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Introduction

In Cloud Services and in Web Services, in general, resource provisioning is defined by means of legal contracts agreed upon by service providers and customers, called service level agreements -SLA. Legal contracts usually include measurement methods and scales that are used to set the boundaries and margins of errors that apply to the behaviour of the service, as well as the legal requirements under different jurisdictions. The SLA documents have no standardized format nor terminology, and do not abide by any precise definition, notwithstanding some recent attempts towards standardization -see [START_REF] Albert | Engineering virtualized services[END_REF] and the references therein.

Because of this informal nature, there is a significant gap between SLAs and the corresponding services whose quality levels they constrain. As a consequence, SLAs are currently not integrated in the software artefacts, and assessing whether a service complies with an SLA or not is always a point of concern. As a consequence, providers, in order to avoid legal disputes, very often over-provide resources to services with the result of wasting resources and making services more expensive.

This paper presents the approach taken in the EU Project Envisage [START_REF] Albert | Engineering virtualized services[END_REF] where the gap between (parts of) SLAs and services is bridged by (i ) using simple formal descriptions of SLAs in terms of metric functions and by (ii ) defining a mathematical framework that is able either to derive the SLA quality levels from the service programs and to verify possible violations or to monitor service behaviours and document SLA quality levels mismatches.

Among the properties whose qualities are constrained by SLA documents [START_REF]Cloud service level agreement standardisation guidelines[END_REF], we focus in Section 2 on performance by analyzing the objectives that set the boundaries and margins of errors of service's behaviours. In Section 3, these objectives are formalized in terms of metric functions. Having at hand these functions, we address the problem to verify whether a given service complies with them or not. Two techniques are discussed in this paper for verifying performance properties of services: the static-time techniques and the run-time ones.

In static-time techniques, the compliance of a service with respect to a metric function is shown by means of analysis tools that either directly verify the code (static analysis), or an underlying mathematical model (model checking, simulation, etc.). Whenever the service does not comply with the metric function, the designer triggers a sequence of code refinements that lead to compliance. As an example, consider resource capacity that measures how much a critical resource is used by a service. Section 4 reports a static analysis technique that uses socalled behavioural types. These behavioural types are abstract descriptions of programs that support compositional reasoning and that retain the necessary information to derive resource usage. By means of behavioral types, we use either a cost equation evaluator -the solver systems [START_REF] Flores | Resource analysis of complex programs with cost equations[END_REF][START_REF] Albert | SACO: Static Analyzer for Concurrent Objects[END_REF] -or a theorem prover -the KeY system [START_REF]Verification of Object-Oriented Software[END_REF] -to prove compliance with the SLA. For instance, we demonstrate that the response time of a given method does not exceed a certain user-defined threshold.

In run-time techniques, the enforcement of properties is accomplished by using code that is external to the service and that continuously monitors it. In facts, there are (performance) metric functions that cannot be (even in principle) fully verified statically, due to factors under external control, such as the requests per minute by end users and failing machines in the underlying infrastructure. As an example, consider the percentage of successful requests, namely the number of requests processed by the service without a failure due to its infrastructure over the total number of received requests. In Section 5, we report a technique that uses an external monitoring system filtering service's replies, counts them, and records the erroneous ones. The correctness of the composite system consisting of the service and monitoring code is established by means of either static analysis techniques or model checking.

Figure 1 describes the flow of analysis techniques used in our approach. A feedback loop ensures corrections and improvements to the system. In particular, if the static analysis reports that a service does not match an SLA constraint, then, during the negotiation phase that constraint can be either relaxed or the resource configuration can be extended accordingly (with a possible charge for the client). Similarly, if a monitoring system verifies a run-time violation of an SLA constraint then, in order to avoid expensive penalties, the service providers trigger the resource configuration system to increase service's resources. In Section 6 we discuss the issue of SLA metrics that have conflicting requirements. In this case, it is necessary to determine an upper bound in time for reaching a stable resource configuration. We also discuss complex metrics that actually are compositions of basic metrics discussed in Section 3. We report our analysis of related works and conclude in Section 7.

