
HAL Id: hal-01336386
https://hal.science/hal-01336386v1

Submitted on 23 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FETA: Federated QuEry TrAcking for Linked Data
Georges Nassopoulos, Patricia Serrano-Alvarado, Pascal Molli, Emmanuel

Desmontils

To cite this version:
Georges Nassopoulos, Patricia Serrano-Alvarado, Pascal Molli, Emmanuel Desmontils. FETA: Fed-
erated QuEry TrAcking for Linked Data. International Conference on Database and Expert Systems
Applications (DEXA), Sep 2016, Porto, Portugal. pp.0. �hal-01336386�

https://hal.science/hal-01336386v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


FETA: Federated QuEry TrAcking
for Linked Data

Georges Nassopoulos, Patricia Serrano-Alvarado,
Pascal Molli, Emmanuel Desmontils

LINA Laboratory - Université de Nantes – France
{firstname.lastname}@univ-nantes.fr

Abstract. Following the principles of Linked Data (LD), data providers
are producing thousands of interlinked datasets in multiple domains in-
cluding life science, government, social networking, media and publi-
cations. Federated query engines allow data consumers to query sev-
eral datasets through a federation of SPARQL endpoints. However, data
providers just receive subqueries resulting from the decomposition of the
original federated query. Consequently, they do not know how their data
are crossed with other datasets of the federation. In this paper, we pro-
pose FETA, a Federated quEry TrAcking system for LD. We consider that
data providers collaborate by sharing their query logs. Then, from a fed-
erated log, FETA infers Basic Graph Patterns (BGPs) containing joined
triple patterns, executed among endpoints. We experimented FETA with
logs produced by FedBench queries executed with Anapsid and FedX
federated query engines. Experiments show that FETA is able to infer
BGPs of joined triple patterns with a good precision and recall.

Keywords: Linked data, federated query processing, log analysis, usage control.

1 Introduction

Linked Data (LD) interlinks massive amounts of data across the Web in multiple
domains like life science, government, social networking, media and publications.
Federated query engines [1–3, 5, 9, 11] allow data consumers to execute SPARQL
queries over a decentralized federation of SPARQL endpoints maintained by LD
providers. But, data providers are not aware of users’ federated queries; they
just observe subqueries they receive. Thus, they do not know when and which
datasets are joined together in a single query. Consequently, the federation does
not hold enough meta-information to ensure services, such as, efficient material-
ization to improve joins, activation of query optimization techniques, discovering
data providers partnership, etc. Knowing how provided datasets are queried to-
gether is essential for tuning endpoints, justify return of investment or better
organize collaboration among providers.

A simple solution for this problem is to consider that data consumers publish
their federated queries. However, public federated queries cannot be considered



as representative of real data usage because they may represent a small portion of
really executed queries. Only logs give evidences about real execution of queries.

Thus, in this paper, we address the following problem: if data providers share
their logs, can they infer the Basic Graph Patterns (BGP) of federated queries
executed over their federation? Many works have focused on web log mining [6,
7], but none has addressed reversing BGPs from a federated query log.

The main challenge is the concurrent execution of federated queries. If we
find a function f , to reverse BGPs from isolated traces of one federated query,
is f able to reverse the same BGP from traces of concurrent federated queries?

We propose FETA to implement f , a Federated quEry TrAcking system that
computes BGPs from a federated log. Based on subqueries contained in the
log, FETA deduces triple patterns and joins among triple patterns with a good
precision and recall. Our main contributions are:

1. the definition of the problem of reversing BGPs from a federated log,
2. the FETA algorithm to reverse BGPs from federated logs,
3. an experimental study using federated queries of the benchmark FedBench1.

From execution traces of these queries, FETA deduces BGPs under two sce-
narios, queries executed in isolation and in concurrence.

The paper is organized as follows. Section 2 introduces a motivating example
and our problem statement. Section 3 presents FETA and its heuristics. Sec-
tion 4 reports our experimental study. Section 5 presents related work. Finally,
conclusions and future work are outlined in Section 6.

2 Motivating example and problem statement

In Figure 1, two data consumers, C1 and C2, execute concurrently federated
queries CD3 and CD4 of FedBench. They use Anapsid or FedX federated query
engines to query a federation of SPARQL endpoints composed of LMDB, DB-
pedia InstanceTypes (IT), DBpedia InfoBox (IB) and NYTimes (NYT). Data
providers hosting these endpoints receive only subqueries corresponding to the
execution of physical plans of CD3 and CD4. For example, CD3 can be de-
composed into {tp@IT

1 .(tp2.tp3)@IB .(tp4.tp5)@NY T }, and NYT just observes tp4
and tp5: it does not know these triple patterns are joined with tp1 from IT and
(tp2, tp3) from IB. So, NYT does not know the real usage of data it provides.

