
HAL Id: hal-01336825
https://hal.science/hal-01336825

Submitted on 23 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Construction of Interactive Machine
Improvisation Scenarios from Audio Recordings

Jaime Arias, Myriam Desainte-Catherine, Shlomo Dubnov

To cite this version:
Jaime Arias, Myriam Desainte-Catherine, Shlomo Dubnov. Automatic Construction of Interactive
Machine Improvisation Scenarios from Audio Recordings. MUME 2016 - 4th International Workshop
on Musical Metacreation, Jun 2016, Paris, France. pp.1-7. �hal-01336825�

https://hal.science/hal-01336825
https://hal.archives-ouvertes.fr

Automatic Construction of Interactive Machine Improvisation Scenarios from
Audio Recordings

Jaime Arias and Myriam Desainte-Catherine
Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

CNRS, LaBRI, UMR 5800, F-33400 Talence, France
Inria, F-33400 Talence, France

{jaime.arias, myriam.desainte-catherine}@labri.fr

Shlomo Dubnov
CREL, Music Department

University of California, San Diego
9500 Gilman Dr., La Jolla, CA 92093

sdubnov@ucsd.edu

Abstract

We describe a system that allows improvisers and com-
posers to construct an interactive musical environment
directly from a musical recording. Currently, interac-
tive music pieces require separate phases of construct-
ing generative models and structuring them into a larger
compositional plan. In the proposed system we combine
machine improvisation tools based on Variable Markov
Oracle (VMO) with an interactive score (i-score) to
control the improvisation according to larger structures
found in that recording. This allows construction of im-
provisation scenarios in ways that are organic with the
musical materials used for generating the music. The
method uses new results of audio segmentation based
on VMO and translates it into a Petri Net (PN) model
with transition rules left open to be defined by a musi-
cian. The PN structure is finally translated into a timed
representation for a live i-score control.

Introduction
Musicians working in the area of machine improvisation use
machine analysis tools to generate a computer accompani-
ment from musical examples. This allows the computer to
generate music in ways that preserve the style of the musi-
cal examples given to it without a need for programming.
During performance, these generative mechanisms are ei-
ther controlled in real-time by another operator or are pro-
grammed to interact according to readily prepared scenar-
ios. In this work we use machine learning tools to add a
second layer of analysis to machine improvisation that auto-
matically constructs an initial sketch of a possible structured
improvisation that follows short-term (surface) stylistic fea-
tures, and also observes initial long term structures (form)
of the materials used for improvisation. The automatic con-
struction of such two-level structural model from a record-
ing gives a significant head start to musicians working cre-
atively with musical materials using computational tools. In
the following we briefly describe the technologies involved
in this research and provide an example of such a use on a
pre-recorded piece.

This work is licenced under Creative Commons ”Attribution 4.0
International” licence, the International Workshop on Musical
Metacreation, 2016, (www.musicalmetacreation.org).

Preliminaries
In the following we briefly introduce the formalisms and
tools used in our approach.

Variable Markov Oracle
Variable Markov Oracle (VMO) (Wang and Dubnov 2015)
is the newest development in a family of machine impro-
visation methods based on automatic analysis of the musi-
cal structure of a recording in terms of its suffix structure
and subsequent recombination of segments of that record-
ing to creative variations. Allowing transitions within a pre-
recorded musical material that preserve partial suffix over-
lap allows creating novel variations with smooth and natural
continuations. VMO extends previous work on Audio Ora-
cle (AO) (Dubnov, Assayag, and Cont 2011) in two prin-
cipal ways – it allows construction of an optimal model
by adaptive symbolization of audio features, which in turn
allows segmentation or partitioning of the model into re-
gions of similar musical materials, thus providing a struc-
tural analysis of the whole piece. VMO represents the au-
dio recording in terms of a graph structure that can be used
for query-guided audio content generation and multimedia
query-matching. VMO is capable of finding common suf-
fixes between samples along the multivariate time series and
enables us to devise various search algorithms on that data
structure. Moreover, graph partitioning methods can be used
to find densely connected areas in the graph that correspond
to areas in the recording that have many similar phrases of
various lengths. A spectral clustering method of such parti-
tioning is used in this paper (Wang and Mysore 2016).

