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Abstract. Automatic human Activity Recognition (AR) is an important process for the provision of context-aware services
in smart spaces such as voice-controlled smart homes. In this paper, we present an on-line Activities of Daily Living (ADL)
recognition method for automatic identification within homes in which multiple sensors, actuators and automation equipment
coexist, including audio sensors. Three sequence-based models are presented and compared: a Hidden Markov Model (HMM),
Conditional Random Fields (CRF) and a sequential Markov Logic Network (MLN). These methods have been tested in two
real Smart Homes thanks to experiments involving more than 30 participants. Their results were compared to those of three
non-sequential models: a Support Vector Machine (SVM), a Random Forest (RF) and a non-sequential MLN. This comparative
study shows that CRF gave the best results for on-line activity recognition from non-visual, audio and home automation sensors.
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1. Introduction

Automatic human Activity Recognition (AR) is an
important process for human behaviour monitoring
but it is also extensively studied for the provision
of context-aware services for smart objects (smart-
phones, robots. . . ) and smart spaces (smart homes,
smart rooms, public spaces. . . )[20]. Smart Homes in
particular have become a topic of increasing interest
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Recherche / ANR-09-VERS-011).
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since they are a promising way to improve the daily
life of people with loss of independence (elderly peo-
ple or people with physical or cognitive disabilities)
so that they always keep control over their lives and
continue to live independently, to learn and to stay in-
volved in social life. These technologies can also im-
prove the life of the carers (who are often close rela-
tives) by reducing the human and financial burden of
such situations [71,30,57,65].

Many projects related to Smart Homes have been
supported by national and international research foun-
dations to address the challenges imposed by a grow-
ing elderly population such as ADAPTIVE HOUSE [51],
AWAREHOME [31], C@SA [22], CIRDO [9], GER’-
HOME [88] MAVHOME [19], PLACELAB [35], or



SWEET-HOME [77]. All of them have integrated hu-
man activity modelling and recognition in their sys-
tems.

Most of the progress made in the AR domain came
from the computer vision domain [1]. However, the
installation of video cameras in the user’s home is
not only raising ethical questions [72], but is also re-
jected by some of the targeted population [59]1. More-
over, video processing is highly sensitive to light con-
ditions which can dramatically vary in a home. Other
approaches rely on information from RFID tags [32]
and wearable devices [87]. In the first case, putting
RFID tags on objects makes the maintenance of Smart
Homes burdensome since any new object implies tech-
nical manipulations to fix the corresponding sensor
and to configure it. The case of wearable sensors
is sometimes not applicable when inhabitants do not
want (or forget) to wear sensors all the time. More-
over, cost and dissemination of assistive technologies
would be better if they were built on standard home
automation technologies with minimal technical ad-
ditions. This is why there is an increasing interest in
automatic human activity recognition from home au-
tomation sensors [72,83,70,14,13,63,85,55]. This type
of environment imposes constraints on the sensors and
the technology used for recognition. Indeed, informa-
tion provided by the sensors for activity recognition is
indirect (no worn sensors for localisation), heteroge-
neous (numerical or categorical, continuous or event
based), noisy, and non-visual (no camera). This ap-
plication setting calls for new methods for activity
recognition which can deal with the poverty and un-
reliability of the provided information and can pro-
cess streams of data. Moreover, these models should
be checkable by humans and linked to domain knowl-
edge.

In home automation sensor based AR, the prob-
lem has often been approached using off-line machine
learning methods on pre-segmented activity intervals
[6,54,26]. In that case the entire information (past,
present, future) is considered to be accessible and the
detection problem is ignored (i.e. detecting when an
activity starts and ends). If such an approach is valid
for off-line analyses of human behaviour, many real-
world applications will need real-time or at least on-
line AR. For instance, context aware systems must
know, at the time of the user’s interaction, which ac-

1As for any technology, video cameras can be very well accepted
if the benefit is perceived to be higher than the feeling of intrusion.

tivities the user is performing. This task is more diffi-
cult than the off-line one as only present and past in-
formation can be used and classification must be pro-
vided within a reasonable time. Another issue is that
the system must deal with activities that are not known
a priori to avoid undesirable behaviours.

In this paper, we present an on-line activity recog-
nition method for AR within homes in which mul-
tiple sensors, actuators and home automation equip-
ments coexist. This research is carried out as part of
the SWEET-HOME [77] project which aims at develop-
ing a complete framework to enable voice command
in Smart Homes. In this framework, the interpretation
of the commands and the decisions to be made depend
on the context in which the interaction occurs. This
context is composed, among other information, of the
user’s current activity. For instance, if the user utters
“Turn on the light”, the best action, if she is awaking
in the middle of the night (respectively if she is dress-
ing in the morning), could be to provide low intensity
light using the bedside lamp (respectively high inten-
sity light using the ceiling lamp). To perform on-line
AR in Smart Homes from audio and home automa-
tion sensors, a framework was developed to summarise
the stream of data into temporal windows and classify
each window into one known class, or into a specifi-
cally defined Unknown class. This research brings the
following contributions:

1. The integration of audio signals with home au-
tomation sensors for AR is an understudied area.
This work not only demonstrates the interest
of such fusion but also brings the first com-
plete datasets for AR that contain home automa-
tion data as well as audio signals with multiple
users. These datasets are available to the commu-
nity [80,27]. Some of them were acquired during
experiments in a realistic smart home involving
elderly and visually impaired people [76].

2. The framework for on-line AR makes it possible
to summarise asynchronous as well as continu-
ous sampled signals into temporal windows.

3. The paper introduces a recent model for AR —
Markov Logic Network— in both sequential and
non-sequential versions. Moreover three sequen-
tial and two other non-sequential models for the
AR task were tested and compared.

4. These models were evaluated on the above-
mentioned datasets in a realistic way since win-
dows of unknown class are fed to the classifiers.
Indeed, in real world setting not all possible ac-



tivities can be learned thus applications must be
able to handle unforeseen situations. Moreover,
to avoid overfitting, a cross validation technique
was designed so as to exclude from the learning
set, the participants’ records used for testing.

The paper is organised as follow. After a short de-
scription of the AR classification techniques in Sec-
tion 2, the framework for on-line AR is detailed in
Section 3. In particular this section introduces three
sequence based models namely the Hidden Markov
Models (HMMs), Conditional Random Fields (CRFs)
and finally the Markov Logic Networks (MLNs), a sta-
tistical relational method that combines high express-
ibility (first order logic) with the handling of uncer-
tainty. The methods were tested in two experiments
performed in two real Smart Homes involving more
than 30 participants. Moreover, their results were com-
pared to those of state of the art non-sequential models
such as are Support Vector Machine (SVM) and Ran-
dom Forests (RF). These experiments and the corre-
sponding results are described in Section 4. The paper
ends with a discussion in Section 5 and a short conclu-
sion in Section 6.

2. Related Work

In the literature, Activity Recognition (AR) has been
defined differently according to the level of granular-
ity under consideration. In some works, for instance,
a movement such as standing up, running or walking
is considered as an activity [39]. As the activity to
be recognized depends on the movement of the body,
worn sensors are often used. This can be found in re-
search concerning medical assessment [45] or daily ac-
tivity interpretation [58]. Some other works consider
the variation of a certain task: making tea, coffee, or
preparing a meal [56]. In such cases, each activity is
a specialization of a general task, and frequently the
accuracy of the recognition is related to the number
and type of the applied sensors since some subtask can
only be recognized by the use of a particular sensor.
In some applications of surveillance in public places,
activities are considered as interactions among people.
For instance, complex activities such as fighting and
stealing are identified by means of video recognition
techniques [47,67,3].

Besides the level of granularity of the activity, the
way to perform the recognition can be divided into off-
line and on-line. The former case consists of the analy-

sis of a static set of data [6]. For example, when assess-
ing the health state of a patient in a hospital, the sensor
data of a previous time-span can be used to recognize
the corresponding activities or to identify a change of
behaviour. The advantage of such an analysis is that all
temporal relations can be exploited allowing better ac-
curacy since for every instance past and future events
are available. In on-line recognition [34,40], the case
we focus on, the analysis is done from a data stream
while the subject is performing the activity. In this case
the aim is to identify as quickly as possible the current
activity at a certain instant relying only on past and
present information.

Approaches for activity modeling can be divided
mainly into two categories: knowledge-driven and
data-driven. In the former category, a logic-based ap-
proach offers an ideal framework to model explicit
knowledge which can be provided by an expert of the
domain. Ontologies have been widely used for AR [16]
since they provide readability and formal definitions
while the inference can be performed by an ontology
reasoner as a problem of satisfiability. Moreover, un-
der a description-based approach, logic rules facili-
tate the implementation of expert knowledge within
a model [70]. For instance, Augusto and Nugent [5]
used logical models to represent the temporal relations
among events to recognise activities. In Artikis et al.
[3], Event Calculus (EC) has been used for AR because
of its capacity to model complex activity and temporal
relations. EC has also been used for behaviour reason-
ing by Chen et al. [15] in a framework aiming at as-
sisting a person in a smart environment. Though logi-
cal approaches are highly expressive, they do not han-
dle uncertainty whereas input data in smart home are
highly noisy.

Data-driven approaches can be either unsupervised
or supervised. Unsupervised activity recognition is
pertinent when it is not required to recognize specific
activities; for instance, in applications intended to rec-
ognize a change in the daily pattern of the inhabitant.
Some relevant works [49,18] have studied methods to
discover recurrent patterns, or motifs, from a stream of
sensor data; other approachs consider the segmentation
and clustering of the data in order to create models that
can subsequently label a segment in one of the clusters
[62,24].