SLAs and performance properties

In the "Cloud Service Level Agreement Standardisation Guidelines" document [START_REF]Cloud service level agreement standardisation guidelines[END_REF], the qualities of services are assessed with SLAs according to the properties they have, which range from performance to security and to data management. In this paper, we will focus on performance. We discuss how it can be formalized and evaluated on source code of services.

The article [START_REF]Cloud service level agreement standardisation guidelines[END_REF] distinguishes three kinds of performance properties: availability, response time, and capacity. Availability is the property of a service to be accessible and usable on demand. By detailing the notion of "usability", one gets different instances of availability and corresponding service metrics. For instance (i ) level of uptime, is the time in a defined period the service is up, over the total possible available time; (ii ) percentage of successful requests, is the number of requests processed without an error over the total number of submitted requests; (iii ) percentage of timely service provisioning requests, is the number of service provisioning requests completed within a defined time period over the total number of service provisioning requests. Response time is the time period between a client request event and a service response event. The service metrics that are used to constrain response time may return either an average time or a maximum time, given a particular form of request. Capacity is the maximum amount of some resource used by a service. It also includes the service throughput metric, namely the minimum number of requests that can be processed by a service in a stated time period.

The example below discusses an industrial e-commerce use case and its corresponding SLA constraints about performance. The next section formalises the involved metrics and we show how to verify/enforce them in the rest of the paper.

Example 1. A Cloud Service company offers search and targeting facilities on large product databases over cloud computing architectures to e-commerce companies. The offered services are exposed at endpoints and are typically implemented to accept connections over HTTP. For example, a query API allows users to query over a product catalog. Assume that the query API is implemented by means of a number of resources (virtual machines) that are managed in a mutual exclusive way by a load balancer (each resource is launched to serve exactly one instance of the query API). When an e-commerce company signs the SLA contract with the Cloud Service company, the performance properties of the query API are constrained by the following metrics:

-95% of requests is completed within 1 minute, 2% within 3 minutes and 1% within 5 minutes. This is the "percentage of timely service provisioning requests" metric and it is used by the operations team of the Cloud Service company to set up an environment for the customer that includes the necessary resources to match the constraints. It is additionally used by the support team of the Cloud Service company to manage communications with the customer during the lifetime of the service for the customer. -the service completes 8 queries per minute from 9:00 to 18:00 and 4 queries per minute otherwise. This is a service throughput metric and forms the basis of many decisions (technical or legal) thereafter, such as the definition of the necessary resources for the e-commerce company. -the service replies to a query request (with the result or with a failure) within 7 minutes. This is a response time metric and may be determined by the size of database as well as by the size of the data managed by the query service (whenever the service accepts queries that are unbounded).

Metrics' formalization

To determine the precise level of a metric, and verify whether the service matches the agreed levels, an indisputable formalisation is needed, rather than the informal descriptions in the previous section. There have been several attempts to formalize SLAs, using techniques ranging from semantic annotations [START_REF] Martin | Bringing semantics to web services with OWL-S[END_REF], to rewriting logics [START_REF] Okika | Analysis and Verification of Service Contracts[END_REF] and to constraint programming [START_REF] Buscemi | Qos negotiation in service composition[END_REF]. In this paper, following [START_REF] Nobakht | Formal verification of service level agreements through distributed monitoring[END_REF], we use a very simple formalization based on service metric functions.

Service metric functions aggregate a set of basic measurements into a single number that indicates the quality of a certain service characteristic. For instance µ(τ ) and ν(τ, δ) are two functions that respectively take one and two inputs, where

-τ is an interval of the form [d.t, d .t ], where d, d are days (d, d ∈ {1, • • • , 366})
and t, t are seconds in the day (t, t ∈ {0, • • • , 86399}); -δ can be an upper bound to the size in bytes of client's requests, a time bound for getting a reply, or an upper bound to the number of resources used by the service.