More formally, we consider that an execution of a federated query FQi pro-
duces a partially ordered sequence of subqueries SQi represented by E(FQi) =
[SQ1, ..., SQn]. Subqueries are processed by endpoints of the federation at given
times represented by timestamps. We suppose that endpoints’ clocks are syn-
chronized, i.e., timestamps of logs can be compared safely. Timestamps of sub-
queries in a federated log are partially ordered because two endpoints can receive
queries at same time. Query execution with a particular federated query engine,
1 http://fedbench.fluidops.net/



SELECT ?pres ?party ?page WHERE {
?pres rdf : type dbpedia− owl : P resident . (tp1)
?pres dbpedia− owl : nationality dbpedia : US∗ . (tp2)
?pres dbpedia− owl : party ?party . (tp3)
?x nytimes : topicP age ?page . (tp4)
?x owl : sameAs ?pres } (tp5)

C1(173.28.19.114) : Query CD3 of FedBench

SELECT ?actor ?news WHERE {
?film purl:title ’Tarzan’ . (tp1)
?film linkedMDB:actor ?actor . (tp2)
?actor owl:sameAs ?x . (tp3)
?y owl:sameAs ?x . (tp4)
?y nytimes:topicPage ?news } (tp5)

C2(173.28.19.114) : Query CD4 of FedBench

@LMDB DBpedia
InstTypes(@IT)

DBpedia
InfoBox (@IB)

NYTimes (@NYT)

Fig. 1: Concurrent execution of FedBench queries CD3, CD4 over a federation of endpoints.

qei, is represented by Eqei(FQi). In addition, we represent a concurrent exe-
cution of n federated queries by E(FQ1 ‖ ... ‖ FQn)) = [SQ1, ..., SQn]. This
work addresses the following research question: if data providers share their logs,
can they rebuild the BGPs annotated with the sources that evaluated each triple
pattern? From the previous example, we aim to extract two BGPs: one cor-
responding to CD3 {tp@IT

1 .(tp2.tp3)@IB .(tp4.tp5)@NY T } and another to CD4
{(tp1.tp2.tp3)@LMDB .(tp4.tp5)@NY T }. Next definitions formalize this problem.

Definition 1 (BGPs’ reversing). Given a federated log corresponding to the
execution of one federated query E(FQi), find a function f(E(FQi)) producing
a set of BGPs {BGP1, ..., BGPn}, where each triple pattern is annotated with
endpoints that evaluated it, such that f(E(FQi)) approximates (≈) the BGPs
existing in the original federated query. Thus, if we consider that BGP (FQi)
returns the set of BGPs of FQi then f(E(FQi)) ≈ BGP (FQi).

In our motivating example, if C1 and C2 have different IP addresses, then it
is straightforward to apply the reversing function separately on each execution
trace. However, in the worst case, if they share the same IP address, we expect
that f(E(CD3 ‖ CD4)) ≈ f(E(CD3) ∪ f(E(CD4) as defined next.

Definition 2 (Resistance to concurrency). The reversing function f should
guarantee that BGPs obtained from execution traces of isolated federated queries,
approximate (≈) results from execution traces of concurrent federated queries:
f(E(FQ1)) ∪ ... ∪ (f(E(FQn)) ≈ f(E(FQ1 ‖ ... ‖ FQn)).

3 FETA, a reversing function

Finding a reversing function f requires to join IRIs, literals or variables from
different SPARQL subqueries. We propose FETA as a system of heuristics to
implement the reversing function f . Figures 2a, 2b present two endpoints, each
providing some triples. Figure 2d has the federated log corresponding to the
execution of queries Q1 = SELECT ?z ?y WHERE {?z p1 o1 . ?z p2 ?y}
and Q2 = SELECT ?x ?y WHERE {?x p1 ?y}. Figure 2c shows reversing
results according to different gap values described below. Depending on the gap,
on verifications made, and concurrent traces, reversed BGPs are different. In the
example of Figure 2c, if the gap has no limit, we obtain the BGP of Line 1, if the



@ep1
s1 p1 o1
s2 p1 o1
s3 p1 o2

(a)
EP1

@ep2
s1 p2 o3
s2 p2 o4

(b) EP2

Gap Reversed BGPs
∞ { (?x p1 ?y)@ep1 . (?x p2 ?y)@ep2 . (?z p1 ?y)@ep1 . (?z p2 ?y)@ep2 }
1 { ?x p1 ?y }@ep1, { ?z p1 o1 } @ep1, { s1 p2 ?y }@ep2, { s2 p2 ?y }@ep2

2 { ?x p1 ?y }@ep1, { (?z p1 o1)@ep1 . (?z p2 ?y)@ep2 }

(c) Deducted BGPs.

