of this description.
Some other basic properties of two-dimensional random interlacements are con-

tained in Theorems 2.3 and 2.5 of [8]. In particular, the following facts are known:
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1. The conditional translation invariance: for all α > 0, x ∈ Z2 \ {0}, A ⊂ Z2,
and any lattice isometry M exchanging 0 and x, we have

P[A ⊂ Vα | x ∈ Vα] = P[MA ⊂ Vα | x ∈ Vα]. (9)

2. The probability that a given site is vacant is

P[x ∈ Vα] = exp
(
− παa(x)

2

)
= ĉ‖x‖−α

(
1 +O(‖x‖−2)

)
(10)

(also, note that (4) yields an explicit expression for the constant ĉ in (10)).

3. Clearly, (10) implies that

E
(
|Vα ∩ B(r)|

)
∼


const× r2−α, for α < 2,

const× ln r, for α = 2,

const, for α > 2.

(11)

4. For A such that 0 ∈ A it holds that

lim
x→∞

P[A ⊂ Vα | x ∈ Vα] = exp
(
− πα

4
cap(A)

)
. (12)

Informally speaking, if we condition that a very distant site is vacant, this
decreases the level of the interlacements around the origin by factor 4. A
brief heuristic explanation of this fact is given after (35)–(36) of [8].

5. The relation (11) means that there is a phase transition for the expected size
of the vacant set at α = 2. However, the phase transition for the size itself
happens at α = 1. Namely, for α > 1 it holds that Vα is finite a.s., and for
α ∈ (0, 1) we have |Vα| =∞ a.s.

Now, the main contribution of this paper is the following result: the vacant set
is a.s. infinite in the critical case α = 1:

Theorem 1.2. It holds that |V1| =∞ a.s.

The above result may seem somewhat surprising, for the following reason. As
shown in [8], the case α = 1 corresponds to the leading term in the expression for
the cover time of the two-dimensional torus. It is known (cf. [3, 11]), however, that
the cover time has a negative second-order correction, which could be an evidence
in favor of finiteness of V1 (informally, the “real” all-covering regime should be
“just below” α = 1). On the other hand, it turns out that local fluctuations
of excursion counts overcome that negative correction, thus leading to the above
result.
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For A ⊂ Zd, denote by ∂A = {x ∈ A : there exists y /∈ A such that x ∼ y} its
internal boundary. Next, for simple random walk and a finite set A ⊂ Zd, let HA

be the corresponding Poisson kernel: for x ∈ A, y ∈ ∂A,

HA(x, y) = Px[Sτ0(∂A) = y]

(that is, HA(x, ·) is the exit measure from A starting at x). We need the follow-
ing result, which states that, if normalized by the harmonic measure, the entrance
measure to a large discrete ball is “sufficiently regular”. This fact will be an impor-
tant tool for estimating large deviation probabilities for soft local times without
using union bounds with respect to sites of ∂A (surely, the reader understands
that sometimes union bounds are just too rough). Also, we formulate it in all
dimensions d ≥ 2 for future reference2.

Proposition 1.3. Let c > 1 and ε ∈ (0, 1) be constants such that c(1−ε) > 1+2ε,
and abbreviate An = (B(cn) \ B(n)) ∪ ∂B(n). Then, there exist positive constants
β, C (depending on c, ε, and the dimension) such that for any x ∈ B(c(1− ε)n) \
B((1 + 2ε)n) and any y, z ∈ ∂B(n) it holds that∣∣∣HAn(x, y)

hmB(n)(y)
− HAn(x, z)

hmB(n)(z)

∣∣∣ ≤ C
(‖y − z‖

n

)β
(13)

for all large enough n.

We conjecture that the above should be true with β = 1, since one can di-
rectly check that it is indeed the case for the Brownian motion (observe that the
harmonic measure on the sphere is simply uniform in the continuous case and see
in Chapter 10 of [2] the formulas for the Poisson kernel of the Brownian motion);
however, it is unclear to us how to prove that. In any case, (13) is enough for our
needs.

2 The toolbox

For reader’s convenience, we collect here some facts needed for the proof of our
main results. These facts are either directly available in the literature, or can
be rapidly deduced from known results. Unless otherwise stated, we work in Zd,
d ≥ 2.

We need first to recall some basic definitions related to simple random walks in
higher dimensions. For d ≥ 3 let G(x, y) = Ex

∑∞
k=0 1{Sk = y} denote the Green’s

2this fact is also needed at least in the paper [4]
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function (i.e., the mean number of visits to y starting from x), and abbreviate
G(y) := G(0, y). For a finite set A ⊂ Zd and x, y ∈ A \ ∂A define

GA(x, y) = Ex
τ1(∂A)−1∑
k=0

1{Sk = y}

to be the mean number of visits to y starting from x before hitting ∂A (since A
is finite, this definition makes sense for all dimensions). For x ∈ A denote the
escape probability from A by EsA(x) = Px[τ1(A) =∞]. The capacity of a finite set
A ⊂ Zd is defined by

cap(A) =
∑
x∈A

EsA(x).

As for the capacity of a d-dimensional ball, observe that Proposition 6.5.2 of [14]
implies (recall that d ≥ 3)

cap(B(n)) =
(d− 2)πd/2

Γ(d/2)d
nd−2 +O(nd−3). (14)

We also define the harmonic measure on A by hmA(·) = EsA(·)
cap(A)

.

2.1 Basic estimates for the random walk on the annulus

Here, we formulate several basic facts about simple random walks on annuli.

Lemma 2.1. (i) For all x ∈ Z2 and R > r > 0 such that x ∈ B(R) \ B(r) we
have

Px
[
τ1(∂B(R)) < τ1(B(r))

]
=

ln ‖x‖ − ln r +O(r−1)

lnR− ln r
, (15)

as r, R→∞.

(ii) For all x ∈ Zd, d ≥ 3, and R > r > 0 such that x ∈ B(R) \ B(r) we have

Px
[
τ1(∂B(R)) < τ1(B(r))

]
=
r−(d−2) − ‖x‖−(d−2) +O(r−(d−1))

r−(d−2) −R−(d−2)
, (16)

as r, R→∞.

Proof. Essentially, this comes out of an application of the Optional Stopping The-
orem to the martingales a(Sn∧τ0(0)) (in two dimensions) or G(Sn∧τ0(0)) (in higher
dimensions). See Lemma 3.1 of [8] for the part (i). As for the part (2), apply the
same kind of argument and use the expression for the Green’s function e.g. from
Theorem 4.3.1 of [14].
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Lemma 2.2. Let c > 1 be fixed. Then for all large enough n we have for all
v ∈ (B(cn) \ B(n)) ∪ ∂B(n)

c1
‖v‖ − n+ 1

n
≤ Pv

[
τ1(∂B(cn)) < τ1(B(n))

]
≤ c2
‖v‖ − n+ 1

n
. (17)

with c1,2 depending on c.

Proof. This follows from Lemma 2.1 together with the observation that (15)–(16)
start working when ‖x‖ − n become larger than a constant (and, if x is too close
to B(n), we just pay a constant price to force the walk out). See also Lemma 8.5
of [16] (for d ≥ 3) and Lemma 6.3.4 together with Proposition 6.4.1 of [14] (for
d = 2).

Lemma 2.3. Fix c > 1 and δ > 0 such that 1 + δ < c − δ, and abbreviate
An = (B(cn)\B(n))∪∂B(n). Then, there exist positive constants c3, c4 (depending
only on c, δ, and the dimension) such that for all u1,2 ∈ Zd with (1+δ)n < ‖u1,2‖ <
(c− δ)n and ‖u1 − u2‖ ≥ δn it holds that c3n

−(d−2) ≤ GAn(u1, u2) ≤ c4n
−(d−2).

Proof. Indeed, we first notice that Proposition 4.6.2 of [14] (together with the
estimates on the Green’s function and the potential kernel, Theorems 4.3.1 of [14]
and (4)) imply that GAn(v, u2) � n−(d−2) for all d ≥ 2, where δ′n− 1 < ‖v−u2‖ ≤
δ′n, and δ′ ≤ δ is a small enough constant. Then, use the fact that from any u1 as
above, the simple random walk comes from u1 to B(u2, δ

′n) without touching ∂An
with uniformly positive probability.