In the case of supervised learning methods, the AR
model is learnt by means of an annotated corpus. In
most cases the training corpus is exploited in order to
find the best parameters of the model. However the
structure of the model can also be inferred automat-



ically, for instance, by the induction of logical rules
[4]. Many works have applied statistical methods in
order to classify sets of sensor data produced over a
short time interval as belonging to a particular activity
[26,11]. As information in pervasive environments is
uncertain in most cases, probabilistic approaches are
suitable candidates to be applied for AR, although they
assume a probabilistic independence between consec-
utive time intervals, which is often a false assumption.
One of the most applied methods to include temporal
relations in the model is dynamic Bayesian networks
[83,86]. Activity recognition has also been treated like
a problem of sequence labeling: to label a segment of
sensor data into the most probable activity performed.
Thus, modeling activities by Hidden Markov Models
(HMMs) is extensive [23,52,84]. For instance, Duong
et al. [23] extended a conventional HMM to model the
duration of an activity, and Naeem et al. [52] defined
activities as a composition of tasks modeled by hier-
archical HMMs. During recent years, conditional ran-
dom fields (CRFs) [42] have also been widely applied
to AR. In particular, Chieu et al. [17] presented an
application of CRFs for AR using physiological data.
Nazerfard et al. [54] and Vail et al. [81] showed that
CRFs can give better results than HMMs since they do
not assume the probabilistic independence of the ob-
servation variables. Tong and Chen presented a method
using Latent-Dynamic CRF for recognizing activities
in smart homes [74].

Recently, Statistical Relational Learning (SRL)
[29], a sub domain of machine learning, has gained
much attention as it integrates elements of first or-
der logic and probabilistic models. Under the SRL
scheme, models are defined in a formal logical lan-
guage that makes them reusable and easy to verify,
that systematically takes uncertainty into account, and
that allows easy inclusion of a priori knowledge. SRL
has recently attracted attention in the domain of hu-
man activity modelling and recognition. For instance,
Logic HMMs [38] and relational Markov networks
[73] are both SRL methods that were considered for
AR [53,46,58,33]. In our work, we applied Markov
Logic Networks (MLN) [66], which become Markov
networks when their predicates are grounded during
the inference process. It is also possible to define a
MLN which is equivalent to a dynamic model such as
a linear CRF.

Some other researchers have carried out compar-
ative studies on the application of machine learning
methods [81,2]. However these works have focused
mainly on the properties of the methods that make

some of them more appropriate for AR than others. We
consider it essential to extend these studies through the
analysis of the inherent characteristics of the problems
relative to this recognition task, such as the most influ-
ential sensor information for AR, or the importance of
historical information in this specific task. Moreover,
an analysis of state-of-the-art sequential methods com-
pared to non-sequential methods for modelling histor-
ical information statically can shed light on the AR
problem. Another original aspect of the present work
with regard to the state of the art is that our evaluation
is done under the assumption of on-line recognition,
where future information is not available.

3. Method

Our approach for on-line activity recognition from
audio and home automation sensors is detailed in this
section. In Smart Homes, AR can be performed from a
set of very heterogeneous raw data streams of various
sensors, such as binary presence detectors (Presence
Infra-Red sensors or PIR), continuous microphone sig-
nals or temperature measurement. To handle this het-
erogeneity, the overall strategy we adopted is to sum-
marise data from these sensors within temporal sliding
windows to generate vectors of attributes that will feed
into an activity classifier. This approach relies on the
hypothesis that each instance of any activity is com-
posed of a set of events whose observations are cap-
tured by the set of sensors. These observations are sig-
natures of the activities and they can be described by
statistics of predefined variables computed over tem-
poral windows shorter than the minimal activity dura-
tion. Although activities captured in this manner might
be large scale activities, we showed that they can pro-
vide sufficient contextual information to an home au-
tomation decision module [13].

The method to recognise activities from streams of
raw sensor data goes through different levels of ab-
straction, as depicted in Figure 1. The raw data are
composed of symbolic timestamped values (from, e.g.,
infra-red sensors), state values (from e.g., switches), ir-
regularly sampled signals (e.g., temperature) and equi-
distantly sampled signals (from, e.g., microphones).
Some of these data are pre-processed to extract higher-
level information such as speech, non-speech sounds
and the location of the inhabitant. This step is detailed
in Section 3.1. Then, all the raw and inferred informa-
tion is summarised as vectors of features Vn, each of
which corresponds to a temporal window Wn of du-
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Fig. 1. Diagram of the overall methodology for activity model determination.

ration T . The feature vector comes together with an
activity label An that is generated from the ground
truth by taking the activity having the longest duration
within Wn as the label. As the number of features can
be very large, a feature selection step is performed to
discard redundant and uninformative features, result-
ing in feature vectors V ′n. V ′n together withAn are used
as input to the activity model learning schemes. All of
the classification models are trained using supervised
machine learning techniques described in Sections 3.3
to 3.6.

This section summarises the pre-processing stage,
and details the attributes and the classifier models.

3.1. Generating the Vectors of Attributes

The raw data captured within the Smart Home (see
bottom of Fig. 1) are summarised by features com-
puted over a temporal window. This section details
the windowing strategy applied and the features com-
puted.

3.1.1. Windowing strategy
In this paper, the aim is to build classification mod-

els for on-line processing. In on-line processing, only
current and past information is available. This means
that, for each current time t, the temporal windows W

will cover the interval ]t − T, t]. For the sake of clar-
ity, we will call W1 the temporal window representing
the interval ]0, T ], W2 the temporal window represent-
ing the interval ]T, 2 ∗ T ], Wn the temporal window
representing the interval ](n− 1) ∗ T, n ∗ T ], etc.

Given the dynamic nature of the activities, T must
be chosen to be shorter than the minimal duration of an
activity instance, but should be long enough to benefit
from the past history. A problem with fixed-size win-
dows is that an activity can be under-represented due
to the windows boundaries (e.g., an activity covered
by half each of two temporal windows). To solve this
problem, overlapping of intervals in 0% to 50% of T
may be used. In case of the intersection rate α between
two consecutive windows then, ∀n > 1, Wn covers
the following interval:
](n− 1) ∗ (1− α) ∗ T , (n ∗ (1− α) + α) ∗ T ].

Finding the best values for T and α is a tedious
task that requires testing each value for classification
method on datasets partitioned with different combi-
nations of T and α. In a previous work [11], we tested
values for T of 60 and 120 seconds, with values for
α of 0, 0.33 and 0.5 and we found that T = 60s and
α = 0.5 gave the best results. Based on these results,
all the experiments reported in this study were con-
ducted using T = 60s and α = 0.5.



3.1.2. Localisation and Speech/Non-Speech sound
detection

The raw data contains information that must be ex-
tracted to enhance activity recognition. Two types of
information are considered: speech/non-speech sound
event — which are important for activities of commu-
nication — and localisation of the inhabitant — which
is of primary importance for activity recognition.

Speech/non-speech sound detection In this approach,
sound events are detected in real-time by the AU-
DITHIS system [78]. Briefly, the audio events are de-
tected in real-time by an adaptive threshold algorithm
based on a wavelet analysis and an SNR (Signal-to-
Noise Ratio) estimation. The events are then classified
into speech or everyday life sound by a Gaussian Mix-
ture Model. The microphones being omnidirectional, a
sound can be recorded simultaneously by multiple mi-
crophones; AUDITHIS identifies these simultaneous
events. For more details about the audio processing,
the reader is referred to [78].

Localisation In Smart Homes, localisation can be
performed using cheap infra-red sensors detecting hu-
man movements but these sensors can lack sensitivity.
To improve this, our approach fuses information com-
ing from different data sources, namely infra-red sen-
sors, door contacts and microphones. The data fusion
model is composed of a two-level dynamic network
[12] whose nodes represent the different location hy-
potheses and whose edges represent the strength (i.e.,
certainty) of the relation between nodes. This method
has demonstrated a correct localisation rate between
63% and 84% using uncertain data from several sen-
sors.

3.1.3. Computed features
The traces generated from human activities are dif-

ficult to generalise, even in a given setting, due to the
high inter and intra-person variability of realisations of
a same task. This is why statistical attributes and in-
ferred information were chosen to summarise the con-
tent of each window.

For all the binary sensors (e.g., infra-red motion
detectors, switches), the number of firings in a time
frame was computed. For all the contact-door sensors
(e.g., doors, windows, furniture, curtains), the number
of state changes was computed for each temporal win-
dow. For all events for which the duration is impor-
tant (e.g., speech occurrences), the number of detec-
tions and their duration as a percentage of the tempo-
ral window were computed. For all signals (CO2 level,

temperature, humidity, brightness, water or electric-
ity), the difference of mean value between time frames
was computed. Regarding location, the percentage of
time of occupation of each room was computed for
each time window. Moreover, to add past information,
the previous main occupied room is added as a feature.
Finally, to account for the level of “activeness”2 of the
person within the home, the number of events per tem-
poral window for each of the categories: room, doors,
electricity, water, non-speech and speech sounds were
summed up and divided by the frame duration.

Most of the activities under consideration in this
study have a sequential pattern (e.g., sleeping implies
going to the bedroom, then to lie down on the bed and
to make no or infrequent large movements, dressing
implies to get clothes and to make movements to put
them on, etc.). However, in this windowing approach
most of the temporal information within the temporal
window is lost. But, given the high variability in the
sequence of events for a simple activity even by the
same person, we claim that such abstraction is a way
to eliminate intra-class variations and noise in order
to obtain a better generalization. Moreover, the dura-
tion of the windows being short, the hypothesis is that
the sequential nature of the activities can be captured
through sequence based models. Another advantage of
these features is their very low computational cost.

3.2. Known and unknown activities

The activities under consideration in the study are
inspired by the well known Activities of the Daily
Living introduced by Katz [37] which are often used
in geriatric assessments (dressing, feeding, toileting,
etc.). The chosen activities, slightly different in the two
experiments, are detailed in Sections 4.2.1 and 4.2.2.
They were chosen mainly to provide contextual infor-
mation for decision making (e.g., for a voice-based
home automation system [13]) but also to provide rel-
evant information about the behaviour of the user.

