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We explore several topologies of network of 1-D coupled chaotic mapping (mainly tent map and logistic map) in order to obtain good Chaotic Pseudo Random Number Generators (CPRNG). We focus first on two-dimensional networks. Two coupled maps are studied: RC TTL non-alternative, and SC TTL alternative. In this case, those networks are equivalent to 2-D maps which achieve excellent random properties and uniform density in the phase plane, thus guaranteeing maximum security when used for chaos based cryptography. Moreover an extra new nonlinear CPRNG: SC 2

MTTL is proposed. In addition, we explore higher dimension and the proposed ring coupling with injection mechanism enables us to achieve the strongest security requirements.

Introduction

The tremendous development of new IT technologies, e-banking, e-purchasing, Internet of Things, etc. nowadays increases incessantly the needs for new and more secure cryptosystems. They are used for information encryption, pushing forward the demand for more efficient and secure pseudo-random number generators [START_REF] Menezes | Handbook of applied cryptography[END_REF] in the scope of chaos based cryptography. Indeed, chaotic maps show up as perfect candidates, able to generate independent and secure pseudo-random sequences (used as information carriers or directly involved in the process of encryption/decryption). However, the majority of well-known chaotic maps are not naturally suitable for encryption [START_REF] Li | Period extension and randomness enhancement using high-throughput reseeding-mixing PRNG[END_REF] and most of them do not exhibit even satisfactory properties for encryption. To deal with this open problem, we propose the new idea to couple tent and logistic map, and to add a specific injection mechanism to capture the escaping orbits. Good results are demonstrated with two different kinds of coupling, simple and ring-coupling in dimension 2, thus increasing the complexity of the system. However as those results are not completely satisfactory, by exploring further topologies of coupled nonlinear maps, we propose an improved geometry of coupling which allows us to describe a new 2-D Chaotic Pseudo Random Number Generator (CPRNG). The various choices of the PRNG and crypto algorithms are nowadays necessary to provide continuous, reliable security system. We use here a software approach because it is easy to change cryptosystem to support protection, whereas hardware requires more time and big expenses. For instance, after the secure software application called Wi-Fi Protected Access (WPA) protocol has been broken, it was simply updated and no expensive hardware needed to be bought. Consequently, it is necessary to have an alternative way of secure information transmission. Chaos based methods are very promising for application in information security [START_REF] Lozi | Noise-resisting ciphering based on a chaotic multi-stream pseudorandom number generator[END_REF][START_REF] Noura | Design of a fast and robust chaos-based cryptosystem for image encryption[END_REF]. One of the evidences is, that needs for data protection are increased and that encryption procedures requires generating pseudo-random sequences with very long periods. The chaotic maps when used in sterling way could generate not only chaotic number but also pseudo-random numbers as we will show here. Here we represent an original idea combining of tent and logistic maps for new chaotic PRNG design. Since, it is a very responsible and challenging task to design CPRNG applicable to cryptography, numerous analysis have been fulfilled. Essentially we focus on 2-D map as a more difficult task achieving excellent chaotic and randomness properties. The 3steps injection mechanism, ring-and auto-coupling techniques are used to achieve complex and uniform dynamics. We demonstrate excellently puzzled chaotic dynamics in the space exhibiting sufficient randomness properties only for 2-D map. The most significant tests were successfully passed. Moreover, higher dimensional systems are here proposed as well, they provide also good candidates for CPRNG. In Sect. 2 we recall briefly the dawn and the maturity of chaos research. In Sect. 3 we explore topologies of network of coupled chaotic maps. In Sect. 4 we propose a new higher-dimensional map, before concluding is Sect. 5.