Lemma 2.4. Let c, δ, An be as in Lemma 2.3, and assume that (1 + δ)n ≤ ‖x‖ ≤
(c−δ)n, u ∈ ∂B(n). Then, for some positive constants c5, c6 (depending only on c,
δ, and the dimension) we have

c5

nd−1
≤ HAn(x, u) ≤ c6

nd−1
. (18)

Observe that, since Px[τ1(B(n)) < τ1(∂B(cn))] is bounded away from 0 and 1,
the above result also holds for the harmonic measure hmB(n)(·) (notice that the
harmonic measure is a linear combination of conditional entrance measures).

Proof. This can be proved essentially in the same way as in Lemma 6.3.7 of [14].
Namely, denote B = An \ B((1 + ε)n) and use Lemma 6.3.6 of [14] together with
Lemmas 2.2 and 2.3 to write (with c2 = c2(1 + ε), as in Lemma 2.2)

HAn(x, u) =
∑

z∈∂B((1+ε)n)

GAn(z, x)Pu
[
Sτ1(∂B((1+ε)n)) = z

]
≤ c4n

−(d−2)
∑

z∈∂B((1+ε)n)

Pu
[
Sτ1(∂B((1+ε)n)) = z

]
8



≤ c4n
−(d−2) × c2

n
,

obtaining the upper bound in (18). The lower bound is obtained in the same way
(using the lower bound on GAn from Lemma 2.3).

Lemma 2.5. Let k > 1 and x ∈ ∂B(n). Then, as n→∞ (and uniformly in k)

Px[τ1(∂B(k + n)) < τ1(B(n))] =


hmB(n)(x)

2
π

ln
(
1 + k

n

)
+O(n−1)

, for d = 2,

cap(B(n)) hmB(n)(x)

1−
(
1 + k

n

)−(d−2)
+O(n−1)

, for d ≥ 3.

(19)

Proof. Consider first the case d ≥ 3. It is enough to prove it for the case k ≤ n2/2,
since for k > n2/2 the second term in the denominator is already O(n−1). Now,
Proposition 6.4.2 of [14] implies that, for any x ∈ ∂B(n) and m > n

EsB(n)(x) = cap(B(n)) hmB(n)(x) = Px[τ1(∂B(m)) < τ1(B(n))]
(

1−O
( nd−2

md−2

))
,

so

Px[τ1(∂B(n2)) < τ1(B(n))] = cap(B(n)) hmB(n)(x)
(
1 +O(n−(d−2))

)
. (20)

On the other hand, with ν being the entrance measure to ∂B(n + k) starting
from x and conditioned on the event

{
τ1(∂B(n + k)) < τ1(B(n))

}
, we write using

Lemma 2.1 (ii)

Px[τ1(∂B(n2)) < τ1(B(n))]

= Px[τ1(∂B(n+ k)) < τ1(B(n))]Pν [τ1(∂B(n2)) < τ1(B(n))]

= Px[τ1(∂B(n+ k)) < τ1(B(n))]
(

1−
(

1 +
k

n

)−(d−2)

+O(n−1)
)

and this, together with (20), implies (19) in higher dimensions.
Now, we deal with the case d = 2. Assume first that k ≤ n2/2. Let y be

such that n3 < ‖y‖ ≤ n3 + 1; also, denote A′ = (B(n5) \ B(n)) ∪ ∂B(n). For
any z ∈ ∂B(n2) we can write using Proposition 4.6.2 (b) together Lemma 2.1 (i)
(starting from z, the walk reaches B(n) before B(n5) with probability 3

4
(1+O(n−1)))

GA′(z, y) =
(
1 +O(n−1)

)(3

4
× 2

π
lnn3 +

1

4
× 2

π
lnn5 − 2

π
lnn3

)
=

1

π

(
1 +O(n−1)

)
lnn. (21)
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Next, Lemma 6.3.6 of [14] implies that

HA′(y, x) =
∑

z∈∂B(n2)

GA′(z, y)Px
[
Sτ1(∂B(n2)) = z, τ1(∂B(n2)) < τ1(B(n))

]
= Px

[
τ1(∂B(n2)) < τ1(B(n))

] ∑
z∈∂B(n2)

GA′(z, y)µ(z), (22)

where µ is the entrance measure to ∂B(n2) starting from x, conditioned on the
event

{
τ1(∂B(n2)) < τ1(B(n))

}
.

Then, by (31) of [8] (observe that Lemma 2.1 (i) implies that, starting from y,
the walk reaches B(n) before B(n5) with probability 1

2
(1 +O(n−1))) we have

HA′(y, x) =
1

2
hmB(n)

(
1 +O(n−1)

)
. (23)

So, from (21), (22), and (23) we obtain that

Px
[
τ1(∂B(n2)) < τ1(B(n))

]
=

hmB(n)(x)
2
π

lnn

(
1 +O(n−1)

)
. (24)

Let ν be the entrance measure to ∂B(n + k) starting from x, conditioned on the
event

{
τ1(∂B(n+ k)) < τ1(B(n))

}
. Using (24), we write

Px[τ1(∂B(n+ k)) < τ1(B(n))]Pν [τ1(∂B(n2)) < τ1(B(n))]

= Px[τ1(∂B(n2)) < τ1(B(n))]

=
hmB(n)(x)

2
π

lnn

(
1 +O(n−1)

)
.

Since, by Lemma 2.1 (i) we have

Pν [τ1(∂B(n2)) < τ1(B(n))] =
ln
(
1 + k

n

)
+O(n−1)

lnn
,

this proves (19) in the case d = 2 and k ≤ n2/2.
The case k > n2/2 is easier: just repeat (21)–(24) with k on the place of n2 (so

that n3 becomes k3/2 and n5 becomes k5/2). This concludes the proof of Lemma 2.5.

Let us now come back to the specific case of d = 2. We need some facts
regarding the conditional walk Ŝ.

Lemma 2.6. Assume that x /∈ B(y, r) and ‖y‖ > 2r ≥ 1. We have

Px
[
τ̂1(B(y, r)) <∞

]
=

(
a(y) +O(‖y‖−1r)

)(
a(y) + a(x)− a(x− y) +O(r−1)

)
a(x)

(
2a(y)− a(r) +O(r−1 + ‖y‖−1r)

) .

(25)
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Proof. This is Lemma 3.7 (i) of [8].

Lemma 2.7. Assume that ‖y‖ > 2r ≥ 1. We have

cap
(
{0} ∪B(y, r)

)
=

(
a(y) +O(‖y‖−1r)

)(
a(y) +O(r−1)

)
2a(y)− a(r) +O(r−1 + ‖y‖−1r)

. (26)

Proof. This is Lemma 3.9 (i) of [8].

Then, we show that the walks S and Ŝ are almost indistinguishable on a “dis-
tant” (from the origin) set. For A ⊂ Z2, let Γ

(x)
A be the set of all finite nearest-

neighbour trajectories that start at x ∈ A \ {0} and end when entering ∂A for the

first time. For V ⊂ Γ
(x)
A write S ∈ V if there exists k such that (S0, . . . , Sk) ∈ V

(and the same for the conditional walk Ŝ).

Lemma 2.8. Assume that V ⊂ Γ
(x)
A and suppose that 0 /∈ A, and denote s =

dist(0, A), r = diam(A). Then, for x ∈ A,

Px[S ∈ V ] = Px[Ŝ ∈ V ]
(

1 +O
( r

s ln s

))
. (27)

Proof. This is Lemma 3.3 (ii) of [8].

2.2 Excursions and soft local times

In this section we will develop some tools for dealing with excursions of two-
dimensional random interlacements and random walks on tori; in particular, one
of our goals is to construct a coupling between the set of RI’s excursions and the
set of excursions of the simple random walk X on the torus Z2

n = Z2/nZ2.
First, if A ⊂ A′ are (finite) subsets of Z2 or Z2

n, then the excursions between ∂A
and ∂A′ are pieces of nearest-neighbour trajectories that begin on ∂A and end
on ∂A′, see Figure 1, which is, hopefully, self-explanatory. We refer to Section 3.4
of [8] for formal definitions. Here and in the sequel we denote by (Z(i), i ≥ 1) the

(complete) excursions of the walk X between ∂A and ∂A′, and by (Ẑ(i), i ≥ 1) the
RI’s excursions between ∂A and ∂A′ (dependence on n,A,A′ is not indicated in
these notations when there is no risk of confusion).