Time Subquery Set of mappings
1@ep1 sq1={?x p1 ?y} Ω1={{x, s1}{y, o1},{x, s2}{y, o1},{x, s3}{y, o2}}
4@ep1 sq2={?z p1 o1} Ω2={{z, s1},{z, s2}}
6@ep2 sq3={s1 p2 ?y} Ω3={{y, o3}}
7@ep2 sq4={s2 p2 ?y} Ω4={{y, o4}}

(d) Federated log.

Fig. 2: Motivating example.

gap is 1, only sq3 and sq4 can be analyzed together (cf. Line 2). As the join on
?y gives no results, a join is discarded. If the gap is 2, then the reversed BGPs
are the expected ones (cf. Line 3).

We assume pairwise disjoint infinite sets B, L, I (blank nodes, literals, and
IRIs respectively). We also assume an infinite set S of variables. A mapping µ is
a partial, non surjective and non injective, function that maps variables to RDF
terms µ : S → BLI. A set of mappings is represented by Ω. See [8] for more
explanations. Next, we present the input and output of FETA.

Given: a federation of endpoints Φ, a federated input log Q = {〈q, t, ep, ip〉},
a federated output log A = {〈{µ}, t, ep, ip〉}, and a user-defined gap,

Find G = {〈g, ip〉}, the set of connected graphs corresponding to the BGPs
of the federated queries processed by Φ, such that:

– g = 〈V,E〉 is an undirected connected graph where V = {tp} is an un-
ordered set of distinct triple patterns, (annotated with the endpoints that
processed tp and T the set of timestamps given by the endpoints), and E is
an unordered set of edges representing the joins between triple patterns.

– ip is the IP address of the client query engine that sent g.

3.1 FETA algorithms

FETA has 4 main phases. From input logs and a predefined gap, a graph of
subqueries G is constructed in the first phase. Then, this graph is reduced and
transformed into a graph of triple patterns G, where, from a big set of subqueries,
frequently only one triple pattern is obtained. In a third phase, joins between
triple patterns executed through nested-loops are identified. Finally, symmetric
hash joins, possibly made at the federated query engine, are identified. Next
sections present these algorithms at high level of abstraction.

Graph Construction: This phase executes two main functions, (a) Log-
Preparation and (b) CommonJoinCondition. This module builds G = {g}, a
set of graphs, where g = 〈V ′, E′, ip〉 is an undirected connected graph, with
different semantics than G. In G, nodes are queries and arcs are labeled with



the number of common variables between each pair of queries. LogPreparation,
prepares and cleans the input log. ASK queries are suppressed and identical sub-
queries or differing only in their offset values are aggregated in one single query.
Timestamp of such aggregated query becomes an interval. CommonJoinCon-
dition, incrementally constructs G, by joining queries depending on the given
gap and having common projected variables or triple patterns with common
IRI or literal on their subjects or objects. In general, subqueries are joined on
their common projected variables. However, we consider also IRIs and literals,
even if they can produce some false positives. In our example, with an infinite
gap, two graphs are constructed as shown in Figure 3: G = {g1, g2}, where
g1 = 〈{sq1, sq3, sq4}, {(sq1, sq3), (sq1, sq4), (sq3, sq4)}〉 and g2 = 〈{sq2}〉. To sim-
plify, all annotations to sqi are omitted.

g1 ∈ G
sq1={?x p1 ?y} @ep1

sq3={s1 p2 ?y} @ep2

sq4={s2 p2 ?y} @ep2

g2 ∈ G
sq2={?z p1 o1} @ep1

Fig. 3: Deduced graphs in G after
GraphConstruction, for an infinite gap.

g1 ∈ G
?x p1 ?y @ep1

{injected_values} p2 ?y @ep2

g2 ∈ G
?z p1 {injected_values} @ep1

Fig. 4: Deduced graphs in G after
GraphReduction, for an infinite gap.