To illustrate how performance metrics that are informally defined in SLA documents can be formalized, we further elaborate Example 1. In particular, -the percentage of timely service provisioning requests of a service s can be formalized by the following function PTS s :

PTS s ([1.0, 366.86399], x) =    0, 95 if x = 60s 0, 97 if x = 180s 0, 98 if x = 300s
-the service throughput of a service s can be formalized by the function ST s as follows: 4 Static-time analysis

ST s ([1.t,
Several static-time analysis techniques are possible to verify service properties and, in particular, service metrics like response time. In this section we discuss two approaches we use in the Envisage Project and we apply them to the response time metric of Example 1. We refer to [START_REF] Garcia | Static analysis of cloud elasticity[END_REF][START_REF] Giachino | Time complexity of concurrent programs[END_REF] for further details on the technique described in Section 4.1. We refer to [START_REF]Verification of Object-Oriented Software[END_REF][START_REF] Chang Din | KeY-ABS: A deductive verification tool for the concurrent modelling language ABS[END_REF] for details on the technique discussed in Section 4.3.

Behavioural types

Behavioural types are abstract descriptions of programs that highlight the relevant informations to derive a particular property. This derivation usually consists of three steps:

1. an inference system parses the service program and returns a behavioural type; 2. the behavioural types are translated into low-level descriptions that are adequate for a solver; 3. the low-level descriptions are fed to a solver which produces the output.

It turns out that behavioural types support compositional reasoning and are therefore adequate for SLA compliance, while low-level descriptions are not compositional (and too intensional).

In the case of response time analysis, the behavioural types carry informations about costs of operations that are extracted directly from the source program. This means that the source program retains either resource-consumption annotations or resource-aware commands. The following code snippets use explicit primitives for expressing the consumption of resources; in particular, the statement job(e) specifies a requirement of e CPU resources and is instrumental for modeling the time: depending on the available resources its execution might take an observable amount of time proportional to its cost. For instance, the execution of job(6) when only 3 CPU resources are available will be executed within 6/3=2 units of time.

We illustrate our technique with two examples derived from Example 1. We assume a simple setting where every instance runs in the same machine with a fixed capacity of c CPU resources.

Consider the service that performs a query on a database, in Figure 2. The method searchDB sends a given query to the database and, when the result of the query is returned, it enhances the result with some information before returning it to the client. The job(h) statement specifies that the local operations of searchDB require h CPU resources. The query method, which is implemented in a different class DataBase, receives a query, evaluates it, searches the corresponding item in the database, and returns the result. The overall cost for these operations is k CPU resources, as specified by job(k). In this example we assume the methods elaborate and search contain no job statements, thus they do not require any resources. Their resource requirements are part of the k resources declared for the query method.

An informal argument gives (k+h)/c as the total time required by searchDB to reply to a query, where c are the available CPU resources. This means that if we have a ResponseTime requirement of completing this method within a specific number of time units, then we are able to establish the minimum CPU resources of a configuration that complies with the SLA.

To formalise the above argument, we extract the program features that are relevant for the time analysis. The resulting descriptions are called behavioral types and primarily highlight cost annotations and method invocations. For example, the behavioural types of the above methods are where the parameter a[x] binds the this object identity to a and the available capacity to x; similarly, b[y] binds the object identity of the receiver of the query invocation to b and its allocated capacity to y; the cost h/x is due to the amount of CPU requested by job(h) and the available CPU resources x (similarly for k/x); the term _ is the time information corresponding to the returned value, which is in this case empty; the term 0 is the empty behaviour, meaning that no time units are consumed.

With the behavioural type specifications at hand, we use two techniques for deriving services' properties: one is completely automatic and uses solvers of cost equations, and another is semi-automatic (but more precise) and uses theorem provers. We discuss them in detail in the following two subsections.