Now, assume that we want to construct the excursions of RI(α), say, be-
tween ∂B(y0, n) and ∂B(y0, cn) for some c > 0 and y0 ∈ Z2. Also, (let us identify
the torus Z2

n1
with the square of size n1 centered in the origin of Z2) we want to con-

struct the excursions of the simple random walk on the torus Z2
n1

between ∂B(y0, n)
and ∂B(y0, cn), where n1 > n + 1. It turns out that one may build both sets of
excursions simultaneously on the same probability space, in such a way that, typi-
cally, most of the excursions are present in both sets (obviously, after a translation

11



%(1)

%(2)

∂A ∂A

∂A′

∂A′

Figure 1: Excursions (pictured as bold pieces of trajectories) for simple random
walk on the torus (on the left), and random interlacements (on the right). Note
the walk “jumping” from right side of the square to the left one, and from the
bottom one to the top one (the torus is pictured as a square). For random inter-
lacements, two trajectories, %1,2, intersect the set A; the first trajectory produces
two excursions, and the second only one.

12



by y0). This is done using the soft local times method; we refer to Section 4 of [16]
for the general theory (see also Figure 1 of [16] which gives some quick insight on
what is going on), and also to Section 2 of [7]. Here, we describe the soft local
times approach in a less formal way. Assume, for definiteness, that we want to
construct the simple random walk’s excursions on Z2

n1
, between ∂A and ∂A′, and

suppose that the starting point x0 of the walk X does not belong to A.
We first describe our approach for the case of the torus. For x /∈ A and y ∈ ∂A

let us denote ϕ(x, y) = Px[Xτ1(A) = y]. For an excursion Z let ι(Z) be the first point
of this excursion, and `(Z) be the last one; by definition, ι(Z) ∈ ∂A and `(Z) ∈
∂A′. Clearly, for the random walk on the torus, the sequence

(
(ι(Z(j)), `(Z(j))), j ≥

1
)

is a Markov chain with transition probabilities

P(y,z),(y′,z′) = ϕ(z, y′)Py′ [Xτ1(∂A′) = z′].

Now, consider a marked Poisson point process on ∂A × R+ with rate 1. The
(independent) marks are the simple random walk trajectories started from the first
coordinate of the Poisson points (i.e., started at the corresponding site of ∂A) and
run until hitting ∂A′. Then (see Figure 2; observe that A and A′ need not be
necessarily connected, as shown on the picture)

• let ξ1 be the a.s. unique positive number such that there is only one point of
the Poisson process on the graph of ξ1ϕ(x0, ·) and nothing below;

• the mark of the chosen point is the first excursion (call it Z(1)) that we
obtain;

• then, let ξ2 be the a.s. unique positive number such that the graph of
ξ1ϕ(x0, ·) + ξ2ϕ(`(Z(1)), ·) contains only one point of the Poisson process,
and there is nothing between this graph and the previous one;

• the mark Z(2) of this point is our second excursion;

• and so on.

It is possible to show that the sequence of excursions obtained in this way indeed
has the same law as the simple random walk’s excursions (in particular, conditional
on `(Z(k−1)), the starting point of kth excursion is indeed distributed according to
ϕ(`(Z(k−1)), ·)); moreover, the ξ’s are i.i.d. random variables with Exponential(1)
distribution.

So, let us denote by ξ1, ξ2, ξ3, . . . a sequence of i.i.d. random variables with
Exponential distribution with parameter 1. According to the above informal de-
scription, the soft local time of kth excursion is a random vector indexed by y ∈ ∂A,

13



A1 A′
1

A′
2

A2

R+

∂A1 ∂A2

ξ1ϕ(x0, ·)

y1 = ι(Z(1))

Z2
n

y1

`(Z(1))

y2 = ι(Z(2))

y2

y3

y3 = ι(Z(3))

ξ1ϕ(x0, ·) + ξ2ϕ(`(Z
(1)), ·)

ξ1ϕ(x0, ·) + ξ2ϕ(`(Z
(1)), ·) + ξ3ϕ(`(Z

(2)), ·)

Z(1)

Z(2)

Z(3)

Figure 2: Construction of the first three excursions between ∂A and ∂A′ on the
torus Z2

n using the soft local times (here, A = A1 ∪ A2 and A′ = A′1 ∪ A′2)

14



defined as follows:

Lk(y) = ξ1ϕ(x0, y) +
k∑
j=2

ξjϕ(`(Z(j−1)), y). (28)

For the random interlacements, the soft local times are defined analogously.
Recall that ĥmA defines the (normalized) harmonic measure on A with respect to

the Ŝ-walk. For x /∈ A and y ∈ ∂A let

ϕ̂(x, y) = Px[Ŝτ̂1(A) = y, τ̂1(A) <∞] + Px[τ̂1(A) =∞] ĥmA(y). (29)

Analogously, for the random interlacements, the sequence
(
(ι(Ẑ(j)), `(Ẑ(j))), j ≥ 1

)
is also a Markov chain, with transition probabilities

P̂(y,z),(y′,z′) = ϕ̂(z, y′)Py′ [Ŝτ̂1(∂A′) = z′].

The process of picking the excursions for the random interlacements is quite anal-
ogous: if the last excursion was Ẑ, we use the probability distribution ϕ̂(`(Ẑ), ·)
to choose the starting point of the next excursion. Clearly, the last term in (29)

is needed for ϕ̂ to have total mass 1; informally, if the Ŝ-walk from x does not
ever hit A, we just take the “next” trajectory of the random interlacements that
does hit A, and extract the excursion from it (see also (4.10) of [6]). Again, let
ξ̂1, ξ̂2, ξ̂3, . . . be a sequence of i.i.d. random variables with Exponential distribution
with parameter 1. Then, define the soft local time of random interlacement of kth
excursion as

L̂k(y) = ξ̂1ϕ̂(x0, y) +
k∑
j=2

ξ̂jϕ̂(`(Ẑ(j−1)), y). (30)

Define the following two measures on ∂A, one for the random walk on the torus,
and the other for random interlacements:

hmA′

A (y) = Py[τ1(∂A′) < τ1(A)]
( ∑
z∈∂A

Pz[τ1(∂A′) < τ1(A)
)−1

, (31)

ĥm
A′

A (y) = Py[τ̂1(∂A′) < τ̂1(A)]
( ∑
z∈∂A

Pz[τ̂1(∂A′) < τ̂1(A)
)−1

. (32)

Similarly to Lemma 6.1 of [6] one can obtain the following important facts: the
measure

ψ(y, z) = hmA′

A (y)Py[Xτ1(∂A′) = z]

is invariant for the Markov chain (ι(Z(j)), `(Z(j))), and the measure

ψ̂(y, z) = ĥm
A′

A (y)Py[Ŝτ̂1(∂A′) = z]

15



is invariant for the Markov chain (ι(Ẑ(j)), `(Ẑ(j))). Notice also that hmA′

A and ĥm
A′

A

are the marginals of the stationary measures for the entrance points (i.e., the first
coordinate of the Markov chains). In particular, this implies that, almost surely,

lim
k→∞

Lk(y)

k
= hmA′

A (y) and lim
k→∞

L̂k(y)

k
= ĥm

A′

A (y),

for any y ∈ ∂A.
The next result is needed to have a control on the large and moderate deviation

probabilities for soft local times.

Lemma 2.9. Let γ2 > γ1 > 1 be some fixed constants, and abbreviate n1 = γ2n.
For the random walk on the torus Z2

n1
, abbreviate A = B(n) and A′ = B(γ1n).

For the random interlacements, abbreviate B = B(y0, n) and B′ = B(y0, γ1n),
where y0 ∈ Z2 is such that ‖y0‖ ≥ 2γ1n. Then there exist positive constants
c, c1, c2 such that for all k ≥ 1 and all θ ∈ (0, (ln k)−1) we have

P
[

sup
y∈∂A

∣∣Lk(y)− k hmA′

A (y)
∣∣ ≥ c

√
k + θk

n1

]
≤ c1e

−c2θ2k, (33)

P
[

sup
y∈∂B

∣∣L̂k(y)− k ĥm
B′

B (y)
∣∣ ≥ c

√
k + θk

n

]
≤ c1e

−c2θ2k, (34)

for all large enough n.