The dawn and the maturity of chaos research

The study of nonlinear dynamics is relatively recent with respect to the long historical development of the early mathematics since the Egyptian and the Greek civilization, even if one includes in this field of research the pioneer independent works of Julia [START_REF] Julia | Mémoire sur l'itération des fonctions rationnelles[END_REF] and Fatou [START_REF] Fatou | Sur l'itération des fonctions transcendantes entières[END_REF] related to one-dimensional maps with a complex variable, near a century ago. Sharkovsky's order was found in 1962 [START_REF] Sharkovskiǐ | Coexistence of cycles of a continuous map of the line into itself[END_REF], albeit published in 1964. In France I. Gumosky and C. Mira began their mathematical researches in 1958 [START_REF] Gumowski | Recurrence and Discrete Dynamics systems[END_REF], they developed very complicated studies of iterations. One of the best known formulas they published is: [START_REF] Nejati | A realizable modified tent map for true random number generation[END_REF] 1
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which can be considered as a non-autonomous mapping from the plane In Japan the Hayashi' School (with disciples like Ikeda, Ueda and Kawakami) few years before were motivated by applications to electric and electronic circuits. The Ikeda attractor (2) has a chaotic attractor for u 0.6 

[9] (Fig. 3).

Figure 3: Ikeda attractor (from [START_REF] Sprott | Can a Monkey with a Computer Create Art? Nonlinear Dynamics[END_REF])

In 1983 Chua invented his famous electronic circuit [START_REF] Chua | The Double Scroll Family[END_REF] exhibiting a chaotic strange attractor on oscilloscope screen. Since then, thousand of papers have been published on this general topic; however the main trend of mathematics is slowness, because any progress is based on rigorous proof. Numerous problems are still unsolved such as the simple one: does Hénon map [START_REF] Hénon | A Two-dimensional mapping with a strange attractor[END_REF] possess a strange attractor rigorously proved? Nevertheless, in spite of this lack of rigorous mathematical results, nowadays engineers are actively working on application of chaos for several purposes: global optimization, genetic algorithms, CPRNG (Chaotic Pseudo Random Number Generators), cryptography, etc. They use non linear maps for practical applications without the need of sophisticated theorems.

Dynamical systems which present mixing behavior and that are highly sensitive to initial conditions are called chaotic. Small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems This effect popularly known as the as the butterfly effect, renders long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In other words, the deterministic nature of these systems does not make them predictable. Mastering the global properties of those dynamical systems is today a challenging issue we try to fix exploring several topologies of network of coupled maps.

Exploring topologies of network of coupled chaotic maps

During the past Mendel 2014 conference, we have thoroughly described the most known 1-D and 2-D dynamical systems [START_REF] Lozi | Mathematical Chaotic circuits: an efficient tool for shaping numerous architectures of mixed Chaotic/pseudo random number generator[END_REF]. In this section we consider only two 1-D maps: the logistic map
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associated to the dynamical system
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and the symmetric tent map
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In both cases,  is a control parameter that has impact to chaotic degree, and both mappings are sending the one- dimensional interval [-1, 1] into itself. Those two maps have also been fully explored in the hope of generating pseudorandom number easily [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. However the collapsing of iterates of dynamical systems or at least the existence of very short periodic orbits, their non constant invariant measure, and the easily recognized shape of the function in the phase should space, should lead to avoid the use of such one-dimensional map (logistic, baker, or tent, etc.) or two dimensional map (Hénon, standard or Belykh, etc.) as a pseudo-random number generator (see [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems?[END_REF] for a survey). However, the very simple implementation in computer program of chaotic dynamical systems led some authors to use it as a base of cryptosystem [START_REF] Baptista | Cryptography with chaos[END_REF][START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF]. They are topologically conjugate, that means they have similar topological properties (distribution, chaoticity, etc.) however due to the structure of numbers in computer realization their numerical behavior differs drastically. Therefore the original idea here is to combine features of tent (T )

 and logistic (L )

 maps to achieve new map with improved properties, trough combination in several topologies of network. An extended study of Sec. 3 can be found in [START_REF] Garasym | New nonlinear CPRNG based on tent and logistic map[END_REF]. Looking to both equations ( 3) and ( 5) we can inverse the shape of the graph of the tent map T on the step of logistic map L. Thus, our proposition has the form
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Recall that both logistic and tent maps are never used in cryptography because they have weak security (collapsing effect) [START_REF] Lanford | Informal remarks on the orbit structure of discrete approximations to chaotic maps[END_REF][START_REF] Yuan | A: Collapsing of chaos in one dimensional maps[END_REF] if applied alone. Thus, systems are often used in modified form to construct CPRNG [START_REF] Wong | A modified chaotic cryptographic method[END_REF][START_REF] Nejati | A realizable modified tent map for true random number generation[END_REF]. The system [START_REF] Rojas | New alternate ring-coupled map for multirandom number generation[END_REF] (Lozi & al.) provides method to increase randomness properties of the tent map over its coupling.

