
HAL Id: hal-01336707
https://hal.science/hal-01336707v1

Submitted on 23 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foundations of Session Types and Behavioural Contracts
Hans Hüttel, Emilio Tuosto, Hugo Torres Vieira, Gianluigi Zavattaro, Ivan

Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, et al.

To cite this version:
Hans Hüttel, Emilio Tuosto, Hugo Torres Vieira, Gianluigi Zavattaro, Ivan Lanese, et al.. Foun-
dations of Session Types and Behavioural Contracts. ACM Computing Surveys, 2016, 49 (1),
�10.1145/2873052�. �hal-01336707�

https://hal.science/hal-01336707v1
https://hal.archives-ouvertes.fr

A

Foundations of Session Types and Behavioural Contracts

Hans Hüttel, Aalborg University
Ivan Lanese, University of Bologna/INRIA
Vasco T. Vasconcelos, University of Lisbon
Luís Caires, Universidade Nova de Lisboa
Marco Carbone, ITU Copenhagen
Pierre-Malo Deniélou, Royal Holloway, University of London
Dimitris Mostrous, University of Lisbon
Luca Padovani, University of Turin
António Ravara, Universidade Nova de Lisboa
Emilio Tuosto, University of Leicester
Hugo Torres Vieira, IMT School for Advanced Studies Lucca
Gianluigi Zavattaro, University of Bologna/INRIA

Behavioural type systems, usually associated to concurrent or distributed computations, encompass con-
cepts such as interfaces, communication protocols, and contracts, in addition to the traditional input/output
operations. The behavioural type of a software component specifies its expected patterns of interaction us-
ing expressive type languages, so that types can be used to determine automatically whether the component
interacts correctly with other components. Two related important notions of behavioural types are those of
session types and behavioural contracts. This paper surveys the main accomplishments of the last twenty
years within these two approaches.

Categories and Subject Descriptors: F.3.3 [Logics and Meanings of Programs]: Studies of Program Con-
structs; D.3.3 [Programming Languages]: Language Constructs and Features; D.2.4 [Software Engi-
neering]: Software/Program Verification

General Terms: Theory, Languages, Verification

Additional Key Words and Phrases: Behavioural types

ACM Reference Format:
Hüttel et al.: Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv. V, N, Article A
(January YYYY), 36 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Types make it possible to classify entities of a program and to describe the permissible
results of a computation. A type discipline can guarantee that well-typed programs
are well-behaved. Traditionally the focus of the work on type systems has been on the
outcome of computations, that is, on what the result of a computation should be.

During the 1990’s, program semantics, in particular concurrency theory and espe-
cially the study of type disciplines for process calculi, has inspired notions of typing
that are also able to describe properties associated with the behaviour of programs and
in this way also describe how a computation proceeds. This often includes accounting
for notions such as causality, choice and resource usage. Type disciplines that describe
such notions directly are often referred to as behavioural types.

There is no hard and fast line of demarcation between behavioural type systems and
other type systems. The work on behavioural types arose in the context of type sys-
tems that capture properties of computations in process calculi. While these systems
do not describe the behavioural information directly as part of the type language, some
of them have been instrumental in the development of the behavioural type systems
presented in the current paper, e.g., by introducing notions of separation between capa-
bilities for names [Pierce and Sangiorgi 1996; Kobayashi 2003], by considering linear

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Hüttel et al.

usage of names [Kobayashi et al. 1999; Kobayashi 2003], and by making case analyses
of variant types [Sangiorgi 1998].

Like many other type disciplines, most of the approaches to behavioural type sys-
tems are compositional in the sense that the type of a composite program depends on
the types of its immediate constituents.

Two notions of behavioural types that have attracted interest are those of session
types and behavioural contracts, and in this paper we provide a survey of the most
relevant work on the foundations of these two notions of behavioural type and outline
the relation to other notions.

The structure of the paper is as follows. Section 2 sketches approaches to behavioural
types that are related to those of session types and behavioural contracts. Section 3 de-
scribes session types and behavioural contracts for sessions involving two participants
only, called binary sessions. Section 4 goes on to describe notions of session types and
behavioural contracts that focus on multiparty interaction. Section 5 describes ap-
proaches to subtyping, refinement and polymorphism in these settings.

The remaining sections describe the expressiveness and algorithmic properties of
session types and behavioural contracts. Section 6 outlines what is known about the
relationship between session types and logic. Section 7 show how safety and liveness
properties can be addressed using behavioural types. Section 8 describes how the vari-
ous approaches to behavioural types interrelate. Finally, Section 9 deals with algorith-
mic properties, including decidability results for typing and subtyping.

2. OTHER APPROACHES TO BEHAVIOURAL TYPES
This section briefly presents approaches to behavioural types that relate to session
types and behavioural contracts. Some of these have been important sources of inspi-
ration in the development of the theory of session types and behavioural contracts. In
what follows we shall restrict our attention to the trends which had more impact on
the development of session types and behavioural contracts.

2.1. Intersection types
An intersection type system introduces a type constructor ∧; an entity has type T1 ∧
T2 if it has both type T1 and type T2. This makes it possible to type a program that
can exhibit behaviour corresponding to T1 as well as behaviour corresponding to T2,
thereby enabling a notion of (ad-hoc) polymorphism.

Intersection types first arose in the setting of typed λ-calculi [Barendregt et al. 1983]
and are closely related to the model theory of λ-calculus [Barendregt et al. 2013]. In
some intersection type systems, typability characterises normalisation behaviour of
terms in the λ-calculus (including exact characterisation of the strongly normalising
terms [Pottinger 1980; Dezani-Ciancaglini et al. 2005]). Intersection types have first
been integrated into a programming language by Reynolds [1997]. They have also been
used to express behavioural abstractions of program behaviour in settings including
abstract interpretation [Coppo and Ferrari 1993], type refinement [Freeman and Pfen-
ning 1991], model checking [Naik and Palsberg 2005; Kobayashi and Ong 2009], and
synthesis [Rehof 2013]. As a consequence, intersection type systems can be regarded
as premier examples of behavioural type systems.

The dual notion of union types has often been introduced alongside intersection types
[Pierce 1991; Barbanera et al. 1995; Dunfield and Pfenning 2003; Igarashi and Nagira
2007; Dunfield 2012]. Union types are used to express the uncertainty as to which type
an entity has. For instance, a union type Int∨String describes a value that can be either
an Int or a String and a program using such a value must account for both possibilities.

It is interesting to note the connection between more traditional type theory
and process-oriented behavioural types. Bettini et al. [2008] combine session types

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:3

and union types while Padovani [2010b] traces a correspondence between intersec-
tion/union types and selection/branching constructs of binary session types.

2.2. Typestates
Typestates are a notion of behavioural types dating back to Strom and Yemini [1986].
In this approach, the type of an entity depends on the operations that are permitted
for the entity, when at a particular state. Each type has associated with it a set of type-
states, partially ordered; operations on entities of the type are correct if the resulting
values are of a typestate reachable by a typestate transition (following the order).

Therefore, typestates are akin to finite-state machines, and a language equipped
with a static type system based on them can check at compile time if all possible se-
quences of operations are valid with respect to a correct use of the application.

The original work on typestates considered imperative languages without objects
but the notion has since been taken up by as a behavioural type discipline for object-
oriented programming languages. DeLine and Fähndrich [2004] describe a program-
ming language called Fugue, while Sunshine et al. [2011] have developed the Plaid
programming language. In Plaid typestates incorporate into the traditional notion of
class type (the interface, or the collection of method signatures) the representation
(the fields) and the behaviour (the actual implementations of methods). Typestates
may change over time, and the type system of Plaid makes it possible to track these
changes. Gay et al. [2010] give semantics to a distributed concurrent object-oriented
programming language by means of a unified treatment of communication channels
and their session types (see Section 3) together with a notion of typestates that sup-
ports non-uniform objects (see Section 2.4).

2.3. Types and effects
The first proposal of behavioural types for concurrency was, to our knowledge, made
by Nielson and Nielson [1993] in the setting of the concurrent functional language Con-
current ML, and then extended in [Nielson and Nielson 1996]. The authors develop a
type and effect discipline. A type and effect system makes it possible to statically de-
scribe intensional aspects of a computation alongside the extensional information that
is captured by usual notions of type. The distinction is that the type describes what an
expression will compute (sets of values), while the effect describes how an expression
will compute (the behaviour). In this approach, type judgements for programs P are
of the form Γ ` P : T&B. Here Γ denotes a type environment recording the types of
free variables, T denotes the type of P and B the effect associated with executing P .
The intent is not to reject a well-typed program based on the shape of its effects but
to provide an upper bound on the actual effect that will be exhibited by P during its
computation.

In a polymorphic functional language, a type and effect system can be used to con-
trol resource usage, such as memory management. When the programming language
includes the notions of communication and concurrency, effects (also called behaviours)
are terms of a process algebra and can, just like the programming language itself, be
given a labelled transition semantics [Nielson et al. 1999]. A main feature of these
type systems is that whenever a well-typed program performs a communication c, the
effect of the residual of the program is the effect of the entire program minus the effect
corresponding to the communication c. Note that session types evolve in a similar way,
changing as far as the computation progresses and communications are performed.

2.4. Types for non-uniform objects
In the context of object-oriented programming, Nierstrasz [1995] observed that class
types as static interface types did not cope with the notion of non-uniform method

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Hüttel et al.

availability: in an object, each of its methods can be enabled or disabled according to
its internal state. A simple example is that of a queue (the dequeue method is disabled
if the queue is empty), another is that of a finite buffer (here the write method is
disabled if the buffer is full). Non-uniform objects are those that may dynamically
change behaviour, and a typing discipline for ensuring the absence of ‘message-not-
understood’ errors will need to take this dynamic behaviour into consideration.

There are several ways of dealing with this issue. Nierstrasz [1995] uses the traces
of menus offered by objects as a notion of behavioural types and proposes a notion of
subtyping, request substitutability, that generalizes the Liskov Substitution Principle
[Liskov and Wing 1994]. This substitution principle requires that whenever S is a
subtype of T , we can replace an object of type T with another object of type S; the
resulting program will still have the behaviour of the original program. This means
that a service can be refined as long as the original promises are still kept. According
to the extension relation defined by Brinksma et al. [1995], request substitutability
gives rise to a pre-order which is close to the failures model of CSP [Hoare 1985].

Colaço et al. [1997; 1999] define an actor calculus supporting non-uniform objects.
The process language is inspired both by the (functional) Object Calculus [Abadi and
Cardelli 1996] and by Typed Concurrent Objects (an asynchronous π-calculus with
input-guarded labelled sums and output selections [Vasconcelos 1994]), following the
actor model [Hewitt et al. 1973]. The authors define a type system that detects “orphan
messages”. These are messages that may fail to ever be accepted by any actor, because
dynamic changes to the interface of the actor cause the service requested not to be
available anymore. Types describe interfaces annotated with multiplicities (that is,
how often a method can be invoked), and the type system involves complex operations
on a lattice of types. The authors give a type inference algorithm for this type system,
based on the familiar notion of solving set constraints by resolution.

Najm and Nimour [1997] define another calculus of non-uniform objects, based on
the asynchronous π-calculus. The calculus is complemented by a type system [Najm
and Nimour 1997; Najm et al. 1999a; Najm et al. 1999b] that handles dynamic method
offers in interfaces and guarantees a liveness property, namely that every pending
request will eventually be processed. In this case, a type is defined as a set of deter-
ministic guarded parametric equations that describe a transition system (which may
be infinite). The type system has notions of type equivalence, compatibility and subtyp-
ing defined using this transition system approach; in particular the notion of subtyping
is based on the notions of strong simulation and strong bisimulation and is decidable.
Moreover, the authors are able to define a type inference algorithm for their system.

Puntigam [2001a; 2001b] and Puntigam and Peter [2001] also define a calculus of
non-uniform objects in which process types impose constraints on the ordering of mes-
sages. A static type inference system ensures that even when the set of acceptable
messages changes dynamically for an object, every message sequence sent to it will
eventually be received.

Several authors adopted the processes-as-types approach (see Section 2.5) to deal
with the issue of non-uniform objects. Ravara and Vasconcelos [2000] developed a be-
havioural type system for TyCO [Vasconcelos 1994] to ensure the absence of ‘message-
never-understood’ errors in non-uniform concurrent objects (the property is an adap-
tation of the usual ‘message-not-understood’, as a message can momentarily be not
understood due to the non-uniform method availability). The type safety result guar-
antees that every message has a chance of being received if it requires a method that
may become enabled at some point in the future. The type language is the process
algebra ABT [Ravara et al. 2012].

More recently, Caires and Seco [2013] introduce the concept of behavioural sepa-
ration. Behavioural separation is a general principle for controlling interference in

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:5

concurrent, higher-order imperative programs (written in languages such as ML or
Java). Behavioural separation types combine notions originating in behavioural type
theories, separation logics, and behavioral-spatial types [Caires 2008]. They make it
possible to enforce fine-grained interference control disciplines and at the same time
preserve compositionality, information hiding, and flexibility. Behavioural separation
types specify how the values of a program can be used safely by client code, by integrat-
ing behavioural operations such as parallel (T | U) and sequential (T ;U) composition
and intersection (T NU) within a substructural type theory. Basic functional (T |→V)
and qualification (l:T) types describe single usages of a value as a function and as a
record, respectively. For example, the safe usage for a dictionary abstract data type d
for key type K and value type V can be specified by the behavioural separation type
assertion

d : rec(X)(assoc : K |→V |→ 0N !(find : K |→V)) ;X

This specifies that at each moment either a single client of d can call the assoc oper-
ation, or an arbitrary number of clients (! denotes shared resources) can concurrently
call the find operation. On the other hand, a lock-serialised dictionary c will be well-
typed under the more flexible type

c : !(assoc : K |→V |→ 0) | !(find : K |→V)

that allows an arbitrary number of clients to concurrently and safely call either oper-
ation.

2.5. Processes as types
Another approach, originating from work on type and effect systems, is that of con-
sidering processes as types. Here, types are processes that are sound abstractions of
the behaviour of programs, and an analysis of the type thus becomes an analysis of
the behaviour of the program. Since program properties are checked at the level of
types, not programs, these properties are often decidable, and therefore this approach
can benefit from the advantages of type checking as well as model checking. Similarly,
session types can be seen as processes abstracting the protocol followed by programs.

