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Averaging for some simple constrained Markov processes.

Alexandre Genadot

Institut de Mathématiques de Bordeaux and Inria Bordeaux – Sud Ouest, Team CQFD

Abstract

In this paper, a class of piecewise deterministic Markov processes with underlying fast dynamic

is studied. Using a “penalty method”, an averaging result is obtained when the underlying dynamic

is infinitely accelerated. The features of the averaged process, which is still a piecewise deterministic

Markov process, are fully described.

1 Introduction

This paper studies some simple constrained Markov processes through averaging. Their trajectories
consist in a piecewise linear motion, whose slopes are positives and given by the values of a continuous
time Markov chain with countable state space. The piecewise linear process is constrained to stay above
some boundary by instantaneous downward jumps when hitting the boundary. This describes a very
particular class of piecewise deterministic Markov processes in the sense of [4]. We are interested in the
limit behavior of the process when the dynamic of the underlying celerity process, that is the dynamic
of the underlying continuous time Markov chain, is infinitely accelerated. We are thus in the framework
of averaging for Markov processes.

Averaging for unconstrained Markov process, that is without the presence of a boundary, has been
studied by several authors since decades and is well understood for a rich variety of Markov processes,
see for example [8, 9, 10] and references therein. As far as we know, averaging for constrained Markov
processes, that is with the presence of a boundary, is not as well understood, in particular in the descrip-
tion of the averaging measure at the boundary. However, in [6], the author proposes a general method
for the study of general constrained Markov processes, the so called “patchwork martingale problem”.
For example, this method has been applied recently in [3] to reflected diffusions. We adopt in this paper
a more standard approach, at least in our point of view, which is the “penalty method”, exposed in [6,
Section 6.4]. This method consist in considering a penalized process jumping at fast rate when beyond
the boundary rather than a process jumping instantaneously at the boundary. Then, a time change
is performed in order to sufficiently slow down the dynamic of the penalized process when beyond the
boundary, allowing the application of classical limit theorems for Markov processes.

In Section 2.1, piecewise linear Markov processes are presented. Our main averaging result is stated
in Section 2.2. In our case, the averaged process can be fully described. In particular, the expression for
the averaging measure at the boundary, describing the behavior of the limit process at the boundary, is
explicitly given in terms of the features of the process. By an appropriate change of variable, this allows
us, in Section 2.3, to apply this averaging result to a more general class of piecewise deterministic process
than piecewise linear. As an example, a hybrid version of a classical model for the neural dynamic is
considered in Section 2.3.2. Proofs are differed to Section 3.

2 Model and main results

2.1 A piecewise linear Markov process

All our random variables and processes are defined on a same probability space (Ω,F ,P) with associated
expectation denoted by E. Convergence in law for processes is intended to take place in the Skorokhod
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space of càdlàg processes D([0, T ],R), with some finite horizon time T , endowed with its usual topology,
see [1, Section 12, Chapter 3].

Let c be a real representing some threshold or boundary. We are going to describe, at first in an
algorithmic fashion, the dynamic of a stochastic process (X(t), t ∈ [0, T ]) valued in (−∞, c) endowed
with its Borel algebra B(−∞, c):

1. Initial state: At time T ∗
0 = 0, the process starts at X(T ∗

0 ) = ξ0, a random variable with law with
support included in (−∞, c).

2. First jumping time: Let Y be a continuous time Markov chain valued in a countable space
Y ⊂ (0,∞). This chain starts at Y (0) = ζ, a Y-valued random variable. The first hitting time of
the boundary occurs at time T ∗

1 defined as

T ∗
1 = inf

{

t > 0 ; ξ0 +

∫ t

T∗

0

Y (s)ds = c

}

.

As usually, we set inf ∅ = +∞.

3. Piecewise linear motion: For t ∈ [T ∗
0 , T

∗
1 ), we set

X(t) = ξ0 +

∫ t

T∗

0

Y (s)ds.

The dynamic of X is thus piecewise linear here, with velocity given by Y .

4. Jumping measure: At time T ∗−
1 (the time just before T ∗

1 ), the process is constrained to stay
inside (−∞, c) by jumping according to the Y -dependent measure νY

T
∗−

1

whose support is included

in (−∞, c):
∀A ∈ B(−∞, c), P(X(T ∗

1 ) ∈ A) = νY
T

∗−

1

(A).

5. And so on: Go back to step 1 in replacing T ∗
0 by T ∗

1 and ξ0 by ξ1 = X(T ∗
1 ).