The cost equation solver

To evaluate behavioural types specifications, we translate them into so-called cost equations, which are suitable for solvers available in the literature [START_REF] Flores | Resource analysis of complex programs with cost equations[END_REF][START_REF] Albert | SACO: Static Analyzer for Concurrent Objects[END_REF]. These cost equations are terms

m(x) = exp [se]
where m is a (cost) function symbol, exp is an expression that may contain (cost) function symbols applications. In some cases, more than one equation may be defined for the same function symbol: for instance the if-then-else statement has one equation for each branch. In this case, se is an expression representing the conditions under which the corresponding cost must be taken into account.

Basically, we translate behavioural types of methods into cost equations, where (i) method invocations are translated into function applications, and (ii) cost expressions occurring in the types are left unmodified. For example, the translations of the foregoing methods are:

searchDB(x,y) = query(y) + h/x + addinfo(x) query(x) = elaborate(x) + search(x) + k/x addinfo(x) = elaborate(x) = search(x ) = 0
It is worth to observe that, in this case, being x = y =c, the solver returns (h+k)/c, as we anticipated previously.

Let us consider a variation of this example, where the service and the database run on different machines. In this case the configuration will include at least two different machines, let us call them ms and m d with respectively cs and c d allocated CPU resources. At the time of the creation of the service instance we can specify on which machine it will be deployed, by using a statement of the form: For parallel programs with asynchronously executing threads, the above instrumentation might overestimate the actual time and cost consumed: it always sums the cost of tasks. In these cases, the behavioural type is x.m() ||| y.n(), rather than x.m(); y.n() (the operation "|||" represents parallel composition). KeY derives the cost of x.m() ||| y.n() by taking the maximum of the costs of x.m() and of y.n().

A useful task that KeY supports is the formal proof that response times of a method are under a defined threshold. This is achieved by the same instrumentation discussed above. The only change needed is in the behavioural types of methods: one can adjust the postcondition with an assertion of the form time < d, where d is a symbolic threshold. This is shown in the contract below. 

Run-time analysis

In order to enforce service metrics that cannot be verified statically (because of factors under external control, such as the underlying infrastructure) we use code external to the service that continuously monitors it. We discuss this technique using two service metrics of Example 1: the percentage of timely service provisioning requests and the service throughput.

A simple implementation of the function PTS s defined in Section 3 uses a monitoring method that intercepts all the HTTP invocations to a service and their corresponding replies. This allows the monitor to record the time taken by every request to be completed. Consider the following pseudo-code for this method is observed, in the reaction phase, the number of allocated resources are increased. The monitoring platform developed in the Envisage Project also allows to decrease the number of resources if it is too costly/high [START_REF] Nobakht | Formal verification of service level agreements through distributed monitoring[END_REF]. The following reaction method verifies every 300s whether the percentage of timely service provisioning requests is reached and, in case of failures, adds one more CPU:

void reaction(Service s) { Time t ; Bool v ; t = time() ; idle(300) ; v = percentage(d,t, t+300) ; if (!v) MonitoringPlatform ! allocate(s) ; }
Correctness of the monitoring framework (i.e. that the monitors converge within a user-given time towards the service level objectives specified in an SLA) was investigated in [START_REF] Nobakht | Formal verification of service level agreements through distributed monitoring[END_REF]. The idea is to translate the code for the program including the monitoring code into timed automata for use with UPPAAL [START_REF] Behrmann | A tutorial on Uppaal[END_REF]. The service level constraints from SLAs are translated into deadlines for the automata. The translation can be done automatically, along the lines of [START_REF] Mahdi | Composing real-time concurrent objects refinement, compatibility and schedulability[END_REF]. It is then possible to prove that, if all timed automata are schedulable (no missed deadline), then the SLA of the service is satisfied in the given timeframe.