Petri Net
Petri Net (PN) (Murata 1989) is a graphical language for
description and analysis of concurrent and distributed sys-
tems. It provides useful visual tools to easily model, interpret
and analyze complex systems with parallelism, concurrency,
synchronization and resource sharing. Additionally, it can be
used to represent not only control flow but also data flow.

PN provides a compact representation of systems with a
very large state space, allowing to represent systems with an
infinite number of states using a finite structure. Intuitively, a
PN is a directed, weighted, bipartite graph consisting of two
types of nodes: places (represented by circles) and transi-
tions (represented by rectangles). Each place may hold ei-

ther none or a positive number of tokens (represented by
small solid dots). Directed arcs (represented by arrows) con-
nect places to transitions and transitions to places. Arcs are
labeled with a positive weight k which can be interpreted as
a set of k parallel arcs.

A state of a PN (i.e., marking) is represented by the num-
ber of tokens assigned to each place. In order to simulate the
dynamic behavior of a system, a state in a PN is changed
according to a firing rule. For instance, in a basic PN a tran-
sition t is said to be enabled if each input place of t contains
at least one token. An enabled transition fires depending on
whether or not a specific event takes place. The firing of an
enabled transition t removes a token from each input place
of t, and adds a token to each output place of t.

Let us illustrate the notion introduced above with the PN
shown in Figure 1. Assume that the transition t has two in-
put notes G and D in the input, and an output that plays C.
Then, this PN creates a melodic sequence that could be ei-
ther G-D-C, or D-G-C. For that, the transition waits until
both notes G and D occurred (i.e., the transition is enabled
as shown in Figure 1a) and then the resolution C is played
(i.e., the transition is fired and not longer enabled as shown
in Figure 1b).

G

D

Ct

(a) The marking before firing
the enabled transition t.

G

D

Ct

(b) The marking after firing
transition t, where t is dis-
abled.

Figure 1: Illustration of a firing rule in a PN.

In the literature exists several extensions of the PN
model. For instance, in this work we use Time Petri Nets
(TPNs) (Merlin and Farber 1975) which deal with time. In-
tuitively, a TPN is defined by a PN where each transition
has two times specified. The first denotes the minimal time
that must elapse from the time that all the input conditions
of a transition are enabled until this transition can fire. The
other time denotes the maximum time that the input condi-
tions can be enabled and the transition does not fire. After
this time, the transition must fire. In general, these two times
give some measure of minimal and maximal execution times
of the transitions.

We use the SNAKES1 Python library (Pommereau 2008)
for prototyping our approach that is presented in the next
section. Roughly, SNAKES is a general PN library that al-
lows to model and execute PNs where tokens are Python ob-
jects, and net inscriptions are Python expressions. Moreover,
SNAKES provides a plugin system that allows to easily ex-
tend its built-in features. For instance, the reader can found
the SNAKES plugin for modeling TPNs at https://www.

1https://github.com/fpom/snakes

ibisc.univ-evry.fr/˜fpommereau/blog/
2016-04-25-time-petri-nets-with-snakes.
html.

The inter-media sequencer i-score
I-score2 is an open source inter-media sequencer that aims to
provide an integral environment for writing and performance
of interactive multimedia scores (de la Hogue, Celerier, and
Baltazar 2016).

This tool supports branching behaviors allowing the com-
poser to define conditions and loops in order to modify the
execution path of the score during its performance. The com-
poser also has the ability to define the intervals of time in
which the performer or external devices may or may not in-
teract with the system. This interaction is done by means
of OSC3 messages and only authorizes agogic modifica-
tions (Haury 1987): the possibility to change the times of
beginning and end of the multimedia content.

I-score provides a graphical interface based on a time-line
model that allows the user to write complex pieces in an in-
tuitive way. Contrary to other interactive score systems like
INSCORE (Fober, Orlarey, and Letz 2014), which is able to
handle only musical objects, i-score can control any mul-
timedia object that is accessible via OSC. For instance, in
the approach presented in this paper, we use i-score to or-
chestrate the improvisation carried out by an AO given a
segmentation of an audio recording.