Boudol [1997] describes a dynamic type system for the Blue Calculus, which is a
version of the π-calculus that directly incorporates the λ-calculus. In this type system,
types are functional types in the sense of the simply typed λ-calculus but now also
incorporate a version of recursive Hennessy-Milner logic in which modalities are in-
terpreted as named resources. In this type system, types are inhabited by processes,
and the type system is able to express a form of causality in the way names are used
within a process. This ensures that messages sent to a name will meet a corresponding
offer.

Kobayashi [2000] and Kobayashi et al. [2000] study type systems for detecting dead-
lock and livelock in a synchronous π-calculus. In these systems, the type of a channel
carries information about both the arity of the channel and its usage. The usage con-
tains information about the admissible sequences of input and output actions, about
when the channel may be used, and whether it must be used.

Igarashi and Kobayashi [2004] describe a so-called Generic Type System. This is a
general framework that makes it possible to develop type systems that capture vari-
ous properties of π-calculus processes. In the Generic Type System, types are processes
from the restriction-free fragment of CCS and the type system involves a general sub-
type relation and a consistency condition on types. Type systems for concrete proper-
ties can now be obtained from the generic type system by instantiating the general
subtyping relation and the consistency condition. The properties of the particular type
system follow from the general properties of the Generic Type System. All one needs

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Hüttel et al.

to prove is that reductions on types preserve consistency and that consistency on types
implies the desired condition on processes. The Generic Type System is able to capture
specific type systems for safety properties (including arity mismatch, race freedom and
even deadlock freedom), but not liveness properties.

2.6. Interface automata
Interface automata [de Alfaro and Henzinger 2001] constitute an automata-based ap-
proach to behavioural types for specifying extensional program properties. Interface
automata are now used to specify interfaces of components, and a refinement relation
is used to compare abstract and concrete interface specifications. In much of this work
the focus is not on establishing explicit typing rules for an underlying programming
language but instead on defining notions of conformance, compatibility and composi-
tion. Interface automata are similar in aim to session types and behavioural contracts,
but their automata-based presentation makes the two approaches technically differ-
ent.

Lee and Xiong [2004] give a behavioural type system based on interface automata
for the Ptolemy II framework (for composing concurrent components) that captures the
dynamic interaction in an environment for component-based design. The interaction
types and component behaviour are given as interface automata, and type checking
is carried out via composition of automata. Chouali et al. [2010] present a formal ap-
proach, based on interface automata and protocol specifications, that allows one to
adapt components and eliminate possible behavioural mismatches that occur in inter-
actions. The approach ensures that components can be re-used in diverse situations
without their code being affected. Chouali and Hammad [2011] describe an approach
that uses a combination of component models and interface automata to assemble com-
ponents and to formally verify that they are interoperable.

Carrez et al. [2003] define the notions of behavioural interfaces, contracts and con-
tract satisfaction as basis for studying the sound assembly of components.

3. BINARY SESSIONS
This section describes session types and contracts for communications involving ex-
actly two participants. We first discuss input/output types and linear types, which
have been a main source of inspiration for this line of work.

3.1. Input/output types and linear types for the π-calculus
The simplest type system for the π-calculus, [Milner 1993], only keeps track of the
number of arguments channels may carry, thus preventing “arity mismatches” where
the number of channels sent by a client differs from the number expected by a server.
Types are tuples (of types again) of the form (T1, . . . , Tn) describing communication
channels able of carrying n (with n ≥ 0) channels of types T1 to Tn. For example, a type
(nat, (nat)) describes a channel on which a server expects a pair of values, composed
of a natural number and of a channel on which it may reply another natural number
(e.g., its successor).

A type environment Γ is a map (a partial function of finite domain) from names to
types, and one can think of a type judgement Γ ` P as stating that the behaviour of
process P is given by the type information in Γ.

This kind of type system can be refined by including more information on how chan-
nels are used in computations. One such refinement, input/output types [Pierce and
Sangiorgi 1996], includes an optional polarity (or directionality) in each type, so that
a type of the form ?(T1, . . . , Tn) can only be used for input (processes can only read on
the associated channel) and a type !(T1, . . . , Tn) can only be used for output (processes
can only write on the channel). The type of the server above can now be refined as

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:7

?(nat, !(nat)), so that the channel can only be used to read a pair of values, the second
of which can only be used to write a natural number.

Such a refinement is useful not only to prevent programming mistakes (where for
example the server after reading the pair of channels, tries again to read on the second
channel, thus leaving the client forever waiting for the reply), but also provides for
more powerful reasoning techniques. The input/output system was used to prove the
preservation of beta-equivalence on a translation [Milner 1992] of the λ-calculus into
the π-calculus.

A further refinement introduces multiplicities on top of polarities, yielding what
is known as the linear π-calculus [Kobayashi et al. 1999]. The type system uses
ideas from linear logic [Girard 1987] on controlling the number of times a hypothe-
sis can be used in a proof. In the linear π-calculus type system, the multiplicity of
a channel controls the number of times it can be used. For example, a channel of
type !1(T1, . . . , Tn) can only be used once (and for output) and is called linear. A type
?ω(T1, . . . , Tn) can be used zero or more times (for input only). We can then define a
notion of type addition T1 + T2; this operation is partial and only defined for types
of the same multiplicity and for appropriate polarities. For instance, we have that
!1(T1, . . . , Tn)+?1(T1, . . . , Tn) = {?, !}1(T1, . . . , Tn).

We are now in a position to refine the type of our server. A type ?ω(nat, !1(nat)) de-
scribes a channel that can be read multiple times: the server is supposed to serve
multiple requests on a same channel. The second value in one such message is a chan-
nel that must be used exactly once for output: servers are expected to reply exactly
once to each request. Communication on linear channels cannot be interfered by other
computations, and cannot affect these. This provides for further process equivalences
that could not be established with weaker type systems.

In the linear type discipline, we define addition of type environments by a pointwise
extension of type addition.

(Γ1 + Γ2)(x) =

Γ1(x) + Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)

Γ1(x) if x ∈ dom(Γ1) \ dom(Γ2)

Γ2(x) if x ∈ dom(Γ2) \ dom(Γ1)

If we read the above from the right to left, this describes how a type environment can
be split into two sub-environments. The rule for typing a parallel composition P1 | P2

is crucial. We must split the resources in Γ into the resources Γ1 used to type P1 and
the resources Γ2 used to type P2.

Γ1 ` P1 Γ2 ` P2

Γ ` P1 | P2
where Γ = Γ1 + Γ2

This type rule is directly inspired by the proof rule for multiplicative conjunction in
linear logic and versions of it also appear in the binary session type systems that we
shall now describe.

3.2. Binary session types
Session types further refine the linear type system introduced in the previous section.
Here we are concerned with binary session types, types that describe communication
patterns involving exactly two participants. A binary session type describes a protocol
as seen from the point of view of one of the two participants.

The basic constructs denote the two contributions to a message exchange. One writes
!nat to denote the output of a natural number, and one writes ?nat to denote the input of
a natural number. Types may be composed by means of a prefix operator. If T is a type,
then !nat.T is also a type, and denotes an interaction that starts with the output of a

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Hüttel et al.

natural number, followed by the behaviour prescribed by T . The completed protocol,
that is, the protocol on which no further interaction is possible, is denoted by end.
Putting all these pieces together one can write a session type

!nat.?bool.end

describing a series of message exchanges, starting with the output of a natural number,
followed by the input of a boolean value, followed by termination of the protocol.

The above type describes an interaction as seen from one of the participants’ point of
view. The type for the second participant is the complementary, or the dual, obtained
as follows. The dual of output is input, the dual of input is output, and the dual of end
is end. In either case, input or output, the types of the values exchanged in messages
remain unchanged. In this way, the dual of !nat.?bool.end is ?nat.!bool.end.

A further important construct usually present in session types is choice. Again we
have two points of view: that of a participant that offers the menu of options, and
that of the participant that selects a particular option. A choice between depositing
or withdrawing money at some ATM can be written, from the point of view of the
client as ⊕{deposit : T1,withdraw : T2}, where T1 describes the behaviour subsequent
to the selection of the deposit operation, and T2 that after the selection of withdraw.
The ATM, on the other hand, offers a menu, written as &{deposit : T3,withdraw : T4}.
Here, T3 and T4 describe the behaviours after the reception of a deposit or a withdraw
operation. Duality also applies to choice. The above two types are dual if T1 is a dual
of T3, and T2 is a dual of T4.

So far session types can only offer series of fixed-length interactions. Often the ex-
act number of messages exchanged (and choices performed) cannot be determined in
advance. Just think of the type describing a typical session between a client and an
ATM: after selecting option withdraw and providing the amount, the client would like
to have all her choices available again, so that, e.g., she may then check the remaining
balance. Potential infinite behaviour in session types is usually introduced by means
of recursion operator: if T is a type and a is a type variable, then rec a.T and a are also
types. The duality relation for recursive types is defined co-inductively [Gay and Hole
2005]. We are now in a position to introduce the type TATM for our ATM machine, as
seen from the point of view of a client. Clients start by providing their user-id in the
form of a string; the authentication details are omitted. They are then offered a four-
way menu. If withdraw is picked, then clients must provide a nat describing the amount
to be withdrawn, to which the ATM then answers with a dispense or overdraft option.
In either case, the client is again provided with the four-choice menu.

!string.rec a.⊕ {deposit : !nat.a

withdraw : !nat.&{dispense : a, overdraft : a},
balance : ?nat.a,

quit : end}

From the point of view of the ATM machine the type is the dual, which can be ob-
tained by swapping ⊕ with & and ! with ? in the type above.

The type for the ATM, even if revealing, is first order: the messages exchanged by
the client and the ATM server are composed of uninterpreted labels and natural num-
bers. A more interesting type theory, introduced by Honda et al. [1998], allows for
higher-order messages, that is, for messages to carry arbitrary session types. The phe-
nomenon is called delegation, and remains today the norm in session type systems.
Suppose the authentication against the ATM server and the subsequent interaction
are to be performed by different processes. We can arrange our computation so that
an initial process conducts the authentication part of the protocol, and then delegates

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:9

the communication channel to the second process. The channel on which delegation
is performed may be of type !(rec a.⊕ {deposit : !nat.a, . . . , quit : end}).end. The interplay
between delegation and recursion in the definition of duality is discussed by Bernardi
and Hennessy [2014].

The types discussed so far describe sessions, that is interactions meant to be run
without interference. These types are usually called linear. Complementary to these,
we need types whose objects may be shared and that can in particular be used to
establish new (linear) sessions. Note that shared types may be communicated over
linear types, but the continuation of a linear type is, in most of the approaches, a
linear type. When it comes to shared types there are a few variants in the literature.
For Gay and Hole [2005], a shared type S is either a base type, such as nat or bool,
or else a type ^[T] describing an object capable of carrying a session of type T . As an
example, the shared name of an ATM is of type ^[TATM]. Honda et al. [1998] make it
explicit that the type is capable of generating both session ends, by writing instead
〈TATM, T

′
ATM〉, where T ′ATM is a dual of TATM.

Vasconcelos [2012] eliminates the stratification of types into linear and shared, by
classifying each prefix with a lin (linear) or un (unrestricted or shared) qualifier. The
type of the shared name of the ATM becomes rec b.un!TATM.b. Eliminating stratification
allows for describing channels that start as linear and end as unrestricted (see exam-
ples by Vasconcelos [2012]). In order to capture within a single type the capabilities
of both ends of a channel, Giunti and Vasconcelos [2016] use pair types (T1, T2) where
T1 describes the behaviour of one end and T2 the behaviour of the other. Contrary
to Honda et al. [1998], types T1 and T2 need not be dual of each other. Brogi et al.
[2004] and Vallecillo et al. [2006] use binary session types to study the safe interaction
of software components.

3.3. π-calculi for binary session types
Types need programming languages. Session types were initially developed in the
realm of the π-calculus. They have since then been incorporated in functional and
object-oriented languages (early references are Dezani-Ciancaglini et al. [2005] and
Vasconcelos et al. [2006]). Here we focus on the π-calculus.

Session types require mild variations of the π-calculus as introduced by Milner et al.
[1992]. In the π-calculus, types are assigned to channels. If channel x is of type !T1.T2
and value v is of type T1, then one may write x!v.P to denote a process that writes v on
x and continues as prescribed by process P . The type of x in P is T2. Conversely, if x is
of type ?T1.T2, then x?y.P denotes a process that reads a value from channel x, binds
it to y, and continues as P . In P , channel y is of type T1 and x is of type T2.

Processes are typed against typing contexts, essentially a map from channels to
types. Sequents are of the form Γ ` P and say that process P is well typed under
context Γ. Following the description above, the typing rules for input and output (of
linear values on linear channels) [Honda et al. 1998] should be easy to understand.

Γ, x : T2 ` P
Γ, y : T1, x : !T1.T2 ` x!y.P

Γ, y : T1, x : T2 ` P
Γ, x : ?T1.T2 ` x?y.P

In order to deal with choice, Honda et al. [1998] introduce two new language con-
structs, called branch and select. If x is of type &{l1 : T1, l2 : T2}, then x B {l1 : P1, l2 : P2}
denotes a process (usually called branching) that offers two options, and behaves as P1

if option l1 is selected and as P2 if option l2 is selected. Conversely, if x is of type
⊕{l1 : T1, l2 : T2}, then x C l2.P selects the l2 option on channel x and proceeds as P .

The fundamental change to the π-calculus often required by session types forces the
syntactic distinction of the two ends of a channel. Gay and Hole [2005] write x+ and
x− to speak about the two ends of channel x. In the π-calculus [Milner et al. 1992] the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Hüttel et al.

parallel composition of processes P1 and P2 is denoted P1 | P2, and channels are created
by means of the ν constructor, as in (νx : T)P . Gay and Hole [2005] write (νx : T)P and
use x+ of type T and x− of a type dual of T in process P , as in

(νx : !nat.U)(x+!5.P1 | x−?z.P2)

which reduces in one step to (νx : U)(P1 | P2[5/z]), where P2[5/z] denotes process P2

with the free occurrences of channel z replaced by the value 5. An alternative formula-
tion uses (non-annotated) identifiers to describe the two ends of a channel [Vasconcelos
2012]. In this case, when creating a new channel we explicitly name its two ends using
a pair of conventional variables, as in (νxy : !nat.U)(x!5.P1 | y?z.P2).

The syntactic distinction between the two ends of channels is required only when
both the situations below arise together:

(1) Processes may obtain both ends of a channel and use them in sequence, as in
x?y.x!y.y?z, where the first x denotes one end whereas y denotes the other end
of a same channel, and

(2) Types describe only one end of a channel, as in !nat.end.