Further aspects of metrics' definition and verification

In the previous sections we have discussed basic service metrics used in SLA documents. In this section we address two additional issues: (i ) metrics may be conflicting: one metric requires an increase of resources allocated to a service, while another one requires a decrease of the same resources, and (ii ) particular services may require complex service metrics.

Conflicting Metrics. Consider the following SLA constraints for the first example of Section 4.1:

ST searchDB ([1.t, 366.t ], 60) =    4
if t = 0 and t = 32399 8 if t = 32400 and t = 64800 4 if t = 64801 and t = 86399

RT searchDB ([1.0, 366.86399]) = 420s
The analysis of Section 4.2 gave an upper bound for searchDB response time of (k+h)/c time units. Letting the available amount of CPU resources be 2 and k=5 and h=10, then we have a response time of 7.5 seconds. This satisfies the RT s metrics, since it is well below the maximum response time imposed by the SLA. Therefore the initial configuration of 2 CPU resources is found to be well suited for assuring the required QoS. Notice that, considering the time for executing a single request of searchDB, we can deduce that the ST searchDB value is indeed reasonable. In addition, assume that monitor_service_time, which observes the execution of the service, has not logged any entry where time_end-time_begin is greater then 420 seconds -i.e. the response time is still matched.

However, the launch of the throughput monitor reports that only 4 requests are served per minute, which violates the SLA (requiring to serve 8 requests per minute during the day) because of latency problems for scheduling the requests or for connecting to the database. Henceforth, the reaction method requests to the monitoring platform and obtains a machine with 2 additional CPU resources. The service is moved on the new machine and the throughput monitor doesn't find any violation anymore. However, during the night, half of the resources would have been sufficient for meeting the SLA requirement (which is only 4 requests per minute during the night). The customer is paying for unnecessary resources.

To overcome such issues, we consider an additional metric defining the budget for the service with respect to particular time windows: Namely, Budget searchDB specifies that, during the day, the customer is willing to pay up to 80, while only half for the night. The techniques discussed in Section 4 may verify whether a service complies with Budget searchDB or not. In particular, an adequate budget is the cost of the minimum number of resources the program needs to execute, which is the cost of an upper bound of resources needed by the program. Taking CPUs as relevant resources and assuming that each CPU resource costs 10, then the analysis will approve Budget searchDB , since the allocated money is enough to pay for 8 resources during the day and 4 during the night. However, a run-time CPU reallocation has been triggered by the throughput monitor. It turns out that the budget compliance is not met anymore because the expenses for the resource usage double the nightly budget. In this case, the budget_monitor reacts by requiring a deallocation of half of the CPU units during the night.

Budget searchDB ([1.t,
It is worth to notice that the allocations and deallocations required by a monitoring system may lead to a cyclic behaviour that does not reach any stable point. Therefore, in order to enforce stability, we also consider the notion of service guarantee time, namely the total amount of time from the start of the monitoring platform that a service is expected to meet its expectations of the SLA. In facts, we use the following refined version of reaction method of Section 5: Composite metrics. SLA documents may contain (performance) metrics that are not directly defined in terms of those in Section 3 but are a composition of them. We discuss an example.

Example 2. A mobile search app provides mobile offline search by means of ondevice search indices that are built and distributed by a cloud service. A primary motivations for mobile offline search, besides increasing search availability and strengthen user privacy, is to reduce search latency by using consistently fast on-device storage rather than accessing mobile and Wi-Fi network with highly variable latency. As a consequence, the most relevant aspect for evaluating the quality of the provided service is the freshness of index data on the mobile device. This property specifies time-related guarantees about the interval between the publication of a document in the cloud and its indexing and availability on the mobile device.

