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Abstract— Opportunistic ambient sensing involves placement
of sensors appropriately so that intermittent contact can be
made unobtrusively for gathering physiological signals for vital
signs. In this paper, we discuss the results of our quality
processing system used to extract heart rate from ballisto-
cardiogram signals obtained from a micro-bending fiber optic
sensor pressure mat. Visual inspection is used to label data into
informative and non-informative classes based on their heart
rate information. Five classifiers are employed for the classi-
fication process, i.e., random forest, support vector machine,
multilayer, feedforward neural network, linear discriminant
analysis, and decision tree. To compute the overall effectiveness
of quality processing, the informative signals are processed to
estimate interbeat intervals. The system was used to process,
data collected from 50 human subjects sitting in a massage chair
while performing different activities. Opportunistically collected
data was obtained from the fiber optic sensor mat placed on the
headrest of the massage chair. Using our classification approach,
57.37% of the dataset was able to provide informative signals.
On the informative signals, random forest classifier achieves the
best classification accuracy with a mean accuracy of 98.99%.
The average of the mean absolute error between the estimated
heart rate and the reference ECG is reduced from 13.2 to 8.47.
Therefore, the proposed system shows a good robustness for
opportunistic ambient sensing.

I. INTRODUCTION

Opportunistic Ambient Sensing (OAS) may be used to
provide applications and services that fit into active and
healthy lifestyle of end users, and to unobtrusively extract
reliable and meaningful data about their physiological pa-
rameters [1]. Although mobile phone based applications are
perhaps the most convenient, they lack the sensitivity and
the proximity needed for the measurement of important
vital signs such as heart rate (HR) and breathing rate (BR).
Ambient sensors that are placed in the environment away
from physical contact with the user, such as cameras, infrared
motion sensors and other types of electromagnetic sensing
devices, lack the proximity or physical contact needed for
reliable detection of vital signs.

The micro-bending fiber optic sensor (FOS), thanks to its
high sensitivity to ballistic effects of human vital signs, is
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a sensor that is suitable for opportunistic ambient sensing.
This sensor is a proper choice for non-intrusive continu-
ous monitoring because it is highly responsive to pressure
changes caused by body movement, and simultaneously not
required to be in close contact with the body. A cushion with
embedded sensors, for example, is able to unobtrusively, yet
with great accuracy, capture vital signs of the user for those
durations where the user is directly in contact with the sensor
and motion artifacts are limited.

A major challenge is dealing with the quality of the
FOS signals. There are two basic approaches to monitoring
quality in physiological data obtained from sensors, i.e.,
signal oriented and aggregate oriented. The first [2] is an
exact approach, attempting to detect and track statistical
properties of signal morphologies or event occurrences (or
non-occurrences), and reporting these in a real-time fashion.
The second [3], [4] is a statistical approach aimed at obtain-
ing aggregate statistical features in the time or frequency
domain, through appropriate feature extraction. Since the
former approach can lead to processing delay, especially
in real-time situations, in our work we adopt the statistical
approach for quality processing.

The goal of this research paper is to design a qual-
ity processing system to identify signals of interest from
the noisy and non-stationary ballistocardiogram (BCG) sig-
nals. The quality process reduces the computational and /
or communications load significantly, because only useful
data is transmitted and processed for vital sign extraction.
Thereafter, interbeat intervals are estimated using complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) algorithm.

The paper is summarized as follows. Section II presents
the generic algorithm for quality processing. Section III
presents a definition of data quality relevant to the needs of
the application at hand. Section IV briefly presents the data
collection protocol, a labeling tool used to manually label
datasets accordingly, and the proposed approach and Section
V presents the results of the quality processing system.
Conclusions are presented in Section VI.

II. QUALITY PROCESSING OF BCG SIGNALS FROM FIBER
OPTIC SENSOR PRESSURE MAT

Ballistocardiography is a technique to measure the vibra-
tions of the body during the rapid ejection of blood from the
left ventricle into the large blood vessels synchronous with
each heartbeat [5]. Fig. 1 shows the FOS used for the purpose
of our study. It includes a pressure mat embedded with



Fig. 1. Micro-bending fiber optic sensor.

micro-bending sensors and a transceiver, which is connected
to a computer via Bluetooth. When a force is exerted on
the mat, the short distance between a pair of micro-benders
alters. Consequently, the light intensity in the multi-mode
fiber changes according to the ballistic forces on the heart.
This force modulates the light intensity and then retrieved as
a ballistocardiogram signal. The micro-bending FOS pressure