Yoshida and Vasconcelos [2007] and Giunti and Vasconcelos [2016] further discuss
the problem. The type system by Honda et al. [1998] does not require the distinction
between the two channel ends because the particular nature of channel passing (bound
output) precludes processes from obtaining both ends of a channel, thus avoiding con-
dition (1). The same happens in the interpretation of session types in intuitionistic
linear logic discussed in Section 6.1. The system by Giunti and Vasconcelos [2016]
uses types that describe both ends of a channel, as in (!nat.end, ?nat.end), thus steering
clear from condition (2).

The type system just sketched describes the behaviour of the (free) channels in pro-
grams, thus providing an abstract description of the communication patterns of a pro-
gram. In addition it prevents certain kinds of run-time errors, described in Section 7.1.

3.4. Binary contracts
Contracts take an approach different from session types, by using process algebra-like
languages or labelled transition systems for describing abstractions of the communica-
tion behaviour of programs. Before reviewing the most relevant literature, we present
a simple example of a contract-like description of the binary interaction between a
client and an ATM in the example reported in Section 3.2. The behaviour of the ATM
from the point of view of the server is described as follows.

?auth; (?deposit ; ?amount+?withdraw ; ?amount ; (!dispense+!overdraft) +

?balance; !amount)∗; ?quit

While the prefixes in a binary session type describe the types that are communicated
or (in the case of branching and selection) the choices that are possible, the labels in a
contract directly describe the actions allowed by the ATM.

The input action auth identifies the initial authentication data sent by the client to
the ATM. After this step, the ATM enters a cycle offering three functionalities: deposit
an amount indicated by the client, withdraw or show the current balance. The cycle is
terminated by the quit action. The behaviour of a client interested in asking for the
balance and then performing a withdraw action can be represented as follows.

!auth; !balance; ?amount ; !withdraw ; !amount ; (?dispense+?overdraft); !quit

Intuitively, the two contracts are compatible in the sense that their combination guar-
antees the completion of the expressed protocols. The papers on contracts that we
review below formalize appropriate notions of compatibility between contracts.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:11

Fournet et al. [2004] introduce the notion of contract as the description of the input-
output behaviour of processes. They use the process calculus CCS to denote contracts;
a main contribution of this work is the formalization of the notion of stuck-free confor-
mance: a CCS process P conforms to a contract C if P can replace C in every context
preserving stuck-freedom (roughly, stuck-freedom corresponds to absence of local dead-
locks). Conformance checking is not decidable for the full CCS calculus but the authors
show how conformance checking can in some cases be handled using a model checker.

This approach has inspired several subsequent works. Carpineti et al. [2006] con-
sider a similar language for the description of contracts and processes. They introduce
a different notion of conformance, namely, an asymmetric client-service compliance
notion: a client and a service are compliant when in every computation the client is
guaranteed to reach a successful state. Such a kind of contracts has been subsequently
extended in two directions: Laneve and Padovani [2007] introduce the notion of input
and output alphabet associated to a contract, while Castagna et al. [2009b] propose
dynamic filters that can be associated to services in order to eliminate interactions
on non admitted channels. Both approaches aim at relaxing the conformance relation,
thus extending the set of processes that can safely replace a given service. Variants of
this approach deal with dynamic communication topologies [Castagna and Padovani
2009] or with the standard languages for the description and composition of Web Ser-
vices [Laneve and Padovani 2013].

3.5. Variations and extensions of binary sessions
Different session calculi have been proposed in the literature, either by extending the
types above with new features or by changing the operational semantics of the under-
lying languages.

Asynchronous semantics. Gay and Vasconcelos [2010] study a functional language
with asynchronous (buffered) semantics. In the context of the π-calculus with ses-
sions, Kouzapas et al. [2016] consider a semantics based on order-preserving asyn-
chronous communication inside each session and asynchronous message arrival for
general channels.

Event-driven programming. Kouzapas et al. [2016] extend session types with non-
blocking detection of message arrival (events) and dynamic inspection of session types
to model event-driven programming. As a result, they can encode event selectors, a cen-
tral component of event-driven systems, enabling the development of type-safe event-
driven applications. They also define a systematic transformation from multithreaded
to event-driven processes which is type- and semantics-preserving.

Exceptions. Carbone et al. [2008] extend binary sessions with a throw primitive to
raise exceptions, and exception handlers for handling them. Exceptions that require
coordinate handling from both the session participants are considered. Both safety and
liveness properties are ensured.

Service-oriented programming. Service-Oriented Computing (SOC) applications are
generated by dynamically looking for available services on the network, and composing
them so as to obtain the desired functionalities. The different services communicate by
exchanging messages over the network. While current standards only check syntactic
compatibility of service signatures, session types have been proposed to ensure also
behavioural compatibility. Some calculi to model SOC systems have been proposed.

— SCC [Boreale et al. 2006] was the first attempt to define a calculus able to directly
model SOC systems in a π-calculus style. In particular, SCC features service defi-
nition and invocation as primitive operators. When a service is invoked, a private

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Hüttel et al.

session is created to allow communication between the two processes. Results com-
puted inside the session are propagated to the upper level using a return primitive.
This primitive alone is however not enough to model the complex patterns needed to
coordinate different client/service pairs. New calculi have been developed to address
this issue. A type system based on session types to guarantee deadlock freedom in
SCC is presented by Bruni and Mezzina [2008].

— CASPIS [Boreale et al. 2008] extends SCC with pipelines, allowing the definition of
flows of data between services, thus improving the modeling of complex communi-
cation patterns.

— SSCC [Cruz-Filipe et al. 2014; Lanese et al. 2007] also extends SCC aiming at eas-
ier modelling of SOC patterns. It uses streams (rather than pipelines), a concept
orthogonal to the session hierarchy. Session types ensuring correctness of session
communication are presented by Lanese et al. [2007]. A simpler type system, en-
suring sequentiality of communication, is exploited by Cruz-Filipe et al. [2008] to
enable program transformations to break large sessions into smaller ones.

Other approaches to modelling services use multiparty sessions and are presented
in the next section.

4. MULTIPARTY SESSIONS
Binary session types, described in the previous section, are restricted to communica-
tion patterns involving exactly two participants. Multiparty session types drop this
restriction. In many cases, it is possible to describe and reason about multiparty con-
versation patterns by means of a composition of binary sessions. However, there are
also patterns involving more than two communicating parties for which binary ses-
sions do not suffice, and multiparty session types are needed.

4.1. Global and local types
Consider by way of example an extension of the ATM example from Section 3, where
the ATM establishes a different session with the bank central server reporting any
operation that the client chooses. Intuitively, the ATM needs to contact the bank only
after the client has made a choice, and never before. Unfortunately, since sessions are
binary such a constraint cannot be imposed at type level. For example, a well-typed
implementation of the ATM could be a process that, independently from which branch
is selected, always reports to the bank that the client has made a deposit.

To address this problem, Honda et al. [2008] propose a generalisation of binary ses-
sion types called multiparty session types. Multiparty session types provide for global
descriptions of interactive behaviour. Under this paradigm, a software architect pre-
pares a global view of all the message exchanges that take place, instead of separately
defining the behaviour of each individual channel endpoint (as in binary session types,
where we only specify the behaviour of each side of a binary session). The local be-
haviour of each endpoint can be mechanically obtained from the global description by
applying a projection operation. A global description is therefore a “formal blueprint”
of how a communicating system should behave and it provides a concise specification
of how messages flow within the system. This should have a major impact on software
quality, since a global description will:

(1) decrease the risk of introducing programming errors;
(2) make it easier to detect such errors (both manually and by automatic means), and
(3) guarantee the absence of deadlocks.

One can use global descriptions at different levels of abstraction, ranging from abstract
descriptions of protocols (multiparty session types, described below) to descriptions

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:13

of concrete implementations (as done, e.g., by Carbone and Montesi [2013]). As an
example, the following is a global type describing a session with three participants—
Client, ATM and Bank—where the ATM correctly reports to the bank all the choices
made by the client:

Client→ ATM(string). rec a.

Client→ ATM

deposit : Client→ ATM(nat). ATM→ Bank{deposit : a},
withdraw : Client→ ATM(nat).

ATM→ Bank

{
withdraw : ATM→ Client

{
dispense : a,
overdraft : a

}}
,

balance : ATM→ Client(nat). ATM→ Bank{balance : a},
quit : ATM→ Bank{quit : end}.

The multiparty session type above (or simply global type) specifies in which order the
implementation of the client, the ATM and the bank have to exchange messages and
the order of requests that are involved. The key operations in a global type are inter-
actions such as

Client→ ATM(string)

in which a sender (Client) sends a message of some type (string) to a receiver (ATM), and
choices such as

ATM→ Client{dispense : . . . , overdraft : . . . }
in which a sender (ATM) asks a receiver (Client) to select a certain branch.

Global types are used for checking programs running in parallel, each implementing
one of the roles specified in the type, e.g., Client, ATM, and Bank. In order to realise that,
a notion of projection from global types to local types is defined. For example, the local
type corresponding to ATM in the interaction above would be:

Client ?string. rec a.Client&

deposit : Client ?nat. Bank ⊕ {deposit : a},
withdraw : Client ?nat.

Bank ⊕
{

withdraw : Client ⊕
{

dispense : a,
overdraft : a

}}
balance : Client !nat. Bank ⊕ {balance : a},
quit : Bank ⊕ {quit : end}.

Note how local types are slightly more complex than standard binary session types
since each communication operation is now labeled with the party this role is supposed
to communicate with (rather than ?nat we now write Client?nat).

An important question when dealing with multiparty sessions is that of finding a
suitable language for describing these interactions. Honda et al. [2008] present a gen-
eralisation of binary sessions to multiparty asynchronous sessions for the π-calculus.
In contrast to the binary case, sessions are now established between multiple pro-
cesses via multiparty synchronisation. Then, private (in-session) communication is
carried out, asynchronously, between session participants. Technically, sessions are
established as follows:

a2..n?s̃.P1 | a2!s̃.P2 | · · · | an!s̃.Pn → (νs̃)(P1 | · · · | Pn | s1 : ∅ | · · · | sm : ∅)
In the above, the term on the left-hand side of the reduction → contains n processes
running in parallel, each of them willing to establish a session on public channel a.
Note how each participant is labelled with a role name (1, 2, . . . , n). Each label (where
1 is actually denoted by 2..n, to clarify the number of expected processes) corresponds
to the unique role that a participant in the new session has to play. The session is

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Hüttel et al.

established through a distributed synchronisation which creates the session (private)
channels s1, . . . , sm and the corresponding FIFO queues (denoted in the reductum by
s1 : ∅, . . . , sm : ∅). Once the connection is established, processes P1, . . . , Pn can asyn-
chronously communicate by using the queues corresponding to one of the channels
s1, . . . , sm.

Coppo et al. [2016] simplify the approach of Honda et al. [2008], by making the
number of session channels created upon session initiation no longer arbitrary, but
dependent on the number of session roles. In particular, session initiation creates a
session channel for each ordered pair of roles.

4.2. Conversation types
Conversation types [Caires and Vieira 2010] extend (binary) session types to deal with
multiparty interaction. Although conversation types were originally introduced to type
terms in the Conversation Calculus [Vieira et al. 2008], the approach carries over to
a more foundational setting, namely to a modest extension of the π-calculus in which
communication actions are labelled. Given that a session type characterises the usage
of a single channel by two parties, it seems natural to consider that a multiparty exten-
sion of a session type characterises the usage of a single channel by multiple parties.
To motivate the underlying model, consider the following example where three (con-
current) threads interact in a channel bank : the leftmost thread sends 100, the middle
thread sends true, and the rightmost thread sequentially receives two values.

bank !100 | bank !true | bank?x.bank?y

Looking at the specification one may immediately identify a potential communica-
tion problem: two threads are simultaneously trying to send a message, a communi-
cation race. As a consequence, the receiving process may actually receive first either
value 100 or value true, making it impossible to (statically) characterise how the re-
ceived values can be used. Now consider that we extend the specification above, by
adding labels to communication actions.

bank !deposit(100) | bank !letOverdraft(true) | bank?deposit(x).bank?letOverdraft(y) (1)

Thanks to the labels we may now distinguish two synchronisations, given the order
imposed by the receiving process: first a deposit labelled message is exchanged, then a
letOverdraft labelled message. Labels thus allow one to recover pairwise linear interac-
tions, even if multiple parties share a single communication medium. The use of labels
allow one to avoid communication errors and race errors.

Let us now turn to a typing characterisation of the system given in (1). The left-
most process uses channel bank to output an integer, which we may characterise with
the (session) type !Int.end. Extending the type with the corresponding label we then
have the conversation type !deposit(Int).end, and likewise for the process in the mid-
dle we have !letOverdraft(Bool).end. On the receiving end, the rightmost process may
be characterised by type ?deposit(Int).?letOverdraft(Bool).end. The sequential exchange
of messages deposit and letOverdraft in channel bank is captured by conversation type
τdeposit(Int).τ letOverdraft(Bool).end, where each τ captures a message exchange inter-
nal to the characterised system.

We may draw a comparison between the conversation types described above and the
local and global types of Honda et al. [2008], described in Section 4.1. The conversation
types include at the same level both the type of interactions internal to the system (via
τ), specified in global types by Honda et al. [2008], and interactions between the system
and the external environment (via output ! and input ?), corresponding to local types
in [Honda et al. 2008]. For the sake of illustration consider the system below, consisting

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:15

of part of (1).

bank !letOverdraft(true) | bank?deposit(x).bank?letOverdraft(y)

Channel bank is used according to type ?deposit(Int).τ letOverdraft(Bool).end, saying
that first a deposit message is received after which message letOverdraft is exchanged.
Such type is obtained as a behavioural combination of two (local) types, namely
!letOverdraft(Bool).end and ?deposit(Int).?letOverdraft(Bool).end. Notice that the τ com-
bines the (dual) output and input descriptions for message deposit , while the reception
of message letOverdraft is left at the interface level, open to synchronise with an output
originating from the external environment.

