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Abstract: We explore several topologies of network of 1-D coupled chaotic mapping (mainly tent map and logistic map) 

in order to obtain good Chaotic Pseudo Random Number Generators (CPRNG). We focus first on two-dimensional 

networks. Two coupled maps are studied: RCTTL  non-alternative, and SCTTL  alternative. In this case, those 

networks are equivalent to 2-D maps which achieve excellent random properties and uniform density in the phase 

plane, thus guaranteeing maximum security when used for chaos based cryptography. 

Moreover an extra new nonlinear CPRNG: SC

2MTTL  is proposed. In addition, we explore higher dimension and the 

proposed ring coupling with injection mechanism enables us to achieve the strongest security requirements. 

 

Keywords: chaos, mappings, chaotic pseudo-random numbers, attractors. 

 

 

1   Introduction 

 

The tremendous development of new IT technologies, e-banking, e-purchasing, Internet of Things, etc. nowadays 

increases incessantly the needs for new and more secure cryptosystems. They are used for information encryption, 

pushing forward the demand for more efficient and secure pseudo-random number generators [1] in the scope of chaos 

based cryptography. Indeed, chaotic maps show up as perfect candidates, able to generate independent and secure 

pseudo-random sequences (used as information carriers or directly involved in the process of encryption/decryption). 

However, the majority of well-known chaotic maps are not naturally suitable for encryption [2] and most of them do not 

exhibit even satisfactory properties for encryption. To deal with this open problem, we propose the new idea to couple 

tent and logistic map, and to add a specific injection mechanism to capture the escaping orbits. Good results are 

demonstrated with two different kinds of coupling, simple and ring-coupling in dimension 2, thus increasing the 

complexity of the system. However as those results are not completely satisfactory, by exploring further topologies of 

coupled nonlinear maps, we propose an improved geometry of coupling which allows us to describe a new 2-D Chaotic 

Pseudo Random Number Generator (CPRNG). 

The various choices of the PRNG and crypto algorithms are nowadays necessary to provide continuous, reliable 

security system. We use here a software approach because it is easy to change cryptosystem to support protection, 

whereas hardware requires more time and big expenses. For instance, after the secure software application called Wi-Fi 

Protected Access (WPA) protocol has been broken, it was simply updated and no expensive hardware needed to be 

bought. 

Consequently, it is necessary to have an alternative way of secure information transmission. Chaos based methods are 

very promising for application in information security [3, 4]. One of the evidences is, that needs for data protection are 

increased and that encryption procedures requires generating pseudo-random sequences with very long periods. The 

chaotic maps when used in sterling way could generate not only chaotic number but also pseudo-random numbers as we 

will show here. 

Here we represent an original idea combining of tent and logistic maps for new chaotic PRNG design. Since, it is a very 

responsible and challenging task to design CPRNG applicable to cryptography, numerous analysis have been fulfilled. 

Essentially we focus on 2-D map as a more difficult task achieving excellent chaotic and randomness properties. The 3-

steps injection mechanism, ring- and auto-coupling techniques are used to achieve complex and uniform dynamics. We 

demonstrate excellently puzzled chaotic dynamics in the space exhibiting sufficient randomness properties only for 2-D 

map. The most significant tests were successfully passed. Moreover, higher dimensional systems are here proposed as 

well, they provide also good candidates for CPRNG. 
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In Sect. 2 we recall briefly the dawn and the maturity of chaos research. In Sect. 3 we explore topologies of network of 

coupled chaotic maps. In Sect. 4 we propose a new higher-dimensional map, before concluding is Sect. 5. 

2   The dawn and the maturity of chaos research 

 

The study of nonlinear dynamics is relatively recent with respect to the long historical development of the early 

mathematics since the Egyptian and the Greek civilization, even if one includes in this field of research the pioneer 

independent works of Julia [5] and Fatou [6] related to one-dimensional maps with a complex variable, near a century 

ago.  

Sharkovsky’s order was found in 1962 [7], albeit published in 1964. In France I. Gumosky and C. Mira began their 

mathematical researches in 1958 [8], they developed very complicated studies of iterations. One of the best known 

formulas they published is: 

 

2
1

2

1 1

2 1
1

n n n

n n n

x f ( x ) by , x
, with f ( x ) ax ( a)

y f ( x ) x , x



 

 
  

  
,   (1) 

 

which can be considered as a non-autonomous mapping from the plane 2
R  into 2

R exhibiting aesthetic chaos (Figs. 