Another class was also considered in the study: the
Unknown class (also called the NULL hypothesis)
that represents periods during which it is not currently
known which activity is being performed (or labelled
in the case of the training dataset). Indeed, as reported
in other studies [27,40], a large number of the activ-

2In this paper, we distinguish the activity –i.e., the task being
performed– from the activeness –i.e., the state of being active. It is
also called ‘total agitation’ in the paper from the French agitation
equivalent to bustle in English.



ities recorded in the user’s home are either transient
activities not identifiable by the classifier (e.g., move-
ment between rooms, wandering) or irrelevant activi-
ties. In our approach, we handle the Unknown class
by considering it as a class label. Although acquiring a
unique model of such a mixture of situations is of low
interest for knowledge acquisition, its inclusion chal-
lenges the other learned classes and leads to more ac-
curate learning of the “known” classes. It must be em-
phasized that, in further experiments, when the dataset
is considered without the Unknown class, all the win-
dows that are labelled as Unknown class are excluded
from the training and testing set.

3.3. Activity Modelling by Hidden Markov Model
(HMM)

Hidden Markov Models (HMMs) [61] (Figure 2) are
extensively used in activity recognition, for which it
has become a “standard” approach [23,52,84]. One use
of HMM in AR is to compute the most probable se-
quence of hidden states Y = {y1, y2, . . . , yn} given
a sequence of observations X = {x1, x2, . . . , xn}. In
this paper we focus on ergodic HMMs, that is HMMs
with fully connected hidden states (i.e., it is possible to
reach any hidden state from any other hidden state).

...

...

y1 y2 yn−1 yn

x1 x2 xn−1 xn

Fig. 2. Representation of a classical HMM for labelling elements in
a sequence: yi are the hidden states, xi are the observations

Ergodic HMM models are based on two assump-
tions. The first one, which is true for any HMM, is
the conditional independence of the observations. An
observation xt, emitted at time t, does not depend on
any other observation, given the state that generated it.
In many cases this assumption is false, but still works
well in practice. For example, if one observation is the
location of the subject, this variable is not independent
between consecutive states. Indeed, depending on the
organization of the habitation, when we have a loca-
tion at a time t, the one at time t + 1 is in a restricted
subset that depends on the first observation (the same
location and the location that are just near this one).
The second assumption, which is prevalent in first or-

der HMM (such as the ergodic HMMs considered in
this study) follows the Markov principle that the prob-
ability of the HMM being in state i at time t depends
only on the state value at time t − 1. That means that
the activity performed within a certain temporal win-
dow is independent of all the other previous temporal
windows except the preceding one. This is considered
to be an acceptable assumption in our AR application.

To model activities, a separate model was trained
for each activity. Each hidden state was modelled by
a Gaussian Mixture Model. The learning process was
consequently carried out for each of the different ac-
tivities (eating, dressing, etc.). This consisted in esti-
mating the initial probabilities, the parameters of the
GMMs (using the EM algorithm), and probabilities of
the observations for each state and the state transition
matrix. Convergence to the final parameters was ob-
tained via the Baum-Welch algorithm. Finally, models
with 2 hidden states and a GMM with 3 Gaussians for
each state were obtained.

The AR was then performed by computing the log-
likelihood of each of the N activity models with an in-
put vector. We consider that we are handling the data
as a datastream, so we also do not try to determine the
frontiers of each activity performance. Sequencing the
datastream and adapt the model could be part of future
works. During these tests, only the current and pre-
vious windows were considered. The HMM with the
maximum likelihood was retained as the most proba-
ble class of the input sequence.

3.4. Activity Modelling by Conditional Random
Fields (CRFs)

Conditional Random Fields (CRFs) are graph based
models to perform discriminative probabilistic infer-
ence over a set of variables in classification tasks [42].

...

...

y1 y2 yn−1 yn

x1 x2 xn−1 xn

Fig. 3. Representation of a CRF for labelling elements in a sequence

Similarly to HMMs, CRFs can classify a sequence
of variables Y = {y1, . . . , yn} for a given sequence
of observations X = {x1, . . . , xn}. However, CRFs
are not generative models, so they are not intended to



model the joint distribution p(X,Y ). CRFs are dis-
criminative models instead, they model the conditional
distribution p(Y |X), but without the requirement to
model the distribution of the variable X . Graphically,
a CRF is represented by an undirected graph, as shown
in figure 3. In the case of activity recognition, we can
consider X , to be a set of vectors describing tempo-
ral windows, and hidden variables Y whose inferred
value corresponds to the most probable activity which
generated the observations.

Lafferty et al. [42] defines CRF as follows:
Let G = (V,E) be a graph such that Y = (Yν)ν∈V ,
so that Y is indexed by the vertices of G. Then (X,Y )
is a conditional random field if, when conditioned on
X , the random variables Yν obey the Markov property
with respect to the graph, that is:

p(Yν | X,Yω, ω 6= ν) = p(Yν | X,Yω, ω ∼ ν)

where w ∼ v means that w and v are neighbours in G.
Therefore, the probability of a node is conditioned

by its neighbours and by the set of observations. CRFs
are generally implemented as log linear models by
means of feature functions fk . In the case of linear
conditional random fields, the simplified equation for
estimating p(Y | X) is the following:

p(Y | X) =
1

Z
exp

{
K∑
k=1

λkfk(yt, yt−1, xt)

}
(1)

where fk are feature functions defined on subsets of
Y and X , Z is a normalization factor, and λk is
a parameter to assign a weight to the feature func-
tion fk. These weights are estimated during the learn-
ing phase. The algorithm that was used is L-BFGS,
a quasi-newton method that aproximates the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

When considering a model to label temporal win-
dows as performed activities, having yt as the activity
at time t and only one evidential variable xt represent-
ing the location of the user at time t, an example of
feature function can be:

fk(yt, yt−1, xt) =


1 if (yt = "sleep",

yt−1 = "clean",
xt = "bedroom")

0 Otherwise

The feature functions fk take the value of 1 if their
variables are set to the values specified in the function,
0 otherwise.

In our implementation of CRF for activity recog-
nition the evidential variable xt is not a single value
but a vector V ′t = xt = {x1t , ..., xmt } where each
xit is the value of attribute i at time t. Thus, m fea-
ture functions f1(yt, yt−1, yt−2, x1t , x

1
t−1, x

1
t−2), . . . ,

fm(yt, yt−1, yt−2, x
m
t , x

m
t−1, x

m
t−2)), one for each at-

tribute, were defined. These features function are de-
pendend on the values of the current windows and the
two previous ones.

3.5. Activity Modelling by dynamic Markov Logic
Network (MLN)

A Markov Logic Network (MLN) is a generative
statistical relational model that combines First Or-
der Logic (FOL) and probabilistic inference. A MLN
model is expressive enough to include explicitly, by
means of FOL, the main relations that exist among the
elements of the smart environment involved in the ac-
tivity recognition. In addition, every logical formula is
given a numerical weight indicating a degree of truth.
This logical representation along with its set of weights
can be considered as a meta model that, during the in-
ference process, allows the construction of a Markov
network, a pure probabilistic model that can deal with
uncertain variables. In this section, we introduce for-
mally the MLN model and our implementations for ac-
tivity recognition.

A MLN is composed of a set of FOL formulae, each
one associated with a weight that expresses a degree
of truth. This approach softens the assumption that a
logic formula can only be true or false. A formula f
is grounded by substituting each variable in f by a
constant. A grounded formula that consists of a single
predicate is a ground atom. A set of ground atoms is a
possible world. All possible worlds in a MLN are true
with a certain probability which depends on the num-
ber of formulae satisfied and the weights of these for-
mulae. Let’s consider F a set of first-order logic for-
mulae, with wi ∈ R the weight of the formula fi ∈ F ,
and C a set of constants. During the inference process,
each MLN predicate is grounded and the Markov net-
workMF,C is constructed where each random variable
is instanced with a ground atom. An edge is created
for every pair of variables representing predicates that
appear in the same formula. The obtained Markov net-
work allows the estimation of the probability of a pos-
sible world P (X = x) by the equation 2:



P (X = x) = 1
Z exp (

∑
i wini(x)) (2)

where Z =
∑
x′∈χ exp (

∑
i wini(x

′)) is a normalisa-
tion factor, χ the set of the possible worlds, and ni(x)
is the number of true groundings of the i-th clause in
the possible world x. When the number of predicates
and the size of the domain of the variables grows, ex-
act inference in MLN becomes intractable, so Markov
Chain Monte Carlo methods are applied to approxi-
mate P (X = x) [66]. In our case, recognizing an ac-
tivity consists of finding the activity a in A that max-
imises P (X = a, e), where e is the evidence repre-
sented by the value of the attribute in each window
(e.g., the values of the V ′ vector). Learning a MLN
consists of two independent tasks: weight learning and
structure learning. Weight learning can be achieved by
maximizing the likelihood with respect to a training
set. If the ith formula is satisfied ni(x) times in x,
then by using equation (2), the derivative of the log-
likelihood with respect to the weight wi is given by
equation (3):

∂

∂wi
logPw(X = x)

= ni(x)−
∑
x′∈χ

Pw(X = x′)ni(x) (3)

where x′ is a possible world in χ. The sum is thus per-
formed over all the possible worlds x′ and Pw(X =
x′) is P (X = x′) computed using the vector w =
(w1, . . . , wi, . . . ). The maximisation of the likelihood
is performed by an iterative process converging to-
wards an optimalw. Unfortunately, doing this maximi-
sation (3) is intractable in most cases. Thus, approxi-
mation methods are used in practice such as the Scaled
Conjugate Gradient method [48].

The implementation proposed for Activity Recog-
nition uses a set of rules which models the relation-
ship between each feature and the activity indepen-
dently from the other features. Formally, if N discrete
features are used for classification, the possible val-
ues for a feature i is given by the set V aluesi =
{Vi,1, ..., Vi,|V aluesi|}, and the activities considered
are Classes = {A1, ..., Ac}.