This ability to merge behaviours (or symmetrically, the ability to split behaviours
into smaller pieces), defined in an algebraic way by Caires and Vieira [2010], allows
one to compositionally characterise systems. In fact, the behaviour of a system can
be obtained by merging the behaviours of its components. Furthermore, the ability
of splitting behaviours allows one to address configurations in which parties engage
dynamically in conversations: a participant may decide to split its behaviour in two
parts, execute one of them, and delegate the second one to a participant which joins the
conversation dynamically. This possibility is the key to model multiparty interaction.
Indeed, since the underlying model (the labelled π-calculus) does not support atomic
multiparty synchronisation, the way in which multiparty interaction is modelled is by
allowing multiple parties to join an ongoing conversation (realised by channel name
passing). Using the terminology from session types, conversation joining is supported
by channel delegation, only now delegation is partial: the delegating party will still
have access to the communicated channel.

Baltazar et al. [2012a] introduce a novel type construct to capture the idea that
some behaviours are not necessarily carried out immediately and can actually take
place sometime in the future. Type 3!letOverdraft(Bool) says that the output of mes-
sage letOverdraft will happen sometime but not necessarily immediately. The 3 type
constructor is related to the “eventually" operator from temporal logic and satisfies
expected laws such as B <: 3B (see Baltazar et al. [2012a]).

When composing the (sometime) output of message letOverdraft and the (immediate)
output of message deposit we obtain the type !deposit(Int).3!letOverdraft(Bool).end that
composed with the dual (sequential) capabilities ?deposit(Int).?letOverdraft(Bool).end
yields the global protocol

τdeposit(Int).τ letOverdraft(Bool).end

4.3. Multiparty contracts
Contracts for multiparty process composition were initially investigated by Bravetti
and Zavattaro [2007] using a choreography language to describe the globally ob-
servable behaviour of correctly interacting peers. A choreography language, like WS-
CDL [Kavantzas et al. 2005] or its formalization [Busi et al. 2005], is a language having
an interaction, namely a communication between two participants, as the main build-
ing block. Below we use choreography languages to write contracts, that is abstract
descriptions of program behaviour. A contract written in a choreography language is
called a choreography. Choreography languages can also be used to write global types,
as seen in Section 4.1, or as a programming language, as done, e.g., by Carbone and
Montesi [2013]. As a simple example of choreography, consider the binary interaction
between the client (denoted by C) and the ATM (denoted by A) described in Section 3.4
expressed in the choreography language proposed by Bravetti and Zavattaro [2007]. In
that example, we showed an ATM contract allowing potential clients to repeatedly per-
form deposit , withdraw or balance operations, and a client contract simply performing a

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Hüttel et al.

balance followed by a withdraw request. The combination of these two local behaviours
generates the following choreography.

authC→A; balanceC→A; amountA→C;

withdrawC→A; amountC→A; (dispenseA→C + overdraftA→C); quitC→A

The notation authC→A expresses an interaction on the operation auth having C for
sender and A for receiver.

A choreography can also be used to model a multiparty interaction, and indeed this
is its most common use. As an example, we can describe the behaviour of the client
role (C), the ATM role (A) and the bank role (B), discussed in Section 4, at least for the
balance and withdraw operations.

authC→A;
(
withdrawC→A; amountC→A; getAmountA→B; provAmountB→A;

(dispenseA→C + overdraftA→C)

+ balanceC→A; askAmountA→B; repAmountB→A; amountA→C

)∗
; quitC→A

A notion of conformance is then introduced as a relation among a local contract L,
a multiparty contract H and a role R, formalising the possibility to implement the
multiparty contract H by adopting a peer following the local contract L to realise the
role R. For instance, a peer following the local contract

!auth; (!withdraw ; !amount ; (?dispense+?overdraft)+!balance; ?amount)∗; !quit (2)

could be used to realise the client role C in the multiparty contract above. Note that lo-
cal contracts are based on send and receive operations and indeed coincide with binary
contracts (see Section 3.4).

The theories for multiparty contracts formalise the notion of conformance above.
For instance, Bravetti and Zavattaro [2007] introduce a notion of correctness for im-
plementations of choreographies based on the following intuition: a system is correct
if, for every reachable state, it is always possible for the peers to reach a successful
state. This notion of correctness assumes fairness, as it is always considered possible
to exit from loops if this is necessary to reach a successful state. Under this assump-
tion, it allows one to check whether the parallel composition of peers following some
given local contracts is a good implementation of a choreography. A (sound but not
complete) decidable characterisation of conformance is then obtained as a combination
of the above notion of correctness and refinement of local contracts.

A theory of multiparty contracts based on this approach has been proposed
by Bravetti and Zavattaro [2008b]; this theory has been subsequently extended by
considering a stronger notion of correctness according to which output actions can-
not wait indefinitely [Bravetti and Zavattaro 2009b], by considering asynchronous in-
stead of synchronous communication [Bravetti and Zavattaro 2008a], and by taking a
language independent approach by representing processes as labelled transition sys-
tems [Bravetti and Zavattaro 2009a]. A technique to generate local contracts for peers
conformant to a given choreography based on a notion of projection similar to the one
studied for multiparty session types has been developed by Lanese et al. [2008].

Castagna et al. [2012] present a choreography language (they call “global types”
their choreographies, but how to actually type processes using them is not described)
featuring also interactions with multiple targets, representing a multicast, and a shuf-
fling operator to specify that two behaviours can be interleaved arbitrarily. The paper
characterises which choreographies can be implemented without cover channels, that
is by using only interactions explicit in the choreography.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:17

An alternative graphical model for the specification of choreographies — col-
laboration diagrams — was proposed by Bultan and Fu [2007] where the notion of
realisability corresponds to the possibility of correctly implementing a given collabora-
tion diagram as a parallel composition of services.

4.4. Extensions of multiparty session types
We present below approaches that extend multiparty session types and the related
theory in different directions.

Exceptions. Carbone [2009] extends the work on exceptions for binary session types
(Section 3.5) to deal with multiparty interactions. The paper shows by way of an exam-
ple how to project a choreography with exceptions to derive the description of single
endpoints. This work has been refined by Capecchi et al. [2010], where asynchronous
exceptions that can be thrown to any subset of the participants of a multiparty session
are considered. Operators dealing with exceptions are also available in the Conversa-
tion Calculus [Vieira et al. 2008].

Assertions. Bocchi et al. [2010] describe an approach to add assertions about data
values to multiparty session types. Assertions concern the content of the exchanged
messages, the choice of sub-conversations to follow, and invariants on recursions. This
approach is further described in Section 6.2.

Parametricity. Yoshida et al. [2010] extend multiparty session types with dependent
types and primitive recursion, allowing one to describe systems which are parametric
on the number of participants. Indices are used to identify participants, and a foreach
construct is used to let the number of interactions depend on the parameters.

Deniélou and Yoshida [2011] give another extension of the π-calculus with multi-
party sessions where it is possible for participants to dynamically join and leave a
session.

Compositionality. Montesi and Yoshida [2013] extend [Carbone and Montesi 2013]
to a calculus that supports compositionality of choreographies. The key feature of the
approach consists in adding π-calculus sends and receives to the choreography lan-
guage. This goes in the direction of conversation types, described in Section 4.2.

Message-Passing Interface (MPI). Multiparty session types are also used for typing
MPI programs. Honda et al. [2012] extend the work on parametric multiparty ses-
sion types to describe the interactions within high-performance computing (HPC) pro-
grams. This work includes primitives for expressing collective operations idiomatic in
HPC programs, such as scatter, for distributing an array amongst the participants, or
reduce, for computing an operation depending on values contributed by a group of par-
ticipants, as well as collective choices and loops. Traditionally, the branch and select
primitives are dual and involve a participant that offers a menu of choices, from which
the other chooses one. In HPC programs the idiom is different and participants choose
a (same) path based only on local information gathered from previous interactions. No
specific communication is needed for selecting a branch.

Following Honda et al. [2012], López et al. [2015] introduce a dependent func-
tional type constructor and a notion of refinement types on protocols. This way, pro-
tocols can be parametric, for instance, on the size of the problem, and restrictions
can be imposed on the exchanged data. As an example, Πp : Πsize : {n : nat | n%p =
0}.scatter(0,MPI_FLOAT, size) denotes a protocol parametric on the number of partici-
pants (p) and on the size of the problem (size) that scatters a float array in chunks of
size/p amongst its participants. For that to succeed, the size of the problem must be a
multiple of the number of participants.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Hüttel et al.

Ng and Yoshida [2014] define Pabble, a protocol description language with depen-
dent types. The language can describe an overall interaction topology designed for
a variable number of participants arranged in multiple dimensions. These parame-
terised protocols in turn automatically generate local protocols for type checking pa-
rameterised MPI programs for communication safety and deadlock freedom. The the-
ory underlying Pabble guarantees the termination of endpoint projection and of type
checking algorithms.

Synthesis. The approaches described until now are top-down: a global description is
specified, and local descriptions are derived from it. Lange and Tuosto [2012] explore
a bottom-up approach, by defining type systems that make it possible (under certain
conditions) to synthesise a multiparty global type, given a collection of local session
types that describe endpoint behaviours (that is, local types).

Choreographic programming. Carbone and Montesi [2013] use global types to type
multiparty processes written in a choreography language, and then project the chore-
ography language on an endpoint language which extends the π-calculus with multi-
party sessions. A main feature of the approach is that communications which are not
in a causal dependence can be swapped, even if syntactically written in a sequence.
The choreography language has no parallel composition operator: parallel composition
is implicit. The approach allows one to type (thus guaranteeing deadlock freedom) also
multiparty processes not typable according to Honda et al. [2008].

5. EXTENSIONS TO TYPE THEORIES
This section introduces further extensions to the theory of behavioural types, namely
subtyping and polymorphism for session types, and contract refinement.

5.1. Subtyping for session types
The first formulation of subtyping for binary session types is by Gay and Hole
[1999], and an extended and refined presentation is available in [Gay and Hole 2005].
It extends the formulation of Pierce and Sangiorgi [1996] dealing with single in-
puts/outputs to the sequences of inputs/outputs described by session types. The idea is
to define the subtype relation on binary session types coinductively using a definition
reminiscent of that of the simulation preorder for transition systems. For non-recursive
session types an inductive definition in the form of inference rules suffices. In this case,
the inference rules for input and output are as follows.

T ≤ U V ≤W
?T.V ≤ ?U.W

U ≤ T V ≤W
!T.V ≤ !U.W

Subtyping is given the usual meaning, namely that T1 ≤ T2 indicates that any value
of type T1 can be safely used in a context in which a value of type T2 is expected. With
this intuition in mind, consider a channel x with type ?U.W . A process that uses x can
safely read values of type U and, after this, x has type W . Consider now a channel x′
from which one can receive values of a more specialized type T (i.e., T ≤ U) and that,
after this, has type V where V ≤ W . This x′, which has type ?T.V , can safely be used
instead of x, since x′ will not carry any values that x would not carry – and the same is
the case after any input. Therefore the subtype relation should be covariant for input.

On the other hand, consider a process that uses a channel y with type !T.V . On this
channel, the process can safely send a value of type T and, after that, y has type V . If
we have a channel y′ that can be used for sending values of a more specialized type U
(i.e., U ≤ T) and that afterwards has the more specialized type W , then nothing bad
will happen if we use y instead of y′, since any value of type U that can be sent using y′

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:19

can also be sent using y. For this reason the subtype relation should be contravariant
for output.

Now, the context uses not T1 but the dual of T1, hence the contravariant/covariant
inversion with respect to the λ-calculus. In summary: input operations (?,&) are co-
variant, and output operations (!,⊕) are contravariant. Continuations are always co-
variant.

Combining the usual subsumption rule with the typing rules for linear input/output
of Section 3.3, one obtains the following rules.

Γ, x : T2 ` P T3 ≤ T1
Γ, y : T3, x : !T1.T2 ` x!y.P

Γ, x : T2, y : T3 ` P T1 ≤ T3
Γ, x : ?T1.T2 ` x?y.P

Behavioural techniques for subtyping, based on web contracts for binary sessions
(see Section 5.3), are developed by Barbanera and de’Liguoro [2010]. This approach
aims at a semantic characterisation of the notion of sub-contract in a language of ses-
sion behaviours, which can be understood as behavioural types expressed in a process
language. The sub-contracts are inspired by Castagna et al. [2009a]. The thus obtained
subtyping relations are sound with respect to the original session subtyping of Gay and
Hole [2005], in contrast to the fair subtyping discussed next.

The work on fair subtyping by Padovani [2011] extends the notion of subtyping from
dyadic to (higher-order) multiparty sessions and also follows an approach based on
contracts. In this case, too, the approach is inspired by behavioural techniques for pro-
cesses (fair testing pre-order) similar to those adopted for multiparty contracts and
discussed in Section 5.3. A challenging aspect of this work is the treatment of subtyp-
ing for (potentially) infinite sessions in conjunction with a fairness guarantee. Simply
put, fairness here means that liveness and termination are preserved by subtyping. A
syntactic axiomatisation and algorithms to decide fair subtyping are obtained.

In the quest for more flexible compositions of processes that retain the required
safety properties, another kind of subtyping has been proposed by Mostrous and
Yoshida [2009] for binary sessions, and by Mostrous et al. [2009] for multiparty ses-
sions. This is based on the re-ordering of communications within a session, rather
than on the possibility of sending and receiving different types. For such reorderings
to be meaningful, communications need to be buffered, which means that input is non-
blocking (or asynchronous). Because of this, it becomes possible to send values (and
choice labels) in advance of inputs (or branchings), which opens significant possibili-
ties for optimisation. A typical situation is when a type records that a value is to be sent
after one or more input actions, and the implementation does not introduce a causal de-
pendency between the input and the subsequent outputs: this form of subtyping allows
a process to send such outputs in advance, providing for more efficient communication.
The intuitive idea can be understood by a simple example. Channel x in process x?y.x!5
may be assigned a type !nat.?bool.end (a supertype of type ?bool.!nat.end), allowing the
process to safely interact with process x?z.x!true.

5.2. Polymorphism for session types
The first study of polymorphic sessions and specifically bounded polymorphism is by
Gay [2008]. This work combines subtyping and polymorphism in the style of system F
with subtyping, F<:. In particular, the usual branching and selection session types are
extended with a payload type that also specifies a bound, leading to types of the shape
below, where type variables Xi are bounded by types Ti and may appear in the Ui.

&{li(Xi ≤ Ti) : Ui}i∈I ⊕ {li(Xi ≤ Ti) : Ui}i∈I
The above type is assigned to terms of the shape x� {li(Xi ≤ Ti) : Pi}i∈I for branching,
and to x � l(B).P for selection. As can be seen, type instantiation is “piggybacked”

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Hüttel et al.

into selection and branching. This provides for a simpler language, avoiding additional
constructs.