Proof. We prove only (33), the proof of (34) is completely analogous. Due to
Lemma 2.4, it is enough to show that for some c′, c′1, c

′
2

P
[

sup
y∈∂A

∣∣∣ Lk(y)

hmA(y)
− khmA′

A (y)

hmA(y)

∣∣∣ ≥ c′
√
k + θk

]
≤ c′1e

−c′2θ2k. (35)

Again, Lemma 2.4 implies that there exists λ > 0 such that for all x ∈ ∂A′

and y ∈ ∂A we have ϕ(x, y) ≥ 2λ hm
A′1
A1

(y). Consider a sequence of random
variables η1, η2, η3, . . ., independent of everything, and such that P[ηj = 1] = 1 −
P[ηj = 0] = λ for all j. For j ≥ 1 define ρj = m iff η1 + · · · + ηm = j and ηm = 1
(that is, ρj is the position of jth “1” in the η-sequence). The idea is that we
force the Markov chain to have renewals at times when η· = 1, and then try to
approximate the soft local time by a sum of independent random variables. More
precisely, assume that `(Z(j−1)) = x. Then, we choose the starting point ι(Z(j)) of
the jth excursion in the following way

ι(Z(j)) ∼


1

1− λ
(
ϕ(x, ·)− λ hm

A′1
A1

)
, if ηj = 0,

hm
A′1
A1
, if ηj = 1.
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Denote W0(·) = Lρ1−1(·), and

Wj(·) = Lρj+1−1(·)− Lρj−1(·)

for j ≥ 1. By construction, it holds that (Wj, j ≥ 1) is a sequence of i.i.d. random

vectors. Also, it is straightforward to obtain that EWj(y) = λ−1 hm
A′1
A1

(y) for all
y ∈ ∂A and all j ≥ 1.

Now, we are going to show that, to prove (35), it is enough to prove that for
large enough m

P
[

sup
y∈∂A

∣∣∣∑m
j=1Wj(y)

hmA(y)
− λ−1m

hmA′

A (y)

hmA(y)

∣∣∣ ≥ c′′
√
m+ θm

]
≤ c′′1e

−c′′2 θ2m. (36)

Indeed, abbreviate

Rk = sup
y∈∂A

∣∣∣ Lk(y)

hmA(y)
− khmA′

A (y)

hmA(y)

∣∣∣,
and

R̃k = sup
y∈∂A

∣∣∣∑k
j=1 Wj(y)

hmA(y)
− λ−1k

hmA′

A (y)

hmA(y)

∣∣∣.
Let us first show that (36) implies

P
[

max
i∈[m,2m]

R̃i ≥ 4c′′
√
m+ 5θm

]
≤ 2c′′1e

−3c′′2 θ
2m. (37)

For this, define the random variable

N = min{i ∈ [m, 2m] : R̃i ≥ 4c′′
√
m+ 5θm}

(by definition, min ∅ := +∞), so the left-hand side of (37) is equal to P
[
N ∈

[m, 2m]
]
. We also assume without loss of generality that the right-hand side of (36)

does not exceed 1
2

for given m and all θ ≥ 0 (it is enough to assume that c′′ is

sufficiently large). Now, (36) implies (note that
√

3 < 4−
√

2)

c′′1e
−3c′′2 θ

2m ≥ P
[
R̃3m ≥ c′′

√
3m+ 3θm

]
≥

2m∑
j=m

P[N = j]P
[
R̃3m−j < c′′

√
2m+ 2θm

]
≥ P

[
N ∈ [m, 2m]

]
× min

j∈[m,2m]
P
[
R̃3m−j < c′′

√
3m− j + θ(3m− j)

]
17



≥ 1

2
P
[
N ∈ [m, 2m]

]
for all large enough m.

Next, let us denote σk = min{j ≥ 1 : ρj > k}. By (31) and Lemma 2.5 we may

assume that 1
2
≤ hmA′

A (y)

hmA(y)
≤ 2, and, due to Lemma 2.4, Lk(y)

hmA(y)
≤ c̃ for some c̃ > 0.

So, we can write

Rk ≤ R̃σk + 2|λ−1σk − k|+ c̃

ρσk∑
i=k+1

ξi. (38)

Now, observe that σk − 1 is a Binomial(k, λ) random variable, and ρσk − k is
Geometric(λ). Therefore, the last two terms in the right-hand side of (38) are
easily dealt with; that is, we may write for large enough ĉ > 0

P
[
2|λ−1σk − k| ≥ ĉ

√
k + θk

]
≤ c4e

−c′4θ2k, (39)

P
[
c̃

ρσk∑
i=k+1

ξi ≥ θk
]
≤ e−c5λθk. (40)

Then, using (37) together with (39)–(40), we obtain (recall (35))

P
[
Rk ≥

(
4c′′(2λ

3
)1/2 + ĉ

)√
k +

(
10
3
λ+ 2

)
θk
]

≤ P
[

max
i∈[ 2

3
λk, 4

3
λk]
R̃i ≥ 4c′′(2λ

3
)1/2
√
k + 5θ · 2

3
λk
]

+ P
[
σk /∈ [2

3
λk, 4

3
λk]
]

+ P
[
2|λ−1σk − k| ≥ ĉ

√
k + θk

]
+ P

[
c̃

ρσk∑
i=k+1

ξi ≥ θk
]

≤ 2c′′1e
−2λc′′2 θ

2k + e−c6λk + c4e
−c′4θ2k + e−c5λθk,

and this shows that it is indeed enough for us to prove (36).
Now, the advantage of (36) is that we are dealing with i.i.d. random vectors

there, so it is convenient to use some machinery from the theory of empirical
processes. First, the idea is to use (1.2) of [21] to prove that

ER̃k ≤ c7

√
k (41)

for some c7 > 0 (note that the above estimate is uniform with respect to the size of
∂A). To use the language of empirical processes, we are dealing here with random

elements of the form W̃j =
Wj

hmA
which are positive vectors indexed by sites of ∂A.

Let also Y be a generic positive vector indexed by sites of ∂A. For y ∈ ∂A let Ey
be the evaluation functional at y: Ey(Y ) := Y (y). Denote by F = {Ey, y ∈ ∂A}
the class of functions we are interested in; then, we need to find an upper bound on

18



the expectation of supf∈F |
∑k

j=1 f(W̃j)−Ef(W̃j)|. Using the terminology of [21],

let ‖f‖2 :=

√
Ef 2(W̃ ), where W̃ has the same law as the W̃j’s above. Consider

the envelope function F defined by

F (Y ) = sup
y∈∂A
Ey(Y ) = sup

y∈∂A
Y (y).

Due to Lemma 2.4, we have
‖F‖2 ≤ c8. (42)

To be able to apply (1.2) of [21], one has to estimate the bracketing entropy integral

J[ ](1,F , ‖ · ‖2) =

∫ 1

0

√
1 + lnN[ ](s‖F‖2,F , ‖ · ‖2)ds. (43)

In the above expression, N[ ](δ,F , ‖ · ‖2) is the so-called bracketing number : the
minimal number of brackets [f, g] = {h : f ≤ h ≤ g} needed to cover F of
size ‖g − f‖2 smaller than δ.

Let us define “arc intervals” on ∂A by I(y, r) = {z ∈ ∂A : ‖y− z‖ ≤ r}, where
y ∈ ∂A, r > 0. Observe that I(y, r) = {y} in case r < 1. Define

f y,r(Y ) = inf
z∈I(y,r)

Y (z), gy,r(Y ) = sup
z∈I(y,r)

Y (z);

in order to cover F , we are going to use brackets of the form [f y,r, gy,r]. Notice
that if z ∈ I(y, r) then Ez ∈ [f y,r, gy,r], so a covering of F by the above brackets
corresponds to a covering of ∂A by “intervals” I(·, ·). Let us estimate the size of
the bracket [f y,r, gy,r]; it is here that Proposition 1.3 comes into play. We have

‖gy,r − f y,r‖2 =
√
E
∣∣supz∈I(y,r) W̃ (z)− infz∈I(y,r) W̃ (z)

∣∣
≤ c9r

β‖ξ1 + · · ·+ ξρ‖2

≤ 2c9λ
−1rβ; (44)

in the above calculation, ρ is a Geometric random variable with success probabil-
ity λ, ξ’s are i.i.d. Exponential(1) random variables also independent of ρ, and we
use an elementary fact that ξ1 + · · ·+ ξρ is then also Exponential with mean λ−1.