The rules used to classify activities have the fol-
lowing structure featurei(W,Vi,j) ⇒ class(W,Ak)
where the variable W is the temporal window to be
classified. The following rules are examples of this pat-
tern:

Fig. 4. Ground Naive MLN.

SoundsKitchen(W1, I2)⇒ class(W1, Eating)
SoundsKitchen(W1, I3)⇒ class(W1, Eating)
TotalAgitation(W1, LOW )⇒ class(W1, Eating)
TotalAgitation(W1, HIGH)⇒ class(W1, Eating)

The total number of rules in the model is given by∑N
i=1 |V aluesi|.|Classes|. As two grounded predi-

cates class(Wi, A) and class(Wj , A), for i 6= j ,
never appear in the same formula, in the resulting
Markov network the probability of an activity being
performed in a certain temporal window is indepen-
dent from the other windows. This structure is then
similar to a logistic regression model as shown in fig-
ure 4. This model is called the Naive MLN in reference
to the Naive Bayes network.

In addition, we implemented a dynamic model
that represents the activity recognition problem as
a stochastic process in time. In this model, we use
the same predicates, but the identifiers of the tem-
poral windows become time arguments whose val-
ues are positive integers. We also introduce a tem-
poral predicate Previous that defines the order of
the time arguments; for instance, Previous(W2,W3),
Previous(W3,W4), ¬Previous(W5,W4). The basic
rules composing the Naive MLN remain the same with
the addition of the following rules:

Previous(W1,W2) ∧ class(W1, Ai)

⇒ class(W2, Aj) ∀Ai, Aj ∈ Classes
The purpose of these rules is to establish a se-

quential relation between consecutive temporal win-
dows. In the ground Markov network two predicates
class(Wi, A) and class(Wj , A) can belong to the
same clique, i.e. there is a probabilistic dependency
among them. In the case of learning the weights of
these formulae are learned from the ground truth, in
the case of inference, the value of the previous class
is provided by the preceding inference. This model is
called the dynamic MLN or more simply MLN.

3.6. Activity modelling by non-sequential methods:
SVMs and Random Forests

The two last methods considered in this study
were Support Vector Machines (SVMs) and Random



Forests. They are classification algorithms that have
been executed on each temporal window indepen-
dently. These two algorithms have previously been
used for activity recognition and have demonstrated
good performances (e.g. [26,25,21]).

The processing behind a SVM is to project an input
vector into a feature space using a kernel (we choose
here a Gaussian kernel, for which we have first to de-
termine the standard deviation σ – the first parameter
of the model). From the projected vectors, the learning
algorithm determines the best possible separation hy-
perplane between the individuals of two classes, that
is the hyperplane at the largest distance from all the
points belonging to each class, called margin. A sec-
ond parameter, C, controls the trade-off between the
size of this margin and the number of possibly mis-
classified training samples. This algorithm, originally
developed by Vapnik et al. [8] has demonstrated a
very good efficiency on different kinds of classification
tasks.

A Random Forest (RF) [10] is an ensemble classifier
composed of several decision trees. For a new input,
each decision tree decides a class and a voting strategy
is used to determine, among the several trees, which
class to attribute to the input vector. The induction of
a RF combines random subspaces and bagging. It con-
structs a decision tree using a randomly selected re-
duced number of attributes (the number of trees cre-
ated is a parameter of the algorithm).

For more details about these well known and docu-
mented models the reader is referred to the previously
cited papers. The description of the determination of
each of the parameters is provided in Section 4.3.2.

4. Experiments and Results

The methods were applied on data collected in two
Smart Homes during two experiments involving re-
spectively 21 persons and 15 persons. This section de-
scribes the Smart Homes (Sec. 4.1), the data sets (Sec.
4.2) that were acquired and the attribute selection and
model parametrisation (Sec. 4.3). At the end, the re-
sults of the activity recognition are presented in Sec-
tion 4.4.

4.1. Pervasive Environments

4.1.1. The DOMUS Smart Home
The first pervasive environment considered is the

DOMUS Smart Home that was designed by the Lab-

oratoire d’Informatique de Grenoble (LIG) [28]. This
flat was extensively used in the SWEET-HOME project
for experiments. Figure 5 shows the details of the flat.
It is a thirty square meters flat including a bathroom,
a kitchen, a bedroom and a study room, all equipped
with sensors and actuators such as infra-red movement
detectors, contact sensors, video cameras (used only
for annotation purposes), etc. In addition, seven mi-
crophones were set in the ceiling for audio analysis.
The flat is fully usable and can accommodate a dweller
for several days. The technical architecture of DOMUS
is based on the KNX bus system (www.knx.org),
a worldwide ISO standard (ISO/IEC 14543) for home
and building control. Besides KNX, several field buses
coexist in DOMUS, such as UPnP (Universal Plug and
Play) for the audio video distribution or X2D for the
detection of the opening and closing of doors, win-
dows, and cupboards. More than 150 sensors, actua-
tors and information providers are managed in the flat
(e.g., lighting, shutters, security systems, energy man-
agement, heating, etc.). Sounds are recorded indepen-
dently to other sensors data thanks to a National In-
strument mutichannel acquisition board and analyzed
by the AUDITHIS software [78].

The DOMUS flat was designed to be as normal as
a standard flat, so that the participants moving in the
smart home would behave as naturally as possible, per-
forming activities in as close as possible to their usual
manner.
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Fig. 5. The DOMUS Smart Home of the LIG

4.1.2. The HIS Smart Home
The second Smart Home has been set up inside the

Faculty of Medicine of Grenoble by the researchers of
the TIMC-IMAG laboratory. This 47m2-flat is com-
posed of a bedroom, a living-room, a hall, a kitchen
(with cupboards, fridge. . . ), a bathroom with a shower
and a toilet. It was equipped with: 1) infra-red pres-
ence sensors (PIR), placed in each room to sense spe-
cific locations in the flat; 2) door contacts for the de-
tection of the use of some of the commodities (fridge,



cupboard and chest of drawers); 3) microphones, also
in each room, to monitor, record and process all the
sounds inside the flat and classify them into sounds of
daily living or speech; and (4) large angle webcams
(for annotation purposes only).

All the sensors, their location and also the organi-
zation of the flat are presented in Figure 6. The basis
of the flat is the wireless presence infra-red (PIR) sen-
sor, used in the AILISA project to monitor the level
of activity of the person [44]. The other sensors (i.e.
the microphones, webcams, environmental and contact
sensors), that have been added to the initial AILISA
platform, are optimally distributed to the four comput-
ers of the technical room (to optimize both resources
and processing time use). This room, next to the Health
Smart Home (HIS), contains these computers and elec-
tronic devices that receive and store, in real time, the
information from the HIS. These computers are from
standard ones. Apart from the microphones that need
a National Instrument multichannel acquisition board
for the analog to digital conversion of the signals from
the microphones, the other connections are done with
serial or USB ports.

Microphones

sensors

Wide Angle 

Webcamera

Temperature and

Hygrometry sensors

Door contacts

Bedroom

Living RoomInfra−Red Presence

Technical Room

Kitchen

Bathroom

WC

Hall

Fig. 6. Equipment and layout of the Health Smart Home (HIS) of the
TIMC-IMAG Laboratory in Grenoble

4.2. Experimental Data

This section details the acquisition and the charac-
teristics of each of the two datasets and the procedures
followed to record them before describing the man-
ner they were used in this study. In all cases, cameras
were used for video recording in each room for anno-
tation purpose only, except in the toilet and bathroom
in which there were no cameras in order to respect pri-
vacy.

4.2.1. The multimodal SWEET-HOME (SH) dataset
The multimodal SWEET-HOME dataset is part of the

SWEET-HOME corpus [80], in the following we will
refer it by SH dataset. For the record, 21 persons (in-
cluding 7 women) participated to the experiment to
record all sensor data in a daily living context. The
average age of the participants was 38.5 ± 13 years
(min 22, max 63), height 1.72± 0.13m (min 1.43, max
2.10), and weight 70 ± 14kg (min 50, max 105). Par-
ticipants were asked to enter the flat and behave as if
they were in their own home. Before this, the exper-
imenter organised a detailed visit of the flat for each
participant to make sure that the individual would not
search for everyday items and would feel like being at
home. Then, the individual was asked to perform each
of the previously defined activity at least once. No time
constraint was given to perform these activities. The
list of activities the person was asked to perform is the
following: (1) to close the door with the electrical lock,
(2) to undress/dress, (3) to wash hands, (4) to prepare a
meal and to eat, (5) to wash dishes, (6) to brush his/her
teeth, (7) to have a nap, (8) to rearrange the bed, (9)
to do the housework, (10) to read a book and to listen
to music, (11) to have a phone call, (12) to go out of
the flat for shopping and to come back, (13) to use the
PC and to call a relative, (14) to undress, take a shower
and go to the bed for sleeping.

In total, thanks to the 21 participants, more than 26
hours of data have been acquired with an average sce-
nario duration of one hour. About 18 hours were kept
for an activity recognition experiment while the re-
maining time was retained for specific audio analysis.
Data were annotated with the 7 classes of activity using
the Advene software3. This corpus is freely available
at http://sweet-home-data.imag.fr/. For
our study, this corpus was divided into two indepen-
dent parts: the tuning set and the train-test set. The tun-
ing set was used to train the localisation algorithms as
well as to learn a discretisation model to provide dis-
crete values to the MLN classifier. This tuning set was
excluded from the train-test set to avoid overfitting. It
is important to note that the tuning set was also used to
tune the parameters of the classifiers.

