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Following the principles of Linked Data (LD), data providers are producing thousands of interlinked datasets in multiple domains including life science, government, social networking, media and publications. Federated query engines allow data consumers to query several datasets through a federation of SPARQL endpoints. However, data providers just receive subqueries resulting from the decomposition of the original federated query. Consequently, they do not know how their data are crossed with other datasets of the federation. In this paper, we propose FETA, a Federated quEry TrAcking system for LD. We consider that data providers collaborate by sharing their query logs. Then, from a federated log, FETA infers Basic Graph Patterns (BGPs) containing joined triple patterns, executed among endpoints. We experimented FETA with logs produced by FedBench queries executed with Anapsid and FedX federated query engines. Experiments show that FETA is able to infer BGPs of joined triple patterns with a good precision and recall.

Introduction

Linked Data (LD) interlinks massive amounts of data across the Web in multiple domains like life science, government, social networking, media and publications. Federated query engines [1-3, 5, 9, 11] allow data consumers to execute SPARQL queries over a decentralized federation of SPARQL endpoints maintained by LD providers. But, data providers are not aware of users' federated queries; they just observe subqueries they receive. Thus, they do not know when and which datasets are joined together in a single query. Consequently, the federation does not hold enough meta-information to ensure services, such as, efficient materialization to improve joins, activation of query optimization techniques, discovering data providers partnership, etc. Knowing how provided datasets are queried together is essential for tuning endpoints, justify return of investment or better organize collaboration among providers.

A simple solution for this problem is to consider that data consumers publish their federated queries. However, public federated queries cannot be considered as representative of real data usage because they may represent a small portion of really executed queries. Only logs give evidences about real execution of queries.

Thus, in this paper, we address the following problem: if data providers share their logs, can they infer the Basic Graph Patterns (BGP) of federated queries executed over their federation? Many works have focused on web log mining [START_REF] Mannila | Discovery of Frequent Episodes in Event Sequences[END_REF][START_REF] Mooney | Sequential Pattern Mining-Approaches and Algorithms[END_REF], but none has addressed reversing BGPs from a federated query log.

The main challenge is the concurrent execution of federated queries. If we find a function f , to reverse BGPs from isolated traces of one federated query, is f able to reverse the same BGP from traces of concurrent federated queries?

We propose FETA to implement f , a Federated quEry TrAcking system that computes BGPs from a federated log. Based on subqueries contained in the log, FETA deduces triple patterns and joins among triple patterns with a good precision and recall. Our main contributions are:

1. the definition of the problem of reversing BGPs from a federated log, 2. the FETA algorithm to reverse BGPs from federated logs, 3. an experimental study using federated queries of the benchmark FedBench1 .

From execution traces of these queries, FETA deduces BGPs under two scenarios, queries executed in isolation and in concurrence.

The paper is organized as follows. Section 2 introduces a motivating example and our problem statement. Section 3 presents FETA and its heuristics. Section 4 reports our experimental study. Section 5 presents related work. Finally, conclusions and future work are outlined in Section 6.

Motivating example and problem statement

In Figure 1, two data consumers, C 1 and C 2 , execute concurrently federated queries CD3 and CD4 of FedBench. They use Anapsid or FedX federated query engines to query a federation of SPARQL endpoints composed of LMDB, DBpedia InstanceTypes (IT), DBpedia InfoBox (IB) and NYTimes (NYT). Data providers hosting these endpoints receive only subqueries corresponding to the execution of physical plans of CD3 and CD4. For example, CD3 can be decomposed into {tp @IT 1 .(tp 2 .tp 3 ) @IB .(tp 4 .tp 5 ) @N Y T }, and NYT just observes tp 4 and tp 5 : it does not know these triple patterns are joined with tp 1 from IT and (tp 2 , tp 3 ) from IB. So, NYT does not know the real usage of data it provides.

More formally, we consider that an execution of a federated query F Q i produces a partially ordered sequence of subqueries SQ i represented by

E(F Q i ) = [SQ 1 , ..., SQ n ].
Subqueries are processed by endpoints of the federation at given times represented by timestamps. We suppose that endpoints' clocks are synchronized, i.e., timestamps of logs can be compared safely. qe i , is represented by E qei (F Q i ). In addition, we represent a concurrent execution of n federated queries by

E(F Q 1 ... F Q n )) = [SQ 1 , ..., SQ n ]
. This work addresses the following research question: if data providers share their logs, can they rebuild the BGPs annotated with the sources that evaluated each triple pattern? From the previous example, we aim to extract two BGPs: one corresponding to CD3 {tp @IT 1 .(tp 2 .tp 3 ) @IB .(tp 4 .tp 5 ) @N Y T } and another to CD4 {(tp 1 .tp 2 .tp 3 ) @LM DB .(tp 4 .tp 5 ) @N Y T }. Next definitions formalize this problem.