The above work is adapted to an object-oriented setting by Dezani-Ciancaglini et al.
[2006]. A notable aspect of this work is that choice (selection and branching) is not
based on labels but rather it is guided by the class of a communicated object, which
leads to a better integration with the object-oriented paradigm. This makes bounded
polymorphism more challenging because subtyping can introduce ambiguity in the
type-driven choice of a branch. Goto et al. [2015] define a polymorphic system for mul-
tiparty sessions in the style of contracts, with the distinguishing feature that type
instantiation can affect multiple participants. We should also mention that logical in-
terpretations of sessions, detailed in the next section, introduce polymorphism with
universal quantification as input and existential quantification as output of a type.

5.3. Refinement for contracts
A notion corresponding to subtyping appears in the study of contracts, namely that
of refinement. Using an adapted testing-based equivalence, Castagna and Padovani
[2009] provide a semantic account of how contracts can be related, in terms of the final
outcome (deadlock, success or indefinite progress) of every sub-component involved in
the contracts.

As in [Castagna et al. 2009b], the refinement relation defined on contracts as for-
malized by Padovani [2010a] allows for safe replacement of services. The refinement
relation coincides with the well-known must testing preorder [De Nicola and Hen-
nessy 1984]; this was proved by Bernardi [2013], which also introduces refinements
for clients. Bravetti and Zavattaro [2008b] consider the impact of fairness on contract
refinement, showing a reduction of the notion of contract refinement to should test-
ing [Rensink and Vogler 2007] in place of must testing. Fairness is useful in case of
infinite behaviour in which it is necessary to assume the possibility to exit from loops
in order to guarantee completion. For instance, fairness needs to be considered to prove
that the contract

!auth; (!withdraw ; !amount)∗; !quit

refines the client behaviour of contract (2) in Section 4.3. In fact, a peer following this
restricted behaviour (no balance requests could be issued) can be used to implement
the choreography presented in Section 4.3 because correctness continues to be guaran-
teed.

Barbanera and de’Liguoro [2010] take inspiration from the work on refinement for
contracts and use it to give a new account of the behavioural semantics of session
types, using the notions of compliance and sub-behaviour from the work on contracts.
Bernardi and Hennessy [2013] show that the refinement relation for servers equals
the must testing preorder only if contracts are finite state, and that the refinements for
clients coincide only in languages as restricted as the finite part of session behaviours
of Barbanera and de’Liguoro [2010].

6. LOGICS
This section introduces a linear logic interpretation of session types, and different
works on the logical refinement of session types and behavioural contracts.

6.1. Linear logic foundations of session types
Linearity is an important and recurring theme in concurrency and, in particular, in
(behavioural) type systems for process calculi; already Honda [1993] mentions linear
logic as a source of inspiration for some aspects of session types. Caires and Pfen-
ning [2010] introduce a Curry-Howard style interpretation of binary session types

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:21

in intuitionistic linear logic that exposes a deep correspondence between linear logic
propositions and session types. The correspondence faithfully interprets the commu-
nication discipline of session-typed processes as reductions in logical derivations and
conversely, as for the Curry-Howard isomorphism.

The basic correspondence between linear logic propositions and session types as de-
scribed in Section 3.2 is as follows.

Proposition Session type
T (S ?T.S (input)
T ⊗ S !T.S (output)
S N T S&T (choice offer)
S ⊕ T S ⊕ T (choice selection)
1 end (termination)
!S ^S (shared channel type for sessions of type S)

In traditional functional interpretations of (intuitionistic) linear logic, an object of type
A (B is a linear function that, when given an argument of type A, returns a result
whose type isB [Girard and Lafont 1987]. In the interpretation an object of type x:A(
B implements on channel x a session that first receives on x a session (channel) of type
A, and afterwards behaves as B. Here B specifies a continuation session behaviour on
x that somehow relies on the input session. These basic ideas can be explained by
looking at the typing rules. Under the intuitionistic system processes are typed using
judgements of the form

Γ; ∆ ` P :: z:A

Here Γ and ∆ are typing contexts: Γ declares the shared channels (subject to contrac-
tion and weakening) while ∆ declares the session channels (subject to the strict linear
discipline). The z:A on the right is a singleton typing context, declaring exactly a dis-
tinguished session. The judgement above may be naturally read as: process P when
composed with shared servers complying with Γ and (open) sessions complying with ∆
will safely provide a session of type A at channel z. The rules for output and input are
as follows.

Γ; ∆ ` P :: y:A Γ; ∆′ ` Q :: x:B

Γ; ∆,∆′ ` (νy)x!y.(P | Q) :: x:A⊗B
Γ; ∆, y:A ` P :: x:B

Γ; ∆ ` x?y.P :: x:A(B

Note that the continuation process in the output case mentions two sub-processes P
and Q, where Q is the session continuation process (on x) while P is the process that
implements the session channel output in the communication (on y). This formulation
subsumes the usual rule for output, given that P can just act as a forwarder process
(implementing the identity or copy-cat session), so that the rule describes bound output
as in the internal mobility discipline introduced by Sangiorgi [1996].

Process composition is typed by a cut rule, which combines parallel composition and
channel restriction.

Γ; ∆ ` P :: x:A Γ; ∆′, x:A ` Q :: T

Γ; ∆,∆′ ` (νx)(P | Q) :: T

It is useful to consider a simple example. We describe a client process that wishes to
deposit money to a bank account via an ATM machine. The client does so by sending
to the ATM her authentication information, after which she may send the amount she
wishes to deposit. The ATM will then send back a receipt of the operation. From the
point of view of the client, the session protocol followed by the ATM can be described
by the following type.

ATMProto , auth (amount ((receipt⊗ 1)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Hüttel et al.

Here auth, amount and receipt are types that represent shareable values of basic data
types (e.g. strings and integers). If we assume that s is the session channel along which
the client and the ATM interact, the following process implements the client:

BCIntBodys , s!id .s!n.s?r.0

The process above specifies a client that first sends her authentication information id ,
then the amount n to be deposited and finally receives the appropriate receipt. The
following judgement is derivable.

·; s:ATMProto ` BCIntBodys :: −:1

The ATM code is as follows:

ATMBodys , s?auth.s?amt .s!rc.0

By composing the two processes with the cut rule, we obtain the following:

·; · ` (νs)(ATMBodys | BClntBodys) :: −:1

It is also possible to develop the interpretation on top of a classical linear logic formu-
lation [Wadler 2012; Caires et al. 2015]. The intuitionistic formulation seems partic-
ularly intuitive, notwithstanding the non-standard look of typing rules, at least when
compared with traditional session type systems.

The basic interpretation can be developed in many ways, and applied in several in-
teresting settings. Toninho et al. [2011] and Pfenning et al. [2011] enrich the type
system based on pure linear logic with dependent types and modalities to control how
much information is communicated and show how the resulting framework can ex-
press proof-carrying code certified with digital signatures in a logically motivated way.
Toninho et al. [2012] also introduce typed encodings of the simply typed λ-calculus into
session-typed π-calculus motivated by the linear logic interpretation. Interestingly, one
of such encodings corresponds to parallel evaluation (futures). DeYoung et al. [2012]
show how a slight modification of the logical interpretation is enough to represent
session-typed processes with asynchronous (or buffered) communication.

Wadler [2012] establishes a connection between the presentation of session types
of Gay and Vasconcelos [2010] and linear logic, and shows how a simple modification
yields a process calculus free from deadlock; the deadlock freedom is a consequence of
the correspondence with linear logic. Caires et al. [2013] develop a complete theory of
polymorphic session types based on second order linear logic, which for the first time
dissects the notion of behavioural polymorphism. Key technical results include ses-
sion fidelity and global progress, and remarkably also relational parametricity, which
is useful for reasoning about information hiding (in terms of hiding of local proto-
cols). Toninho et al. [2013] study a monadic integration of a functional language and
a process language with session types, allowing one to express general higher-order
session-typed processes.

6.2. Logically refined session types and behavioural contracts
In the setting of binary session types, Baltazar et al. [2012b] develop a notion of refined
session types using the multiplicative linear logic as the language of refinements. The
process language extends the π-calculus with assume and assert commands that guide
the refinements, allowing for fine-grained specifications of communication protocols in
which refinement formulae are seen as logical resources rather than persistent truths.
This work can be seen as a generalisation of the works on type and effect systems for
correspondence assertions of Gordon and Jeffrey [2003] and Bonelli et al. [2005].

In the setting of multiparty sessions, Bocchi et al. [2010] blend the theory of global
types with a design-by-contract approach. In particular, this approach introduces

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:23

global and local types where data are explicitly added to interactions and used to
specify in a suitable logic assertions on the communicated values and invariants in
recursions. The assertions are written in a classical first-order logic. The following
shows an example of a global type with assertions.

A→ B : {x : int | x > 0}
B→ C : {

{x ≥ 5} ge : C→ B : {y : int | y%2 = 0},
{x < 5} lt : B→ C : {z : bool | z ⇐⇒ x = 4}

}

The three participants A, B, and C follow the protocol described by the interactions in
the global type, but, unlike other approaches, interactions also establish constraints
that must hold for the data that are communicated. First, A sends to B a value x
that must be strictly positive. Participants B and C then engage in a choice operation,
governed by labels ge and lt ; the actual choice depends on x being greater or equal to
5. Finally, if choice gt is selected (by B), participant C sends an even number back to B,
otherwise it receives from B the result of the evaluation of x = 4.

Global assertions introduce two issues in the definition of projection:

— global types cannot be projected when one of the senders is not able to fulfill its
obligations because of ‘lack of information’, and

— the choices that a participant makes should not ruin later choices made by other
participants.

The first of these issues can be dealt with by restricting the attention to history
sensitive global types. These are types such that, for each interaction, the sending
participant knows all the (free) variables found in the assertion associated with the
interaction. The second issue will not occur for temporally satisfiable types. These are
types such that for each possible set of values that satisfy an assertion φ and for all
assertions ψ that occur later, there exists a set of values that satisfy ψ. Decidability of
the assertion logic enables certain positive results. Firstly, history sensitivity and tem-
poral satisfiability are decidable and preserved by the projection operation. Secondly,
it is possible to validate annotated processes (Bocchi et al. [2010] use a version of the
π-calculus with assertions) against local assertions. Finally, well-typed annotated pro-
cesses are error free.

Bartoletti et al. [2012a] use contracts at run-time to allow participants to interact.
There, a participant declares its contract independently of the others and then adver-
tises it; compatible advertised contracts can then be stipulated to form a multiparty
agreement. This agreement establishes a session within which the participants of the
stipulated contracts interact by performing the actions dictated by the agreement. Bar-
toletti et al. [2012b] study the computational aspects of the framework in [Bartoletti
et al. 2012a]. A type system for ensuring honesty has been given by Bartoletti et al.
[2013], while Bartoletti et al. [2015] give a contract model based on multiparty session
types for the framework in [Bartoletti et al. 2013]. A methodology for designing and
composing services such that security policies are enforced locally is given by Barto-
letti et al. [2008]. Safety properties are specified in contracts and a call-by-contract
mechanism enforces them at composition time.

7. CLASSES OF BEHAVIOURAL PROPERTIES
All type systems aim to capture a specific property for programs written in a partic-
ular language. For instance, the type systems in Section 6.1 guarantee progress by

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Hüttel et al.

construction. However, the study of a particular property is sometimes the main moti-
vation for understanding particular behavioural features.

The study of program properties usually distinguishes between safety and liveness
properties. A safety property expresses that an undesirable program event will never
happen during a program execution (or, equivalently, the invariant property of the
undesirable event always being absent), whereas a liveness property describes that a
desirable program event will occur eventually during the execution of the program.
Type systems have traditionally been well suited for expressing safety properties; a
particular challenge has been how to use behavioural types also to express liveness
properties. We recall below the main safety properties ensured by the approaches de-
scribed until now, and then we describe some approaches aimed at liveness properties.

7.1. Safety properties
In all the approaches we have discussed, well-typed programs are exempt from a series
of common programming errors and, in general, enjoy various desirable properties.

First of all, interactions are free from communication errors. A classical exam-
ple of such an error is a mismatch in the type of an exchanged message, as in
x+!5 | x−?y.(if y then . . . else . . .) where one process sends an integer but the receiver
expects a boolean. Other communication errors arise when two parallel processes try
to interact on a given channel in a non-compatible way, for instance by performing two
outputs x+!5 | x−!7, or a selection and an input x+ / quit | x−?y. In general, the duality
constraint that relates the session types associated with two peers of a session chan-
nel ensures that communication is half duplex, namely that at no time the interacting
processes simultaneously send messages to each other. Limited forms of full-duplex
communication can be achieved by means of relaxed subtyping relations [Mostrous
et al. 2009].

Because of linearity constraints, communications on session channels are guaran-
teed to be race free. An example of race is given by two processes competing for a given
resource, e.g., two outputs competing for a same input x+!5 | x+!7 | x−?y. In turn,
race freedom implies an interesting confluence result on session communications that
is directly related to partial confluence discussed in [Kobayashi et al. 1999]. These
properties are particularly relevant since they ensure the deterministic outcome for a
whole family of concurrent computations.

The approaches discussed so far also guarantee that communications inside a single
session do not block. However, deadlocks involving more than one session are possible
in many of them. This is not the case for contracts, since only one session is consid-
ered. This is also not the case for the systems discussed in Section 6.1, where deadlock
freedom is a consequence of the properties of the logic. Additionally, when interactions
are guaranteed to be finite, deadlock freedom coincides with lock freedom [Kobayashi
2002], a liveness property ensuring that each pending communication eventually com-
pletes (under a fair scheduling). A system where a participant diverges without ever
reaching a state where a given action a is enabled is deadlock free, since it never gets
stuck, but not lock free, since the action complementary to a never gets executed.

7.2. Channel activeness/responsiveness
In communication-centred applications such as web services or distributed protocols,
it is important that every request from a client is handled by a server. From the client’s
point of view, it is important that every valid request gets handled eventually by the
server and moreover, that the client eventually obtains an answer. From the server’s
point of view, it is important that whenever a request is received, the client will respect
the communication protocol.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:25

This notion has been dealt with using behavioural types. Acciai and Boreale [2008]
define the usage of a channel r to be responsive if a communication on r is guaranteed
to happen eventually. Gamboni and Ravara [2010] call this property activeness and
instead define responsiveness as an additional property. According to them, a channel
endpoint c is active in the process P , if P is guaranteed to eventually perform an input
on c. The endpoint c is instead said to be responsive if, every time the process receives
(respectively, sends) a message on that channel, it is guaranteed to be active and re-
sponsive on the channels received (respectively, sent) via c, in the terms specified by a
channel type of a process.