4.2.2. The HIS corpus (HIS)
The HIS corpus [27] was acquired to monitor the ac-

tivity of a person living alone at home, with the aim of
helping geriatricians to evaluate the dependency level
of various elderly people [26]. Seven activities were

3liris.cnrs.fr/advene



selected to be classified automatically: Preparing and
having a meal, Performing hygiene activities, Dress-
ing and undressing, Sleeping or having a nap, Resting
and Communicating with relatives on the phone, and
finally the Elimination activity (the fact to be in the
toilet and using it). Each person was asked to perform
the different activities for as long as they wanted and
as often as they wanted. They were only instructed of
the different activities to perform but not of the order
in which to do them or of the way to perform them.
The activities were performed by 15 healthy and non-
elderly subjects (six women and nine men).

In total, about 13 hours of data have been acquired
in the HIS flat. The average age of participants was
31.9 ± 9.0 years (min 24, max 57), the average height
1.74 ± 0.11m (min 1.62, max 1.92), and the aver-
age weight 68.5 ± 9.11kg (min 50, max 81). The
mean execution time of each experiment was 51min
40s for a single participant (min 23min 11s, max 1h
35min 44s). This corpus is freely available at http:
//getalp.imag.fr/HISData. Data were anno-
tated using the same conventions as for the SH cor-
pus. For our study, in the same way as for the previous
corpus, it was divided into two independent parts: the
tuning set and train-test set.

4.2.3. Implementation for evaluation purpose
From the raw data recorded by the different sensors

of the flat, a vector V of attributes was extracted for
each temporal window as described in section 3.1. The
duration T of the window W was set to 60s. The at-
tributes were inferred or computed from the different
signals. This resulted in an attribute vector V of 94 ele-
ments in the case of the SH dataset and of 26 elements
in the case of the HIS corpus.

Table 1 and Table 2 present the distribution of the
activity classes for 60 second frames for the SH corpus
and the HIS corpus. The first column represents the ac-
tivity classes, the second column shows the percent-
age of data that has been put apart for preprocessing
and tuning, the third column is the percentage of data
used for training and testing the activity classification
models and the last column presents the total. For SH,
the preprocessing and tuning set was composed of the
data from participants 8,10,11,13,14,15 while for HIS
it consisted of data from the last four participants.

The distribution of classes is unbalanced due to the
natural differences in the duration of each daily activ-
ity and to the fact that the scenarios were different in
the HIS and SH cases. For each experiment, partici-
pants were recruited to play a scenario in one of the

Table 1
Distribution of time windows for each activity in each SH dataset
part (T = 60s).

Class Tuning set Train-Test set Both sets

Cleaning 19.4% 20.6% 20.2%

Dressing 2% 2.6% 2.4%
/Undressing

Eating 31.2% 27.2% 28.3%

Hygiene 6.5% 6.8% 6.7%

Phone 2.3% 2.9% 2.7%

Reading 23.5% 22.9% 23.1%
/Computer
/Radio

Sleeping 10.8% 12.8% 12.3%

Unknown 4.3% 4.2% 4.2%

Number of
participants 7 14 21

Number of
windows 603 1526 2129

Duration 5h01m30s 12h43m00s 17h44m30s

two smart homes but the scenarios were different. The
following section details attribute selection and model
parametrisation.

4.3. Attribute selection and model parametrisation

This section details the pre-processing that has been
applied to reduce the set of attributes and to tune the
classification algorithms. The intervals that were not
identified as one of the 7 specified activities were con-
sidered as belonging to the Unknown class.

4.3.1. Attribute selection
Performing attribute selection is a necessary step in

data mining both to reduce the size of the data and to
improve performance [50]. Moreover, for some of our
algorithms, the number of features is important and its
reduction is crucial for two reasons: (1) the speed of
both training and testing can grow exponentially with
the number of features and (2) the curse of high di-
mensionality makes difficult to interpret differences in
distances in high dimensional spaces.

Information Gain Ratio (IGR) has been chosen for
feature selection because it usually performs well in



Table 2
Distribution of time windows for each activity in each HIS dataset
part (T = 60s).

Class Tuning set Train-Test set Both sets

Dressing 3.2% 2.1% 2.4%
/Undressing

Eating 19.4% 15.7% 16.6%

Elimination 4.5% 4.6% 4.6%

Hygiene 3.5% 5.2% 4.8%

Phone 7.1% 6.1% 6.2%

Reading 22.1% 26.5% 25.5%
/Computer
/Radio

Sleeping 22.9% 21.2% 21.6%

Unknown 17.3% 18.6% 18.3%

No Participants 4 11 15

No Windows 376 1221 1597

Duration 3h08m00s 10h10m30s 13h18m30s

practice [50] and because it is independent of the clas-
sification model (by contrast with wrapping attribute
selection methods [68]). IGR is the basis criterion of
some decision tree algorithms (e.g., C4.5 [60]) which
progress by selecting the best attributes at each de-
cision step from the remaining set of attributes. Re-
call that information gain is defined considering the
entropy and the probability of each values for this
attribute currently under consideration. The entropy
H(V ) of a variable V taking the values v is defined
by:

H(V ) = −
∑
v

p(v) · log2(p(v))

while the entropy of a value V , given a variable X
(with its possible values x) is defined by:

H(V |X) = −
∑
x

p(x) ·
∑
v

p(v|x) · log2(p(v|x))

The IGR for an attribute a ∈ A, considering the class
c ∈ C, is then obtained as:

IGR(a, c) =
H(c)−H(c|a)

H(a)
(4)

The formula (4) is applied to each attribute to obtain
the score, then a threshold can be chosen to retain the
k best attributes.

The computation of the IGR is done on the com-
plete dataset across classes. This gain is determined for
each attribute and each class and for each attribute a
weighted mean is computed to obtain its final value.

At the end, only those features with non-zero IGR
(features including some information) were retained.

SH dataset The feature selection method was applied
to the multimodal SWEET-HOME corpus (SH dataset).
The attribute vector V originally composed of 94 fea-
tures was reduced to V ′ of 66 features by using IGR.

Table 3 shows the 66 obtained attributes. In that
case, only the attributes that have a non-null informa-
tion gain were kept. In this table, the 20 attributes hav-
ing the highest IGR scores are highlighted. It suggests
that among the selected attributes those that provide
the best information to classify activities are the at-
tributes related to the location of the inhabitant and the
acoustic features.

HIS dataset Following the same method as for the
SH dataset, the HIS corpus, with data vectors origi-
nally composed of 27 features (26 plus the class) was
reduced to 24 attributes with IGR. For this dataset,
the number of features originally available was really
small. That explains why only a few attributes were
eliminated by the attribute selection process.

Table 4 sums up the reduced dataset.

4.3.2. Model tuning
HMM, SVM and Random Forest tuning A 10-fold
cross-validation on each tuning set was performed to
optimize several parameters of the classifiers. For the
Random Forest, the number of trees has been opti-
mized, for the SVM, the pair (C, σ) has been searched
using a grid search and finally for the HMM, the num-
ber of states and the number of Gaussians has been de-
termined. For this last one, the optimization has been
done on the whole set of activities. This optimization
is not done for each individual activity separately (for
which an optimal topology of the HMM could perhaps
improve the results). The parameter search was per-
formed for each dataset (HIS and Sweet-Home) and
the optimal values found for the parameters were kept
for the classification.



Table 3
Attributes selected for the SH dataset using Information Gain Ratio
for each attribute (66 attributes out of 94). The best 20 attributes are
highlighted.

Type Attributes Names for GainRatio

Location PercentageLocationRoom1, PercentageLocation-
Room2, PercentageLocationRoom3, PercentageLo-
cationRoom4, PredominantRoom, LastRoomBe-
foreWindow, NumberOfDetectionPIROffice, Num-
berOfDetectionPIRKitchen, TimeSinceInThisRoom,
PercentageAgitationRooms

Switches SwitchBathroomUse, SwitchBedroomBed, SwitchBed-
room, SwitchOffice, SwitchSinkKitchen

Lights PercentageTimeLightBathroomOn, ActivationDeac-
tivationLightBathroomSink, ActivationDeactivation-
LightBedLeft, ActivationDeactivationLightBedRight,
ActivationDeactivationLightKitchenSink, Percentage-
LightOfficeOn, PercentageLightKitchenSinkOn, Percent-
ageLightKitchenTableOn, PercentageLightBedLeftOn,
PercentageLightBedRightOn

Shutter PercentageShutterBedroom, PercentageShutterBed-
room2, PercentageShutterDesk2, PercentageShutterK-
itchen, ActivationDeactivationShutterBedroom, Acti-
vationDeactivationShutterDesk, PercentageCurtain,
PercentageShutterOffice

Power PowerLastUse, PowerLastLastUse, PowerLastLastLas-
tUse

Doors and
Windows

ActivationDeactivationNumberOfDoorBedroom, Activa-
tionDeactivationNumberOfDoorBathroom, Activation-
DeactivationDoorCupboardKitchen, ActivationDeactiva-
tionDoorFridge, ActivationDeactivationNumberOfWin-
dowBedroomBathroom, PercentageAgitationDoors

Sounds SoundsKitchen, SoundsDinningRoom, SoundsBath-
room, SoundsOfficeDoor, SoundsBedroomWindow,
SoundsOfficeWindow, SoundsBedroomDoor, SpeechBed-
roomDoor, SpeechBedroomWindow, SpeechBathroom,
SpeechKitchen, SpeechOfficeDoor, SpeechOfficeWin-
dow, SpeechDinningRoom, PercentageAgitationSounds,
PercentageAgitationSpeech, PercentageTimeSound,
PercentageTimeSpeech

Divers ColdWaterTotal, HotWaterTotal, TotalAgitation, Ambi-
entSensorCO2Bedroom, AmbientSensorTemperatureOf-
fice, AmbientSensorTemperatureBedroom

Class One of: cleaning, dressing up, eating, hygiene, phone,
sleeping, reading/computer/radio, unknown activ-
ity/transition

CRF and MLN tuning The feature functions de-
signed for the CRF model consider the evidential in-
formation of the current temporal window and also the
two previous ones. We found that using the two previ-
ous windows instead of only one, slightly improves the
accuracy of the algorithm while keeping an acceptable
processing time.