1, 2). Slights change in the parameter value leads to very different shapes. 

 

 
 

 

Figure 1: Gumowsky-Mira attractor for the parameter value: a = -0.918, b = 0.9 . 

 

 

 
 

Figure 2: the same attractor for the parameter value: a = -0.93333, b = 0.92768. 
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In Japan the Hayashi’ School (with disciples like Ikeda, Ueda and Kawakami) few years before were motivated by 

applications to electric and electronic circuits. The Ikeda attractor 

 

1

2 2

1

1 6
0 4

1

n n n n n

n

n n n n n n n

x u( x cost y sint ),
, with t . ,

y u( x sint y cost ), x y





  
 

   
   (2) 

 

has a chaotic attractor for u 0.6  [9] (Fig. 3). 

 

 
 

Figure 3: Ikeda attractor (from [9]) 

 

In 1983 Chua invented his famous electronic circuit [10] exhibiting a chaotic strange attractor on oscilloscope screen. 

Since then, thousand of papers have been published on this general topic; however the main trend of mathematics is 

slowness, because any progress is based on rigorous proof. Numerous problems are still unsolved such as the simple 

one: does Hénon map [11] possess a strange attractor rigorously proved? 

Nevertheless, in spite of this lack of rigorous mathematical results, nowadays engineers are actively working on 

application of chaos for several purposes: global optimization, genetic algorithms, CPRNG (Chaotic Pseudo Random 

Number Generators), cryptography, etc. They use non linear maps for practical applications without the need of 

sophisticated theorems. 

 

Dynamical systems which present mixing behavior and that are highly sensitive to initial conditions are called chaotic. 

Small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely 

diverging outcomes for chaotic systems This effect popularly known as the as the butterfly effect, renders long-term 

prediction impossible in general. This happens even though these systems are deterministic, meaning that their future 

behavior is fully determined by their initial conditions, with no random elements involved. In other words, the 

deterministic nature of these systems does not make them predictable. Mastering the global properties of those 

dynamical systems is today a challenging issue we try to fix exploring several topologies of network of coupled maps. 

 

3   Exploring topologies of network of coupled chaotic maps 

 

During the past Mendel 2014 conference, we have thoroughly described the most known 1-D and 2-D dynamical 

systems [12]. In this section we consider only two 1-D maps: the logistic map 

 

   21f ( x ) L ( x ) x          (3) 

associated to the dynamical system 

 

              
1n nx f ( x )        (4) 

and the symmetric tent map 

  1f ( x ) T ( x ) x          (5) 
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In both cases,   is a control parameter that has impact to chaotic degree, and both mappings are sending the one-

dimensional interval [-1, 1] into itself. 

Those two maps have also been fully explored in the hope of generating pseudorandom number easily [13]. However 

the collapsing of iterates of dynamical systems or at least the existence of very short periodic orbits, their non constant 

invariant measure, and the easily recognized shape of the function in the phase should space, should lead to avoid the 

use of such one-dimensional map (logistic, baker, or tent, etc.) or two dimensional map (Hénon, standard or Belykh, 

etc.) as a pseudo-random number generator (see [14] for a survey). However, the very simple implementation in 

computer program of chaotic dynamical systems led some authors to use it as a base of cryptosystem [15, 16]. They are 

topologically conjugate, that means they have similar topological properties (distribution, chaoticity, etc.) however due 

to the structure of numbers in computer realization their numerical behavior differs drastically. Therefore the original 

idea here is to combine features of tent (T )
 and logistic (L )

maps to achieve new map with improved properties, 

trough combination in several topologies of network. An extended study of Sec. 3 can be found in [17]. 

Looking to both equations (3) and (5) we can inverse the shape of the graph of the tent map T on the step of logistic 

map L. Thus, our proposition has the form 

 
2 2f ( x ) TL ( x ) x x ( x x )             (6) 

 

Recall that both logistic and tent maps are never used in cryptography because they have weak security (collapsing 

effect) [18, 19] if applied alone. Thus, systems are often used in modified form to construct CPRNG [20, 21]. The 

system [22] (Lozi & al.) provides method to increase randomness properties of the tent map over its coupling. 