Fig. 2. Opportunistic remote monitoring of vital signs.

mat [6], [7], [8], [9] can be used to gather physiological data
of people from ambient locations, i.e., mattresses, pillows,
chairs, etc. In these situations, a main obstacle is to handle
noise and motion artifacts, while the quality of the sensed
data is easily corrupted. Recovering vital signs with high
accuracy can be achieved if some features of the signals can
be utilized. The algorithm necessitates carrying out labeling
of sensor data, in order to establish reliable ground truth,
which can then be used to segment good quality signals
from real-time sensor data streams. This is a step towards
improving the reliability of sensors used to monitor vital
signs in diverse ambient settings. Fig. 2 illustrates the manner
in which the FOS pressure mat is deployed in wellness
applications for the opportunistic monitoring of vital signs.

III. APPLICATION SPECIFIC SIGNAL DATA QUALITY

Sensor signal quality and data quality are important mea-
sures for medical devices and health monitoring. In morpho-
logical analysis, a missed detection is characterized by the
absence of a particular waveform. The missing or erroneous
waveform is corrected and the feature (e.g., heartbeat) is
then detected from the augmented waveform. In statistical
analysis, the individual waveforms are not analyzed, but
the signal is processed and feature detected (e.g., through
peak detection) and thereafter the output statistic (e.g., HR)
computed. The statistical approach at data quality requires

manual labeling of the rendering of the signal on a viewer
with the help of a suitable tool. The waveforms are classified,
sometimes with the help of logged information that supply
details that may be useful for more accurate labeling. Since
the fiber optic sensor can be used in various settings for
various applications, the statistical approach towards the
study of quality is more meaningful, as it may be used with
parametric or algorithmic changes and applied to various
applications and indeed to various sensors as well. For the
remainder of this paper, we will consider the following
definitions of quality:

• Informative signal: It includes a good quality signal
and a noisy signal. The first is a data stream from
which features may be extracted by standard algorithms,
without any further filtering or processing to remove
noise or any conflicting artifacts. The second is a data
stream that contains the observed signal mixed with
other artifacts and noise, such that more processing
needs to be done before algorithms may be used to
extract the vital signs.

• Non-informative signal: It is a data stream where re-
trieval of physiological properties is impossible.

Because noise is introduced through activities of various
kinds, in the experimental stage we incorporate mechanisms
to embed information into the data that indicate the occur-
rence of events. These labels give major cues, which serve as
a foothold in the data, in order to analyze it further for quality
processing. Note that even though our data is collected in the
lab, it is unreasonable and impossible to label each event.
This is the reason why we need to undertake post processing
of the data through a manual labeling effort. From Fig. 2, it
can be seen that there are certain periods when good data is
expected (such as the rest periods), and certain other periods
where the data is expected to be noisy (such as the massage
period when the massage chair is in motion). There are also
periods when, due to non-contact there is no signal presented.
This happens, for example, when the subject is answering
the questionnaire or undergoing some mental tasks involving
the use of the computer. Once the subject leans forward the
contact between the pillow sensor and the subject’s head is
lost, and thus there is no signal.

Fig. 3. Flowchart of the quality processing system.

IV. METHODOLOGY

A. Data Collection

The data is collected in a realistic setting from 50 human
subjects sitting in a massage chair to assess their levels
of stress at different moments. Consent forms were sought
from every human subject following the approval of the



institutional review board. Participants completed stress-
inducing exercises, proceeded by rest and relief therapy.
During the process, subjects were instructed to complete
well-suited survey questionnaires for gathering self-reported
ground truth. Meanwhile, physiological parameters of sub-
jects were recorded in real-time using a range of sensors.
This includes FOS, EEG, galvanic skin response, and some
other sensors to measure ECG and respiratory efforts.

Fig. 4. Screen capture of the labeling tool.

B. Classification

The flowchart of the quality processing system is shown
in Fig. 3 and can be illustrated as follows:

1) Preprocessing: The sensor data is manually labeled
by a human observer into two classes such as 1)
informative (58% of dataset) and 2) non-informative
(42% of dataset), where a labeling tool was devel-
oped that enables the user to quickly label data from
MATLAB R© based software. Fig. 4 shows a screen
capture of the labeling tool. The labeled sensor data is
randomly divided into two groups, i.e., G1 and G2. The
former consist of 2085 segments (1296 informative and
789 non-informative), whereas the latter includes 1546
segments (813 informative and 733 non-informative).
The length of each segment is 10 seconds/500 samples,
where the data is sampled at a sampling frequency
of 50Hz. The idea is to use G1 as a training set
while G2 as a test set, and vice versa. Subsequently,
each segment is band pass filtered to extract the BCG
component using a Butterworth band-pass filter with
frequency limits of 1Hz and 12Hz. Fig. 5 shows two
examples for informative and non-informative seg-
ments.