An example of a trajectory of such a process is displayed in Figure 1. The process X is piecewise
linear and the couple (X,Y ) is in fact a piecewise deterministic Markov process in the sense of [4, Section
24, p. 57]. We denote by p∗(t) the number of jumps of X until time t:

p∗(t) =

∞
∑

i=1

1T∗

i
6t.

Assumption 2.1. As in [4, Assumption 24.4, p. 60], for the well definition of the process, we assume
that

E(p∗(T )) < ∞.

As stated in [4, Theorem 31.3, p. 83], the process X satisfies the following martingale property, which
gives another insight into the dynamic of X and will be useful in the sequel. Let f : (−∞, c) → R such
that

G1) f is measurable and absolutely continuous with respect to the Lebesgue measure;

G2) f is locally integrable at the boundary: for any t ∈ [0, T ],

E





∑

T∗

i 6t

|f(X(T ∗
i ))− f(X(T ∗−

i ))|



 < ∞.
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X(t)

c

ξ0

ξ1

ξ2

Y (t)

t

1
1
2

T ∗
1 T ∗

2

Figure 1: A trajectory of X with Y switching between 1/2 and 1.

Then the process defined for t ∈ [0, T ] by

f(X(t))− f(X(0))−

∫ t

0

f ′(X(s))Y (s)ds

−

∫ t

0

∫ c

−∞

[f(u)− f(X(s−))]νY (s−)(du)p
∗(ds)

is a martingale with respect to the natural filtration associated to (X,Y ). Notice that it is quite easy
to read the piecewise linear and jump behaviors of X in such a writing. Let us notice that of course, by
symmetry, processes with only negative slopes may be considered in this framework.

2.2 Acceleration and averaging result

From now on, we assume that the process of celerities, that is the continuous time Markov chain Y , has
a fast dynamic, by introducing a (small) timescale parameter ε such that

∀t > 0, Yε(t) = Y (t/ε) .

In the same time, to insure a limiting behavior, we assume that Y is positive recurrent with intensity
matrix Q = (qzy)z,y∈Y and invariant probability measure π. For convenience, let us also define by V the
diagonal matrix such that diag(V ) = {y ; y ∈ Y}.
As ε goes to zero, the process Yε converges towards the stationary state associated to Y in the sense
that, by the ergodic theorem,

∀t > 0, ∀y ∈ Y, lim
ε→0

P(Yε(t) = y) = π({y}).

Therefore, as ε goes to zero, the process Xε, defined as X by replacing Y by Yε, should have its dynamic
averaged with respect to the measure π. The behavior of the limiting process away from the boundary
is indeed not hard to describe.

Proposition 2.2. Assume that maxY is finite and ξ0 is deterministic. Then, for any η > 0, the process
Xε converges in law towards a process X̄ on

D

([

0, c−ξ0
maxY − η

]

,R
)

defined as:

X̄(t) = ξ0 +

∫ t

0

∫

Y

yπ(dy)ds

= ξ0 +
∑

y∈Y

yπ({y})t.
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Proof. On
[

0, c−ξ0
maxY − η

]

the process Xε does not reach the boundary. Then, classical averaging results

apply (and apply to much more general situations, but still without boundary), see for example [8] and
references therein.

Proposition 2.2 gives the behavior of the limiting process away from the boundary: celerities are
averaged against the measure π. But what happens at boundary? This is what is characterized by our
main result. Our main assumption is the following.

Assumption 2.3. The set Y is bounded from above and E(supε∈(0,1] p
∗
ε(T )) is finite.

Note that this ensure the well definition of the process for all ε ∈ (0, 1] since this assumption implies
Assumption 2.1 for each such ε. Under the assumption that Y is bounded from above, an easy way to
ensure that supε∈(0,1] E(p

∗
ε(T )) is finite is to suppose that there is some ρ > 0 such that

⋃

y∈Y

supp νy ⊂ (−∞, c− ρ).

In such a case, supε∈(0,1] p
∗
ε(T ) is even bounded by a deterministic constant ( which is T maxY/ρ). For

convenience, let us write
Y−1 = {y−1 ; y ∈ Y}.

Theorem 2.4. Under Assumption 2.3, the process Xε converges in law in D([0, T ],R) towards a process
X̄ such that for any measurable function
f : (−∞, c) → R satisfying G1) and G2) the process defined by

f(X̄(t)) − f(ξ0)−
∑

y∈Y

yπ({y})

∫ t

0

f ′(X̄(s))ds

−

∫ t

0

∫ c

−∞

[f(u)− f(X̄(s−))]ν̄(du)p̄∗(ds)

for t ∈ [0, T ], defined a martingale, with p̄∗ the counting measure at the boundary for X̄. The averaging
measure at the boundary ν̄ is defined by

ν̄(du) =
∑

y∈Y

νy(du)π
∗({1/y})

where π∗ is the invariant measure associated to the intensity matrix V −1Q, thought as the generator of
a Y−1-valued continuous time Markov chain.