Then, recall (42), and observe that, for any δ > 0 it is possible to cover F with
|∂A| = O(n1) brackets of size smaller than δ (just cover each site separately with
brackets [f ·,1/2, g·,1/2] of zero size). That is, for any s > 0 it holds that

N[ ](s‖F‖2,F , ‖ · ‖2) ≤ c10n1. (45)
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Next, if s ≥ c11n
−β
1 , then we are able to use intervals of size r = O(n1s

1/β) to
cover ∂A, so we have

N[ ](s‖F‖2,F , ‖ · ‖2) = O(n1/r) ≤ c12s
−1/β. (46)

So (recall (43)) the bracketing entropy integral can be bounded above by

c11n
−β
1

√
1 + ln(c10n1) +

∫ 1

c11n
−β
1

√
1 + ln(c12s−1/β) ds ≤ c13.

The formula (1.2) of [21] tells us that ER̃k ≤ cJ[ ](1,F , ‖ · ‖2)‖F‖2

√
k, so we have

shown (41).
Next step is to use Theorem 4 of [1] to prove that (with t = θk)

P
[
R̃k ≥ 2ER̃k + t

]
≤ c14e

−c15t2/k + c16e
−c17t/ ln k; (47)

this is enough for us since, due to the assumption θ < (ln k)−1 it holds that

c14e
−c15t2/k + c16e

−c17t/ ln k ≤ c18e
−c19θ2k.

To apply that theorem, we only need to estimate the ψ1-Orlicz norm of Ey(W̃ ), see

Definition 1 of [1]. But (recall the notations just below (44)) it holds that Ey(W̃ )
is stochastically bounded above by const×Exponential(λ) random variable, so the
ψ1-Orlicz norm is uniformly bounded above3. The factor ln k in the last term in
the right-hand side of (47) comes from the Pisier’s inequality, cf. (13) of [1].

Finally, combining (41) and (47), we obtain (36), and, as observed before, this
is enough to conclude the proof of Lemma 2.9.

Next, we need a fact that one may call the consistency of soft local times. As-
sume that we need to construct excursions of some process (i.e., random walk,
random interlacements, or just independent excursions) between ∂A and ∂A′;

let (L̂k(y), y ∈ ∂A) be the soft local time of kth excursion (of random interlace-
ments, for definiteness). On the other hand, we may be interested in simultane-
ously constructing the excursions also between ∂A1 and ∂A′1, where A′ ∩ A′1 = ∅
and A1 ⊂ A′1. Let (L̂∗k(y), y ∈ ∂A) be the soft local time at the moment when kth
excursion between ∂A and ∂A′ was chosen in this latter construction. We need
the following simple fact:

Lemma 2.10. It holds that

(L̂k(y), y ∈ ∂A)
law
= (L̂∗k(y), y ∈ ∂A)

for all k ≥ 1.

3a straightforward calculation shows that the ψ1-Orlicz norm of an Exponential random vari-
able equals its expectation
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Proof. First, due to the memoryless property of the Poisson process, it is clearly
enough to prove that L̂1

law
= L̂∗1. This, by its turn, can be easily obtained from the

fact that Ẑ(1) law
= Ẑ(1),∗, where Ẑ(1) and Ẑ(1),∗ are the first excursions between ∂A

and ∂A′ chosen in both constructions.

Also, we need to be able to control the number of excursions N∗t up to time t
on the torus Z2

n between ∂B(γ1n) and ∂B(γ2n), γ1 < γ2 < 1/2.

Lemma 2.11. For all large enough n, all t ≥ n2 and all δ > 0 we have

P
[
(1−δ) πt

2n2 ln(γ2/γ1)
≤ N∗t ≤ (1+δ)

πt

2n2 ln(γ2/γ1)

]
≥ 1−c1 exp

(
− c2δ

2t

n2

)
, (48)

where c1,2 are positive constants depending on γ1,2.

Proof. Note that there is a much more general result on the large deviations of the
excursion counts for the Brownian motion (the radii of the concentric disks need
not be of order n), see Proposition 8.10 of [3]. So, we give the proof of Lemma 2.11
in a rather sketchy way. First, let us rather work with the two-sided stationary
version of the walk X = (Xj, j ∈ Z) (so that Xj is uniformly distributed on Z2

n for
any j ∈ Z). For x ∈ ∂B(γ1n) define the set

Jx =
{
k ∈ Z : Xk = x, there exists i < k such that Xi ∈ ∂B(γ2n)

and Xm ∈ B(γ2n) \ (B(γ1n) ∪ ∂B(γ2n)) for i < m < k
}
,

and let J =
⋃
x∈∂B(γ1n) Jx. Now, Lemma 2.5 together with the reversibility argu-

ment used in Lemma 6.1 of [6] imply that

P[0 ∈ Jx] = P[X0 = x]Px[τ1(∂B(γ2n)) < τ1(B(γ1n))] = n−2 hmB(γ1n)(x)
2
π

ln γ2
γ1

+O(n−1)
,

so (since hmB(γ1n)(·) sums to 1)

P[0 ∈ J ] =
(2n2

π
ln
γ2

γ1

+O(n)
)−1

. (49)

Let us write J = {σj, j ∈ Z}, where σ0 ≥ 0 and σj < σj+1 for all j ∈ Z. As noted
just after (31)–(32), the invariant entrance measure to B(γ1n) for excursions is

ν = hm
B(γ2n)
B(γ1n). Let E∗ν be the expectation for the walk with X0 ∼ ν and conditioned

on 0 ∈ J (that is, for the cycle-stationary version of the walk). Then, in a standard
way one obtains from (49) that

E∗νσ1 = E∗ν(σ1 − σ0) =
2n2

π
ln
γ2

γ1

+O(n). (50)
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Note also that in this setup (radii of disks of order n) it is easy to control the
tails of σ1−σ0 since in each interval of length O(n2) there is at least one complete
excursion with uniformly positive probability (so there is no need to apply the
Khasminskii’s lemma4, as one usually does for proving results on large deviations
of excursion counts). To conclude the proof of Lemma 2.11, it is enough to apply
a renewal argument similar to the one used in the proof of Lemma 2.9 (and in
Section 8 of [3]).

3 Proofs of the main results

Proof of Proposition 1.3. Fix some x, y, z as in the statement of the proposition.
We need the following fact:

Lemma 3.1. We have

HAn(x, u) = Eu
τ1(∂An)∑
j=1

1{Sj = x} =
1

2d

∑
v∼u:

v∈An\∂An

GAn(v, x) (51)

(that is, HAn(x, u) equals the mean number of visits to x before hitting ∂An, starting
from u) for all u ∈ ∂B(n).

Proof. This follows from a standard reversibility argument. Indeed, write (the
sums below are over all nearest-neighbor trajectories beginning in x and ending
in u that do not touch ∂An before entering u; %∗ stands for % reversed, |%| is the
number of edges in %, and k(%) is the number of times % was in x)

HAn(x, u) =
∑
%

(2d)−|%|

=
∑
%

(2d)−|%
∗|

=
∞∑
j=1

∑
%:k(%)=j

(2d)−|%
∗|,

and observe that the jth term in the last line is equal to the probability that x is
visited at least j times (starting from u) before hitting ∂An. This implies (51).

Note that, by Lemma 2.4 we have also

c1

nd−1
≤ HAn(x, u) ≤ c2

nd−1
, (52)

4see e.g. the argument between (8.9) and (8.10) of [3]
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and, as a consequence (since hmB(n)(u) is a convex combination in x′ ∈ ∂B((1 +
2ε)n) of HAn(x′, u))

c1

nd−1
≤ hmB(n)(u) ≤ c2

nd−1
(53)

for all u ∈ ∂B(n). Therefore, without restricting generality we may assume that
‖y−z‖ ≤ (ε/9)n, since if ‖y−z‖ is of order n, then (13) holds for large enough C.

So, using Lemma 3.1, we can estimate the difference between the mean numbers
of visits to one fixed site in the interior of the annulus starting from two close sites
at the boundary, instead of dealing with hitting probabilities of two close sites
starting from that fixed site.

Then, to obtain (13), we proceed in the following way.

(i) Observe that, to go from a site u ∈ ∂B(n) to x, the particle needs to go
first to ∂B((1 + ε)n); we then prove that the probability of that is “almost”
proportional to hmB(n)(u), see (54).