 

Nevertheless in another way, we propose to couple T
 map over combination with TL

 map (6). When used in more 

than one dimension, TL
 map can be considered as a two variable map 

 

      1 2 1 2 2( ) ( ) ( ) ( )TL ( x ,x ) ( x ( x ) )        (7) 

Hence it possible to define a mapping 
p p

M : J J
p

 where  p pp
J 1,1 R    
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
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    
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    
    
           

    (8) 

 
Note that, the system dynamics is unstable and trajectories quickly spread out. Therefore, to solve the problem of 

holding dynamics in the torus  p pp
J 1,1 R    the following injection mechanism has to be used: 

 

1

1

1 2

1 2

( i )

n

( i )

n

if ( x ) then add

if ( x ) then substract





  




     (9) 

hence for 1 i p  , points come back from  p
3,3 to  p

1,1 . 

Used in conjunction with T
 the TL

 function allows to establish mutual influence between system states. The 

function is attractive because it performs contraction and stretching distance between states improving chaotic 

distribution. Thus, the TL
 function is a powerful tool to change dynamics. 

The coupling of the simple states has excellent effect on chaos achieving, because: 

- Simple states interact with global system dynamics, being a part of it. 

- The states interaction has the global effect. 

Hence, if we use TL
 to make impact on dynamics of the simple maps then excellent effect on chaoticity and 

randomness could be achieved. The proposed function improves complexity of a simple map. In order to study the 

received system we use a graphical approach, however other theoretical assessing functions are also involved. 
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Note that the system (8) can be seen in the scope of a general point of view, introducing constants k
i
 which generalize 

considered topologies. It is called alternative if k
i
 = -1

i
 or k

i
 = -1

i+1
, 1 i p  , or non-alternative if k

i
 = +1, 1 i p  ; or 

k
i
 = -1, 1 i p  . It can be a mix of alternative and non-alternative if k

i
 = +1 or -1 randomly. 

 
(1) 1 (1) (2)(1) (1)

1
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1
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1
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
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   (10)  

 

3.1   2-D topologies 

 

The initial purpose of new CPRNG design was to obtain excellent uniform distribution, successfully passing 

randomness and chaoticity tests. Thus we propose to consider firstly two 2-D models: alternative (k
1
 = -1; k

2
 = 1) and 

non-alternative (k
1
 = k

2
 = 1). However, coupling between states by TL

 can be made in different ways: 

 

- Ring coupling with two choices 

 

( 1 ) ( 2 )T ( x ) L ( x )( 1 ) ( 2 )RC
TL ( x , x )

( 2 ) ( 1 )T ( x ) L ( x )

 


 




 
 

     (11) 

 

or 

 

( 2 ) ( 1 )T ( x ) L ( x )( 2 ) ( 1 )RC
TL ( x , x )

( 1 ) ( 2 )T ( x ) L ( x )

 


 




 
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     (12) 

 

- Simple coupling with also two choices 

 

( 1 ) ( 2 )T ( x ) L ( x )( 1 ) ( 2 )SC
TL ( x , x )

( 1 ) ( 2 )T ( x ) L ( x )

 


 




 
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     (13) 

 

or 

 

( 2 ) ( 1 )T ( x ) L ( x )( 2 ) ( 1 )SC
TL ( x , x )

( 2 ) ( 1 )T ( x ) L ( x )

 


 




 
 

     (14) 

 

The general form of the new 2-D map we consider is as follow: 

 

        

( 1 ) ( 1 ) (i) (j)1( 1 ) x T ( x ) k TL (x ,x )x n n nn n 1M
p ( 2 ) ( 2 ) (i') (j')( 2 ) 2x x T ( x ) k TL (x ,x )n n nn 1

 

 

                    

    (15) 

 

 

with i, j; i’, j’ = 1 or 2 and TL
 being either RCTL

or SCTL
. 