The measure π∗ exists since V −1Q is still an irreducible transition rate matrix. Let us remark that
the limiting process X̄ is still a piecewise linear Markov process. Indeed, the process X̄ begins at ξ0 and
then follows the linear motion with speed

∑

y∈Y yπ({y}) until it reaches c at time

T ∗
1 =

c− ξ0
∑

y∈Y yπ({y})
.

And so on... The next hitting times of the boundary are given recursively by

T ∗
k = T ∗

k−1 +
c− ξk−1

∑

y∈Y yπ({y})
, k > 1,

where the ξk’s are the post jump value locations, which are independents and distributed according to
the averaging measure ν̄.

Let us remark that it is not surprising that the value of Y actually appears through V in the averaging
measure at the boundary since X will more likely hit the boundary when its derivative is large. Of course,
this fact is compensated by the probability to be in such a high speed for Y ; this is emphasized by the
presence of the intensity matrix Q in the definition of π∗. This indicates that in a more general setting
(in greater dimension for example), the scalar product between the normal and the tangent of the flow
at the boundary should be involved in the expression of π∗.
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2.3 Extension and application to a slow-fast hybrid quadratic integrate-and-

fire models

2.3.1 Extension and reduction to piecewise linear motions

We can handle slightly more general motions than piecewise linear in our setting. We now consider a
process (X(t), t ∈ [0, T ]) which obeys to the following dynamic:

1. Initial state: As before, at time T ∗
0 = 0, the process starts at X(T ∗

0 ) = ξ0, a random variable
with support is included in (m, c) where {c} is considered as a boundary and m < c is some real.

2. First jumping time: The first hitting time of the boundary occurs at time T ∗
1 defined as

T ∗
1 = inf

{

t > 0 ; ξ0 +

∫ t

T∗

0

α(Y (s))F (X(s))ds = c

}

,

where α is a positive measurable function such that α(Y) is bounded from above and F is a positive
continuous function.

3. Piecewise deterministic motion: For t ∈ [T ∗
0 , T

∗
1 ), we set

X(t) = ξ0 +

∫ t

T∗

0

α(Y (s))F (X(s))ds.

The dynamic of X is thus continuous here, and given by the differential equation:

dX

dt
(t) = α(Y (t))F (X(t)), X(0) = ξ0.

4. Jumping measure: Then, at time T ∗−
1 , the process is constrained to stay inside (m, c) by jumping

according to the Y -dependent measure µY
T
∗−

1

whose support is included in (m, c):

∀A ∈ B(m, c), P(X(T ∗
1 ) ∈ A) = µY

T
∗−

1

(A).

5. And so on: Go back to step 1 in replacing T ∗
0 by T ∗

1 and ξ0 by ξ1 = X(T ∗
1 ).

With y ∈ Y, the simple form of the differential equation x′ = A(y)F (x) allows for the following
reduction. Assume that 1

F is integrable over (m, c) and consider the function defined, for x ∈ (m, c), by

G(x) =

∫ x

m

du

F (u)
.

Remark that G is an homeomorphism from (m, c) to (0, G(c)). The process Z = G(X) is such that for
any f : (0, G(c)) → R satisfying conditions G1) and G2), the process

f(Z(t))− f(G(ξ0))−

∫ t

0

f ′(Z(s))α(Y (s))ds

−

∫ t

0

∫ c

m

[f(G(u))− f(Z(s−))]µY (s−)(du)p
∗(ds)

is a martingale with respect to the natural filtration associated to (Z, Y ). It is clear from this formulation
that Z is a piecewise linear Markov process as in Section 2.1: the process α(Y ) is still a continuous time
Markov chain with intensity matrix Q but valued in α(Y) = {α(y) ; y ∈ Y} and for y ∈ Y, the jumping
measure at boundary is a measure on (0, G(c)) given by

νy(du) = µy(dG
−1(u)).

Note also that by construction the times where X and Z hit there respective boundaries {c} and {G(c)}
are equals. The function G being a homeomorphism from (m, c) to (0, G(c)), by the Portmanteau theorem
we can deduce some in law properties of X from the corresponding in law properties of Z. In particular,
considering the process Xε with same law as X but with Y replaced by Yε, we can deduce its limiting
behavior from the associated linear process Zε and the regularity of G. Let us gather our assumptions.
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Assumption 2.5. We assume that

• 1
F is integrable over (m, c),

• α(Y) is bounded from above,

• E(supε∈(0,1] p
∗
ε(T )) is finite, where p∗ε(T ) is the counting measure at the boundary for the process

Xε.