In the cases of the MLN and the CRF, all the
continuous numerical variables were discretised. A
supervised method for discretisation, CAIM (Class-
Attribute Interdependence Maximization) [41], has

Table 4
Attributes selected for HIS using retained non-zero Information
Gain Ratio for each attribute (24 attributes out of 26).

Type Attributes Names for GainRatio

Location PredominantRoom, LastRoomBeforeWindow, Percent-
ageLocation (in every room), TimeSinceInThisRoom

Doors ActivationDeactivationCupboardDoor, ActivationDeacti-
vationDressingDoor

Sounds Sound on all the microphones

Speech Speech in Entrance, Hall, Shower, WC, Kitchen
Class One of: dressing up, eating, elimination, hygiene,

phone, sleeping, reading/computer/radio, unknown activ-
ity/transition

been run on the tuning set. It resulted in a set of dis-
cretisation intervals for each continuous attribute that
were applied as a preprocessing stage to the input data
of the CRF and the MLN. This algorithm works in-
dividually on each feature without the need to fix the
number of discrete intervals as parameter. CAIM’s op-
timization goal is to maximize the class-attribute inter-
dependence while minimizing the number of intervals.
The number of intervals found in the datasets was al-
ways between 3 and 8. Once again, only the tuning set
was used to avoid overfitting.

4.4. Results

4.4.1. Performance evaluation
The method used to evaluate the classifier was based

on Cross-Validation but used a specific type namely
Leave-One-Subject-Out-Cross-Validation (LOSOCV).
If the dataset is composed of records4 from N par-
ticipants, for each fold, records from N − 1 partici-
pants were used to train the model, while the remain-
ing record was used for evaluating the learned model.
Consequently, testing was performed on different in-
dividuals from training, and thus LOSOCV prevents
participant overfitting.

Performance was assessed using the accuracy mea-
sure over the full dataset, defined as:

AccGlobal =

∑
i Vi∑
i Si

where Vi is the number of windows of class i correctly
classified as i and Si is the total number of windows of

4Here ‘record’ means the full record for a single participant



Table 5
Overall accuracy (%) results on the two datasets with and without
the Unknown class

SH dataset HIS corpus
Model Without Unknown With Unknown diff Without Unknown With Unknown diff

SVM 75.00 71.90 3.10 74.86 64.90 9.96
Random Forest 82.96 80.14 2.82 70.72 62.32 8.40
MLN naive 79.20 76.73 2.47 75.45 66.81 8.64
HMM 74.76 72.45 2.31 77.26 67.11 10.15
CRF 85.43 83.57 1.86 75.85 69.29 6.56
MLN 82.22 78.11 4.11 75.95 65.82 10.13

class i. The average accuracy per class was also com-
puted to assess the capacity of the learning method to
model each class independently. This was defined as

AccClass =

∑
iAcci
Nc

where Nc is the total number of classes and Acci =
Vi

Si
, i.e., the accuracy Ai for the ith class.
In all the results presented in the tables 6–9, the

overall accuracy is given as well as the mean accu-
racy and standard deviation, computed over the partic-
ipants, in brackets.

4.4.2. Preprocessing performance
As presented in section 3.1.2, two kinds of informa-

tion were inferred from the raw data: location of the
dweller and speech/non-speech sound events.

We adapted a dynamic network for multisource fu-
sion with the aim of locating a participant in the smart
home [12]. This process contains two levels: the first
corresponds to generating location hypotheses from
an event; and the second represents the context for
which the activation indicates the most probable loca-
tion given the previous events. Training was achieved
separately on the two tuning sets, SH and HIS datasets
(cf. Section 4.2) and gave 84% correct location for
each 1 second windows of the Train-Test set of SH and
96% correct with HIS dataset. Thus, though the accu-
racy is acceptable for SH and excellent for HIS, the
activity models are trained on imperfect data that may
impact on the learning.

As far as sound processing is concerned, the dis-
crimination module was a Gaussian Mixture Model
(GMM) which classified each audio event as either an
everyday life sound or a speech sound. The discrimi-
nation module was trained with an everyday life sound
corpus [36] and with the Normal/Distress speech cor-
pus recorded in our laboratory [79]. Acoustic features

were Linear-Frequency Cepstral Coefficients (LFCC)
with 16 filter banks and the classifier was made of
24 Gaussian models. Acoustic features were computed
for every frame using a size of 16 ms, with an over-
lap of 50%. On the HIS Train-Test set, the global
accuracy of the speech discrimination was 84.61%.
25% of the sounds classified as speech were actually
“non-speech sounds” and 13% of the sounds classi-
fied as non-speech were actually “speech-sounds”. So
the classifier is again imperfect regarding speech/non-
speech sound related features.

4.4.3. Global results
Table 5 shows the overall accuracy results for all

the classification models and datasets both with and
without including the Unknown class. Let’s recall that
the case without the Unknown class means that these
windows were excluded from the datasets both for the
learning and testing stages.

It can be observed that the CRF approach has the
highest accuracy in 3 out of 4 conditions but the HMM
approach shows the best accuracy for the HIS with-
out including the Unknown class. MLN is always the
second or third ranked method. The worst classifiers
are the SVM under all conditions and the HMM on
the SH dataset and the Random Forest for the HIS
dataset (even if this was amongst the best for the
SH dataset). For the SH dataset without Unknown
class condition, a Kruskal-Wallis test revealed a signif-
icant effect for dependency of accuracy on the model
(χ2(5) = 16.22, p = 0.006). A post-hoc test using
pairwise Wilcoxon summed rank tests with Bonfer-
roni correction showed that this dependency is mostly
driven by the difference between the CRF and the
HMM (p = 0.032). When the Unknown class is in-
cluded, the significance increases (χ2(5) = 17.78, p =
0.003), still driven by the difference between the CRF
and the HMM (p = 0.028) with the difference be-
tween the CRF and the SVM just short of significance



(p = 0.082). None of the HIS results show a signif-
icant difference, probably due to the high variability
between subjects. When analysing the difference be-
tween the conditions both without and including the
Unknown class, it can be seen that the CRF has the
smallest decrease of performance resulting from in-
cluding the Unknown class for both datasets, while
MLN, HMM and SVM show the biggest decreases.
The importance of the different decreases between the
two datasets can be explained by the high proportion
of Unknown class windows in the HIS dataset (more
than 18% of the total dataset) compared with the SH
set (about 4%). Overall, CRF seems to be the method
with the best performance in most of the conditions.
In the remaining sections we focus on the CRF and
other dynamic models (HMM, MLN) to study their be-
haviour in each condition.

4.4.4. Results on the SH dataset
Detailed results per class both without and with the

Unknown class are given in Table 6 and Table 7. With-
out the Unknown class, CRF has the overall best ac-
curacy (85.43%) and averaged over classes (76.26%),
closely followed by the MLN performance (82.22%
globally and 75.41% per class) and both greatly out-
perform HMM (74.8% globally and 63.25% per class).
CRF shows the best accuracy for most classes (Clean-
ing, Dressing, Eating, Hygiene, Sleeping) while the
MLN has particularly good results for Phone and
Reading. Clear superiority of the CRF method is ex-
hibited for Dressing (56.11±31.88%) and Cleaning
(84.25±12.93%) while the MLN shows significant su-
periority in the Phone class (79.76±23.6%). HMM
shows good results on Hygiene and on Reading classes
but is very poor on Dressing.

When the Unknown class is considered, the pat-
tern remains the same. All the accuracy measures de-
crease except for both MLN and HMM in the case of
the Cleaning class, where the results were slightly im-
proved and the MLN case outperformed the CRF re-
sults for that one. The MLN shows again a signifi-
cant superiority in the classification for the Phone class
(80.1±23.56%) over both the HMM (49.8 ±35.8%)
and the MLN (51.63±38.74%). In all other cases, CRF
demonstrates the best accuracy.

4.4.5. Results on HIS dataset
Detailed results per class both without and with

the Unknown class being included are given in Ta-
ble 8 and 9. Without the Unknown class, the HMM
has the best accuracy overall (77.3%) and averaged
over class (71.0%), being slightly better than the MLN

performance (75.95% globally and 68.99% per class)
and that of the CRF (75.85% globally and 66.71%
per class). The statistical tests did not reveal any
significant difference between the models. Moreover,
the highest performances for each class are well dis-
tributed over the methods, with HMM the best for
Dressing, Sleeping and Elimination, with the CRF best
for Eating and Reading and the MLN the best for Hy-
giene and Phone.

When the Unknown class is considered, the pat-
tern changes slightly. CRF gives the highest accuracy
globally (69.29%) but not per class (59.07% vs 60.2%
for HMM). The best performance per class remains
the same with HMM, being still the best for Dress-
ing (equals with MLN), Elimination and Sleeping,
CRF for Eating, Phone, Reading and Unknown and
the MLN best for Hygiene (equal with HMM). Thus,
the overall improvement of CRF is mostly driven by
its good classification of the Unknown class, which
represents 18% of the HIS dataset. Again the HMM
exhibits clearly the best performance for Elimination
compared with CRF and the MLN.

4.4.6. CRF performance in discriminating activities
Some classes were more difficult to discriminate be-

tween than others, Tables 10 and 11 5 present the con-
fusion matrices for the CRF for the SWEET-HOME

and HIS datasets in the case where the Unknown
class is included. Without surprise, in both corpus, the
Unknown class is very uniformly confused with other
classes, with stronger consequences for the HIS cor-
pus since instances of the Unknown class constitute a
big part of the dataset. For the SWEET-HOME dataset,
Eating and Cleaning are confused with each other. It
should be noted that these two activities were often
performed in the same room. The Reading/Computer
class exhibits a low specificity, with a lot of confusion
with Phone, Dressing and Sleeping. This is not sur-
prising since the Reading/Computer class is composed
of different sub-classes which share common charac-
teristics with classes which it gets confused with. For
the HIS corpus, Elimination and Hygiene are confused
with each other. Again, it should be noted that these
two actives were performed in the same area. For the
Reading/Computer class a similar trend as for SWEET-
HOME is observed. This class shares many properties

5In these tables are also given sensitivity and specificity. As a re-
minder, let’s consider TP the True Positive rate, TN the True Nega-
tive rate, FP the False Positive rate and FN the False Negative rate.
Sensitivity = TP

TP+FN
and Sensitivity = TN

TN+FP



Table 6
Classification accuracy using the SH dataset without Unknown class: overall (per participant record ±SD).