(ii) In (56) we introduce two conditioned (on hitting ∂B((1+ε)n) before returning
to ∂B(n)) walks starting from y, z ∈ ∂B(n). The idea is that they will likely
couple before reaching ∂B((1 + ε)n).

(iii) More precisely, we prove that each time the distance between the original
point on ∂B(n) and the current position of the (conditioned) walk is dou-
bled, there is a uniformly positive chance that the coupling of the two walks
succeeds (see the argument just after (63)).

(iv) To prove the above claim, we define two sequences (Uk) and (Vk) of subsets
of the annulus B((1 + ε)n) \ B(n), as shown on Figure 3. Then, we prove
that the positions of the two walks on first hitting of Vk can be coupled with
uniformly positive probability, regardless of their positions on first hitting
of Vk−1. For that, we need two technical steps:

(iv.a) If one of the two conditioned walks hits Vk−1 at a site which is “too
close” to ∂B(n) (look at the point Zk−1 on Figure 3), we need to assure
that the walker can go “well inside” the set Uk with at least constant
probability (see (59)).

(iv.b) If the (conditioned) walk is already “well inside” the set Uk, then one
can apply the Harnack inequality to prove that the exit probabilities
are comparable in the sense of (63).

(v) There are O
(

ln n
‖y−z‖

)
“steps” on the way to ∂B((1 + ε)n), and the coupling

is successful on each step with uniformly positive probability. So, in the end
the coupling fails with probability polynomially small in n

‖y−z‖ , cf. (64).
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(vi) Then, it only remains to gather the pieces together (the argument after (65)).
The last technical issue is to show that, even if the coupling does not suc-
ceed, the difference of expected hit counts cannot be too large; this follows
from (14) and Lemma 2.3.

We now pass to the detailed arguments. By Lemma 2.5 we have for any u ∈ ∂B(n)

Pu
[
τ0(∂B((1 + ε)n)) < τ1(∂B(n))

]
=


hmB(n)(u)

2
π

ln(1 + ε) +O(n−1)
, for d = 2,

cap(B(n)) hmB(n)(u)

1− (1 + ε)−(d−2) +O(n−1)
, for d ≥ 3,

(54)
so, one can already notice that the probabilities to escape to ∂B((1 + ε)n) normal-
ized by the harmonic measures are roughly the same for all sites of ∂B(n). Define
the events

Fj =
{
τ0(∂B((1 + ε)n)) < τj(∂B(n))

}
(55)

for j = 0, 1. For v ∈ B((1 + ε)n) \ B(n) denote h(v) = Pv[F ]; clearly, h is a
harmonic function inside the annulus B((1 + ε)n) \ B(n), and the simple random
walk on the annulus conditioned on F0 is in fact a Markov chain (that is, the
Doob’s h-transform of the simple random walk) with transition probabilities

P̃v,w =


h(w)

2dh(v)
, v ∈ B((1 + ε)n) \ (B(n) ∪ ∂B((1 + ε)n)), w ∼ v,

0, otherwise.
(56)

On the first step (starting at u ∈ ∂B(n)), the transition probabilities of the con-
ditioned walk are described in the following way: the walk goes to v /∈ B(n) with
probability

h(v)

( ∑
v′ /∈B(n):
v′∼u

h(v′)

)−1

.

Let k0 = max{j : 3‖y − z‖2j < εn}, and let us define the sets

Uk = B(y, 3‖y − z‖2k) \
(
B(n) \ ∂B(n)

)
,

Vk = ∂Uk \ ∂B(n),

for k = 1, . . . , k0, see Figure 3. Also, define yk to be the closest integer point to
y + 3‖y − z‖2k y

‖y‖ . Clearly, it holds that

k0 ≥ c2 ln
c3εn

‖y − z‖ . (57)
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∂B(n)
∂B((1 + ε)n) ∂B(cn)

x

y

z

Vk−1

Vk

Yk−1

Zk−1

Yk = Zk

yk

U ′k

V ′k

Figure 3: On the coupling of conditioned walks in the proof of Proposition 1.3.
Here, Yk−1 and Zk−1 are positions of the walks started in y and z, and we want
to couple their exit points on V ′k . The y-walk is already in U ′k, but we need to
force the z-walk to advance to U ′k in the set Ψ(Zk−1, ‖y − z‖2k−1) (dark grey on
the picture), so that the Harnack inequality would be applicable.
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Denote by S̃(1) and S̃(2) the conditioned random walks started from y and z. For
k = 1, . . . , k0 denote Yk = S̃

(1)
τ̃1(Vk), Zk = S̃

(2)
τ̃1(Vk), where τ̃ 1 is the hitting time for

the S̃-walks, defined as in (2). The goal is to couple (Y1, . . . , Yk0) and (Z1, . . . , Zk0)
in such a way that with high probability there exists k1 ≤ k0 such that Yj = Zj
for all j = k1, . . . , k0; we denote by Υ the corresponding coupling event. Clearly,
this generates a shift-coupling of S̃(1) and S̃(2); if we managed to shift-couple them
before they reach ∂B((1 + ε)n), then the number of visits to x will be the same.

For v ∈ Rd let `v = {rv, r > 0} be the ray in v’s direction. Now, for any v with
n < ‖v‖ ≤ (1 + ε)n and s ∈ (0, εn) define the (discrete) set

Ψ(v, s) =
{
u ∈ Zd : n < ‖u‖ ≤ n+ s, dist(u, `v) ≤ s/2

}
.

Denote also by

∂+Ψ(v, s) =
{
u ∈ ∂Ψ(v, s) : n+ s− 1 < ‖u‖ ≤ n+ s

}
the “external part” of the boundary of Ψ(v, s) (on Figure 3, it is the rightmost
side of the dark-grey “almost-square”). Observe that, by Lemma 2.2, we have

c5
‖v‖ − n+ 1

n
≤ h(v) ≤ c6

‖v‖ − n+ 1

n
. (58)

We need the following simple fact: if ‖v‖ − n < 2s,

Pv
[
S̃τ̃(∂Ψ(v,s)) ∈ ∂+Ψ(v, s)

]
≥ c7 (59)

for some positive constant c7. To see that, it is enough to observe that the prob-
ability of the corresponding event for the simple random walk S is O(‖v‖−n+1

s
)

(roughly speaking, the part transversal to `v behaves as a (d−1)-dimensional sim-
ple random walk, so it does not go too far from `v with constant probability, and
the probability that the projection on `v “exits to the right” is clearly O(‖v‖−n+1

s
)

by a gambler’s ruin-type argument; or one can use prove an analogous fact for the
Brownian motion and then use the KMT-coupling). Now (recall (56)) the weight

of an S̃-walk trajectory is its original weight divided by the value of h in its initial
site, and multiplied by the value of h in its end. But (recall (58)), the value of the

former is O(‖v‖−n+1
n

), and the value of the latter is O( s
n
). Gathering the pieces, we

obtain (59).
Note also the following: let A be a subset of (B((1 + ε)n) \B(n))∪ ∂B(n), and

for u ∈ A, v ∈ ∂A denote by H̃A(u, v) = Pu
[
S̃τ̃1(∂A) = v

]
the Poisson kernel with

respect to the conditioned walk S̃. Then, it is elementary to obtain that H̃A(u, v)
is proportional to h(v)HA(u, v), that is

H̃A(u, v) = h(v)HA(u, v)
( ∑
v′∈∂A

h(v′)HA(u, v′)
)−1

. (60)
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Now, we are able to construct the coupling. Denote by V ′k = {v ∈ Vk : ‖v‖ ≥
n + 3‖y − z‖2k−1} to be the “outer” part of Vk (depicted on Figure 3 as the arc
with double thickness), and denote by U ′k = {u ∈ Uk : dist(u, ∂Uk) ≥ ‖y− z‖2k−3}
the “inner region” of Uk. Using (58) and (60) together with the Harnack inequality
(see e.g. Theorem 6.3.9 of [14]), we obtain that, for some c8 > 0

H̃Uk(u, v) ≥ c8H̃Uk(yk, v) (61)

for all u ∈ U ′k and v ∈ V ′k . The problem is that Zk−1 (or Yk−1, or both) may be
“too close” to ∂B(n), and so we need to “force” it into U ′k in order to be able to
apply the Harnack inequality. First, from an elementary geometric argument one
obtains that, for any v ∈ Vk−1 \ U ′k

∂+Ψ(v, ‖y − z‖2k−1) ⊂ U ′k. (62)

Then, (59) and (62) together imply that indeed with uniformly positive probability

an S̃-walk started from v enters U ′k before going out of Uk. Using (61), we then
obtain that

H̃Uk(u, v) ≥ c9H̃Uk(yk, v) (63)

for all u ∈ Vk−1 and v ∈ V ′k . Also, it is clear that
∑

v∈V ′k
H̃Uk(yk, v) is uniformly

bounded below by a constant c10 > 0, so on each step (k − 1) → k the cou-
pling works with probability at least c9c10. Therefore, by (57), we can couple
(Y1, . . . , Yk0) and (Z1, . . . , Zk0) in such a way that Yk0 = Zk0 with probability at

least 1− (1− c9c10)k0 = 1− c11

(
n

‖y−z‖

)−β
.