Definition 1 (BGPs' reversing). Given a federated log corresponding to the execution of one federated query

E(F Q i ), find a function f (E(F Q i ))
producing a set of BGPs {BGP 1 , ..., BGP n }, where each triple pattern is annotated with endpoints that evaluated it, such that f (E(F Q i )) approximates (≈) the BGPs existing in the original federated query. Thus, if we consider that BGP (

F Q i ) returns the set of BGPs of F Q i then f (E(F Q i )) ≈ BGP (F Q i ).
In our motivating example, if C 1 and C 2 have different IP addresses, then it is straightforward to apply the reversing function separately on each execution trace. However, in the worst case, if they share the same IP address, we expect that f (E(CD3 CD4)) ≈ f (E(CD3) ∪ f (E(CD4) as defined next.

Definition 2 (Resistance to concurrency). The reversing function f should guarantee that BGPs obtained from execution traces of isolated federated queries, approximate (≈) results from execution traces of concurrent federated queries:

f (E(F Q 1 )) ∪ ... ∪ (f (E(F Q n )) ≈ f (E(F Q 1 ... F Q n )).

FETA, a reversing function

Finding a reversing function f requires to join IRIs, literals or variables from different SPARQL subqueries. We propose FETA as a system of heuristics to implement the reversing function f . Figures 2a,2b present two endpoints, each providing some triples. Figure 2d has the federated log corresponding to the execution of queries Q 1 = SELECT ?z ?y W HERE {?z p1 o1 . ?z p2 ?y} and Q 2 = SELECT ?x ?y W HERE {?x p1 ?y}. Figure 2c shows reversing results according to different gap values described below. Depending on the gap, on verifications made, and concurrent traces, reversed BGPs are different. In the example of Figure 2c, if the gap has no limit, we obtain the BGP of Line 1, if the @ep1 s1 p1 o1 s2 p1 o1 s3 p1 o2 (a) EP1 @ep2 s1 p2 o3 s2 p2 o4

(b) EP2

Gap Reversed BGPs ∞ { (?x p1 ?y) @ep1 . (?x p2 ?y) @ep2 . (?z p1 ?y) @ep1 . (?z p2 ?y) @ep2 } 1 { ?x p1 ?y } @ep1 , { ?z p1 o1 } @ep1 , { s1 p2 ?y } @ep2 , { s2 p2 ?y } @ep2 2 { ?x p1 ?y } @ep1 , { (?z p1 o1) @ep1 . (?z p2 ?y) @ep2 } (c) Deducted BGPs.

Time Subquery Set of mappings

1 @ep1 sq 1 ={?x p1 ?y} Ω1={{x, s1}{y, o1},{x, s2}{y, o1},{x, s3}{y, o2}} 4 @ep1 sq 2 ={?z p1 o1} Ω2={{z, s1},{z, s2}} 6 @ep2 sq 3 ={s1 p2 ?y} Ω3={{y, o3}} 7 @ep2 sq 4 ={s2 p2 ?y} Ω4={{y, o4}}

(d) Federated log. gap is 1, only sq 3 and sq 4 can be analyzed together (cf. Line 2). As the join on ?y gives no results, a join is discarded. If the gap is 2, then the reversed BGPs are the expected ones (cf. Line 3). We assume pairwise disjoint infinite sets B, L, I (blank nodes, literals, and IRIs respectively). We also assume an infinite set S of variables. A mapping µ is a partial, non surjective and non injective, function that maps variables to RDF terms µ : S → BLI. A set of mappings is represented by Ω. See [START_REF] Pérez | Semantics and Complexity of SPARQL[END_REF] for more explanations. Next, we present the input and output of FETA.