The following theorem is a direct consequence of Theorem 2.4.

Theorem 2.6. Under Assumption 2.5, the process Xε converges in law in D([0, T ],R) towards a process
X̄ such that for any measurable function f : (m, c) → R satisfying G1) and G2) the process

f(X̄(t))− f(ξ0)−
∑

y∈Y

α(y)π({y})

∫ t

0

f ′(X̄(s))F (X̄(s))ds

−

∫ t

0

∫ c

m

[f(u)− f(X̄(s−))]µ̄(du)p̄∗(ds)

for t ∈ [0, T ], defined a martingale, with p̄∗ the counting measure at the boundary for X̄. The averaging
measure at the boundary µ̄ is defined by

µ̄(du) =
∑

y∈Y

µy(du)π
∗({1/y})

where π∗ is the invariant measure associated to the intensity matrix α(V )−1Q, thought as the generator
of a α(Y)−1-valued continuous time Markov chain.

Here, α(V )−1 denotes the diagonal matrix such that

diag(α(V )−1) = {1/α(y) ; y ∈ Y}.

Note that because of the separation of variables in the form of the flow, its value at the boundary does
not appear in the expression of π∗, as it could be expected in more general situations.

2.3.2 Application to a slow-fast hybrid version of a quadratic integrate-and-fire model

Theorem 2.5 allows to consider other natural motions studied in the literature. For example, let us
examine the following slow-fast hybrid version of a quadratic integrate-and-fire model [2], used in math-
ematical neuroscience. In such a setting, X represents the membrane potential of a neural cell which is
increasing until it reaches some threshold c, corresponding to the time where a nerve impulse is triggered,
and then the potential is reset to some slower value. For the quadratic integrate and fire model, between
two jumps at the boundary c, the process X follows the quadratic motion

dX

dt
(t) = [Y (t)X(t)]2.

In order to fix the ideas, let Y be a continuous time Markov chain valued in a {1, 2} with intensity matrix
given by

Q =

(

−1 1
2 −2

)

such that the invariant probability measure reads

π =
(

2
3

1
3

)

.

For y ∈ {1, 2}, assume that the jumping measure at the boundary µy has support (m, c − ρ), for some
positive constants ρ and m with m+ ρ < c. The function G is here given, for x ∈ (m, c), by

G(x) =
1

m
−

1

x
.

6



Thus, we consider, for t ∈ [0, T ], the process

Z(t) =
1

m
−

1

X(t)
.

The process Z is thus a piecewise linear Markov process jumping according to Y 2 and is constrained
to the set (0, 1/m− 1/c). The process Y 2 jumps at same rate as Y but with state space {1, 4} instead
of {1, 2}. Moreover, the jump number i of Z is distributed according to the cumulative distribution
function given, for x ∈ (0, 1/m− 1/(c− ρ)), by

νY
T

∗−

i

((−∞, x]) = P(Z(T ∗
1 ) 6 x) = µY

T
∗−

i

((−∞, G−1(x)]).

Let us denote by Xε and Zε the corresponding processes coupled to the process with fast dynamic Y 2
ε

jumping according to the intensity matrix Q/ε between 1 and 4. The measure π∗ is the invariant measure
on the state space {1/4, 1} associated to the intensity matrix

V −1Q =

(

1 0
0 1

4

)(

−1 1
2 −2

)

=

(

−1 1
1
2 − 1

2

)

.

That is
π∗ =

(

1
3

2
3

)

.

Note that the values of π and π∗ differs. According to Theorem 2.4, the process Zε converges in law in
D([0, T ],R) towards Z̄ such that for any measurable function f : (0, 1/m− 1/c) → R satisfying G1) and
G2) the process

f(Z̄(t))− f(−1/ξ0)−
4

3

∫ t

0

f ′(X̄(s))ds

−

∫ t

0

∫ 1/m−1/(c−ρ)

0

[f(u)− f(Z̄(s−))]

[

1

3
µ1(du) +

2

3
µ2(du)

]

p̄∗(ds)

for t ∈ [0, T ], defined a martingale. As a byproduct, the process Xε converges in law in D([0, T ],R)
towards X̄ such that for any measurable function g : (m, c) → R satisfying G1) and G2) the process

g(X̄(t))− g(ξ0)−
4

3

∫ t

0

g′(X̄(s))X̄2(s)ds

−

∫ t

0

∫ c−ρ

m

[g(u)− g(X̄(s−))]

[

1

3
ν1(du) +

2

3
ν2(du)

]

p̄∗(ds)

for t ∈ [0, T ], defined a martingale.