Acciai and Boreale [2008] define a type system for guaranteeing responsiveness,
using a combination of techniques for deadlock and livelock avoidance together with
ones used for describing linearity and receptiveness [Sangiorgi 1999]. The setting is a
monadic synchronous π-calculus. The idea of the type system is to build a dependency
graph whose vertices are responsive names of processes. In this graph, there is an
edge from name a to name b if an output action involving a is dependent upon an input
action on the name b. The type system then checks if the dependency graph is acyclic.
Gamboni and Ravara [2010] work with the full synchronous polyadic π-calculus; in
this case, the type system uses a notion of process types that specialise channel types
to represent the interface between a process and its environment. The type algebra
covers spatial, logical, and dynamical aspects of process types [Gamboni 2010], and
the causal relations between channel usages are captured by behavioural statements
embedded in process and channel types. These express the usage of channel endpoints
between a process and its environment.

7.3. Capturing properties using spatial types
To achieve a proof system for properties such as race freedom, unique receptive-
ness [Sangiorgi 1999] and deadlock freedom, Acciai and Boreale [2010] describe a type
system for the π-calculus that uses notions from spatial logic as well as a notion of be-
haviour. Names bound by restriction are typed with formulae from a “shallow” spatial
logic (talking only about the next possible action), and processes are typed with terms
from a CCS-like process calculus.

The type system allows model checking of spatial formulae. The importance of spa-
tial logic in this setting is that the logical formulae impose constraints on the permis-
sible spatial structure of processes; the structure of a π-calculus process and its type
will be essentially the same. The class of properties that can be captured using this
approach includes safety properties and some liveness properties.

7.4. Termination and deadlock freedom
The notions of termination and deadlock freedom are central in the theory of concur-
rent processes: non-termination is sometimes desirable—for instance we would not
want an operating system to terminate—and in other settings termination must be
ensured—requests in service-oriented applications should clearly be fulfilled.

Yoshida et al. [2004] and Berger et al. [2005] use the π-calculus to encode the sim-
ply typed λ-calculus. The goal is to show strong normalisation for this calculus by
means of the combination of a π-calculus type system that will provide a sound char-
acterisation of strong normalisation and a typed version of Milner’s encoding of the
λ-calculus. In this work, type judgments are of the form Γ ` P � A, where A is an
action type. An action type should be thought of as a finite directed graph whose ver-
tices are names annotated with an input/output polarity and whose edges describe the
causal input/output dependencies between names. The underlying idea of the type sys-
tem is to ensure strong normalisation by ensuring that action types do not have cyclic
dependencies between inputs and outputs and that inputs and outputs alternate.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Hüttel et al.

Kobayashi [1998] uses a similar notion of causality in the form of tag orderings and
graph types to prove deadlock freedom. Kobayashi [2002] uses behavioural types very
similar to session types to reason about global properties of systems, in particular
lock freedom. Termination of processes has also been tackled using conventional type
systems; see e.g., the works by Sangiorgi [2006] and Demangeon et al. [2010]. Type
systems of this kind have also been employed to ensure deadlock freedom and lock
freedom (the latter, as already said, is the property that under a fair scheduling each
pending communication eventually completes), in a series of papers by Kobayashi and
coauthors, e.g., [Kobayashi 1998; Kobayashi 2005]. Different type systems may also be
combined; e.g., the most powerful system for lock freedom [Kobayashi and Sangiorgi
2010] combines those for deadlock freedom and termination. Another relevant appli-
cation area for these types has been security; see e.g., the system proposed by Haack
and Jeffrey [2005] for secrecy and authenticity.

7.5. Progress for session type systems
An important kind of liveness property is that of progress for sessions: throughout
a session, every process involved will never get stuck, since for every top-level input
(respectively output) there will eventually appear a matching top-level output (respec-
tively input). The notion of progress is close to the notion of lock freedom [Kobayashi
2002], however the former has been defined for session calculi, while the latter for π-
calculus, hence the two are not easy to compare. A discussion about this is presented
in [Padovani 2013b].

Session type systems can assure a local progress property within a single session,
but they fall short in assuring progress when several (possibly multiparty) sessions
are interleaved with each other. This follows from the fact that each session is typed in
isolation, and the session type associated with a session endpoint is usually unrelated
with the session types of session endpoints that are interleaved with it. More refined
type systems that assure the progress property in presence of interleaved sessions are
given by Dezani-Ciancaglini et al. [2007] for synchronous binary sessions and by Coppo
et al. [2016] for asynchronous multiparty sessions. The basic idea of these type systems
is to keep track of the dependencies between different sessions: a dependency a ≺ b in-
dicates that there is an input action performed on a session opened on the service name
a that blocks some other action performed on sessions opened on the service name b.
Progress is guaranteed provided that ≺ is acyclic. This dependency-based mechanism
is quite conservative and there exist practically relevant session patterns that yield
circular dependencies but have progress. In particular, nested sessions, whereby all
the input actions pertaining the session are completely nested within the actions of
other sessions, have progress even if involved in circular dependencies. For this rea-
son, the type system by Coppo et al. [2016] discriminates services whose sessions are
nested and tolerates circular dependencies involving only them without compromising
progress. Identifying session dependencies and properly classifying services requires a
fair amount of type information associated with processes. Coppo et al. [2013] provide
an inference algorithm for the type system.

All the above type systems that capture progress use whole sessions as units for de-
termining dependencies between services. This means that circular dependencies are
introduced by interleaving of sessions that block each other on input actions at differ-
ent stages of their evolution; such circular dependencies render many processes with
progress ill typed. Another consequence is that these type systems impose very restric-
tive constraints on session delegation. To overcome these limits, Padovani [2013b] and
Vieira and Vasconcelos [2013] propose more refined type systems where dependency
information concerns the single actions described in session types, rather than whole
sessions. Padovani [2014] proposes a type system ensuring deadlock and lock freedom

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:27

of linear π-calculus processes. Thanks to the encoding of binary sessions into the lin-
ear π-calculus [Dardha et al. 2012], this type system can be used for reasoning about
progress of interleaved binary sessions with better accuracy compared to [Padovani
2013b]. All of these works have been inspired from the type system for lock-free pro-
cesses by Kobayashi [2002]. Finally, the systems described in Section 6.1 also ensure
progress, while that in Section 7.3 ensure progress on the client side.

8. RELATING APPROACHES
Given the quantity and variety of approaches to session types and behavioural con-
tracts highlighted by the previous sections, an obvious question to ask is how the vari-
ous notions are related. This includes the study of how approaches to session types and
behavioural contracts relate to conventional types and to communicating automata.

The relation between different approaches to session types and behavioural con-
tracts has been studied by a number of authors. Bernardi and Hennessy [2012] use (a
subset of) contracts by Castagna et al. [2009b] to define a fully abstract model of ses-
sion types ordered by their subtyping relation. Bernardi [2013] shows that the same
model can be defined in terms of must testing refinements for services and clients and
extends the model to higher-order session types. While session types can be embedded
in contracts, the existence of the converse embedding is still an open question.

Another issue that has been studied is whether session types can be captured using
conventional type systems. Padovani [2010b] presents a session type system where
choices are modelled using intersection and union types, and discusses the differences
with the usual approach.

An encoding of session types into usage types extended with variant types is hinted
at in [Kobayashi et al. 1996] and described in greater detail in the extended ver-
sion of [Kobayashi 2003], but its properties are not discussed. Demangeon and Honda
[2011] present a translation of binary session types into linear types for a polyadic π-
calculus with directed choice and show that this translation is fully abstract. Dardha
et al. [2012] show a translation from a π-calculus with binary session types to a π-
calculus with standard linear, union and variant types. The translation is robust, as
proved by extending it to deal with subtyping, polymorphism and higher-order fea-
tures. Furthermore, it allows one to prove many results for session types as corollaries
of corresponding results for standard types. Gay et al. [2014] present an encoding of
a π-calculus with binary session types [Gay and Hole 2005] to a π-calculus with the
generic type system [Igarashi and Kobayashi 2004] (thus, the target language has no
extra features, contrary to the works just presented). The encoding deals with session
type environments, polarities (which distinguish session channels endpoints), and la-
belled sums. They show forward and reverse operational correspondences for the en-
coding, as well as typing correspondences. Session subtyping, however, is only faith-
fully encoded if the target language also has record constructors (and the correspond-
ing subtyping rules).

Hüttel [2011] proposes a general type system for ψ-calculi that also makes it possible
to obtain type/effect systems as instances, including a version of the system of Gordon
and Jeffrey [2003] for correspondence types. Hüttel [2013] proposes a similar approach
to provide a general type system for a class of resource-aware type systems including
both conventional type systems for linear names [Kobayashi et al. 1999] and the action
types of Berger et al. [2005].

Communicating automata are finite state machines that communicate by exchang-
ing messages via half-duplex channels (i.e. channels that provide communication in
both directions, but only in one direction at a time). Gouda et al. [1984] show that
a subclass of communicating automata composed by just 2 machines ensures freedom
from deadlocks and from orphan messages. The first results about equivalence between

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Hüttel et al.

session types and communicating automata come from Villard [2011], which uses sys-
tems of communicating automata as contract specifications. Villard proves that the
two-machine subclass of communicating automata characterises exactly binary ses-
sion type behaviours. Deniélou and Yoshida [2013] explore this connection further in
the multiparty case. Since a generalization of the notion of half-duplex does not work,
they propose instead the definition of a multiparty compatibility property which allows
for a sound and complete characterisation of the class of communicating automata that
can be expressed by the language of multiparty session types [Honda et al. 2008].

9. ALGORITHMS
Central concerns for type systems are the problems of type checking and type inference.
The former asks whether Γ ` P holds, given a typing context Γ and a process P . The
latter asks whether one can find a typing context Γ for given P such that Γ ` P holds.
Given that one checks or infers the typing context, one could speak of “typing checking”
and “typing inference” instead of “type checking” and “type inference”. Nevertheless,
we stick to the latter terminology, since it is the one used in the literature on the topic.

Decidability of type checking is a relevant property for session types, however the
topic is explicitly mentioned in a few papers only. One of the first works to explicitly
describe a type checking algorithm is by Bonelli et al. [2005]. Giunti [2011] proposes a
type checking algorithm for a version of session types for the π-calculus similar to that
of Giunti and Vasconcelos [2016].

There is as yet little work on type inference for behavioural types. For linear type dis-
ciplines, Igarashi and Kobayashi [2000] describe a type inference algorithm for linear
types in the π-calculus with subtyping. Kobayashi et al. [2000] describe a type infer-
ence algorithm for a type system that guarantees deadlock freedom; in this system
types are process-like terms called usages. In the setting of session types, Mezzina
[2008] presents an algorithm for type inference for a service calculus obtained as a
simplification of SCC [Boreale et al. 2006]. Tasistro et al. [2012] describe a polymor-
phic type system for binary session types without recursion or branching/selection and
provide an algorithm for type inference for this system. Imai et al. [2010] describe
a strategy for type inference in a binary session type system in a version of the π-
calculus with branching and selection. The underlying idea is to develop a type-safe
representation in Haskell of session types and to use this together with Haskell type
inference.

For type systems incorporating a notion of subtyping, type checking relies on sub-
typing being decidable. Therefore algorithms for deciding the subtype relation are par-
ticularly relevant. In the setting of binary session types, the first work in this direction
is by Gay and Hole [2005], that defines subtyping for binary session types (see Section
5.1). This paper also presents algorithms for deciding subtyping and for performing
type checking.

In the approach that uses processes as types, using a CCS-like type language leads to
undecidability issues related to model checking and equivalence and preorder check-
ing. This has been studied by Hüttel et al. [2009] who show that all preorders are
undecidable even for a class of CCS processes with recursive definitions and parallel
composition only, that is without restriction or communication. For the type systems
using spatial logic studied by Acciai and Boreale [2010], the related model checking
problem is undecidable even for a class of processes equivalent to Petri nets [Acciai
et al. 2010].

In the setting of contract refinement, the decidability of service refinement [Padovani
2010a] follows from the decidability of the must testing preorder on finite-state pro-
cesses [Cleaveland and Hennessy 1993]. The addition of the fairness assumption in the
context of contracts was considered by Bravetti and Zavattaro [2008b; 2009b], where

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:29

a reduction of the proposed contract refinement relation to should testing (instead
of must testing) is presented; an algorithm for checking conformance in this case is
obtained by composing the presented reduction to the algorithm for checking should
testing [Rensink and Vogler 2007].

In the setting of multiparty sessions, Padovani [2011] considers fair subtyping and
presents a number of algorithms. First, an algorithm for deciding whether a type is
viable: only viable types can occur as types of correct sessions. Second, algorithms for
reducing a type to normal form and for deciding subtyping. The results are extended
by Padovani [2013a] to deal with open session types and a coarser equivalence relation,
and an algorithm for deciding open fair subtyping in time O(n4) is presented.

Designing well-formed choreographies is not easy. Both the synchronisation part
and the data part should satisfy some conditions. For the synchronisation part, Lanese
et al. [2013] propose an algorithm to enforce the conditions described by Lanese et al.
[2008]. For the data part, instead, Bocchi et al. [2012] propose three different algo-
rithms for transforming inconsistent constraints on the communicated data as defined
by Bocchi et al. [2010] into consistent ones. The paper also discusses their suitability,
and sketches a methodology based on the proposed algorithms.

ACKNOWLEDGMENTS

The authors would like to thank the contributions of Jakob Rehof and Bernardo Toninho. This work was
supported by FCT through LaSIGE Research Unit, ref. UID/CEC/00408/2013, and by the COST Action
IC1201 BETTY (Behavioural Types for Reliable Large-Scale Software Systems).

REFERENCES
Martín Abadi and Luca Cardelli. 1996. A theory of objects. Springer. I–XIII, 1–396 pages.
Lucia Acciai and Michele Boreale. 2008. Responsiveness in process calculi. Theoretical Computer Science

409, 1 (2008), 59–93.
Lucia Acciai and Michele Boreale. 2010. Spatial and behavioral types in the pi-calculus. Information and

Computation 208, 10 (2010), 1118–1153.
Lucia Acciai, Michele Boreale, and Gianluigi Zavattaro. 2010. On the relationship between spatial logics

and behavioral simulations. In FOSSACS (LNCS), Vol. 6014. Springer, 146–160.
Pedro Baltazar, Luís Caires, Vasco Thudichum Vasconcelos, and Hugo Torres Vieira. 2012a. A type system

for flexible role assignment in multiparty communicating systems. In TGC (LNCS), Vol. 8191. Springer,
82–96.