Given: a federation of endpoints Φ, a federated input log Q = { q, t, ep, ip }, a federated output log A = { {µ}, t, ep, ip }, and a user-defined gap, Find G = { g, ip }, the set of connected graphs corresponding to the BGPs of the federated queries processed by Φ, such that:

g = V, E is an undirected connected graph where V = {tp} is an unordered set of distinct triple patterns, (annotated with the endpoints that processed tp and T the set of timestamps given by the endpoints), and E is an unordered set of edges representing the joins between triple patterns. ip is the IP address of the client query engine that sent g.

FETA algorithms

FETA has 4 main phases. From input logs and a predefined gap, a graph of subqueries G is constructed in the first phase. Then, this graph is reduced and transformed into a graph of triple patterns G, where, from a big set of subqueries, frequently only one triple pattern is obtained. In a third phase, joins between triple patterns executed through nested-loops are identified. Finally, symmetric hash joins, possibly made at the federated query engine, are identified. Next sections present these algorithms at high level of abstraction.

Graph Construction: This phase executes two main functions, (a) Log-Preparation and (b) CommonJoinCondition. This module builds G = {g}, a set of graphs, where g = V , E , ip is an undirected connected graph, with different semantics than G. In G, nodes are queries and arcs are labeled with the number of common variables between each pair of queries. LogPreparation, prepares and cleans the input log. ASK queries are suppressed and identical subqueries or differing only in their offset values are aggregated in one single query. Timestamp of such aggregated query becomes an interval. CommonJoinCondition, incrementally constructs G, by joining queries depending on the given gap and having common projected variables or triple patterns with common IRI or literal on their subjects or objects. In general, subqueries are joined on their common projected variables. However, we consider also IRIs and literals, even if they can produce some false positives. In our example, with an infinite gap, two graphs are constructed as shown in Figure 3: G = {g 1 , g 2 }, where g 1 = {sq 1 , sq 3 , sq 4 }, {(sq 1 , sq 3 ), (sq 1 , sq 4 ), (sq 3 , sq 4 )} and g 2 = {sq 2 } . To simplify, all annotations to sq i are omitted.

g1 ∈ G sq 1 ={?x p1 ?y} @ep1 sq 3 ={s1 p2 ?y} @ep2 sq 4 ={s2 p2 ?y} @ep2 g2 ∈ G sq 2 ={?z p1 o1} @ep1 Graph reduction. The graph of queries is transformed into a graph of patterns. This heuristic aggregates triple patterns, produced from mappings of the outer dataset towards the inner dataset, into one big aggregated pattern (that we call inner pattern). This pattern, for instance, has the form of injected_values,predicate, object , if mappings of the outer dataset are injected into the subject. Graph reduction significantly reduces the size of each g ∈ G, because nestedloops can be executed with hundreds of subqueries. Figure 4, illustrates G after the graph reduction phase, for our motivating example. g1 ∈ G ?x p1 ?y @ep1 ?x p2 ?y @ep2 ?z p1 ?y @ep1 ?z p2 ?y @ep2 Fig. 5: Deduced graphs in G after N estedLoopDetection, for an infinite gap.

Nested-loop detection. This heuristic analyzes existing graphs in G to identify nested-loops. From n subqueries, it obtains two joined triple patterns by nested-loop. To do this, Algorithm 1, Lines 3-6, associates the pattern that pushes the outer dataset (that we call outer pattern) towards the inner pattern. This association is made by searching for a matching, between the injected values of the inner pattern and the variable mappings of the outer, with the function of inverse mapping that we propose below.

Definition 3 (Inverse mapping).

We define the inverse mapping as a partial, non surjective and non injective, function µ -1 : BLI → S where µ -1 = {(val, s) | val ∈ BLI, s ∈ S} such that (s, val) ∈ µ. B is considered for generalization reasons even if blank nodes cannot be used for joins between datasets.

N estedLoopDetection is the most challenging heuristic of FETA because µ -1 may return more than one variable, when the same value was returned for more than one variable. This depends on the similarity of concurrent federated queries and the considered gap. Thus, some times, identifying the variable that appears in the original query is uncertain. Figure 5, illustrates G after N estedLoopDetection for our motivating example with an infinite gap. We observe that graphs g 1 and g 2 are merged.

Symmetric hash detection. This heuristic verifies that (i) edges of g ∈ G that were not produced by an exclusive group or a nested-loop, are on same ontologically concepts for their common projected variables, and (ii) their join has a not null result set. From this, symmetric hash joins are identified, otherwise joins are removed. Symmetric hash detection produces false positives as it infers all possible joins that may be made at the query engine. If a star-shape set of triple patterns exists, all possible combinations of joins will be deduced instead of the subset of joins chosen by the query engine. Consequently, FETA privileges recall to the detriment of precision. For our example, this phase has no impact.