Nevertheless in another way, we propose to couple T  map over combination with TL  map (6). When used in more than one dimension, TL  map can be considered as a two variable map
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Hence it possible to define a mapping
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Note that, the system dynamics is unstable and trajectories quickly spread out. Therefore, to solve the problem of holding dynamics in the torus
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the following injection mechanism has to be used:

1 1 1 2 1 2 ( i ) n ( i ) n if ( x ) then add if ( x ) then substract        (9) hence for 1 i p  , points come back from   p 3,3  to   p 1,1  .
Used in conjunction with T  the TL  function allows to establish mutual influence between system states. The function is attractive because it performs contraction and stretching distance between states improving chaotic distribution. Thus, the TL  function is a powerful tool to change dynamics.

The coupling of the simple states has excellent effect on chaos achieving, because:

-Simple states interact with global system dynamics, being a part of it.

-The states interaction has the global effect.

Hence, if we use TL  to make impact on dynamics of the simple maps then excellent effect on chaoticity and randomness could be achieved. The proposed function improves complexity of a simple map. In order to study the received system we use a graphical approach, however other theoretical assessing functions are also involved.

Note that the system (8) can be seen in the scope of a general point of view, introducing constants k i which generalize considered topologies. It is called alternative if

k i = -1 i or k i = -1 i+1 , 1 i p  , or non-alternative if k i = +1, 1 i p  ; or k i = -1, 1 i p  .
It can be a mix of alternative and non-alternative if k i = +1 or -1 randomly.
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2-D topologies

The initial purpose of new CPRNG design was to obtain excellent uniform distribution, successfully passing randomness and chaoticity tests. Thus we propose to consider firstly two 2-D models: alternative (k 1 = -1; k 2 = 1) and non-alternative (k 1 = k 2 = 1). However, coupling between states by TL  can be made in different ways:

-Ring coupling with two choices

( 1 ) ( 2 ) T ( x ) L ( x ) ( 1 ) ( 2 ) RC TL ( x , x ) ( 2 ) ( 1 ) T ( x ) L ( x )            (11) or ( 2 ) ( 1 ) T ( x ) L ( x ) ( 2 ) ( 1 ) RC TL ( x , x ) ( 1 ) ( 2 ) T ( x ) L ( x )            (12) 
-Simple coupling with also two choices [START_REF] Menezes | Handbook of applied cryptography[END_REF] ( 2 )

T ( x ) L ( x ) ( 1 ) ( 2 ) SC TL ( x , x ) ( 1 ) ( 2 ) T ( x ) L ( x )            (13) or ( 2 ) ( 1 ) T ( x ) L ( x ) ( 2 ) ( 1 ) SC TL ( x , x ) ( 2 ) ( 1 ) T ( x ) L ( x )            (14)
The general form of the new 2-D map we consider is as follow:
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with i, j; i', j' = 1 or 2 and TL  being either RC TL  or SC TL  .

Remark: Ring-coupling can be expected to higher dimension but not the single case because we obtain the same expression of the function. However, it is undesirable to use

( 1 ) ( 2 ) SC TL ( x , x )
 because [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] gives the trivial result:
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If one uses the

( 2 ) ( 1 ) RC TL ( x , x )

 alternative system then one of the states will have more "power" than another one, loosing good distribution of point property. For the same reason

( 1 ) ( 2 ) SC TL ( x , x )  or ( 2 ) ( 1 ) SC TL ( x , x )  non- alternative (k = 1)
are not recommended to be used.