Pedro Baltazar, Dimitris Mostrous, and Vasco Thudichum Vasconcelos. 2012b. Linearly refined session types.
In LINEARITY (EPTCS), Vol. 101. Open Publishing Association, 38–49.

Franco Barbanera and Ugo de’Liguoro. 2010. Two notions of sub-behaviour for session-based client/server
systems. In PPDP. ACM, 155–164.

Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 1995. Intersection and union types:
syntax and semantics. Information and Computation 119, 2 (1995), 202–230.

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model and the
completeness of type assignment. J. Symb. Log. 48, 4 (1983), 931–940.

Henk Barendregt, Wil Dekkers, and Richard Statman. 2013. Lambda calculus with types. Cambridge Uni-
versity Press.

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino. 2008. Semantics-based de-
sign for secure web services. IEEE Trans. Software Eng. 34, 1 (2008), 33–49.

Massimo Bartoletti, Julien Lange, Alceste Scalas, and Roberto Zunino. 2015. Choreographies in the wild.
Science of Computer Programming 109 (2015), 36–60.

Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. 2013. Honesty by typing. In
FMOODS/FORTE (LNCS), Vol. 7892. Springer, 305–320.

Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. 2012a. Contract-oriented computing in CO2. Sci.
Ann. Comp. Sci. 22, 1 (2012), 5–60.

Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. 2012b. On the realizability of contracts in dishonest
systems. In COORDINATION (LNCS), Vol. 7274. Springer, 245–260.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Hüttel et al.

Martin Berger, Kohei Honda, and Nobuko Yoshida. 2005. Genericity and the pi-calculus. Acta Inf. 42, 2-3
(2005), 83–141.

Giovanni Bernardi. 2013. Behavioural equivalences for web services. Ph.D. Dissertation. Trinity College
Dublin.

Giovanni Bernardi and Matthew Hennessy. 2012. Modelling session types using contracts. In SAC. ACM,
1941–1946.

Giovanni Bernardi and Matthew Hennessy. 2013. Compliance and testing preorders differ. In SEFM Work-
shops (LNCS), Vol. 8368. Springer, 69–81.

Giovanni Bernardi and Matthew Hennessy. 2014. Using higher-order contracts to model session types (ex-
tended abstract). In CONCUR (LNCS), Vol. 8704. Springer, 387–401.

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Betti Venneri. 2008.
Session and union types for object oriented programming. In Concurrency, Graphs and Models (LNCS),
Vol. 5065. Springer, 659–680.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A theory of design-by-contract for
distributed multiparty interactions. In CONCUR (LNCS), Vol. 6269. Springer, 162–176.

Laura Bocchi, Julien Lange, and Emilio Tuosto. 2012. Three algorithms and a methodology for amending
contracts for choreographies. Sci. Ann. Comp. Sci. 22, 1 (2012), 61–104.

Eduardo Bonelli, Adriana B. Compagnoni, and Elsa L. Gunter. 2005. Typechecking safe process synchro-
nization. In FGUC (ENTCS), Vol. 138. Elsevier, 3–22.

Michele Boreale, Roberto Bruni, Luís Caires, Rocco De Nicola, Ivan Lanese, Michele Loreti, Francisco Mar-
tins, Ugo Montanari, António Ravara, Davide Sangiorgi, Vasco Thudichum Vasconcelos, and Gianluigi
Zavattaro. 2006. SCC: a Service Centered Calculus. In WS-FM (LNCS), Vol. 4184. Springer, 38–57.

Michele Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. 2008. Sessions and pipelines for struc-
tured service programming. In FMOODS (LNCS), Vol. 5051. Springer, 19–38.

Gérard Boudol. 1997. Typing the use of resources in a concurrent calculus. In ASIAN (LNCS), Vol. 1345.
Springer, 239–253.

Mario Bravetti and Gianluigi Zavattaro. 2007. Towards a unifying theory for choreography conformance and
contract compliance. In Software Composition (LNCS), Vol. 4829. Springer, 34–50.

Mario Bravetti and Gianluigi Zavattaro. 2008a. Contract compliance and choreography conformance in the
presence of message queues. In WS-FM (LNCS), Vol. 5387. Springer, 37–54.

Mario Bravetti and Gianluigi Zavattaro. 2008b. A foundational theory of contracts for multi-party service
composition. Fundamenta Informaticae 89, 4 (2008), 451–478.

Mario Bravetti and Gianluigi Zavattaro. 2009a. Contract-based discovery and composition of web services.
In SFM (LNCS), Vol. 5569. Springer, 261–295.

Mario Bravetti and Gianluigi Zavattaro. 2009b. A theory of contracts for strong service compliance. Mathe-
matical Structures in Computer Science 19, 3 (2009), 601–638.

Ed Brinksma, Giuseppe Scollo, and Chris Steenbergen. 1995. Lotos specifications, their implementations
and their tests. In Conformance testing methodologies and architectures for OSI protocols. IEEE Com-
puter Society, 468–479.

Antonio Brogi, Carlos Canal, and Ernesto Pimentel. 2004. Behavioural types and component adaptation. In
AMAST (LNCS), Vol. 3116. Springer, 42–56.

Roberto Bruni and Leonardo Gaetano Mezzina. 2008. Types and deadlock freedom in a calculus of services,
sessions and pipelines. In AMAST (LNCS), Vol. 5140. Springer, 100–115.

Tevfik Bultan and Xiang Fu. 2007. Specification of realizable service conversations using collaboration dia-
grams. In SOCA. IEEE Computer Society, 122–132.

Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. 2005. Choreography
and orchestration: a synergic approach for system design. In ICSOC (LNCS), Vol. 3826. Springer, 228–
240.

Luís Caires. 2008. Spatial-behavioral types for concurrency and resource control in distributed systems.
Theoretical Computer Science 402, 2-3 (2008), 120–141.

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral polymorphism and
parametricity in session-based communication. In ESOP (LNCS), Vol. 7792. Springer, 330–349.

Luís Caires and Frank Pfenning. 2010. Session types as intuitionistic linear propositions. In CONCUR
(LNCS), Vol. 6269. Springer, 222–236.

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2015. Linear logic propositions as session types.
Mathematical Structures in Computer Science (2015), 57 pages. http://journals.cambridge.org/article_
S0960129514000218 To appear.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://journals.cambridge.org/article_S0960129514000218
http://journals.cambridge.org/article_S0960129514000218

Foundations of Session Types and Behavioural Contracts A:31

Luís Caires and João Costa Seco. 2013. The type discipline of behavioral separation. In POPL. ACM, 275–
286.

Luís Caires and Hugo Torres Vieira. 2010. Conversation types. Theoretical Computer Science 411, 51-52
(2010), 4399–4440.

Sara Capecchi, Elena Giachino, and Nobuko Yoshida. 2010. Global escape in multiparty sessions. In
FSTTCS (LIPIcs), Vol. 8. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 338–351.

Marco Carbone. 2009. Session-based choreography with exceptions. In PLACES (ENTCS). Elsevier, 35–55.
Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2008. Structured interactional exceptions in session

types. In CONCUR (LNCS), Vol. 5201. Springer, 402–417.
Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multiparty asynchronous global

programming. In POPL. ACM, 263–274.
Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca Padovani. 2006. A formal account of

contracts for web services. In WS-FM (LNCS), Vol. 4184. Springer, 148–162.
Cyril Carrez, Alessandro Fantechi, and Elie Najm. 2003. Behavioural contracts for a sound assembly of

components. In FORTE (LNCS), Vol. 2767. Springer, 111–126.
Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani. 2009a. Founda-

tions of session types. In PPDP. ACM, 219–230.
Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2012. On global types and multi-

party sessions. Logical Methods in Computer Science 8, 1, Article 24 (2012), 45 pages.
Giuseppe Castagna, Nils Gesbert, and Luca Padovani. 2009b. A theory of contracts for Web services. ACM

Trans. Program. Lang. Syst. 31, 5, Article 19 (2009), 61 pages.
Giuseppe Castagna and Luca Padovani. 2009. Contracts for mobile processes. In CONCUR (LNCS), Vol.

5710. Springer, 211–228.
Samir Chouali and Ahmed Hammad. 2011. Formal verification of components assembly based on SysML

and interface automata. ISSE 7, 4 (2011), 265–274.
Samir Chouali, Sebti Mouelhi, and Hassan Mountassir. 2010. Adapting component behaviours using inter-

face automata. In EUROMICRO-SEAA. IEEE Computer Society, 119–122.
Rance Cleaveland and Matthew Hennessy. 1993. Testing equivalence as a bisimulation equivalence. Formal

Asp. Comput. 5, 1 (1993), 1–20.
Jean-Louis Colaço, Marc Pantel, Fabien Dagnat, and Patrick Sallé. 1999. Static safety analysis for non-

uniform service availability in Actors. In FMOODS (IFIP Conference Proceedings), Vol. 139. Kluwer,
371–386.

Jean-Louis Colaço, Mark Pantel, and Patrick Sallé. 1997. A set-constraint-based analysis of actors. In
FMOODS. Chapman & Hall, 1–16.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference
of global progress properties for dynamically interleaved multiparty sessions. In COORDINATION
(LNCS), Vol. 7890. Springer, 45–59.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global progress
for dynamically interleaved multiparty sessions. Mathematical Structures in Computer Science 26
(2016), 238–302.

Mario Coppo and Alberto Ferrari. 1993. Type inference, abstract interpretation and strictness analysis.
Theoretical Computer Science 121, 1&2 (1993), 113–143.

Luís Cruz-Filipe, Ivan Lanese, Francisco Martins, António Ravara, and Vasco Thudichum Vasconcelos.
2008. Behavioural theory at work: program transformations in a service-centred calculus. In FMOODS
(LNCS), Vol. 5051. Springer, 59–77.

Luís Cruz-Filipe, Ivan Lanese, Francisco Martins, António Ravara, and Vasco Thudichum Vasconcelos. 2014.
The Stream-based Service-Centered Calculus: a foundation for service-oriented programming. Formal
Aspects of Computing 26, 5 (2014), 865–918.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types revisited. In PPDP. ACM, 139–
150.

Luca de Alfaro and Thomas A. Henzinger. 2001. Interface automata. In ESEC-FSE. ACM, 109–120.
Rocco De Nicola and Matthew Hennessy. 1984. Testing equivalences for processes. Theoretical Computer

Science 34 (1984), 83–133.
Robert DeLine and Manuel Fähndrich. 2004. Typestates for objects. In ECOOP (LNCS), Vol. 3086. Springer,

465–490.
Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi. 2010. Termination in impure concurrent

languages. In CONCUR (LNCS), Vol. 6269. Springer, 328–342.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Hüttel et al.

Romain Demangeon and Kohei Honda. 2011. Full abstraction in a subtyped pi-calculus with linear types.
In CONCUR (LNCS), Vol. 6901. Springer, 280–296.

Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types. In POPL. ACM, 435–
446.

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty compatibility in communicating automata:
characterisation and synthesis of global session types. In ICALP (2) (LNCS), Vol. 7966. Springer, 174–
186.

Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2012. Cut reduction in linear logic
as asynchronous session-typed communication. In CSL (LIPIcs), Vol. 16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 228–242.

Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. 2007. On progress for structured
communications. In TGC (LNCS), Vol. 4912. Springer, 257–275.

Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko Yoshida. 2006.
Bounded session types for object oriented languages. In FMCO (LNCS), Vol. 4709. Springer, 207–245.

Mariangiola Dezani-Ciancaglini, Furio Honsell, and Yoko Motohama. 2005. Compositional characterisations
of lambda-terms using intersection types. Theoretical Computer Science 340, 3 (2005), 459–495.

Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and Sophia Drossopoulou. 2005. L-
doos: a distributed object-oriented language with session types. In TGC (LNCS), Vol. 3705. Springer,
299–318.

Joshua Dunfield. 2012. Elaborating intersection and union types. In ICFP. ACM, 17–28.
Joshua Dunfield and Frank Pfenning. 2003. Type assignment for intersections and unions in call-by-value

languages. In FoSSaCS (LNCS), Vol. 2620. Springer, 250–266.
Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof. 2004. Stuck-free conformance. In

CAV (LNCS), Vol. 3114. Springer, 242–254.
Tim Freeman and Frank Pfenning. 1991. Refinement types for ML. In PLDI. ACM, 268–277.
Maxime Gamboni. 2010. Statically proving behavioural properties in the π-calculus via dependency analysis.

Ph.D. Dissertation. Instituto Superior Técnico, Technical University of Lisbon.
Maxime Gamboni and António Ravara. 2010. Responsive choice in mobile processes. In TGC (LNCS), Vol.

6084. Springer, 135–152.
Simon J. Gay. 2008. Bounded polymorphism in session types. Mathematical Structures in Computer Science

18, 5 (2008), 895–930.
Simon J. Gay, Nils Gesbert, and António Ravara. 2014. Session types as generic process types. In EX-

PRESS/SOS (EPTCS), Vol. 160. 94–110.
Simon J. Gay and Malcolm Hole. 1999. Types and subtypes for client-server interactions. In ESOP (LNCS),

Vol. 1576. Springer, 74–90.
Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus. Acta Inf. 42, 2-3 (2005),

191–225.
Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for asynchronous session types.

Journal of Functional Programming 20, 1 (2010), 19–50.
Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira.

2010. Modular session types for distributed object-oriented programming. In POPL. ACM, 299–312.
Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50 (1987), 1–102.
Jean-Yves Girard and Yves Lafont. 1987. Linear logic and lazy computation. In TAPSOFT(2) (LNCS), Vol.

250. Springer, 52–66.
Marco Giunti. 2011. A type checking algorithm for qualified session types. In WWV (EPTCS), Vol. 61. Open

Publishing Association, 96–114.
Marco Giunti and Vasco Thudichum Vasconcelos. 2016. Linearity, session types and the Pi calculus. Mathe-

matical Structures in Computer Science 26 (2016), 206–237.
Andrew D. Gordon and Alan Jeffrey. 2003. Typing correspondence assertions for communication protocols.