Graph reduction. The graph of queries is transformed into a graph of pat-
terns. This heuristic aggregates triple patterns, produced from mappings of the
outer dataset towards the inner dataset, into one big aggregated pattern (that we
call inner pattern). This pattern, for instance, has the form of 〈injected_values,-
predicate, object〉, if mappings of the outer dataset are injected into the subject.
Graph reduction significantly reduces the size of each g ∈ G, because nested-
loops can be executed with hundreds of subqueries. Figure 4, illustrates G after
the graph reduction phase, for our motivating example.

g1 ∈ G
?x p1 ?y

@ep1

?x p2 ?y @ep2

?z p1 ?y @ep1

?z p2 ?y @ep2

Fig. 5: Deduced graphs in G after
NestedLoopDetection, for an infinite gap.

Nested-loop detection. This heuristic analyzes existing graphs in G to
identify nested-loops. From n subqueries, it obtains two joined triple patterns
by nested-loop. To do this, Algorithm 1, Lines 3-6, associates the pattern that
pushes the outer dataset (that we call outer pattern) towards the inner pattern.
This association is made by searching for a matching, between the injected values



Algorithm 1: NestedLoopDetection(G,A, gap)
input : G,A, gap
output: G

1 foreach g ∈ G do
2 foreach tpi ∈ g do
3 foreach (tpj ∈ g) ∨ (tpj ∈ g

′ : g′ ∈ G, g′ 6= g) do
4 if (tmax

tpj
− tmin

tpi
) ≤ gap ∧ (µ−1(tpj,A) ∈ var(tpi)) then

5 dp ←Association(tpi, tpj)
6 G ←Update(G, tpj, dp,

′ nestedLoop′)

of the inner pattern and the variable mappings of the outer, with the function
of inverse mapping that we propose below.

Definition 3 (Inverse mapping). We define the inverse mapping as a par-
tial, non surjective and non injective, function µ−1 : BLI → S where µ−1 =
{(val, s) | val ∈ BLI, s ∈ S} such that (s, val) ∈ µ. B is considered for general-
ization reasons even if blank nodes cannot be used for joins between datasets.

NestedLoopDetection is the most challenging heuristic of FETA because
µ−1 may return more than one variable, when the same value was returned
for more than one variable. This depends on the similarity of concurrent feder-
ated queries and the considered gap. Thus, some times, identifying the variable
that appears in the original query is uncertain. Figure 5, illustrates G after
NestedLoopDetection for our motivating example with an infinite gap. We ob-
serve that graphs g1 and g2 are merged.

Symmetric hash detection. This heuristic verifies that (i) edges of g ∈ G
that were not produced by an exclusive group or a nested-loop, are on same
ontologically concepts for their common projected variables, and (ii) their join
has a not null result set. From this, symmetric hash joins are identified, otherwise
joins are removed. Symmetric hash detection produces false positives as it infers
all possible joins that may be made at the query engine. If a star-shape set of
triple patterns exists, all possible combinations of joins will be deduced instead
of the subset of joins chosen by the query engine. Consequently, FETA privileges
recall to the detriment of precision. For our example, this phase has no impact.

3.2 Time complexity of FETA
The computational complexity of the global algorithm of FETA is, in the worst
case, O(N2 + N ∗M + M2), where N is the number of queries of G, and M is
the number of triple patterns of G. The overload produced by FETA is high but
we underline that the size of the log corresponds to a sliding window of time and
that the log analysis can be made as a batch processing.

4 Experiments

To the best of our knowledge, a public set of real federated queries executed over
the LD does not exists, thus we evaluated FETA using the queries and the setup



of FedBench [10]. We used the collections of Cross Domain (CD) and Life Science
(LS), each one has 7 federated queries. We setup 19 SPARQL endpoints using
Virtuoso OpenLink2 6.1.7. We executed federated queries with Anapsid 2.7 and
FedX 3.0. We configured Anapsid to use Star Shape Grouping Multi-Endpoints
(SSGM) heuristic and we disabled the cache for FedX. We captured http requests
and answers from endpoints with justniffer 0.5.123. FETA is implemented in Java
1.7 and is available at https://github.com/coumbaya/feta.

The goals of the experiments are : (i) to evaluate the precision and recall
of FETA with federated queries executed in isolation and (ii) to evaluate the
precision and recall of FETA with federated queries executed concurrently under
a worst case scenario, i.e., when BGPs of different federated queries cannot be
distinguished as they share the same IP address. All results are available at:
https://github.com/coumbaya/feta/blob/master/experiments_with_fedbench.md.