Class HMM CRF MLN

Cleaning 64.8% (66.1±18.9%) 82.80% (84.25±12.93%) 75.16%(76.71±12.39%)

Dressing/Undressing 2.7% (7.1±26.7%) 53.84% (56.11±31.88%) 30.77%(28.33±32.4%)

Eating 76.9% (76.1±28.5%) 85.43% (87.76±16.49%) 83.37%(82.67±18.52%)

Hygiene 79.1% (77.6±25.7%) 79.80% (79.78±23.84%) 78.85%(76.44±26.4%)

Phone 54.8% (55.5±33.8%) 50% (51.97±37.72%) 81.82%(79.76±23.6%)

Reading/Computer/Radio 92.1% (90.2±13.1%) 91.14 % (91.08±8.67%) 91.71%(92.76±7.15%)

Sleeping 72.4% (72.1±25.8%) 90.81% (88.81±13.29%) 86.22%(87.29±12.62%)

Global 74.8% 85.43 82.22 %

Class 63.25% 76.26% 75.41%

Table 7
Classification accuracy using the SH dataset: overall (per participant record ±SD).

Class HMM CRF MLN

Cleaning 70.8% (72.4±13.9 %) 79.82% (82.65±14.22%) 81.85%(84.08±14.84%)

Dressing/Undressing 2.7% (7.1±26.7%) 50%(52.78±26.66%) 25.64%(23.89±28.67%)

Eating 77.4% (76.7±23.9%) 83.57%(87.30±15.86%) 77.35%(79.13±22.65%)

Hygiene 68.1% (65.8±25%) 87.88%(77.32±25.29%) 78.85%(77.4±21.61%)

Phone 50% (49.8±35.8%) 54.34% (51.63±38.74%) 79.55%(80.1±23.56%)

Reading/Computer/Radio 92.1% (86.6±19.8%) 91.66%(90.88±7.86%) 87.71%(90.16±10.34%)

Sleeping 66.7% (67.2±26.6%) 89.62%(87.56±13.87%) 84.69%(85.25±14.4%)

Unknown 24.6% (23.2±18.8%) 59.42%(50.37±36.85%) 21.88%(18.96±23.36%)

Global 72.45% 83.57 78.11%

Class 56.55 % 74.54 % 67.19%

Table 8
Classification accuracy using the HIS dataset without Unknown class: overall (per participant record ±SD).

Class HMM CRF MLN

Dressing/Undressing 46.2 % (30.8±40%) 38.46%(23.73±39.97%) 30.77%(26.98±39.55%)

Eating 90.6 % (90.2±17.7%) 95.31%(94.81±9.5%) 93.23%(93.43±12.86%)

Elimination 85.7 % (65.5±46.7%) 64.29%(46.61±43.35%) 48.21%(33.72±44.45%)

Hygiene 36.5 % (35.6±45.1%) 36.51%(41.44±36.28%) 73.02%(52.27±50.56%)

Phone 83.8 % (76.6±36.3%) 81.08%(72.09±34.8%) 91.89%(83.93±31.65%)

Reading/Computer/Radio 75.9 % (73.8±38%) 77.16%(75.4±35.64%) 75.93%(68.96±39.53%)

Sleeping 78.4 % (61.4±41.5%) 74.13%(64.77±32.35%) 69.88%(65.13±37.93%)

Global 77.3% 75.85% 75.95%

Class 71.0 % 66.71 % 68.99 %



Table 9
Classification accuracy using the HIS dataset: overall (per participant record ±SD).

Class HMM CRF MLN

Dressing/Undressing 26.9 % (10.1±18.8%) 15.38%(4.25±9.74%) 26.92%(18.36±32.73%)

Eating 88 % (87.6±20%) 89.58%(87.37±20.25%) 85.94%(84.52±19.05%)

Elimination 76.8 % (61±46.9%) 62.5%(42.07±38.89%) 57.14%(47.69±45.89%)

Hygiene 25.4 % (32.3±45.9%) 20.63%(26.36±40.56%) 34.92%(34.55±48.24%)

Phone 77 % (69.8±32.4%) 78.38%(69.68±35.54%) 60.81%(55.65±36.62%)

Reading/Computer/Radio 74.7 % (72.6±37.4%) 75.93%(73.04±38.06%) 69.44%(61.46±44.44%)

Sleeping 79.9 % (68.1±37.7%) 70.66%(65.44±36.59%) 71.81%(64.2±39.11%)

Unknown 32.9 % (33.9±7.8%) 59.47%(60.33±14.72%) 52.86%(53.43±14%)

Global 67.1% 69.29% 65.82%

Class 60.2 % 59.07% 57.48%

with other classes, notably sleeping. Indeed, Reading
consisted if sitting on the sofa and reading a magazine
while the Sleeping activity was to lie on the bed do-
ing nothing. These two activities were thus very quiet,
evolved very little motion and generated a very low
amount of information. Moreover they occurred in the
same area (only an open partition separating the bed
and the sofa). It is also worth noticing the very low sen-
sitivity for Dressing. This activity was very short and
performed between the living room and the bed area.
The small amount of examples of this class explains
the low performance in learning it.

4.4.7. Subsequent analyses
To assess the impact of including the Unknown

class on the learning, the training was performed on the
HIS dataset with the best and worst classifiers, CRF
and Random Forest, whilst varying the percentage of
examples of the Unknown class in the dataset. Fig-
ure 7 shows a rapid decrease of Random Forest perfor-
mance up to 8% of the total dataset being Unknown
when it reaches a plateau, while CRF shows a sharp
decrease in performance when the Unknown class is
being introduced (even by 1% of Unknown examples
among all classes), but then the performance decreases
very slowly until 10% of exemaples being Unknown
when it reaches a plateau. Thus, although such be-
haviour calls for further investigation, it seems that the
CRF is more robust to the inclusion of the perturb-
ing Unknown class than the Random Forest approach.
This is in line with some studies reporting a decrease of
performance when a RF is learned from noisy datasets
[69].

Fig. 7. Accuracy against percentage of windows belonging to the
Unknown class for Random Forest and CRF applied to the HIS
database.

5. Discussion

Automatic recognition of human activities in smart
spaces is an important challenge for Ambient As-
sisted Living (AAL). In real-world applications, this
task would often have to be performed on-line using
data from cheap, distant and noisy home automation
sensors. In this paper, we present a study to recog-
nize on-line the activities of one dweller from distant
(i.e., not worn on the user’s body) home automation
sensors (not including any video camera) and micro-
phones using 6 different models: a SVM, Random For-
est, dynamic/non-dynamic Markov Logic Networks, a
M and CRF. This study, performed on 2 realistic and
publicly available datasets, sheds light on the limita-



Table 10
Confusion Matrix for CRF – SH dataset

Cleaning Dressing Eating Hygiene Phone Reading/ Sleeping Unknown
Undressing Computer

Cleaning 255 2 39 1 0 4 1 6

Dressing/Undressing 0 20 1 1 0 3 2 2

Eating 48 1 364 8 0 1 0 6

Hygiene 3 3 3 80 0 1 2 4

Phone 1 0 0 0 23 3 0 0

Reading/Computer/Radio 4 9 1 9 19 319 14 8

Sleeping 1 2 6 4 1 16 175 2

Unknown 2 2 1 1 1 3 2 36

Sensitivity 81.21% 51.28% 87.71% 76.92% 52.27% 91.14% 89.29% 56.25%

Specificity 95.63% 99.40% 94.24% 98.88% 99.73% 94.56% 97.59% 99.18%

Table 11
Confusion Matrix for CRF – HIS corpus

Dressing Eating Elimination Hygiene Phone Reading/ Sleeping Unknown
Undressing Computer

Dressing/Undressing 4 0 0 0 3 1 7 8

Eating 1 172 0 0 0 3 2 23

Elimination 0 0 35 37 0 0 0 7

Hygiene 0 0 18 13 0 1 1 7

Phone 0 0 0 0 58 1 0 7

Reading/Computer/Radio 5 1 0 4 4 246 48 23

Sleeping 7 2 0 0 0 59 183 17

Unknown 9 17 3 9 9 13 18 135

Sensitivity 15.38% 89.58% 62.50% 20.64% 78.38% 75.93% 70.66% 59.47%

Specificity 98.41% 97.18% 96.22% 97.67% 99.30% 90.52% 91.16% 92.15%

tions and advantages of these models for the activity
recognition tasks which are discussed below.

To achieve the on-line real-time classification re-
quirement of the study, the sequential models (HMM,
CRF and MLN) were only learned and applied using
the past history, meaning that no future data are known
at the time of making the decision. Moreover, on-line
and realistic activity recognition in the home must deal
with Unknown activities [40] as well as taking into ac-
count the transitions between activities (i.e., segmenta-
tion of the activities). This is a radical difference from
many off-line studies [6,54,26,85] that induce models
using both the past and future history, sometimes ap-
ply preprocessing to the overall dataset and often use a
cross-validation over all the activity windows without
considering the detection problem. In our case, both

preprocessing and classification is performed without
the use of any information on future values.