The metric freshness of index data on the mobile device, noted FID, actually is the sum of the response time RT s and the delivery time DT s , namely the time to transfer the data to the devices. This last metric DT s depends on the data size of the response and the available bandwidth. While the data size δ is a parameter, the bandwidth metric B(τ ) is another basic capacity metric (which has not been discussed in Section 3). B(τ ) is expressed in Mb/s and defines the minimum amount of bandwidth required by the service in a particular time frame. It turns out that DT s (τ, δ) = δ/B(τ ) and, therefore, we may define FID(τ, δ) = DT s (τ, δ) + RT s (τ, δ) .

Conclusions and related works

The methodology we have presented in this paper is being devised in the context of the EU Project Envisage [START_REF] Albert | Engineering virtualized services[END_REF]. The aim of the project is to develop a semantic foundation for virtualization and SLA that makes it possible to efficiently develop SLA-aware and scalable services, supported by highly automated analysis tools using formal methods. SLA-aware services are able to control their own resource management and renegotiate SLA across the heterogeneous virtualized computing landscape. The two examples we analyze in this contribution are taken from industrial case studies in the aforementioned project: the service described in Example 1 is an actual service provided by Fredhopper Cloud Services3 . The mobile app presented in Example 2 is the Memkite app by Atbrox4 .

In the Envisage Project we also use other techniques for analyzing services, such as simulations and test generation covering critical scenarios. We intend to investigate if these additional techniques can be used for SLA compliance (and to what extent). For example, if they can provide augmented precision or more detailed descriptions of misbehaviours. Related Work. Several proposals define a language or a framework to formalize SLAs. However, there is no study how such SLAs can be used to verify or monitor the service and upgrade it as necessary. In this respect, up-to our knowledge, our technique that uses both static time analysis and run-time analysis is original.

As regards SLA formalizations, we recall few recent efforts. WSLA [START_REF] Keller | The WSLA framework: Specifying and monitoring service level agreements for web services[END_REF] introduces a framework that defines SLAs in a technical way and breaks down customer agreements in terms to be monitored. SLAng [START_REF] Lamanna | Slang: A language for defining service level agreements[END_REF] introduces a language for defining metrics that deal with the problems of networks and studies a technique to ensure the corresponding service qualities. SLA [START_REF] Kearney | SLA : An abstract syntax for Service Level Agreements[END_REF] introduces a generic language to specify SLAs with a fine-grained level of detail. In [START_REF] Mahbub | Translation of SLAs into monitoring specifications[END_REF], a method is proposed to translate the SLA specification into an operational monitoring specification. This technique is being used by the EU Project SLA@SOI.

Fig. 1 :

 1 Fig.1: Analysis Flow: Resource Configuration refers to the configuration of resource types that are used for the service; Service Metrics denotes the set of metrics that define the quality of the service. The dashed lines present a feedback loop to a previous phase of analysis.
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  Service service = new Service in ms;Analogously, for the database we have 3. prove the resulting instrumented program with KeY. Applying these steps yields the following annotated behavioral types: //@ ensures time == \old(time) + k/y + h/x; Service.searchDB(a[x], b[y]) { DataBase.query(b[y]) time = time + h/x } : _ //@ ensures time == \old(time); Service.addinfo(a[x]) {0} : _ //@ ensures time == \old(time) + k/x; DataBase.query(a[x]) { DataBase.query(a[x]) DataBase.elaborate(a[x]) DataBase.search(a[x]) time = time + k/x } : _ //@ ensures time == \old(time); DataBase.elaborate(a[x]) {0} : _ //@ ensures time == \old(time); DataBase.search(a[x]) {0} : _

/

  /@ ensures time time < d; Service.searchDB(a[x], b[y]) { ... }

  Fig. 2: The service searchDB performing a query on a database.