To analyze traces of federated queries in isolation, we executed CD and LS
collections. We captured 28 sequences of subqueries used as input for FETA one
by one. In average, we obtained 94,64% of precision and 94,64% of recall of
triple patterns deduction. We obtained 79,40% of precision and 87,80% of recall
for joins deduction. Deducing sets of joined triple patterns, i.e., BGPs, is more
challenging. From Anapsid traces, BGPs deduced correspond to CD and LS
queries, except for Union queries, i.e., CD1, LS1 and LS2. These queries have
two BGPs but a join is possible between them locally at the query engine, and
FETA deduces a symmetric hash join. All other problems of deduction come
from NestedLoopDetection. False triple patterns are deduced from FedX traces
that decreases precision. This is because µ−1 may return more than one variable
and more than one triple pattern may be deduced. But as right triple patterns
are in general well deduced, recall is good. FETA succeeds in deducing 11 out of
14 exact BGPs from Anapsid traces, and 7 out of 14 from FedX traces. It finds
18/28 exact BGPs, i.e., 64%. If we include Union queries where all triple patterns
are deduced, FETA finds (18+3)/28 BGPs, i.e., 75% BGPs of FedBench.

To analyze traces of concurrent federated queries, we implemented a tool
that shuffles logs of queries executed in isolation to produce different sequences of
E(FQ1 ‖ ... ‖ FQn). These traces vary in (i) the order of queries, (ii) the number
of subqueries, of the same federated query, appearing continuously (blocks of 1
to 16 subqueries), and (iii) the delay between each subquery (1 to 16 units of
time). In our experiments, gap varies from 1% to 100% of the total time of each
mix. We measured precision and recall of deductions made by FETA, from traces
of federated queries in isolation against our mixes of traces of concurrent queries.

If FETA can distinguish triple patterns of concurrent federated queries, pre-
cision and recall by join are perfect when the gap is big enough. We analyzed a
set of chosen queries having distinguishable triple patterns that we named MX:
CD3, CD4, CD5, CD6, LS2 and LS3. We produced 4 different mixes of traces
of these queries (M1, ...,M4) that were analyzed by FETA under 6 different gaps
(1%, 10%, etc.) producing 6 groups of deductions. We obtained 100% of preci-

2 http://virtuoso.openlinksw.com/
3 http://justniffer.sourceforge.net/



Fig. 6: Recall of joins from ANAPSID
MX traces, by gap.

Fig. 7: Recall of joins from FedX MX
traces, by gap.

Fig. 8: Average of precision of joins, for
four mixes by gap.

Fig. 9: Average of recall of joins, for four
mixes by gap.

sion of joins from traces of Anapsid and FedX since the smallest gap. Figures 6
and 7 show recall of joins from Anapsid and FedX traces respectively. We get
100% of recall with a gap of 50% from traces of both query engines.

If triple patterns of concurrent queries are the same or syntactically similar,
it is hard for FETA to obtain good precision and recall of joins. We produced
four different and concurrent mixes by queries’ collection (4 for CD and 4 for
LS). We analyzed them by query engine and by gap. Figure 8 shows the average
of precision of joins, each bar concerns 4 mixes. We can see that for FETA it is
easier to analyze traces from Anapsid than from FedX. Moreover, CD queries
are more distinguishable than LS ones. That is because triple patterns of LS
queries vary less than those of CD queries, thus it is less evident to separate LS
queries from their mixed traces. Furthermore, the bigger the gap the smaller the
precision. That is because more false joins are detected thus reducing precision.
Figure 9 shows the average of recall of joins. In general, recall of LS is bigger than
recall of CD because LS queries generate lots of symmetric hash joins including
the good ones. Unlike precision, the bigger the gap, the bigger the recall because
more joins are detected thus the possibility of finding the good ones is bigger.

5 Related Work

Extracting information from logs is traditionally a data mining process [4]. As
a log of subqueries is in fact a log of accessed resources, data log mining al-
gorithms could be used to solve our problem, where each item is an accessed
predicate or triple pattern. Sequential pattern mining [7] focuses on discovering
frequent subsequences (totally or partially ordered) from an ordered sequence of



events. An event is a collection of unordered items, an item is a literal, and a set
of items composes an alphabet. In our context, we focus on sequential pattern
mining algorithms able to operate on non-transactional logs such as WINEPI or
MINEPI [6]. WINEPI decomposes a temporal sequence in overlapping windows
of a user-defined size n and counts the frequency of episodes in all windows.
Episodes can be of size 1 to n. MINEPI instead, looks for minimal occurrences
of episodes. It identifies in a sequence, the set of time intervals of minimal oc-
currences of episodes according to the maximum user-defined window size. The
number of minimal occurrences of an episode is called support. The minimum
frequency (for WINEPI), the minimal support (for MINEPI) and the maximum
window size (for both), are thresholds defined by the user. The difference of
these approaches, is that WINEPI can be interpreted as the probability of en-
countering an episode from randomly chosen windows, while MINEPI counts
exact occurrences of episodes.