Remark: Ring-coupling can be expected to higher dimension but not the single case because we obtain the same 

expression of the function. However, it is undesirable to use 
( 1 ) ( 2 )SC

TL ( x , x )


because (13) gives the trivial result: 
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( 1 ) ( 1 ) ( 1 ) ( 2 ) ( 2 )1 1( 1 ) x T ( x ) k (T (x ) L (x )) k L (x )x n n n nn n 1M
p ( 2 ) ( 2 ) ( 1 ) ( 2 ) ( 2 )( 2 ) 2 2x x T ( x ) k (T (x ) L (x )) k L (x )n n n nn 1

   

   

                          

.   (16) 

 

If one uses the 
( 2 ) ( 1 )RC

TL ( x , x )


 alternative system then one of the states will have more “power” than another one, 

loosing good distribution of point property. For the same reason 
( 1 ) ( 2 )SC

TL ( x , x )


 or 
( 2 ) ( 1 )SC

TL ( x , x )


non-

alternative (k = 1) are not recommended to be used. 

Therefore, we will consider only two 2-D systems: 
( 1 ) ( 2 )RC

TTL ( x , x )
n n

non-alternative 

 

( 1 ) ( 1 ) ( 2 ) ( 1 ) 2x 1 x ( x ( x ) )n n nn 1RC
TTL

( 2 ) ( 2 ) ( 1 ) ( 2 ) 2x 1 x ( x ( x ) )n n nn 1

 


 


    

 
    



    (17) 

and 
( 1 ) ( 2 )SC

TTL ( x , x )
n n

alternative 

 

( 1 ) ( 1 ) ( 1 ) ( 2 ) 2x 1 x ( x ( x ) )n n nn 1SC
TTL

( 2 ) ( 2 ) ( 1 ) ( 2 ) 2x 1 x ( x ( x ) )n n nn 1

 


 


    

 
    



    (18) 

 

Both systems were selected because they have balanced contraction and stretching process between states, allowing to 

achieve uniform distribution of the chaotic dynamics. 

 

3.2   Randomness study of the new maps
RC

TTL


 and 
SC

TTL


 

We are now assessing the randomness of both selected maps. The associated dynamical system is considered to be 

random and could be applied to cryptosystems if the chaotic generator meets the requirements 1-8 which are described 

on Fig. 4. If one of the criterions is not satisfied the behavior is less random than expected. 

 

 

 
 

Figure 4: The main criteria for PRNG robustness (from [17]) 

 

 

Thus, to study the dependency to the parameter  , a bifurcation diagram is drawn for which 9,000 points are plotted 

for each value of the  parameter. The graphs look the same either for 
( 1 )

x or 
( 2 )

x . 
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Figure 5 (left): Bifurcation diagram of 2-D new map 
RC

TTL


 non alternative (17)  

Figure 6 (right): Bifurcation diagram of 2-D new map 
SC

TTL


 alternative (18)  

 

For both graphs starting from 0   to 0 25.  , we can observe a period 1 (i.e. a fixed point). Then the steady-state 

response undergoes a so-called pitchfork bifurcation to period 2. Following bifurcation undergoes multiple periods. At 

higher   values, the behavior is generally chaotic. However, for 
RC

TTL


near 1 1.   periodic windows appear. The 

subsequent intervals show perfect chaotic dynamics. 

A complementary study of chaos is the graph of the largest Lyapunov exponent which is a measure of the system 

sensitivity to initial conditions. When this exponent is strictly positive, the system exhibits chaotic behavior. 

 

 

      
 

Figure 7 (left): Largest Lyapunov exponent of 2-D new map 
RC

TTL


 non alternative (17)  

Figure 8 (right): Largest Lyapunov exponent of 2-D new map 
SC

TTL


 alternative (18)  

Graphs of the Lyapunov exponent are in exact agreement with bifurcations ones, the strongest chaos arises at 2  . 

Therefore we will continue our study fixing the parameter to this value. On the graphs for any given initial point x0 

trajectories look like chaotic. Hence, to be more accurate, we have to study the behaviour of iterated points in phase 

space and phase delay. 
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Figure 9 (left): Phase space behaviour of 
RC

TTL
2

 non alternative (17), plot of 20,000 points 

Figure 10 (right): Phase space behaviour of 
SC

TTL
2

 alternative (18), plot of 20,000 points 

 

To plot the attractor Figs. 9 and 10, 30,000 points have been generated, of which 10,000 points of the transient regime 

have been cut off. 