Theoretical Computer Science 300, 1-3 (2003), 379–409.
Matthew Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2015. An extensible

approach to session polymorphism. Mathematical Structures in Computer Science (2015), 45 pages.
http://journals.cambridge.org/article_S0960129514000231 To appear.

Mohamed G. Gouda, Eric G. Manning, and Yao-Tin Yu. 1984. On the progress of communications between
two finite state machines. Information and Control 63, 3 (1984), 200–216.

Christian Haack and Alan Jeffrey. 2005. Timed spi-calculus with types for secrecy and authenticity. In
CONCUR (LNCS), Vol. 3653. Springer, 202–216.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://journals.cambridge.org/article_S0960129514000231

Foundations of Session Types and Behavioural Contracts A:33

Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular ACTOR formalism for artificial
intelligence. In IJCAI. William Kaufmann, 235–245.

C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice-Hall.
Kohei Honda. 1993. Types for dyadic interaction. In CONCUR (LNCS), Vol. 715. Springer, 509–523.
Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Vasco Thudichum Vasconcelos, and

Nobuko Yoshida. 2012. Verification of MPI programs using session types. In EuroMPI (LNCS), Vol.
7490. Springer, 291–293.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language primitives and type dis-
cipline for structured communication-based programming. In ESOP (LNCS), Vol. 1381. Springer, 122–
138.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL.
ACM, 273–284.

Hans Hüttel. 2011. Typed ψ-calculi. In CONCUR (LNCS), Vol. 6901. Springer, 265–279.
Hans Hüttel. 2013. Types for resources in ψ-calculi. In TGC (LNCS), Vol. 8358. Springer, 83–102.
Hans Hüttel, Naoki Kobayashi, and Takashi Suto. 2009. Undecidable equivalences for basic parallel pro-

cesses. Information and Computation 207, 7 (2009), 812–829.
Atsushi Igarashi and Naoki Kobayashi. 2000. Type reconstruction for linear pi-calculus with I/O subtyping.

Information and Computation 161, 1 (2000), 1–44.
Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type system for the pi-calculus. Theoretical Com-

puter Science 311, 1-3 (2004), 121–163.
Atsushi Igarashi and Hideshi Nagira. 2007. Union types for object-oriented programming. Journal of Object

Technology 6, 2 (2007), 47–68.
Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. 2010. Session type inference in Haskell. In PLACES (EPTCS),

Vol. 69. Open Publishing Association, 74–91.
Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon, and Charlton Barreto.

2005. Web Services Choreography Description Language Version 1.0. Technical Report. W3C. http://www.
w3.org/TR/ws-cdl-10/.

Naoki Kobayashi. 1998. A partially deadlock-free typed process calculus. ACM Trans. Program. Lang. Syst.
20, 2 (1998), 436–482.

Naoki Kobayashi. 2000. Type systems for concurrent processes: from deadlock-freedom to livelock-freedom,
time-boundedness. In IFIP TCS (LNCS), Vol. 1872. Springer, 365–389.

Naoki Kobayashi. 2002. A type system for lock-free processes. Information and Computation 177, 2 (2002),
122–159.

Naoki Kobayashi. 2003. Type systems for concurrent programs. In Formal Methods at the Crossroads. From
Panacea to Foundational Support. LNCS, Vol. 2757. Springer, 439–453. Extended version available at
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tutorial-type-extended.pdf.

Naoki Kobayashi. 2005. Type-based information flow analysis for the pi-calculus. Acta Inf. 42, 4-5 (2005),
291–347.

Naoki Kobayashi and C.-H. Luke Ong. 2009. A type system equivalent to the modal mu-calculus model
checking of higher-order recursion schemes. In LICS. IEEE Computer Society, 179–188.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1996. Linearity and the pi-calculus. In POPL.
ACM, 358–371.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the pi-calculus. ACM Trans.
Program. Lang. Syst. 21, 5 (1999), 914–947.

Naoki Kobayashi, Shin Saito, and Eijiro Sumii. 2000. An implicitly-typed deadlock-free process calculus. In
CONCUR (LNCS), Vol. 1877. Springer, 489–503.

Naoki Kobayashi and Davide Sangiorgi. 2010. A hybrid type system for lock-freedom of mobile processes.
ACM Trans. Program. Lang. Syst. 32, 5, Article 16 (2010), 49 pages.

Dimitrios Kouzapas, Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2016. On asynchronous eventful
session semantics. Mathematical Structures in Computer Science 26 (2016), 303–364.

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the gap between
interaction- and process-oriented choreographies. In SEFM. IEEE Computer Society, 323–332.

Ivan Lanese, Francisco Martins, Vasco Thudichum Vasconcelos, and António Ravara. 2007. Disciplining
orchestration and conversation in service-oriented computing. In SEFM. IEEE Computer Society, 305–
314.

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2013. Amending choreographies. In WWV (EPTCS),
Vol. 123. Open Publishing Association, 34–48.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tutorial-type-extended.pdf

A:34 Hüttel et al.

Cosimo Laneve and Luca Padovani. 2007. The must preorder revisited. In CONCUR (LNCS), Vol. 4703.
Springer, 212–225.

Cosimo Laneve and Luca Padovani. 2013. An algebraic theory for web service contracts. In IFM (LNCS),
Vol. 7940. Springer, 301–315.

Julien Lange and Emilio Tuosto. 2012. Synthesising choreographies from local session types. In CONCUR
(LNCS), Vol. 7454. Springer, 225–239.

Edward A. Lee and Yuhong Xiong. 2004. A behavioral type system and its application in Ptolemy II. Formal
Asp. Comput. 16, 3 (2004), 210–237.

Barbara Liskov and Jeannette M. Wing. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16, 6 (1994), 1811–1841.

Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos, Vasco Thudichum
Vasconcelos, and Nobuko Yoshida. 2015. Protocol-based verification of message-passing parallel pro-
grams. In OOPSLA. ACM, 280–298.

Leonardo Gaetano Mezzina. 2008. How to infer finite session types in a calculus of services and sessions. In
COORDINATION (LNCS), Vol. 5052. Springer, 216–231.

Robin Milner. 1992. Funtions as processes. Mathematical Structures in Computer Science 2, 2 (1992), 119–
141.

Robin Milner. 1993. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specification. NATO ASI
Series, Vol. 94. Springer, 203–246.

Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes, I. Information and
Computation 100, 1 (1992), 1–40.

Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional choreographies. In CONCUR (LNCS), Vol. 8052.
Springer, 425–439.

Dimitris Mostrous and Nobuko Yoshida. 2009. Session-based communication optimisation for higher-order
mobile processes. In TLCA (LNCS), Vol. 5608. Springer, 203–218.

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global principal typing in partially commuta-
tive asynchronous sessions. In ESOP (LNCS), Vol. 5502. Springer, 316–332.

Mayur Naik and Jens Palsberg. 2005. A type system equivalent to a model checker. In ESOP (LNCS), Vol.
3444. Springer, 374–388.

Elie Najm and Abdelkrim Nimour. 1997. A calculus of object bindings. In FMOODS. Chapman & Hall.
Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. 1999a. Guaranteeing liveness in an object calcu-

lus through behavioural typing. In FORTE (IFIP Conference Proceedings), Vol. 156. Kluwer, 203–221.
Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. 1999b. Infinite types for distributed object inter-

faces. In FMOODS (IFIP Conference Proceedings), Vol. 139. Kluwer, 353–369.
Nicholas Ng and Nobuko Yoshida. 2014. Pabble: parameterised Scribble for parallel programming. In PDP.

IEEE Computer Society, 707–714.
Flemming Nielson and Hanne Riis Nielson. 1993. From CML to process algebras. In CONCUR (LNCS), Vol.

715. Springer, 493–508.
Flemming Nielson and Hanne Riis Nielson. 1996. From CML to its process algebra. Theoretical Computer

Science 155, 1 (1996), 179–219.
Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer.

I–XXI, 1–450 pages.
Oscar Nierstrasz. 1995. Regular types for active objects. In Object-Oriented Software Composition. Prentice

Hall International, 99–121.
Luca Padovani. 2010a. Contract-based discovery of Web services modulo simple orchestrators. Theoretical

Computer Science 411, 37 (2010), 3328–3347.
Luca Padovani. 2010b. Session types = intersection types + union types. In ITRS (EPTCS), Vol. 45. Open

Publishing Association, 71–89.
Luca Padovani. 2011. Fair subtyping for multi-party session types. In COORDINATION (LNCS), Vol. 6721.

Springer, 127–141.
Luca Padovani. 2013a. Fair subtyping for open session types. In ICALP (2) (LNCS), Vol. 7966. Springer,

373–384.
Luca Padovani. 2013b. From lock freedom to progress using session types. In PLACES (EPTCS), Vol. 137.

Open Publishing Association, 3–19.
Luca Padovani. 2014. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS. ACM, 72:1–72:10.
Frank Pfenning, Luís Caires, and Bernardo Toninho. 2011. Proof-carrying code in a session-typed process

calculus. In CPP (LNCS), Vol. 7086. Springer, 21–36.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Session Types and Behavioural Contracts A:35

Benjamin C. Pierce. 1991. Programming with intersection types, union types, and polymorphism. Technical
Report CMU-CS-91-106. CMU.

Benjamin C. Pierce and Davide Sangiorgi. 1996. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science 6, 5 (1996), 409–453.

Garrel Pottinger. 1980. A type assignment for the strongly normalizable lambda-terms. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 561–577.

Franz Puntigam. 2001a. State inference for dynamically changing interfaces. Comput. Lang. 27, 4 (2001),
163–202.

Franz Puntigam. 2001b. Strong types for coordinating active objects. Concurrency and Computation: Prac-
tice and Experience 13, 4 (2001), 293–326.

Franz Puntigam and Christof Peter. 2001. Types for active objects with static deadlock prevention. Funda-
menta Informaticae 48, 4 (2001), 315–341.

António Ravara, Pedro Resende, and Vasco Thudichum Vasconcelos. 2012. An algebra of behavioural types.
Information and Computation 212 (2012), 64–91.

António Ravara and Vasco Thudichum Vasconcelos. 2000. Typing non-uniform concurrent objects. In CON-
CUR (LNCS), Vol. 1877. Springer, 474–488.

Jakob Rehof. 2013. Towards combinatory logic synthesis. In BEAT. 47–58.
Arend Rensink and Walter Vogler. 2007. Fair testing. Information and Computation 205, 2 (2007), 125–198.
John C. Reynolds. 1997. Design of the programming language Forsythe. In Algol-like Languages. Birkhäuser

Basel, 173–233.
Davide Sangiorgi. 1996. Pi-calculus, internal mobility, and agent-passing calculi. Theoretical Computer Sci-

ence 167, 1&2 (1996), 235–274.
Davide Sangiorgi. 1998. An interpretation of typed objects into typed pi-calculus. Information and Compu-

tation 143, 1 (1998), 34–73.
Davide Sangiorgi. 1999. The name discipline of uniform receptiveness. Theoretical Computer Science 221,

1-2 (1999), 457–493.
Davide Sangiorgi. 2006. Termination of processes. Mathematical Structures in Computer Science 16, 1

(2006), 1–39.
Robert E. Strom and Shaula Yemini. 1986. Typestate: a programming language concept for enhancing soft-

ware reliability. IEEE Trans. Software Eng. 12, 1 (1986), 157–171.
Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter. 2011. First-class state change

in Plaid. In OOPSLA. ACM, 713–732.
Alvaro Tasistro, Ernesto Copello, and Nora Szasz. 2012. Principal type scheme for session types. Interna-

tional Journal of Logic and Computation 3, 1 (2012), 34–43.
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session types via intuitionistic linear

type theory. In PPDP. ACM, 161–172.
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2012. Functions as session-typed processes. In FoS-

SaCS (LNCS), Vol. 7213. Springer, 346–360.
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-order processes, functions, and sessions:

a monadic integration. In ESOP (LNCS), Vol. 7792. Springer, 350–369.
Antonio Vallecillo, Vasco Thudichum Vasconcelos, and António Ravara. 2006. Typing the behavior of soft-

ware components using session types. Fundamenta Informaticae 73, 4 (2006), 583–598.
Vasco Thudichum Vasconcelos. 1994. Typed concurrent objects. In ECOOP (LNCS), Vol. 821. Springer, 100–

117.
Vasco Thudichum Vasconcelos. 2012. Fundamentals of session types. Information and Computation 217

(2012), 52–70.
Vasco Thudichum Vasconcelos, Simon Gay, and António Ravara. 2006. Typechecking a multithreaded func-

tional language with session types. Theoretical Computer Science 368, 1-2 (2006), 64–87.
Hugo Torres Vieira, Luís Caires, and João Costa Seco. 2008. The Conversation Calculus: a model of service-

oriented computation. In ESOP (LNCS), Vol. 4960. Springer, 269–283.
Hugo Torres Vieira and Vasco Thudichum Vasconcelos. 2013. Typing progress in communication-centred

systems. In COORDINATION (LNCS), Vol. 7890. Springer, 236–250.
Jules Villard. 2011. Heaps and hops. Ph.D. Dissertation. ENS Cachan.
Philip Wadler. 2012. Propositions as sessions. In ICFP. ACM, 273–286.
Nobuko Yoshida, Martin Berger, and Kohei Honda. 2004. Strong normalisation in the pi-calculus. Informa-

tion and Computation 191, 2 (2004), 145–202.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Hüttel et al.

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. 2010. Parameterised multiparty
session types. In FOSSACS (LNCS), Vol. 6014. Springer, 128–145.

Nobuko Yoshida and Vasco Thudichum Vasconcelos. 2007. Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order session communica-
tion. In SecReT (ENTCS), Vol. 171(4). Elsevier, 73–93.

Received January XXXX; revised January YYYY; accepted January ZZZZ

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Other approaches to behavioural types
	Intersection types
	Typestates
	Types and effects
	Types for non-uniform objects
	Processes as types
	Interface automata

	Binary sessions
	Input/output types and linear types for the -calculus
	Binary session types
	-calculi for binary session types
	Binary contracts
	Variations and extensions of binary sessions

	Multiparty sessions
	Global and local types
	Conversation types
	Multiparty contracts
	Extensions of multiparty session types

	Extensions to type theories
	Subtyping for session types
	Polymorphism for session types
	Refinement for contracts

	Logics
	Linear logic foundations of session types
	Logically refined session types and behavioural contracts

	Classes of behavioural properties
	Safety properties
	Channel activeness/responsiveness
	Capturing properties using spatial types
	Termination and deadlock freedom
	Progress for session type systems

	Relating approaches
	Algorithms