Now, we are able to finish the proof of Proposition 1.3. Recall that we denoted
by Υ the coupling event of the two walks (that start from y and z); as we just
proved,

P[Υ{] ≤ c11

( n

‖y − z‖
)−β

. (64)

Let ν1,2 be the exit measures of the two walks on ∂B((1 + ε)n). For j = 1, 2 we
have for any v ∈ ∂B((1 + ε)n)

νj(v) = P[Υ]ν∗(v) + P[Υ{]ν ′j(v), (65)

where

ν∗(v) = P
[
S̃

(j)
τ̃1(∂B((1+ε)n) = v | Υ

]
,

ν ′j(v) = P
[
S̃

(j)
τ̃1(∂B((1+ε)n) = v | Υ{

]
(observe that if the two walks are coupled on hitting Vk0 , then they are coupled on
hitting ∂B((1 + ε)n), so ν∗ is the same for the two walks). For u ∈ ∂B(n) define
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the random variables (recall Lemma 3.1)

Gu = Eu
τ1(∂An)∑
j=1

1{Sj = x},

and recall the definition of the event F1 from (55). We write, using (54)

HAn(x, y)

hmB(n)(y)
− HAn(x, z)

hmB(n)(z)

= E
( Gy

hmB(n)(y)
− Gz

hmB(n)(z)

)
=
( Py[F1]

hmB(n)(y)

(
P[Υ]G(ν∗, x) + P[Υ{]G(ν ′1, x)

)
− Pz[F1]

hmB(n)(z)

(
P[Υ]G(ν∗, x) + P[Υ{]G(ν ′2, x)

))
≤

G(ν∗, x)O(n−1) + c12P[Υ{]G(ν ′1, x), for d = 2,

G(ν∗, x) cap(B(n))O(n−1) + c13P[Υ{] cap(B(n))G(ν ′1, x), for d ≥ 3.

Note that (14) and Lemma 2.3 imply that, for any probability measure µ on ∂B((1+
ε)n), it holds that G(µ, x) (in two dimensions) and cap(B(n))G(µ, x) (in higher
dimensions) are of constant order. Together with (64), this implies that

HAn(x, y)

hmB(n)(y)
− HAn(x, z)

hmB(n)(z)
≤ c14n

−1 + c15

( n

‖y − z‖
)−β

.

Since y and z can be interchanged, this concludes the proof of Proposition 1.3.

Proof of Theorem 1.2. Consider the sequence bk = exp
(

exp(3k)
)
, and let vk =

bke1 ∈ R2. Fix some γ ∈
(
1,
√
π/2
)
. Denote Bk = B(vk, b

1/2
k ) and B′k =

B(vk, γb
1/2
k ). Lemma 2.7 implies that

cap
(
Bk ∪ {0}

)
=

4

3π

(
1 +O(b

−1/2
k )

)
ln bk. (66)

Let Nk be the number of excursions between ∂Bk and ∂B′k in RI(1). Lemma 2.6
implies that for any x ∈ ∂B′k it holds that

Px[τ̂(Bk) <∞] = 1− 2 ln γ

3 ln bk

(
1 +O(b

−1/2
k )

)
, (67)

so the number of excursions of one particle has “approximately Geometric” distri-
bution with parameter 2 ln γ

3 ln bk
(1 + O(b

−1/2
k )). Observe that if X is a Geometric(p)

28



random variable and Y is Exponential(ln(1 − p)−1) random variable, then Y �
X � Y + 1, where“�” means stochastic domination. So, the number of excursions
of one particle dominates an Exponential

(
2 ln γ
3 ln bk

(1 +O(ln−1 bk))
)

and is dominated

by Exponential
(

2 ln γ
3 ln bk

(1 +O(ln−1 bk))
)

plus 1.
Now, let us argue that

ln γ√
6 ln3/2 bk

(
Nk −

2

ln γ
ln2 bk

)
law−→ standard Normal. (68)

Indeed, for the (approximately) compound Poisson random variable Nk the previ-
ous discussion yields

ζ∑
k=1

ηk �
Nk

ln bk
�

ζ′∑
k=1

(η′k + ln−1 bk), (69)

where ζ and ζ ′ are both Poisson with parameter 4
3
(1 + O(b

−1/2
k )) ln bk (the dif-

ference is in the O(·)), and η’s are i.i.d. Exponential random variables with rate
2 ln γ

3
(1 +O(ln−1 bk)). Since the Central Limit Theorem is clearly valid for

∑ζ
k=1 ηk

(the expected number of terms in the sum goes to infinity, while the number of
summands remain the same), one obtains (68) after some easy calculations5.

Next, observe that π
4γ2

> 1
2

by our choice of γ. Choose some θ ∈ (0, 1
2
) in such

a way that θ + π
4γ2

> 1, and define qθ > 0 to be such that∫ −qθ
−∞

1√
2π
e−x

2/2 dx = θ.

Define also the sequence of events

Φk =
{
Nk ≤

2

ln γ
ln2 bk − qθ

√
6 ln3/2 bk

ln γ

}
. (70)

Now, the goal is to prove that

lim inf
n→∞

1

n

n∑
j=1

1{Φj} ≥ θ a.s. (71)

Observe that (68) clearly implies that P[Φk] → θ as k → ∞, but this fact alone
is not enough, since the above events are not independent. To obtain (71), it is
sufficient to prove that

lim
k→∞

P[Φk | Dk−1] = θ a.s., (72)

5Indeed, if Yλ =
∑Qλ

j=1 Zj is a compound Poisson random variable, where Qλ is Poisson with
mean λ and Z’s are i.i.d. Exponentials with parameter 1, then a straightforward computation

shows that the moment generating function of (2λ)−1/2(Yλ−λ) is equal to exp( t2

2(1−(t/2λ)) ), which

converges to et
2/2 as λ→∞.
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whereDj is the partition generated by the events Φ1, . . . ,Φj. In order to prove (72),
we need to prove (by induction) that for some κ > 0 we have

κ ≤ P[Φk | Dk−1] ≤ 1− κ, for all k ≥ 1. (73)

Take a small enough κ < θ, and let us try to do the induction step. Let D be
any event from Dk−1; (73) implies that P[D] ≥ κk−1. The following is a standard
argument in random interlacements; see e.g. the proof of Lemma 4.5 of [5] (or

Claim 8.1 of [12]). Abbreviate B̂ = B1 ∪ . . . ∪Bk−1, and let

L12 =
{

trajectories of RI(1) that first intersect B̂ and then Bk

}
,

L21 =
{

trajectories that first intersect Bk and then B̂
}
,

L22 =
{

trajectories that intersect Bk and do not intersect B̂
}
.

Also, let L̃12 and L̃21 be independent copies of L12 and L21. Then, let N
(ij)
k

and Ñ
(ij)
k represent the numbers of excursions between ∂Bk and ∂B′k generated by

the trajectories from Lij and L̃ij correspondingly.

By construction, we have Nk = N
(12)
k +N

(21)
k +N

(22)
k ; also, the random variable

Ñk := Ñ
(12)
k + Ñ

(21)
k + N

(22)
k is independent of D and has the same law as Nk.

Observe also that, by our choice of bk’s, we have ln bk = ln3 bk−1. Define the event

Wk =
{

max{N (12)
k , N

(21)
k , Ñ

(12)
k , Ñ

(21)
k } ≥ ln17/12 bk

}
.