3 Proof of Theorem 2.1

3.1 A penalty method

A common practice in showing tightness for constrained Markov process, is to allow the process to
evolve outside of the domain for a very short time instead of having an instantaneous jump. In this line,
we define a penalized process XP which is the piecewise deterministic Markov process solution of the
following martingale problem. Let k > 1 be an integer; for any measurable function f : R → R satisfying
G1) and G2), the process defined for t ∈ [0, T ] by

f(XP
ε (t))− f(ξ0)−

∫ t

0

f ′(XP
ε (s))Yε(s)ds

−

∫ t

0

∫ c

−∞

[f(u)− f(XP
ε (s))]νYε(s)(du)

1

εk
1[c,∞)(X

P
ε (s))ds

is a martingale. In concrete terms, the dynamic is the same as for Xε except that when beyond c, the
process waits an exponential time of parameter 1

εk before jumping. The existence of such a process is

7



inferred from its construction as a piecewise deterministic Markov process in the sense of [4, Section
24, p. 57]. Due to the high intensity of jumps beyond the boundary, it is still not very comfortable to
work directly on XP

ε to show its tightness. As explained in [6, Section 6.4, p. 165], we can slow down
the process beyond the boundary to overcome this difficulty. For this purpose, we define the following
random time-change, for t ∈ [0, T ],

λε(t) =

∫ t

0

ds

1 + 1
εk 1[c,∞)(XP

ε (s))
, µε(t) = t− λε(t).

Being continuous and strictly increasing, the process λε defines a well defined time-change. Notice that
µε + λε = Id and since µε and λε are increasing, for any 0 6 t 6 t+ h 6 T ,

λε(t+ h)− λε(t) 6 h and µε(t+ h)− µε(t) 6 h.

The increases of λε and µε are thus bounded by the increases of the identity, uniformly in ε. The following
lemma characterized the limit behavior of λε.

Lemma 3.1. We have, in law,

lim
ε→0

‖µε‖∞ = lim
ε→0

‖λε − Id‖∞ = 0.

Proof. For any t ∈ [0, T ],

t− λε(t) =
1

1 + εk

∫ t

0

1[c,∞)(X
P
ε (s))ds 6

1

1 + εk

∫ T

0

1[c,∞)(X
P
ε (s))ds.

Since supε∈(0,1] p
∗
ε(T ) is finite P-almost-surely, the time spent beyond c for XP

ε has same law as the

sum of a finite number of exponential variable of parameters of order 1/εk almost-surely, yielding the
result.

This does not mean that µε(dt) goes to zero. Intuitively, it should rather converge towards p∗(dt).
Now, we define the time-change processes, for t ∈ [0, λ−1

ε (T )], by

Uε(t) = XP
ε ◦ λε(t) and Vε(t) = Yε ◦ λε(t).

Notice that λ−1
ε (T ) > T . Then, for any measurable function f : R → R satisfying G1) and G2), the

process defined by

f(Uε(·))− f(Uε(0))−

∫ ·

0

f ′(Uε(s))Vε(s)λε(ds)

−

∫ ·

0

∫ c

−∞

[f(u)− f(Uε(s))]νVε(s)(du)µε(ds)

is a martingale. The process is now in an enough standard form to apply classical tightness theorems of
the literature.

Proposition 3.2. For any time horizon T̃ , the process (Uε, λε) is tight for the Skorokhod topology on
real càdlàg functions on [0, T̃ ].

Proof. Since the increases of λε and µε are dominated, uniformly in ε, by the increases of the identity,
and since Y is bounded, this is a direct application of [5, Theorem 9.4, p. 145].

Lemma 3.1 identify the limit of λε as being the identity, thus a strictly increasing function. From
this fact we deduce from [7, Theorem 1.1] the tightness of the penalized process as stated below.

Proposition 3.3. For any time horizon T , the family {XP
ε , ε ∈ (0, 1]} is tight for the Skorokhod topology

on real càdlàg functions on [0, T ].
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Xε(t), X
Pk
ε (t)

c

ξ0

E
(k)
1

ξ1

ξ2

E
(k)
2

tT∗

ε,1 T∗

ε,2T
∗,Pk
ε,1 T

∗,Pk
ε,2

Figure 2: The coupling between Xε (in black) and XPk
ε (in gray). The random variables E

(k)
1 and E

(k)
1

have same law as independent and exponentially distributed random variables with parameter 1/εk: they
represent the time spent beyond c for the process XPk

ε .