Time complexity of FETA

The computational complexity of the global algorithm of FETA is, in the worst case, O(N 2 + N * M + M 2 ), where N is the number of queries of G, and M is the number of triple patterns of G. The overload produced by FETA is high but we underline that the size of the log corresponds to a sliding window of time and that the log analysis can be made as a batch processing.

Experiments

To the best of our knowledge, a public set of real federated queries executed over the LD does not exists, thus we evaluated FETA using the queries and the setup of FedBench [START_REF] Schmidt | Fed-Bench: A Benchmark Suite for Federated Semantic Data Query Processing[END_REF]. We used the collections of Cross Domain (CD) and Life Science (LS), each one has 7 federated queries. We setup 19 SPARQL endpoints using Virtuoso OpenLink2 6.1.7. We executed federated queries with Anapsid 2.7 and FedX 3.0. We configured Anapsid to use Star Shape Grouping Multi-Endpoints (SSGM) heuristic and we disabled the cache for FedX. We captured http requests and answers from endpoints with justniffer 0.5.123 . FETA is implemented in Java 1.7 and is available at https://github.com/coumbaya/feta.

The goals of the experiments are : (i) to evaluate the precision and recall of FETA with federated queries executed in isolation and (ii) to evaluate the precision and recall of FETA with federated queries executed concurrently under a worst case scenario, i.e., when BGPs of different federated queries cannot be distinguished as they share the same IP address. All results are available at: https://github.com/coumbaya/feta/blob/master/experiments_with_fedbench.md.

To analyze traces of federated queries in isolation, we executed CD and LS collections. We captured 28 sequences of subqueries used as input for FETA one by one. In average, we obtained 94,64% of precision and 94,64% of recall of triple patterns deduction. We obtained 79,40% of precision and 87,80% of recall for joins deduction. Deducing sets of joined triple patterns, i.e., BGPs, is more challenging. From Anapsid traces, BGPs deduced correspond to CD and LS queries, except for Union queries, i.e., CD1, LS1 and LS2. These queries have two BGPs but a join is possible between them locally at the query engine, and FETA deduces a symmetric hash join. All other problems of deduction come from NestedLoopDetection. False triple patterns are deduced from FedX traces that decreases precision. This is because µ -1 may return more than one variable and more than one triple pattern may be deduced. But as right triple patterns are in general well deduced, recall is good. FETA succeeds in deducing 11 out of 14 exact BGPs from Anapsid traces, and 7 out of 14 from FedX traces. It finds 18/28 exact BGPs, i.e., 64%. If we include Union queries where all triple patterns are deduced, FETA finds (18+3)/28 BGPs, i.e., 75% BGPs of FedBench.

To analyze traces of concurrent federated queries, we implemented a tool that shuffles logs of queries executed in isolation to produce different sequences of E(F Q 1 ... F Q n ). These traces vary in (i) the order of queries, (ii) the number of subqueries, of the same federated query, appearing continuously (blocks of 1 to 16 subqueries), and (iii) the delay between each subquery (1 to 16 units of time). In our experiments, gap varies from 1% to 100% of the total time of each mix. We measured precision and recall of deductions made by FETA, from traces of federated queries in isolation against our mixes of traces of concurrent queries.

If FETA can distinguish triple patterns of concurrent federated queries, precision and recall by join are perfect when the gap is big enough. We analyzed a set of chosen queries having distinguishable triple patterns that we named MX: CD3, CD4, CD5, CD6, LS2 and LS3. We produced 4 different mixes of traces of these queries (M 1 , ..., M 4 ) that were analyzed by FETA under 6 different gaps (1%, 10%, etc.) producing 6 groups of deductions. We obtained 100% of preci- If triple patterns of concurrent queries are the same or syntactically similar, it is hard for FETA to obtain good precision and recall of joins. We produced four different and concurrent mixes by queries' collection (4 for CD and 4 for LS). We analyzed them by query engine and by gap. Figure 8 shows the average of precision of joins, each bar concerns 4 mixes. We can see that for FETA it is easier to analyze traces from Anapsid than from FedX. Moreover, CD queries are more distinguishable than LS ones. That is because triple patterns of LS queries vary less than those of CD queries, thus it is less evident to separate LS queries from their mixed traces. Furthermore, the bigger the gap the smaller the precision. That is because more false joins are detected thus reducing precision. Figure 9 shows the average of recall of joins. In general, recall of LS is bigger than recall of CD because LS queries generate lots of symmetric hash joins including the good ones. Unlike precision, the bigger the gap, the bigger the recall because more joins are detected thus the possibility of finding the good ones is bigger.