The graphs of the attractor in phase space for 
RC

TTL


 non alternative (Fig. 9) and 
SC

TTL


alternative (Fig. 10) maps are 

quite different. The first one has well scattered points on all the patterns, but there are some more “concentrated” 

regions forming curves on the graph. We will search understand why. Without the injection mechanism, points are 

scattered in the square  23,3  (Fig. 11a). Among the 20,000 generated points, 77 % are scattered out of the square

 21,1 . On the first step of injection mechanism (9), 69% points are injected to the rectangle    1,1 3,3    (Fig. 11b) 

after passing the second injection step (Fig. 11c) all points are driven base to the square  21,1  (Fig. 9). Therefore 

mechanism adds non-linearity and complexity to the system which is an advantage from the security point of view, in 

the case of cryptographic use. 

 

 

   
 

  (a)            (b)                 (c) 

 

Figure 11 (a): scattering of points by
RC

TTL
2

, plot of 20,000 points  

Figure 11 (b): first step of injection mechanism (9) 

Figure 11 (c): second step of injection mechanism (9) 
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  (a)              (b)                    (c) 

Figure 12 (a): scattering of points by
SC

TTL
2

, plot of 20,000 points  

Figure 12 (b): first step of injection mechanism (9) 

Figure 12 (c): second step of injection mechanism (9) 

 

The graphs of the attractor in phase space for 
SC

TTL
2

 alternative map looks uniformly distributed on the square  21,1  

without any visible concentrated regions (Fig. 10). The injection mechanism impact on the point distribution is given on 

the Fig. 12. 

 

3.3   A new 2-D chaotic PRNG 

 

Considering the results of section 3.2 it seems possible to improve the randomness of the 2-D topology. We observe that 

two regions (top-green and right-red) on the Fig. 12b could be pretty connected. First, let us rewrite the mapping 
SC

TTL


alternative (18) where 2   as follow: 

 

( 1 ) ( 2 )

n n

( 1 ) ( 2 ) ( 1 )2x 1 2( x ) ) 4 xn nn 1SC
TTL (

2 ( 2 ) ( 2 ) ( 1 ) ( 2 )2x 1 2( x ) ) 2( x x )n n nn 1

x ,x )


   

 
    



    (19) 

 

The first problem is that top green colored region occurs after injection is applied. Thus, we develop the system (19) in 

such way that green coloured region “stays” in such position without injection mechanism. Secondly, we need to reduce 

the width of the region. Evidently, it is possible to achieve this need by reducing the impact of the state x
1
, with the new 

following map: 

 

( 1 ) ( 2 )

n n

( 1 ) ( 2 ) ( 1 )2x 1 2( x ) ) 2 xn nn 1SC
MTTL (

2 ( 2 ) ( 2 ) ( 1 ) ( 2 )2x 1 2( x ) 2( x x )n n nn 1

x ,x )


   

 
    



     (20) 

 

and the injection mechanism (9) is used as well, but restricted to 3 phases: 

 
1

1

2

1

2

1

1 2

1 2

1 2

( )

n

( )

n

( )

n

if ( x ) then substract

if ( x ) then add

if ( x ) then substract







 


 
 

     (21) 

 

The results of the modifications are demonstrated on Figs. 13, 14 and 15. The injection mechanism in 3 phases (Fig. 13) 

pulled regions in an excellent way. The techniques used, greatly improve the points density in the phase space (Figs. 14, 

15) where the plotting of 10
9
 points are generated. The point distribution of the attractor in phase delay is quite good as 

well (Fig. 16). Moreover, the largest Lyapunov exponent is equal to 0.5905 indicating a strong chaotic behaviour. 

NIST tests are used to verify randomness and system capability to resist main attacks. They require only binary 

sequences, thus 
64 10  points were generated, the first 

55 10 were cut off. The rest of the sequence was converted to 
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binary form according to the standard IEEE-754 (32 bit single precision floats). Both states of the generator 

successfully passed NIST tests demonstrating strong randomness being robustness against numerous statistical attacks 

(Fig. 17). Moreover, we can say that generated sequences look like truly random. Thus, if the adversary looks at the 

sequence it will be difficult to distinguish it from a truly random generator. 