The results of this study shows that the sequential
models, as a group (HMM, MLN, CRF), do not signif-
icantly outperform the non-sequential models (SVM,
Random Forest). This can be explained by two rea-
sons. Firstly, AR is highly dependent on the location,
the presence of this information alone in the temporal
windows is important enough to allow accuracy clas-
sification in instance-based models. Secondly, the de-
sign of the features for classification in our method al-
lows the inclusion of historical information in the tem-
poral window. For instance, the time the person has
spent in the same room is accumulative from one win-
dow to the next one, as long as the person does not
change location. However, it must be emphasized that
a sequential model is always ranked first in all con-



ditions (CRF three times, HMM once). It can then be
concluded that CRF is generally the best suited algo-
rithm for on-line human activity recognition from sim-
ple non visual sensors, as it consistently outperforms
its best non-sequential competitor, namely the Random
Forest (RF). While a CRF has already been reported
as outperforming a HMM in human activity classifica-
tion tasks [81,82], the competition between CRF and
RF has not been previously reported, mostly because
these models do not belong to the same type.

The difference in performance between CRF and the
HMM/MLN is due to their discriminative or genera-
tive natures. While a CRF is trained to maximize the
likelihood over the whole dataset, the HMM/MLN are
trained by maximizing the likelihood of each class in-
dependently. Thus, a CRF biases its learning towards
the most dominant classes, as do the non-sequential
discriminative schemes (SVM, Random Forest, Naïve
MLN). On the contrary, the MLN and HMM model the
classes independently, and this explains why they per-
formed better on some activities. For instance, MLN
had the best performance for recognizing the phone ac-
tivity for 3 out of 4 conditions (cf. Tables 6–9), while
the HMM showed the best general performance by
class for the HIS dataset (cf. Table 8 and 9).

The inclusion of the Unknown class decreased all
the performances of all the models. However, it is
the generative approaches that are the most visibly af-
fected. Indeed the MLN and HMM exhibit the most
notable decrease in performance, and this is due to
their inability to model the Unknown class. Since,
in our case, the Unknown class was not an “other”
class, because it contained instances very similar to the
classes to be found (transitions between activities and
activities of no interest to the study), the SVM also
showed difficulties in finding hyperplanes separating
the Unknown class from the others. In the HIS dataset,
since the Unknown class represented more than 18%
of all examples, most of the models were highly per-
turbed. For instance, the Random Forest, being com-
posed of decision trees, tried to generate a set of trees
leading to leaves of consistent classes. However, due
to the diverse nature of the instances of the Unknown
class, generating consistent leaves became very hard.
Conversely, the CRF, by considering all the classes,
captured complex dependencies in the feature window
to give better classification of Unknown instances.

The two datasets used in this study, though being
of the same nature and comparable, were not acquired
with the same participants or in the same smart home.
But the most prominent difference between them is

the amount of information each of them provides. The
HIS dataset is far less informative than the multimodal
SWEET-HOME one, due to a lower number of sensors.
That explains why the non-sequential models were so
competitive in the SWEET-HOME case, being able to
benefit from informative data, such as door and win-
dow activations, as well as temporal data (the previ-
ously occupied room). In the HIS case, the number
of features being smaller, the non-sequential models
exhibited the lowest performance, while the sequen-
tial models (HMM, CRF, MLN) stayed competitive.
While classical sequential models such as HMM and
CRF benefited from the history described within the
sequence, the MLN-based approaches took advantage
of their high expressibility. For instance the MLN in-
duced the following rules:

1. SWEET-HOME dataset:
1.66047 percentageagitationroom(window,HIGH)

-> class(window,PHONE)
1.13709 speech_studywindow(window,HIGH)

-> class(window,PHONE)
-1.24098 totalagitation(window,LOW)

-> class(window,PHONE)
-0.175539 previous(window1,window2) and

class(window1,EATING) -> class(window2,PHONE)

2. HIS dataset:
1.50854 percentageoc_livingroom(window2,MEDIUM)

-> class(window,PHONE)
1.25924 timesinceinthisroom(window2,LOW)

-> class(window,PHONE)
-1.00466 timesinceinthisroom(window2,HIGH)

-> class(window,PHONE)
0.92 previous(window1,window2) and

class(window1,PHONE) -> class(window2,PHONE)

where the head of each rule class(w, c) takes w, the
current window and predicts c, the class of the win-
dow. Each predicate in the body indicates the value
of a feature in the window. For instance speech_
studywindow(window,HIGH) indicates that there
was a high amount of speech detected in the study
room. Positive values to the left side of each rule in-
dicate that, when the rule is fired, it adds confidence
to the class, while a negative value shows that this
rule removes credence from the class. For the particu-
lar class “Phone”, MLN was able to translate the fact
that when someone is talking a lot close to the phone
for a short time, then s/he is most likely phoning (re-
call we assume a single person occupation hypothe-
sis). Thus, despite the relative low performance of the
MLN, this model seems to be a good candidate to rep-
resent higher-level activities such as iADL [43] as it is
able to express complex semantic relations that purely
probabilistic models cannot express.

Regarding speech/non-speech audio information,
the results of the feature selection performed on both



datasets during the tuning phase suggested that the
most important features for activity recognition were
those related to the location of the inhabitant followed
by those related to speech/non-speech sound occur-
rences. This can also explain the role of acoustic infor-
mation on the final accuracy. Even when the most im-
portant aspect was the location of the inhabitant since
all the activities were performed in at most two rooms,
it was also difficult to disambiguate two different ac-
tivities that took place in the same room. The total ag-
itation in a room, which was highly dependent on the
number of sound events, was helpful to differentiate
between eating and cleaning, both performed in the
kitchen. In this particular case, the agitation produced
by room doors and windows were very similar, how-
ever it was the number of sounds which helped clas-
sifiers to differentiate the activities. Likewise, read-
ing and communication, when both performed in the
study, had similar settings on door contacts and light
states, but the number of speech events detected was
informative enough for good classification. Also, in the
MLN model, the weights of the rules relating acous-
tic information to some activities were large when the
association was relevant, as in the following examples:

-1.572 percentagetime_sound(win,LOW) -> class(win,EATING)
1.095 totalagitation(win,LOW) -> class(win,READING)
1.148 totalagitation(win,MEDIUM) -> class(win,PHONE)

In this example, the first rule indicates that an eating
activity is unlikely to generate a low amount of sound.
The second rule expresses the fact that a reading activ-
ity is likely to generate a low amount of sound while
the third rule shows that a phoning activity is expected
to generate many sound events. These rules are further
evidence that audio information is important for activ-
ity recognition.

6. Conclusion and future work

The study presented in this paper brings the follow-
ing contributions:

1. The paper presents a complete framework for on-
line AR, making it possible to summarise asyn-
chronous as well as continuous sampled signals
into temporal windows.

2. This framework has been evaluated on two smart
home datasets, available to the community [80,
27], integrating acoustic information, a kind of
information which has been rarely included in
previous studies of the domain. This evaluation

shows the interest of these acoustic features for
AR since they relate to the agitation level of the
occupants (noise) as well as their social interac-
tions (speech).

3. The AR task in the framework has been imple-
mented with different sequential and instance-
based models. This includes a recent model for
AR —the Markov Logic Network— in both se-
quential and non-sequential versions. The evalu-
ation exhibited strengths and weaknesses of each
of the models for the AR task.

4. The models were evaluated on the datasets men-
tioned above in an realistic way since windows
of unknown class are fed to the classifiers. More-
over, to avoid overfitting, a cross-validation tech-
nique was designed so as to exclude from the
learning set one of the participant records used
for testing.

Overall, Conditional Random Fields (CRF) are very
competitive for on-line activity recognition from non-
visual, audio and home automation sensors. Even
though non-sequential models such as Random Forests
show good performance on some datasets, the CRF
approach is more robust to the presence of activities
of Unknown class, since it showed the least decrease
in performance between the datasets with and without
the Unknown activities included. The performance of
each method was assessed in a Leave-One-Subject-
Out-Cross-Validation (LOSOCV), so that no data from
the same participant was used both in the training and
testing sets in the same trial. Hence, the genericity of
the model was not biased by the presence of data relat-
ing to the participant being used in that test.

Although the CRF has the best performance over-
all, generative models such as the HMM and the MLN
also perform well. These models show interesting fea-
tures as they are able to model each class indepen-
dently, and thus do not bias their learning towards the
largest class. Moreover, the Markov Logic Network
approach (MLN) is a statistical-relational model, and
so its logical structure could be learned in conjunction
with a priori knowledge provided by expert rules, so
that the model can benefit from highly expressive pre-
vious knowledge whilst also being able to handle un-
certainty.

The results presented in this study are based on two
different datasets that have not been acquired in the
same environment and that work with different sen-
sors. Although the datasets are different in terms of ac-
tivities considered, sensors and quantity of data, it has



been shown that the trend in the results from the two
sets are similar.

Finally, it has to be noted that, for some of the re-
sults, the standard deviation is quite large between sub-
jects. Some of the activities were represented with few
samples and the difference between subjects is then
more predominant. For future models, a generic model
that adapts to a participant with the first samples would
be a very good direction of research.

We plan to extend our work in two directions. On the
one hand, we would like to compare a window-based
approach, which loses semantics and temporality but
summarises the data well, against an event/state-based
approach, which keeps semantic and time information
but necessitates the use of even more robust models to
handle errors in the data stream. It would be interest-
ing to study the behaviour of the CRF and MLN ap-
proaches in these two cases. On the other hand, one
of the main problems in human activity learning is
the lack of annotated data. Indeed, in-lab recording
of scenarios allow an accurate annotation with many
participants, but it is not the case for real-world data.
Field experiments in real homes do provide more re-
alistic data but annotation is often performed by the
participants themselves and cannot easily be verified
[7]. Moreover, it is difficult to recruit participants who
would be willing to have surveillance technology set
up in their own home for experimental purposes. Be-
sides, collecting real-world data is highly expensive in
terms of time and resources. This is why we intend to
use learning methods that either deal with partially la-
belled data [75] or use a Universal Background Model
[64] so that a large amount of data, of which only a
small portion is annotated, can be used for classifica-
tion.
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