Let us now briefly introduce the elements provided by
i-score for the specification of interactive scores. For that,
we shall use the interactive score presented in Figure 2 that
specifies the score of an improvisation controller system. We
refer the reader to (de la Hogue, Celerier, and Baltazar 2016)
for further details on the semantics of i-score.

example-iscore

loop

Loop pattern

TSDevice:/start == 1

TSDevice:/stop == 1

TSDevice:/start == 1

init

TSDevice:/transition == 1

Figure 2: Example of an interactive score in i-score that con-
trols an improvisation system.

Assume that the improvisation system reacts to three
events from the user. The first event indicates the starting of
the improvisation, the second event announces a transition
to a new musical material, and the third event indicates the

2http://www.i-score.org/
3Open Sound Control (OSC) is a protocol for communication

among multimedia devices (http://opensoundcontrol.
org/).

https://www.ibisc.univ-evry.fr/~fpommereau/blog/2016-04-25-time-petri-nets-with-snakes.html
https://www.ibisc.univ-evry.fr/~fpommereau/blog/2016-04-25-time-petri-nets-with-snakes.html
https://github.com/fpom/snakes
https://www.ibisc.univ-evry.fr/~fpommereau/blog/2016-04-25-time-petri-nets-with-snakes.html
https://www.ibisc.univ-evry.fr/~fpommereau/blog/2016-04-25-time-petri-nets-with-snakes.html
https://www.ibisc.univ-evry.fr/~fpommereau/blog/2016-04-25-time-petri-nets-with-snakes.html
http://www.i-score.org/
http://opensoundcontrol.org/
http://opensoundcontrol.org/

ending of the improvisation. When the improvisation starts,
the systems improvises on the musical material yellow im-
mediately, and after 1 minute it changes to the musical ma-
terial red. The improviser must improvise on material green
when both the user sends the event for the transition and
the improviser is currently improvising on material red. This
transition takes effect 2 minutes after the user has sent the
event. The above behavior is repeated until the user decides
to stop the improvisation.

In order to specify this score in i-score, we assume that
the user and the improviser interact with i-score by means of
OSC messages. We recall that i-score uses a time-line model
in which time passes from left to right. The first element
that we shall introduce is the event. Events are points in time
that may () or may not () contain a set of OSC messages
that are sent to the environment when the event is executed.
For instance, in Figure 2 we define an event at 0 s, labeled
as init, in order to send a message to the improviser for
setting its initial parameters (e.g., tempo).

Events are temporally organized by adding temporal in-
tervals () between them. Intuitively, the solid line
of the interval represents the minimum amount of time
that should elapse in order to execute the event. However,
the user can define a possibly infinite range of times (de-
noted by a dashed line) in which an interaction () may
or may not occur in order to execute the event. That inter-
action happens when a logical expression specified by the
user is satisfied within the defined interval of time. For in-
stance, in Figure 2 the performer must send to i-score an
OSC message indicating the starting of the improvisation
(i.e., TSDevice : /start == 1) in order to execute the box
following the initial event. It is important to note that this
interaction can occur at any time since the minimum time is
0 and the range of interaction is not bounded (i.e., infinite).

I-score also allows to define loops. For that, the content to
be repeated (i.e., the box labeled as loop pattern) is en-
capsulated into a temporal structure (i.e., the box labeled
as loop) whose duration is defined by a temporal inter-
val. The content to be repeated also has a temporal interval
defining when the content should be repeated. For instance,
in our score changing the musical materials is an action
which is repeated each time the user sends the starting event
(i.e., TSDevice : /start == 1) until the stopping event is
sent (i.e., TSDevice : /stop == 1).

Therefore, each time the starting event is triggered,
an OSC message is sent to the improviser in order
to improvise on the musical material yellow (i.e., yel-
low event) and then, using a temporal interval, we
change the musical material to red after 1 minute (i.e., red
event). Once the user sends the transition event
(i.e., TSDevice : /transition == 1), we wait for 2 min-
utes to change the musical material to green (i.e., green event

). As we explained before, this pattern is repeated each
time the start event is sent until the user stops the improvi-
sation.

Approach
Now we shall introduce our system for building interactive
improvisation scenarios from an audio recording. It provides

three stages: segmentation, offline improvisation, and real-
time improvisation. For better understanding, we describe
each stage using as a running example the audio file Luciano
Berio: Sequenza I (Priore 2007). The reader can find the files
of the tool and examples at http://himito.github.
io/vmo_i-score_generator.