We think that searching for BGPs in a federated log is not like searching
for frequent episodes in a temporal log. First, the alphabet of events in a fed-
erated log can be proportional to the cardinality of data in the federation. A
nested-loop operator can generate thousands of different subqueries as we ob-
served with FedX. Managing huge alphabets is challenging for sequential pattern
algorithms. FETA uses heuristics to reduce the alphabet by deducing hidden vari-
ables. Second, frequency of events in a federated log is related to the selectivity of
operations and can confuse sequential pattern algorithms. Suppose, two queries
Q1 : {?x p1 o1 . ?x p2 ?y} and Q2 : {?x p1 ?y . ?y p3 ?z}. The federated
query engine executes the joins with a nested-loop. So, ?x p1 o1 and ?x p1 ?y
will appear once in the log, while patterns with IRIs p2 ?y and IRIs p3 ?z
will appear many times according to the selectivity of the triple patterns on p1.
Searching for frequent episodes will raise up episodes with p2 and p3 but joins
were between p1, p2 and p1, p3.

Limitations of sequential pattern mining algorithms have been pointed out
in process mining [12]. Process mining algorithms recompute workflow models
from logs. However, queries are not workflows and federated logs are not process
logs. In a process log, events corresponds to identified tasks which is not the case
in our context. The number of different subqueries can be proportional to the
cardinality of the federated datasets. Moreover, in a federated log, a subquery
cannot be the cause of another; in general, join ordering is decided according to
the selectivity of subgoals in the original query.

6 Conclusions and future work

Federated query tracking allows data providers to know how their datasets are
used. In this paper we proposed FETA, a federated query tracking approach that
reverses federated Basic Graph Patterns (BGPs) from a shared log maintained by
data providers. FETA links and unlinks variables from subqueries of the federated
log by applying a set of heuristics to decrypt behavior of physical join operators.



Even in a worst case scenario, FETA extracts BGPs that contain original
BGPs of federated queries executed with Anapsid and FedX. Extracted BGPs,
annotated with endpoints, give valuable information to data providers about
which triples are joined, when and by whom.

We think FETA opens several interesting perspectives. First, heuristics can
be improved in many ways by better using semantics of predicates and answers.
Second, we can improve FETA to make it agnostic to the federated query engine.
Third, FETA can be used to generate a transactional log of BGPs from a temporal
log of subqueries. Analyzing frequency of BPGs in a transactional log allows to
discriminate false positive deductions of FETA.

7 Acknowledgments

This work was partially funded by the French ANR project SocioPlug (ANR-
13-INFR-0003), and by the DeSceNt project granted by the Labex CominLabs
excellence laboratory (ANR-10-LABX-07-01).

References

1. M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: An
Adaptive Query Processing Engine for SPARQL Endpoints. In International Se-
mantic Web Conference (ISWC), Part I, 2011.

2. C. Basca and A. Bernstein. Avalanche: Putting the Spirit of the Web back into
Semantic Web Querying. In International Semantic Web Conference (ISWC), 2010.

3. O. Görlitz and S. Staab. SPLENDID:SPARQL Endpoint Federation Exploit-
ing VOID Descriptions. In International Workshop on Consuming Linked Data
(COLD), 2011.

4. J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Elsevier,
2011.

5. O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL Queries over the Web
of Linked Data. In International Semantic Web Conference (ISWC), 2009.

6. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery, 1(3), 1997.

7. C. H. Mooney and J. F. Roddick. Sequential Pattern Mining–Approaches and
Algorithms. ACM Computing Surveys (CSUR), 45(2):19, 2013.

8. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL.
ACM Transactions on Database Systems (TODS), 34(3), 2009.

9. B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL.
In European Semantic Web Conference (ESWC), 2008.

10. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fed-
Bench: A Benchmark Suite for Federated Semantic Data Query Processing. In
International Semantic Web Conference (ISWC), 2011.

11. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimiza-
tion Techniques for Federated Query Processing on Linked Data. In International
Semantic Web Conference (ISWC), Part I, 2011.

12. W. Van Der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Science & Business Media, 2011.