3.2 Coupling and tightness for the initial process

The aim of this part is to show that the family {Xε, ε ∈ (0, 1]} is tight. To this end, we show that Xε

and XP
ε are close enough such that the existence of a converging subsequence for the first one infers

the existence of such a subsequence for the second one. Let us describe the coupling procedure, in
emphasizing the role of k by denoting XP

ε by XPk
ε .

Coupling procedure:

• Glue the two processes until the first hitting time of the boundary: the two starting
points are the same: Xε(0) = XPk

ε (0) = ξ0. Then, for t ∈ [0, T ∗
ε,1), X

ε(t) = XPk
ε (t). Let us denote

by T ∗,Pk

ε,1 the first jumping time for XPk
ε .

• The two processes jump to the same place: As the jumping measure depends only on Yε, we
can set Xε(T

∗
ε,1) = XPk

ε (T ∗,Pk

ε,1 ).

• Let the two processes evolve but with same post-jump-value location: always set Xε(T
∗
ε,i) =

XPk
ε (T ∗,Pk

ε,i ) for 1 6 i 6 p∗ε(T ).

This coupling, illustrated in Figure 2, has good properties, such as the fact that XPk
ε always jumps after

Xε. Another one is emphasized in the following proposition.

Lemma 3.4. The probability that Yε jumps between T ∗
ε,1 and T ∗,Pk

ε,1 goes to 0 when k goes to infinity.

Proof. Remark that T ∗,Pk

ε,1 −T ∗
ε,1 is dominated by an exponential variable of parameter 1

εk
which is more-

over independent of Yε. Therefore, the probability that Yε jumps between T ∗
ε,1 and T ∗,Pk

ε,1 is asymptotically
(in k) dominated by the probability that Yε jumps exactly at time T ∗

ε,1, which is zero.

This implies that for k big enough, with high probability (how high depending on k), after its first
jump, XPk

ε has same direction as Xε and, Y being bounded, their distance is of order an exponential
variable of order 1

εk
, see Figure 2. Then, the distance between the two processes remains the same until

Xε reaches again the boundary {c}.
Let us recall that the Wasserstein distance between Xε and XPk

ε is defined as

W (Xε, X
Pk
ε ) = inf

A∼Xε

B∼X
Pk
ε

E(dS(A,B)),

9



where dS is the Skorokhod distance, defined, for Λ the set of continuous one-to-one mapping of [0, T ], by

dS(A,B) = inf
λ∈Λ

max(‖λ− Id‖∞, ‖A−B ◦ λ‖∞).

Thus, for the Wasserstein distance to go to zero, it is enough to find a coupling of Xε and XPk
ε such

that their Skorokhod distance goes to zero in expectation. In view of Lemma 3.4 and the fact that the
number of jumps of Xε is bounded almost-surely, this is what is achieve by our coupling procedure.

Proposition 3.5. For any ε0 ∈ (0, 1),

lim
k→∞

sup
ε∈(0,ε0)

W (Xε, X
Pk
ε ) = 0.

Proof. Let us use the flexibility of the Wasserstein and Skorokhod distances in considering the defined
coupling together with the one-to-one mapping

γ(k)
ε (t) =

T ∗,Pk

p
∗,Pk
ε (t)+1,ε

+ E
(k)

p
∗,Pk
ε (t)+1

T ∗
p∗

ε(t)+1,ε

t,

defined for t ∈ [0, T ], where (E
(k)
i )i>1 are the succesive times spent beyond c for the process XPk

ε and
thus have same law as independent exponential random variables with parameter 1

εk
. This can be seen

as a homothety with random piecewise constant ratio. Remark that the map γ
(k)
ε is defined such that

the two processes Xε and XPk
ε ◦γ

(k)
ε jumps at the same time and are glued to the same value after jumps,

as illustrated in Figure 3. Quite exactly as for Lemma 3.1, we can show that the piecewise constant ratio

of the homothety γ
(k)
ε goes to one when k goes to infinity, uniformly in t ∈ [0, T ] and ε ∈ (0, ε0). This

implies that, in expectation, the uniform distance between Xε and XPk
ε ◦ γ

(k)
ε goes to zero when k goes

to infinity, uniformly in ε ∈ (0, ε0).

Since convergence in Wasserstein distance implies in law convergence, we can state the following
proposition.

Proposition 3.6. For any time horizon T , the family {Xε, ε ∈ (0, 1]} is tight for the Skorokhod topology
on real càdlàg functions on [0, T ].

Proof. Let us write dL for a distance metrizing convergence in law and let ε0 ∈ (0, 1) be fixed. According
to Proposition 3.5, for any η > 0 we can find some k such that for any ε ∈ (0, ε0),

dL(L(Xε),L(X
Pk
ε )) 6

η

2
.