Therefore, we will consider only two 2-D systems:

( 1 ) ( 2 ) RC TTL ( x , x ) nn  non-alternative ( 1 ) ( 1 ) ( 2 ) ( 1 ) 2 x 1 x ( x ( x ) ) n n n n1 RC TTL ( 2 ) ( 2 ) ( 1 ) ( 2 ) 2 x 1 x ( x ( x ) ) n n n n1                      (17)
and

( 1 ) ( 2 ) SC TTL ( x , x ) nn  alternative ( 1 ) ( 1 ) ( 1 ) ( 2 ) 2 x 1 x ( x ( x ) ) n n n n1 SC TTL ( 2 ) ( 2 ) ( 1 ) ( 2 ) 2 x 1 x ( x ( x ) ) n n n n1                      (18)
Both systems were selected because they have balanced contraction and stretching process between states, allowing to achieve uniform distribution of the chaotic dynamics. 

Randomness study of the new maps



We are now assessing the randomness of both selected maps. The associated dynamical system is considered to be random and could be applied to cryptosystems if the chaotic generator meets the requirements 1-8 which are described on Fig. 4. If one of the criterions is not satisfied the behavior is less random than expected.

Figure 4: The main criteria for PRNG robustness (from [START_REF] Garasym | New nonlinear CPRNG based on tent and logistic map[END_REF]) Thus, to study the dependency to the parameter  , a bifurcation diagram is drawn for which 9,000 points are plotted for each value of the parameter. The graphs look the same either for , we can observe a period 1 (i.e. a fixed point). Then the steady-state response undergoes a so-called pitchfork bifurcation to period 2. Following bifurcation undergoes multiple periods. At higher  values, the behavior is generally chaotic. However, for RC TTL  near 11 .   periodic windows appear. The subsequent intervals show perfect chaotic dynamics. A complementary study of chaos is the graph of the largest Lyapunov exponent which is a measure of the system sensitivity to initial conditions. When this exponent is strictly positive, the system exhibits chaotic behavior. Therefore we will continue our study fixing the parameter to this value. On the graphs for any given point x 0 trajectories look like chaotic. Hence, to be more accurate, we have to study the behaviour of iterated points in phase space and phase delay. The graphs of the attractor in phase space for RC TTL  non alternative (Fig. 9) and SC TTL  alternative (Fig. 10) maps are quite different. The first one has well scattered points on all the patterns, but there are some more "concentrated" regions forming curves on the graph. We will search understand why. Without the injection mechanism, points are scattered in the square   2 3,3  (Fig. 11a). Among the 20,000 generated points, 77 % are scattered out of the square

  2 1,1 
. On the first step of injection mechanism (9), 69% points are injected to the rectangle    

1,1 3,3   
(Fig. 11b) after passing the second injection step (Fig. 11c) all points are driven base to the square   2 1,1  (Fig. 9). Therefore mechanism adds non-linearity and complexity to the system which is an advantage from the security point of view, in the case of cryptographic use. The graphs of the attractor in phase space for SC TTL 2 alternative map looks uniformly distributed on the square   2 1,1  without any visible concentrated regions (Fig. 10). The injection mechanism impact on the point distribution is given on the Fig. 12.

A new 2-D chaotic PRNG

Considering the results of section 3.2 it seems possible to improve the randomness of the 2-D topology. We observe that two regions (top-green and right-red) on the Fig. 12b could be pretty connected. First, let us rewrite the mapping SC TTL  alternative (18) where 2   as follow:

( 1 )

( 2 ) nn [START_REF] Menezes | Handbook of applied cryptography[END_REF] ( 2
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The first problem is that top green colored region occurs after injection is applied. Thus, we develop the system [START_REF] Yuan | A: Collapsing of chaos in one dimensional maps[END_REF] in such way that green coloured region "stays" in such position without injection mechanism. Secondly, we need to reduce the width of the region. Evidently, it is possible to achieve this need by reducing the impact of the state x 1 , with the new following map: [START_REF] Menezes | Handbook of applied cryptography[END_REF] ( 2 ) nn [START_REF] Menezes | Handbook of applied cryptography[END_REF] ( 2

) ( 1 ) 2 x 1 2( x ) ) 2 x nn n1 SC MTTL ( 2 ( 2 ) ( 2 ) ( 1 ) ( 2 ) 2 x 1 2( x ) 2( x x ) n n n n1 x ,x )                  (20)
and the injection mechanism ( 9) is used as well, but restricted to 3 phases:

1 1 2 1 2 1 1 2 1 2 1 2 () n () n () n if ( x ) then substract if ( x ) then add if ( x ) then substract            (21)
The results of the modifications are demonstrated on Figs. 13, 14 and 15. The injection mechanism in 3 phases (Fig. 13) pulled regions in an excellent way. The techniques used, greatly improve the points density in the phase space (Figs. [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems?[END_REF][START_REF] Baptista | Cryptography with chaos[END_REF] where the plotting of 10 9 points are generated. The point distribution of the attractor in phase delay is quite good as well (Fig. 16). Moreover, the largest Lyapunov exponent is equal to 0.5905 indicating a strong chaotic behaviour. NIST tests are used to verify randomness and system capability to resist main attacks. They require only binary sequences, thus binary form according to the standard IEEE-754 (32 bit single precision floats). Both states of the generator successfully passed NIST tests demonstrating strong randomness being robustness against numerous statistical attacks (Fig. 17). Moreover, we can say that generated sequences look like truly random. Thus, if the adversary looks at the sequence it will be difficult to distinguish it from a truly random generator. 

A new higher-dimensional map

Higher dimensional systems allow achieving the best randomness, chaoticity and point distribution, because there are more perturbations and nonlinear mixing in it. Usually, 3 or more dimensions are enough to create robust random sequences. Thus, it is an advantage if the system could increase its dimensions. Since, SC MTTL 2 alternative map cannot be nested in higher dimension, we describe how to improve randomness, best points distribution and more complex dynamics than

( 2 ) ( 1 ) RC TTL ( x , x ) 2 alternative map.
The best way to achieve randomness from chaos is to couple states with auto and ring-coupling [START_REF] Lozi | Emergence of randomness from chaos[END_REF]. After applying the conditions the higher dimension map takes form as follow:

( 1 ) ( 1 ) ( 2 ) ( 1 ) 2 x 1 2 x 2( x ( x ) ) n n n n1 ( 2 ) ( 2 ) ( 3 ) ( 2 ) 2 RC x 1 2 x 2( x ( x ) ) n n n n1 TTL 2 (p) (p) ( 1 ) (p) 2 x 1 2 x 2( x ( x ) ) n n n n1                            (22)
The injection is applied as well by verifying each of the state for diverging, in the case if, the injection is used. Note, each of the states has to satisfy requirements and chaoticity. Therefore, the 3-D and 4-D system were studied for criteria 1-8 (Fig. 4) independently for the each states and in correlation between them. All of the tests have been successfully passed with improving results whereas dimension is higher. Here we demonstrate only more significant and important tests. In this paper we have proposed the original idea to couple two well-known chaotic maps (tent and logistic one), which considered separately -don't exhibit the required features for encryption purposes. However, the new coupling changed qualitatively the overall system behavior, because the maps used with injection mechanism and coupling between states increas their complexity. We have explored several topologies and finally proposed a new 2-D CPRNG. The proposed model with injection mechanism allows to puzzle perfectly the pieces of the chaotic attractor, like a true random generator. To achieve the best distribution in the phase space, the modified form SC MTTL 2 alternative map has been proposed.

The new map exhibits excellent features due to the injection mechanism and enables the uniform density in the state space. The system exhibits strong nonlinear dynamics, demonstrating great sensitivity to initial conditions. It generates an infinite range of intensive chaotic behavior with large positive Lyapunov exponent values. Moreover,

SC MTTL 2

successfully passed all required tests: cross-correlation, autocorrelation, LLE, NIST tests, uniform attractor on the phase space and phase delay. The system analysis and the dynamics evolution by bifurcation diagram and topological mixing proved the complex behavior. The system orbits exhibited complex behavior with perfect mixing. The study demonstrated totally unpredictable dynamics making the system strong-potential candidate for high-security applications.

Finally, the dimension of the RC TTL 2 non-alternative map is easily increased whenever it is necessary to reach the strongest security requirements as shown in Sect. 4.
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