Segmentation stage
As shown in Figure 3, we firstly use VMO to generate, from
a pre-recorded audio, the AO for improvisation. In addition,
as is pointed out in (Wang and Mysore 2016), we take ad-
vantage of the spectral clustering method provided by VMO
to recognize repetitive/homogeneous structures from the au-
dio file (i.e., segmentation analysis). Doing this, we are able
to improvise on regions whose musical content is related and
perceive possible transitions on the material during improvi-
sation.

Pre-Recorded
Audio

Variable Markov
Oracle (VMO)

Audio
Segmentation

Audio
Oracle

SNAKES

Petri Net Model

input

outputoutput

input

output

Configuration
File

output

Figure 3: Overview of the segmentation stage.

As an example, we present in Figure 4 the segmentation
analysis of our running example. For the sake of clarity,
each section was labeled by color representing similarity
among larger sections of this work. Note for example that
the section gray has no similar musical content throughout
the work. In that sense, we may label that section as the in-
troduction material of the work. Also, we can notice that
during improvisation a more organic transition to material of
section red is only possible from material of section green.

Figure 4: Segmentation analysis using VMO of the audio
file Luciano Berio: Sequenza I.

As we remarked above, the segmentation analysis allows
the identification of possible organic transitions between
sections with similar musical content. However, the repre-
sentation depicted in Figure 4 does not facilitate the rea-
soning about the logical and temporal organization of the
material for a possible improvisation. To alleviate this prob-
lem, we define a Time Petri Net (TPN) representation of the

http://himito.github.io/vmo_i-score_generator
http://himito.github.io/vmo_i-score_generator

musical structure described by the segmentation analysis in
order to provide a higher, more intuitive and formal repre-
sentation of this structure. Moreover, the composer can now
define temporal constraints and performer interactions to the
improvisation by adding temporal and logical conditions to
the PN transitions.

To translate the segmentation structure into a PN, we
first convert each section label of the segmentation analy-
sis (e.g., a color in Figure 4) into a PN place. That is, a
place denotes all frame intervals belonging to the sections
corresponding to a label. Next, for each local change point
from section s1 to s2 in the segmentation analysis, we add
a transition from the place p1 to the place p2 that contains
the section s1 and s2, respectively. Finally, we add a transi-
tion from (resp. to) the place containing the last (resp. first)
section in the segmentation analysis to a new place denoting
the end (resp. start) of the improvisation.

As an example, we illustrate in Figure 5 the PN represen-
tation of the segmentation analysis depicted in Figure 4. Ob-
serve that each section label (i.e., colors gray, green, red and
yellow) is represented by a PN place. Moreover, the place
denoting the last section (i.e., red place) has a transition to
a place with no outgoing transitions (i.e., end of improvi-
sation), and the place denoting the first section (i.e., gray
place) has a transition from a place with no ingoing transi-
tions (i.e., start of improvisation).

t0 t1 t2

t3

t4

t5

t6

t7

init end

Figure 5: Petri net built from the segmentation analysis
shown in Figure 4.

Now, by observing the structure of the Petri net it is more
intuitive for the artist to know what are the possible more or-
ganic transitions between sections. Moreover, features such
as loop sequences (e.g., transitions t2, t5 and t4) or se-
quences leading to the end (e.g., all possible paths leading
to the sequence red-end) are more intuitive to find out. We
can experiment with different configurations and also reason
about the generated PN structure using the SNAKES library.
For instance, we may experiment with a PN in which it is
possible to have a token in different places at the same time,
meaning that the oracle improvises on different sections si-
multaneously.

As we claimed before, the artist can now control the im-
provisation by defining in a configuration file temporal con-
straints and interactions with the environment (e.g., the per-
former) on the PN transitions. For instance, the artist may
impose the constraint that the oracle will improvise on the
material belonging to the introduction (i.e., gray place) for
3 minutes as maximum and while a specific pedal is not
pressed.

Offline improvisation
Once the artist has defined the parameters of the PN model,
it is possible to execute it offline using SNAKES in order to
generate a timed sequence of frame intervals. Since the PN
is a finite structure that allows to specify infinite and non-
determinist behavior, then we can create a potentially infinite
number of new sequences with the same PN that satisfy the
constraints imposed by the composer.