Then, writing X̄ for an accumulation point of the family {XPk
ε , ε ∈ (0, ε0)}, there is some ε ∈ (0, ε0)

such that
dL(L(X

Pk
ε ),L(X̄)) 6

η

2
.

Hence the result.

3.3 Finite dimensional laws for the limit

Let us denote by Λε the occupation measure on [0, T ]× P(Y) defined by

Λε([0, t]× {y}) =

∫ t

0

1y(Yε(s))ds.

According to the ergodic theorem (recall that Yε = Y (·/ε) with Y a positive recurrent continuous
time Markov chain), this measure converges in law when ε goes to zero to the measure Λ̄ defined on
[0, T ]× P(Y) by

Λ̄([0, t]× {y}) = t
∑

y∈Y

yπ({y}).

10



c

ξ0

E
(k)
1

ξ1

ξ2

E
(k)
2

tT∗

ε,1 T∗

ε,2T
∗,Pk
ε,1 T

∗,Pk
ε,2

c

ξ0

ξ1

ξ2

tT∗

ε,1

=

γ
(k)
ε (T

∗,Pk
ε,1 )

T∗

ε,2

=

γ
(k)
ε (T

∗,Pk
ε,2 )

O(E
(k)
1 ) O(E

(k)
2 )

γ
(k)
ε

Figure 3: Illustration of the proof of Proposition 3.5. Top: trajectories of Xε (in black) and XPk
ε (in

gray). Bottom: trajectories of Xε (in black) and XPk
ε ◦ γ

(k)
ε (in gray).
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In the following, we denote by (X̄, Λ̄) an accumulation point of the family
{Xε,Λε; ε ∈ (0, 1)}. Let us recall that for any measurable function f satisfying G1) and G2) the process
defined, for t ∈ [0, T ], by

f(Xε(t))− f(ξ0)−

∫ t

0

f ′(Xε(s))Yε(s)ds

−

∫ t

0

∫ c

−∞

[f(u)− f(Xε(s
−))]νYε(s−)(du)p

∗
ε(ds)

is a martingale. In light of [8, Theorem 2.1], this is not hard to see, as in the context of averaging without
constraints, that the term

∫ t

0

f ′(Xε(s))Yε(s)ds =

∫

[0,t]×Y

f ′(Xε(s))yΛε(ds, dy)

converges in law towards
∫

[0,t]×Y

f ′(X̄(s))yΛ(ds, dy) =
∑

y∈Y

yπ({y})

∫ t

0

f ′(X̄(s))ds. (1)

The integral with respect to the singular measure p∗ε requires a specific attention. We expand it as
∫ t

0

∫ c

−∞

[f(u)− f(Xε(s
−))]νYε(s−)(du)p

∗
ε(ds)

=
∑

y∈Y

∑

i>1

∫ c

−∞

[f(u)− f(c)]νy(du)1Yε(T
∗,−
i,ε

)=y ; i6p∗

ε(t)
.

Notice that Xε is strictly increasing in between two jumps, thus invertible in such a time window. The
reciprocal process is defined until the first jumps of Xε as

1

ξ0
+

∫ t

0

Wε(s)ds

where Wε = W (·/ε) with W a {1/y ; y ∈ Y}-valued continuous time Markov chain with intensity matrix
V −1Q. We thus consider a “mirror" process Mε, as illustrated in Figure 4, starting at time 0 and evolving
according to a continuous piecewise linear motion with speed given by Wε:

∀x > 0, Mε(x) =

∫ x

0

Wε(u)du.

Recall that we write π∗ for the invariant measure associated to W .

Lemma 3.7. Let us denote by νξ0 the law of the initial condition ξ0 and Eπ∗ the first moment of π∗.
The sequence (T ∗

ε,i, Yε(T
∗,−
ε,i ))16i6p∗

ε (T ) converges in law when ε goes to zero towards (T̄ ∗
i , Zi)16i6p∗(T ),

with law given, for any k > 1, any sequence of times t1, . . . , tk and any sequence of values x0, · · · , xk, by:

P

(

k
⋂

i=1

{T̄ ∗
i 6 ti} ∩ {Zi = xi} ∩ {p∗(T ) = k}

)

=

∫

(−∞,c)k+1

νξ0(du0) . . . νxk
(duk)Π

k
i=1π

∗ ({1/xi})

× 1{(ic−
∑i−1

j=0 uj)Eπ∗6ti;(kc−
∑k−1

j=0 uj)Eπ∗6T<((k+1)c−
∑

k
j=0 uj)Eπ∗}.