Observe that, by Lemma 2.6 (i) and Lemma 2.7 (i), the cardinalities of L12 and L21

have Poisson distribution with mean O(ln bk−1) = O(ln1/3 bk) (for the upper bound,

one can use that B̂ ⊂ B(2bk−1)). So, the expected value of all N ’s in the above
display is of order ln1/3 bk × ln bk = ln16/12 bk (recall that each trajectory gener-
ates O(ln bk) excursions between ∂Bk and ∂B′k). Using a suitable bound on the
tails of the compound Poisson random variable (see e.g. (56) of [8]), we obtain
P[Wk] ≤ c1 exp(−c2 ln1/12 bk), so for any D ∈ Dk−1 (recall that ln bk = e3k),

P[Wk | D
]
≤ P[Wk]

P[D]
≤ c1(1/κ)k−1 exp

(
− c2e

3k/12
)
. (74)

This implies that (note that Ñk = Nk −N (12)
k −N (21)

k + Ñ
(12)
k + Ñ

(21)
k )

P[Φk | D] = P
[
Nk ≤

2

ln γ
ln2 bk − qθ

√
6 ln3/2 bk

ln γ

∣∣∣ D]
≤ P

[
W {
k , Nk ≤

2

ln γ
ln2 bk − qθ

√
6 ln3/2 bk

ln γ

∣∣∣ D]+ P[Wk | D
]
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≤ P
[
Ñk ≤

2

ln γ
ln2 bk − qθ

√
6 ln3/2 bk

ln γ
+ 2 ln17/12 bk

]
+ P[Wk | D

]
→ θ as k →∞

since 17/12 < 3/2 and by (74) (together with an analogous lower bound, this also
takes care of the induction step in (73) as well). So, we have

lim sup
k→∞

P[Φk | Dk−1] ≤ θ a.s., (75)

and, analogously, it can be shown that

lim inf
k→∞

P[Φk | Dk−1] ≥ θ a.s., (76)

We have just proved (72) and hence (71).

Now, let (Ẑ(j),k, j ≥ 1) be the RI’s excursions between Bk and B′k, k ≥ 1,
constructed as in Section 2.2. Also, for k ∈ [∆1,∆2] (to be specified later)

let (Z̃(j),k, j ≥ 1) be sequences of i.i.d. excursions, with starting points chosen

accordingly to ĥm
B′k
Bk

. We assume that all the above excursions are constructed si-
multaneously for all k ∈ [∆1,∆2]6. Next, let us define the sequence of independent
events

Ik =
{

there exists x ∈ Bk such that x /∈ Z̃(j),k for all j ≤ 2

ln γ
ln2 bk − ln11/9 bk

}
,

(77)
that is, Ik is the event that the set Bk is not completely covered by the first

2
ln γ

ln2 bk − ln11/9 bk interlacements’ excursions.
Let us fix δ0 > 0 such that θ + π

4γ2
> 1 + δ0. Now, we use a comparison with a

random walk on a torus to prove the following result

Lemma 3.2. For all large enough k it holds that

P[Ik] ≥
π

4γ2
− δ0. (78)

Proof. Note that Theorem 1.2 of [11] implies that there exists (large enough) ĉ such
that the torus Z2

m is not completely covered by time 4
π
m2 ln2m− ĉm2 lnm ln lnm

with probability converging to 1 as m → ∞. Let ε1 be a small enough constant.
Abbreviate

tk =
4

π
(γ + ε1)2b2

k ln2
(
(γ + ε1)bk

)
− ĉ(γ + ε1)2b2

k ln
(
(γ + ε1)bk

)
ln ln

(
(γ + ε1)bk

)
;

6we have chosen to work with finite range of k’s because constructing excursions with soft
local times on an infinite collection of disjoint sets requires some additional formal treatment
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due to the above observation, the probability that Z2
(γ+ε1)bk

is covered by time tk

goes to 0 as k →∞. Let Z(1), . . . , Z(N∗tk
) be the simple random walk’s excursions

on the torus Z2
(γ+ε1)bk

between ∂B(bk) and ∂B(γbk). Assume also that the torus is

mapped on Z2 in such a way that its image is centered in yk. Denote

mk =
2

ln γ
ln2 bk − (ln ln bk)

2 ln bk

Then, we take δ = O
(
(ln bk)

−1(ln ln bk)
2
)

in Lemma 2.11, and obtain that

P[N∗tk ≥ mk] ≥ 1− c1 exp(c2(ln ln bk)
4). (79)

Next, let

m′k =
2

ln γ
ln2 bk − ln11/9 bk.

Also, denote A = B(bk), A
′ = B(γbk), A,A

′ ⊂ Z2
(γ+ε1)bk

. Observe that, due to
Lemma 3.2

hmA′

A (y) = hm
B′k
Bk

(y) = ĥm
B′k
Bk

(y)
(
1 +O(b

−1/2
k )

)
. (80)

We then couple the random walk’s excursions (Z(j), j ≥ 1) with the independent

excursions (Z̃(j),k, j ≥ 1) using the soft local times. Using Lemma 2.9 (with θ =
O(ln−8/9 bk)) and (80), we obtain

P
[
Lmk(y) ≥ hm

B′k
Bk

(y)
(

2
ln γ

ln2 bk − ln10/9 bk
)

for all y ∈ ∂Bk

]
≥ 1− c3 exp(−c4 ln2/9 bk). (81)

Let L̃j(y) = (ξ̃1 + · · · + ξ̃j) ĥm
B′k
Bk

(y) be the soft local times for the independent

excursions (as before, ξ̃’s are i.i.d. Exponential(1) random variables). Using usual
large deviation bounds and (80), we obtain that

P
[
L̃m′k(y) ≤ hm

B′k
Bk

(y)
(

2
ln γ

ln2 bk−ln10/9 bk
)

for all y ∈ ∂Bk

]
≥ 1−c5 exp(−c6 ln4/9 bk).

(82)
So, (81)–(82) imply that

P
[{
Z̃(j),k, j ≤ m′k} ⊂ {Z(j), j ≤ N∗t }

]
≥ 1− c7 exp(−c8 ln2/9 bk). (83)

Then, we use the translation invariance of the torus to obtain the following:
If P[Z2

m is not completely covered] ≥ c, and A ⊂ Z2
m is such that |A| ≥ qn2, then

P[A is not completely covered] ≥ qc. So, since |B(bk)| =
(

π
4(γ+ε1)2

+o(1)
)
|Z2

(γ+ε1)bk
|,

Lemma 3.2 now follows from (79) and (83).
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Now, abbreviate (recall (70) and (71))

m′′k =
2

ln γ
ln2 bk − qθ

√
6 ln3/2 bk

ln γ
,

and, being L̂(k) the soft local time of the excursions of random interlacements
between ∂Bk and ∂B′k, define the events

Mk =
{
L̂

(k)

m′′k
(y) ≤ L̃

(k)

m′k
(y) for all y ∈ ∂Bk

}
. (84)

Note that on Mk it holds that {Ẑ(j),k, j ≤ m′′k} ⊂ {Z̃(j),k, j ≤ m′k}.
Then, we need to prove that

P[Mk] ≥ 1− c9 ln2 bk exp(−c10 ln2/3 bk). (85)

Indeed, first, analogously to (82) we obtain (note that 11
9
< 4

3
< 3

2
)

P
[
L̃m′k(y) ≥ hm

B′k
Bk

(y)
(

2
ln γ

ln2 bk−ln4/3 bk
)

for all y ∈ ∂Bk

]
≥ 1−c11 exp(−c12 ln2/3 bk).

(86)
Then, we use Lemma 2.9 with θ = O(ln−1/2 bk) to obtain that

P
[
L̂m′′k (y) ≤ hm

B′k
Bk

(y)
(

2
ln γ

ln2 bk−ln4/3 bk
)

for all y ∈ ∂Bk

]
≥ 1−c13 exp(−c14 ln bk),

(87)
and (86)–(87) imply (85).

Now, it remains to observe that on the event Φk ∩Ik ∩Mk the set Bk contains
at least one vacant site. By (71), (78), and (85), one can choose large enough
∆1 < ∆2 such that, with probability arbitrarily close to 1, there is k0 ∈ [∆1,∆2]
such that Φk0 ∩ Ik0 ∩Mk0 occurs. This concludes the proof of Theorem 1.2.
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[5] J. Černý, A. Teixeira (2012) From random walk trajectories to random
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