Recall that the firing of some PN transitions may be con-
ditioned by the interaction with the performer. Therefore, the
artist can define in the configuration file a possible behav-
ior of the performer (i.e., actions) in order to avoid getting
stuck in one place. Additionally, the artist must define the
duration of the resulting sequence because the execution of
the PN could not finish due to loops and the conditions on
transitions.

After generating the sequence, we use the functions pro-
vided by VMO to improvise on the AO created during the
segmentation stage. The improviser must improvise on the
frame interval (i.e., musical material) imposed by the se-
quence. Moreover, the sequence also defines the time and
the duration that the improviser must keep improvising on
the same material. As shown in Figure 6, the offline impro-
viser takes from the configuration file the parameters of the
oracle (i.e., continuity and lrs) defined by the artist.

Petri Net Model

Offline
Improviser

output

input

input

Audio
Synthesizer

Audio File

output

input

Audio Oracle

input

Petri Net
Parameters

Actions

Oracle
Parameters

Performer Controls

Configuration File

Oracle Regions
Sequence

Audio
Buffer

input

Figure 6: Overview of the offline improvisation stage.

Finally, we synthesize the audio from the sequence of or-
acle’s regions generated by the improviser. For that, we use
VMO to link the frames of the audio buffer of the AO with
the frames in the generated sequence, and save the output in
a file.

Real-time improvisation
A drawback of the PN representation is that it does not pro-
vide a real-time platform for improvisation and interaction.
In addition, the modification of the PN structure could be
cumbersome for artists. To overcome these problems, we
thus propose a mechanism to encode the PN representing the
segmentation analysis as an i-score’s interactive scenario.

In Figure 7 we present the architecture of the real-time
improvisation stage. As we pointed out before, i-score al-
lows to orchestrate any device that uses the OSC protocol.
In this regard, we equipped PyOracle – an AO system pro-

posed in (Surges and Dubnov 2013) – with OSC communi-
cation for the sake of improvising in real-time following the
orders sent by the i-score scenario.

Petri Net
Model

Audio
Oracle

i-score

Petri Net
Parameters

Configuration File

PyOracle

input

input

input

Real-time
Performer Controls

input

input

inout

Real-time Audio
Output

Output

Figure 7: Overview of the real-time improvisation stage.

Recall, that this scenario represents the structure of the
improvisation desired by the artist (i.e., the PN model) and
it can be modified by the performer in order to add, mod-
ify or remove constraints and interactions. Observe that in
our approach, the performer also may or may not interact
with the scenario and modify the parameters of the oracle.
Then, in the absence of any interaction, the execution of the
scenario would be the defined by the composer as default.

To translate a PN structure pn into an i-score score, we
follow Algorithm 1. Roughly, we firstly add an initial i-score
constraint denoting the PN transition of the initial PN place
(i.e., ti). This constraint starts at the beginning of the score
and it has an i-score interaction whose parameters are de-
fined by the temporal interval and the interaction condition
of the PN transition.

Algorithm 1 Translate a Petri net into an i-score score

1: procedure PN ISCORE(pn)
2: ti← pos t(initial place(pn));
3: te← pre t(final place(pn));
4: ei← add constraint(start score,

min dur(ti), max dur(ti), cond(ti));
5: for all p ∈ c places(pn) do
6: pre← pre t(p);
7: pos← pos t(p);
8: el← add loop flexible(ei, or(pos), te);
9: ec← add constraint(el, 0, ∞, or(pre));

10: for all t ∈ pos do
11: add constraint(ec, min dur(t),

max dur(t), cond(t));
12: end for
13: end for
14: end procedure

Then, we add an i-score loop after the above constraint
(i.e., ei) for each colored place p in the PN. Each loop has
no minimum and maximum durations. Moreover, the stop
condition of each loop is the triggering of the final transition
(i.e., te) while the looping condition is the triggering of one

of the outgoing transitions (i.e., disjunction of pos) of the
place p.

Inside each loop, we add a constraint starting at the be-
ginning of the loop (i.e., el) with an i-score interaction with
no minimum and maximum durations and whose condition
is the triggering of one of the ingoing transitions (i.e., dis-
junction of pre) of the PN place. Finally, we add for each
outgoing transition t of the PN a constraint starting from the
above constraint (i.e., ec). Each constraint has an interaction
whose parameters are defined by the temporal interval and
the interaction condition of the transition t.