Related Work

Extracting information from logs is traditionally a data mining process [START_REF] Han | Data Mining: Concepts and Techniques[END_REF]. As a log of subqueries is in fact a log of accessed resources, data log mining algorithms could be used to solve our problem, where each item is an accessed predicate or triple pattern. Sequential pattern mining [START_REF] Mooney | Sequential Pattern Mining-Approaches and Algorithms[END_REF] focuses on discovering frequent subsequences (totally or partially ordered) from an ordered sequence of events. An event is a collection of unordered items, an item is a literal, and a set of items composes an alphabet. In our context, we focus on sequential pattern mining algorithms able to operate on non-transactional logs such as WINEPI or MINEPI [START_REF] Mannila | Discovery of Frequent Episodes in Event Sequences[END_REF]. WINEPI decomposes a temporal sequence in overlapping windows of a user-defined size n and counts the frequency of episodes in all windows. Episodes can be of size 1 to n. MINEPI instead, looks for minimal occurrences of episodes. It identifies in a sequence, the set of time intervals of minimal occurrences of episodes according to the maximum user-defined window size. The number of minimal occurrences of an episode is called support. The minimum frequency (for WINEPI), the minimal support (for MINEPI) and the maximum window size (for both), are thresholds defined by the user. The difference of these approaches, is that WINEPI can be interpreted as the probability of encountering an episode from randomly chosen windows, while MINEPI counts exact occurrences of episodes.

We think that searching for BGPs in a federated log is not like searching for frequent episodes in a temporal log. First, the alphabet of events in a federated log can be proportional to the cardinality of data in the federation. A nested-loop operator can generate thousands of different subqueries as we observed with FedX. Managing huge alphabets is challenging for sequential pattern algorithms. FETA uses heuristics to reduce the alphabet by deducing hidden variables. Second, frequency of events in a federated log is related to the selectivity of operations and can confuse sequential pattern algorithms. Suppose, two queries Q 1 : {?x p1 o1 . ?x p2 ?y} and Q 2 : {?x p1 ?y . ?y p3 ?z}. The federated query engine executes the joins with a nested-loop. So, ?x p1 o1 and ?x p1 ?y will appear once in the log, while patterns with IRIs p2 ?y and IRIs p3 ?z will appear many times according to the selectivity of the triple patterns on p1. Searching for frequent episodes will raise up episodes with p2 and p3 but joins were between p1, p2 and p1, p3.

Limitations of sequential pattern mining algorithms have been pointed out in process mining [START_REF] Van Der Aalst | Process Mining: Discovery, Conformance and Enhancement of Business Processes[END_REF]. Process mining algorithms recompute workflow models from logs. However, queries are not workflows and federated logs are not process logs. In a process log, events corresponds to identified tasks which is not the case in our context. The number of different subqueries can be proportional to the cardinality of the federated datasets. Moreover, in a federated log, a subquery cannot be the cause of another; in general, join ordering is decided according to the selectivity of subgoals in the original query.

Conclusions and future work

Federated query tracking allows data providers to know how their datasets are used. In this paper we proposed FETA, a federated query tracking approach that reverses federated Basic Graph Patterns (BGPs) from a shared log maintained by data providers. FETA links and unlinks variables from subqueries of the federated log by applying a set of heuristics to decrypt behavior of physical join operators.

Even in a worst case scenario, FETA extracts BGPs that contain original BGPs of federated queries executed with Anapsid and FedX. Extracted BGPs, annotated with endpoints, give valuable information to data providers about which triples are joined, when and by whom.

We think FETA opens several interesting perspectives. First, heuristics can be improved in many ways by better using semantics of predicates and answers. Second, we can improve FETA to make it agnostic to the federated query engine. Third, FETA can be used to generate a transactional log of BGPs from a temporal log of subqueries. Analyzing frequency of BPGs in a transactional log allows to discriminate false positive deductions of FETA.
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