Proof. We consider at first the case k = 1. As illustrated in Figure 4 we have

P
(

{T ∗
ε,1 6 t1} ∩ {Yε(T

∗,−
ε,1 ) = x1} ∩ {p∗ε(T ) = 1}

)

=P

(

{

∫ c−ξ0

0

W (s/ε)ds 6 t1} ∩ {W ((c− ξ0)/ε) =
1

x1
} ∩ {

∫ c−ξ0

0

W (s/ε)ds 6 T }

∩ {

∫ 2c−(ξ0+ξ1)

0

W (s/ε)ds > T }

)

,
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where ξ0 and ξ1 are independents, with laws νξ0 and νx1 on the event {Yε(T
∗,−
ε,1 ) = x1}. Thus,

P
(

{T ∗
ε,1 6 t1} ∩ {Yε(T

∗,−
ε,1 ) = x1} ∩ {p∗ε(T ) = 1}

)

=

∫

(−∞,c)2
νξ0(du0)νx1(du1)P

(

{

∫ c−u0

0

W (s/ε)ds 6 t1} ∩ {W ((c− u0)/ε) =
1

x1
}

∩ {

∫ c−u0

0

W (s/ε)ds 6 T } ∩ {

∫ 2c−(u0+u1)

0

W (s/ε)ds > T }

)

.

By the ergodic theorem and dominated convergence, this latter term goes to
∫

(−∞,c)2
νξ0(du0)νx1(du1)π

∗ ({1/x1}) 1(c−u0)Eπ∗6T<(2c−(u0+u1))Eπ∗

as required. In the same line, for any k > 1, for any sequence of times t1, . . . , tk and any sequence of
values x0, · · · , xk, considering all possible post-jump value locations, we have,

P

(

k
⋂

i=1

{T ∗
ε,i 6 ti} ∩ {Yε(T

∗,−
ε,i ) = xi} ∩ {p∗ε(T ) = k}

)

P

(

k
⋂

i=1

{T ∗
ε,i 6 ti} ∩ {Yε(T

∗,−
ε,i ) = xi} ∩ {T ∗

ε,k 6 T } ∩ {T ∗
ε,k+1 > T }

)

=

∫

(−∞,c)k+1

νξ0(du0) . . . νxk
(duk)

× P

( k
⋂

i=1

{

∫ ic−
∑i−1

j=0 uj

0

W (s/ε)ds 6 ti} ∩ {W ((ic−
i−1
∑

j=0

uj)/ε) =
1

xi
}

∩ {

∫ kc−
∑k−1

j=0 uj

0

W (s/ε)ds 6 T } ∩ {

∫ (k+1)c−
∑k

j=0 uj

0

W (s/ε)ds 6 T }

)

.

By the ergodic theorem and dominated convergence, this latter term goes to
∫

(−∞,c)k+1

νx0(du0) . . . νxk
(duk)Π

k
i=1π

∗ ({1/xi})

× 1{(ic−
∑i−1

j=0 uj)Eπ∗6ti;(kc−
∑k−1

j=0 uj)Eπ∗6T ;(kc−
∑k−1

j=0 uj)Eπ∗>T}

when ε goes to zero, as required.

This is then routine (see the proof of [8, Theorem 2.1]) to show that Lemma 3.7 and Equation 1
implies that if the function f : (−∞, c) → R is such that

G1) f is measurable and absolutely continuous with respect to the Lebesgue measure;

G2) f is locally integrable at the boundary: for any t ∈ [0, T ],

E





∑

T∗

i
6t

|f(X(T̄ ∗
i ))− f(X(T̄ ∗−

i ))|



 < ∞.

then the process

f(X̄(t))− f(ξ0)− Eπ∗

∫ t

0

f ′(X̄(s))ds

−

∫ t

0

∑

y∈Y

∫ c

−∞

[f(u)− f(X̄(s−)]νy(du)π
∗ ({1/y}) p∗(ds)

is a martingale, which is precisely Theorem 2.4.
Acknowledgements. The author is thankful to Professor François Dufour for motivating and

enlightening discussions.
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Xε(t)

c

ξ0

ξ1

ξ2 etc...

tT∗

ε,1 T∗

ε,2

Mε(x)
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Figure 4: Illustration of the proof of Lemma 3.7. Top: a trajectory of Xε. Bottom: a trajectory of the
“mirror” process Mε. The process Xε hits the boundary at time corresponding to c− ξ0, 2c− (ξ0 + ξ1)...
for the mirror process Mε. This shows that Xε hits the boundary for the first time with a given speed y
if and only if the mirror process evolves at speed 1/y at time c− ξ0, and so on and so forth for the other
hitting times of the boundary.
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