We clarify the above with Figure 8 that illustrates the i-
score translation of the PN in Figure 5. Observe that the
colored events represent the colored places in the PN. More-
over, intervals representing PN transitions are labeled with
the same name as in the PN.

Conclusions and further work
In this work we presented a new method for improvised
interaction with recorded musical materials that combines
style learning properties of PyOracle and interactive sce-
nario manipulation using a combination of i-score with seg-
mentation done by VMO. Moreover, we also presented an
offline version of the method based on PN, and a new PN
loader to i-score, so that the same musical piece could be
either composed or tested offline, or performed live with i-
score.

The overall approach to used of machine improvisation in
this project falls under the broad scope of structured impro-
visation or composition with aleatoric or indeterminate ele-
ments. This approach to improvisation practice differs from
the traditional use of tools like OMax and PyOracle, since
the analysis of the musical input that is used as the basis
for improvisation is done on pre- recorded materials. This
is contrasted with another common use of machine impro-
visation that uses the online nature of the machine learn-
ing algorithms that allows construction of the improvisation
model on the fly from the music performed by the human
musicians live. Since the VMO segmentation is done on a
complete recording, at this point our system can not be used
to construct or add to the improvisation scenario during per-
formance. Such development should be possible in principle
by using online change detection and clustering algorithms
and allowing incremental updates to i-score in run time.

Besides the technical aspects of the integration of the dif-
ferent software tools for music improvisation with interac-
tive scenario management, the current system also offers
a new framework and paradigm for music composition. In
our model we combine two conceptual approaches - one of
stochastic time series modeling that captures surface prop-
erties of musical materials, with a process management of
dynamic systems by the PN model. The role of the composi-
tion or improvisation planning becomes one of creating the
interaction points and synchronization conditions between
the live musician or the musical score, and the machine gen-
erative process of the PyOracle.

Conceptually one can view the live musician both as part
of the environment and as another dynamic process, where

score-berio/

inurbane28crudwort88

Loop pattern

buchite68hypogeal18

Loop pattern

somberly23tenable76

Loop pattern

milieu64empanel88

Loop pattern

T0

T2

T1

T4

T7

T5

T3

T6

Figure 8: Representation in i-score of the Petri net depicted
in Figure 5.

the compositional decisions are formally represented as con-
ditions and actions that provide concurrency control be-
tween human and the robotic improvisation processes. The
level of synchronization and the division of surface and
background structure in music is formally divided into im-
provisation based player that operates on different musical
materials as captured by states of the PN or loops in i-score,
and transition conditions the align it with the human musical
line on the level of musical form.

The extend of influence the musician has on generation

of PyOracle within a given state are limited to general ma-
chine improvisation parameters such as probability of con-
tinuation or rate of recombination and smoothness of the re-
combinations as function of the common memory length be-
tween recombination segments. There are additional surface
level synchronizations possible, such as limiting the recom-
bination to common beat or guiding the improvisation to a
certain tonal center, or even a specific chord in a chord pro-
gression in case it is know in advance or estimated live from
a human input.

PyOracle currently has a query function that allows cre-
ation of “hot spots” or higher weight probabilities of recom-
bination jumps to regions that correspond to some feature of
the external live music input. Beat and tempo synchroniza-
tion and activation of query functions to guide the machine
towards generating materials that have higher cohesiveness
with an external source are currently under development.

Another method for use of our system is in the case of
a pre-defined scenario. A composer may enter a sequence
of desired states, such as a chord progression, with approxi-
mate flexible timings. This scenario can be added as an addi-
tional element in the environment, with controls for precise
timing of the transitions left to be determined by the users as
performance conditions and actions. In addition to synchro-
nizing the timing, the system may also listen to other user
performance data within each state and providing a set of
secondary or supplemental controls. Such control will not
only affect the PyOracle generation by weighting trajecto-
ries or recombinations within a state, but may also guide the
choices of jumps on the oracle graph from one PN state to
another when a PN transition occurs.