 

  
 

Figure 13: Injection mechanism (21) of 
SC

MTTL
2

 alternative map 

 

 

 
 

Figure 14: Approximate density function of 
SC

MTTL
2

 alternative map, which is bounded in a neighbor of 2.5 0.04  



Published in proceedings of MENDEL 2015, 21st International Conference on Soft Computing, Mendel Series Volume 

2015, June 23-25, Brno, Czech Republic, Matousek Radek Ed. ISSN 1803-3814, pp. 223-236 

 

11 

 

 

 
 

Figure 15 (left): Approximate density function of 
SC

MTTL
2

 alternative map, on the 
( 1 ) ( 2 )

( x , x )  plane  

Figure 16 (right): Approximate density function of 
SC

MTTL
2

 alternative map, on the phase delay 
( 1 ) ( 1 )

( x , x )
n n 1

 plane  

 

 

       (a) 

 

       (b) 
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Figure 17: 
SC

MTTL
2

 alternative map successfully passed NIST tests (a) 
( 1 )

x , (b) 
( 1 )

x  

4   A new higher-dimensional map 

 

Higher dimensional systems allow achieving the best randomness, chaoticity and point distribution, because there are 

more perturbations and nonlinear mixing in it. Usually, 3 or more dimensions are enough to create robust random 

sequences. Thus, it is an advantage if the system could increase its dimensions. Since, 
SC

MTTL
2

 alternative map cannot 

be nested in higher dimension, we describe how to improve randomness, best points distribution and more complex 

dynamics than 
( 2 ) ( 1 )RC

TTL ( x , x )
2

alternative map. 

The best way to achieve randomness from chaos is to couple states with auto and ring-coupling [23]. After applying the 

conditions the higher dimension map takes form as follow: 

 

( 1 ) ( 1 ) ( 2 ) ( 1 ) 2x 1 2 x 2( x ( x ) )n n nn 1

( 2 ) ( 2 ) ( 3 ) ( 2 ) 2RC x 1 2 x 2( x ( x ) )n n nn 1TTL
2

(p) (p) ( 1 ) (p) 2x 1 2 x 2( x ( x ) )n n nn 1


    


    

 


    



    (22) 

 

The injection is applied as well by verifying each of the state for diverging, in the case if, the injection is used. 

Note, each of the states has to satisfy requirements and chaoticity. Therefore, the 3-D and 4-D system were studied for 

criteria 1-8 (Fig. 4) independently for the each states and in correlation between them. All of the tests have been 

successfully passed with improving results whereas dimension is higher. Here we demonstrate only more significant 

and important tests. 

 

 
 

(a) 

 

 
 

(b) 

Fig. 1.25 NIST tests for (a) 3-D 
RC

TTL
2

 alternative map; (b) 4-D 
RC

TTL
2

alternative map 
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Table 1 Numerical results of the error point distribution for 3-D 
RC

TTL
2

alternative map 

 

Table 2 Numerical results of the error point distribution for 4-D 
RC

TTL
2

alternative map 

 

 
 

5   Conclusion 

 
In this paper we have proposed the original idea to couple two well-known chaotic maps (tent and logistic one), which 
considered separately - don’t exhibit the required features for encryption purposes. However, the new coupling changed 
qualitatively the overall system behavior, because the maps used with injection mechanism and coupling between states 
increas their complexity. 
We have explored several topologies and finally proposed a new 2-D CPRNG. The proposed model with injection 

mechanism allows to puzzle perfectly the pieces of the chaotic attractor, like a true random generator. To achieve the 

best distribution in the phase space, the modified form 
SC

MTTL
2

alternative map has been proposed. 
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The new map exhibits excellent features due to the injection mechanism and enables the uniform density in the state 

space. The system exhibits strong nonlinear dynamics, demonstrating great sensitivity to initial conditions. It generates 

an infinite range of intensive chaotic behavior with large positive Lyapunov exponent values. Moreover, 
SC

MTTL
2

successfully passed all required tests: cross-correlation, autocorrelation, LLE, NIST tests, uniform attractor on the phase 

space and phase delay. The system analysis and the dynamics evolution by bifurcation diagram and topological mixing 

proved the complex behavior. The system orbits exhibited complex behavior with perfect mixing. The study 

demonstrated totally unpredictable dynamics making the system strong-potential candidate for high-security 

applications. 

Finally, the dimension of the 
RC

TTL
2

non-alternative map is easily increased whenever it is necessary to reach the 

strongest security requirements as shown in Sect. 4.  
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