	String searchDB(String s) { String u, v ; u = DB.query(s) ; job(h) ; v = this.add_info(u) ; return v; }	class DataBase { String query(String s) { String z = this.elaborate(s); String value = this.search(z); job(k) ; return value; } ... }
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Database database = new Database in m d ;

In this setting, all invocations on external machines are to be considered asynchronous, where the caller and the callee execute simultaneously, and the synchronization occurs when the caller attempt to access the result of the invocation. The snippet of the method searchDB is therefore refined into the following code where the asynchronous invocation is noted with "!" instead of "." and Fut<String> is the type of a future String value. The operation w.get explicitly synchronizes the caller with the callee. In this case, the cost equations of the above methods are searchDB(x,y) = max(query(y) , h/x) + addinfo(x) query(x) = elaborate(x) + search(x) + k/x addinfo(x) = elaborate(x) = search(x ) = 0 Being x =c s and y =c d , the solver returns the total cost of max(h/cs,k/c d ).

The KeY system

The are cases where the cost equations solver either fails to deliver a result or the result is so over-approximated that it becomes unusable. In particular, the cost equations m(x) = exp [se] that the solver takes as inputs are constrained by the fact that se is a boolean expression in a decidable fragment of Peano arithmetic -presburger arithmetic which admits only addition and multiplication by integer constants. Therefore, whenever behavioural types use expressions that are not written in presburger arithmetics, we extend them by manually adding preconditions and in the postconditions specifying costs and metrics.

We use a semi-interactive theorem prover called KeY [START_REF] Chang Din | KeY-ABS: A deductive verification tool for the concurrent modelling language ABS[END_REF], which uses symbolic execution to analyze programs. Properties are specified in KeY using dynamic logic [START_REF] Vaughan | Semantical considerations on floyd-hoare logic[END_REF] and are demonstrated using the sequent calculus [START_REF] Gentzen | Untersuchungen ber das logische schlieen[END_REF]. It turns out that most proof steps (usually more than 99%) are automatically applied by the proof search strategies. Behavioral types plus KeY verification support a compositional analysis: each type can be analyzed in isolation, on the basis of its own definition and only the contracts of the other methods -without knowledge of the underlying definition of the other behavioral types. This is not the case of cost equations that, once produced, are a monolithic, global specification.

KeY can be leveraged by following the steps below:

1. replace the cost expression c in method bodies by an assignment time = time+c;;

2. add method contracts, specifying in the postcondition of each method the expected response time using the variable time and the capacities of machines;

void monitor_service_time() { (service,method,msg,client,m_id) = HttpRequest.intercept(); time_start = time(); reply = service.method(msg); time_end = time(); HttpResponse.send(client,reply,m_id); log(m_id,time_start,time_end); }

The method percentage takes as input a time window and returns true if the percentage of requests complies with the definition of PTS s , is implemented by the monitor: boolean percentage(Time t_begin, Time t_end){ boolean v = true ;

/ * retrieve from the log the total number of messages served in the time window * / nmb_msg = get_total_messages(t_begin, t_end) ; / * check whether the SLA percentages of served requests correspond to the observed ones * / nmb_msg_completed = find(t_begin, t_end, 60) ; v = v && (nmb_msg_completed/nmb_msg <= 0.95) ; //95% in 1 min nmb_msg_completed = find(t_begin, t_end, 180) ; v = v && (nmb_msg_completed/nmb_msg <= 0.97) ; //97% in 3 mins nmb_msg_completed = find(t_begin, t_end, 300) ; v = v && (nmb_msg_completed/nmb_msg <= 0.98) ; //98% in 5 mins return v; } Similarly, the monitor implementing the service metric ST s in Section 3 is the method: The above straightforward development of monitoring systems allows service providers to report violations of the agreed SLA. However, the ultimate goal for a provider is to maintain the resource configuration in such a way that SLA violations remain under a given threshold while minimizing the cost of the system. The first objective can be achieved by adding resources to the service (for instance, adding more CPUs).

To this aim, the monitoring platform works in two cyclic phases: observation and reaction. The observation phase takes measurements on services -the foregoing methods percentage and throughput. Subsequently, if an SLA mismatch