We plan to introduced path searching algorithm to label
possible oracle trajectories across states in order to allow
controlling aspects of articulation during state transitions, or
in other words we plan to find way to determine what hap-
pens on the musical surface (the detailed generation of ma-
terials by PyOracle) when a state transition occurs by having
the system “listen” to secondary parameter, such as expres-
sive aspects of the performance. This method is motivated
and extends the ideas of the ImproteK (Nika and Chemillier
2014) system that allow improvisation with pre-determined
scenarios.

Last and most challenging aspect of future research is
creating dynamic scenarios through establishing discourse
rules. In such usage the transitions will be determined au-
tonomously by a set of rules that will choose the most ap-
propriate transition or choice of materials by the machine in
response to music played by the human improviser. For ex-
ample, the system might decide to move to a state that has
most similar or most contrasting music materials relative to
music performed by the live musician. In such case the tim-
ing of the state is less significant and the PN will navigate
autonomously to the best state or move through a sequence
of states as a response to the nature of the external music it
“hears” at every moment. The development of such machine
listening elements that will translate external musical input
to conditions and actions needed for PN transitions, as well
as creating discourse rules to map conditions to actions is
left for future work.

Acknowledgments
We thank the anonymous reviewers for their detailed com-
ments that helped us to improve this paper. Also, we would
like to thank Jean-Michaël Celerier for his help with i-score,
Cheng-i Wang for his help with the VMO segmentation
code and Franck Pommereau for his help with SNAKES.
This work has been supported by the IdEx visiting scholar
program of the University of Bordeaux, the PoSET project4,
SCRIME5, and CREL6.

References
[de la Hogue, Celerier, and Baltazar 2016] de la Hogue, T.;
Celerier, J.-M.; and Baltazar, P. 2016. Presentation d’un
Formalisme Graphique pour l’Ecriture de Scenarios Interac-
tifs. In JIM 2016, Albi, France, 37–41.

[Dubnov, Assayag, and Cont 2011] Dubnov, S.; Assayag,
G.; and Cont, A. 2011. Audio oracle analysis of musical
information rate. In ICSC, 567–571. IEEE.

[Fober, Orlarey, and Letz 2014] Fober, D.; Orlarey, Y.; and
Letz, S. 2014. Augmented Interactive Scores for Music
Creation. In Korean Electro-Acoustic Music Society’s.

[Haury 1987] Haury, J. 1987. La Grammaire de l’exécution
musicale au clavier et le mouvement des touches. Analyse
musicale 7:10–26.

[Merlin and Farber 1975] Merlin, P. M., and Farber, D. J.
1975. Note on Recoverability of Modular Systems.

[Murata 1989] Murata, T. 1989. Petri Nets: Properties, Anal-
ysis and Applications. Proceedings of the IEEE 77(4).

[Nika and Chemillier 2014] Nika, J., and Chemillier, M.
2014. Improvisation musicale homme-machine guidée par
un scénario temporel. Technique et Science Informatiques
33(7-8):651–684.

[Pommereau 2008] Pommereau, F. 2008. Quickly proto-
typing petri nets tools with SNAKES. In SimuTools, 17.
ICST/ACM.

[Priore 2007] Priore, I. 2007. Vestiges of twelve-tone prac-
tice as compositional process in berios sequenza I for solo
flute. In Halfyard, J. K., ed., Berio’s Sequenzas: Essays on
Performance, Composition and Analysis. Ashgate. 191–208.

[Surges and Dubnov 2013] Surges, G., and Dubnov, S. 2013.
Feature Selection and Composition Using PyOracle. In
AAAIDE Workshop, 114–121.

[Wang and Dubnov 2015] Wang, C.-i., and Dubnov, S. 2015.
The Variable Markov Oracle: Algorithms for Human Ges-
ture Applications. IEEE MultiMedia 22(4):52–67.

[Wang and Mysore 2016] Wang, C., and Mysore, G. J. 2016.
Structural segmentation with the variable markov oracle and
boundary adjustment. In ICASSP, 291–295. IEEE.

4http://www.inria.fr/equipes/poset
5http://scrime.labri.fr/
6http://crel.calit2.net/

http://www.inria.fr/equipes/poset
http://scrime.labri.fr/
http://crel.calit2.net/

	Introduction
	Preliminaries
	Variable Markov Oracle
	Petri Net
	The inter-media sequencer i-score

	Approach
	Segmentation stage
	Offline improvisation
	Real-time improvisation

	Conclusions and further work
	Acknowledgments