2) Feature Extraction: A set of 13 statistical features is ex-
tracted i.e., mean, standard deviation, minimum, max-
imum, skewness, kurtosis, range, interquartile range,
median absolute deviation, number of zero crossings,
variance of local maxima, variance of local minima,
mean of the signal envelope.

3) Training and Testing: Five classifiers are employed,
i.e., random forest (RF), support vector machine
(SVM), multilayer, feedforward neural network (NN),
linear discriminant analysis (LDA), and decision tree
(DT). Then, a training model is created for each
classifier using the features of training set, where each

set is 10-fold cross validated to evaluate the predictive
ability of the models. Finally, each segment in the
test set is classified into one of the classes based on
the features of the test set. Furthermore, an accuracy
criterion is computed for appraising the performance
of the classifiers and the results of the proposed ap-
proach in discriminating between informative and non-
informative segments.

Fig. 5. Two examples for informative and non-informative segments.

4) Heart Rate Estimation: The heart beats are detected
as presented in [10], since the CEEMDAN is proved
to be robust towards motion artifacts induced because
of body movements, while reducing the computational
complexity. The 6th decomposition component is cho-
sen for HR measurement because each local maximum
shows a match for cardiac cycle. Fig. 6 shows an
example of a BCG signal with its 6th decomposition
component.

Fig. 6. BCG signal with a reference ECG signal. ECG is shown in 1st

row. However, BCG signal and its 6th decomposition component are shown
in 2nd row.

V. RESULTS AND DISCUSSION

As mentioned in the previous section, the goal is to use a
cross dataset testing in which G1 is to be used as a training
set while G2 as a test set and vice versa. Therefore, the
selected classifier should be able to correctly classify the data
of G2 based on G1 and contrariwise. Following the 10-fold
cross validation of each group, the best parameters of the
classifiers are identified and the mean accuracy of each clas-
sifier is determined. Table I shows the mean accuracy of the
10-fold cross validation for each classifier. In both groups,
random forest classifier shows superior performance over the
other classifiers with a mean accuracy of 98.13% and 92.30%
for G1 and G2 respectively. Using the same classifier, similar



TABLE I
10-FOLD CROSS VALIDATION MEAN ACCURACY FOR G1 AND G2, (RF:

NTREES = 50, SVM: RBF KERNEL, NN: 50 HIDDEN NEURON).

Mean Accuracy (%)

RF SVM NN LDA DT
G1 98.13 93.38 91.61 89.26 97.51
G2 92.30 90.49 85.89 79.37 89.39

TABLE II
ACCURACY RESULTS FOR TESTING G2 VS. G1 (EXP1) AND TESTING G1

VS. G2 (EXP2).

Accuracy (%)

RF SVM NN LDA DT
Exp1 100 94.44 92.28 89.40 99.42
Exp2 97.99 97.46 87.10 90.26 97.41

Average 98.995 95.95 89.69 89.83 98.41

results are achieved when G2 is tested versus G1 and the
other way around with an accuracy of 100% and 97.99%
for Exp1 and Exp2 accordingly as presented in Table II.
Table III shows the confusion matrix of random forest for
Exp2. Moreover, it can be included that the percentage of
recovered informative data is 57.37%, which can be calcu-
lated as follows. Percentage = (1270+813)/(2085+1546).
Decision tree and support vector machine classifiers attain
quite similar results to random forest with accuracy results
of (99.42% & 97.41%) and (94.44% & 97.46%) for Exp1
and Exp2 respectively.

TABLE III
CONFUSION MATRIX OF RANDOM FOREST FOR TESTING G1 VS. G2

(EXP2).

Actual

Informative Non-Informative

Predicted Informative 1270 26

Non-Informative 18 771

On the other hand, the CEEMDAN is applied to BCG signals
following a noise standard deviation of 0.35, an ensemble
size of 100, and a maximum number of iterations of 30
to obtain interbeat intervals. For ECG and BCG segments,
the HR is estimated in beat per minute and the mean
absolute error (MAE) is used to assess the performance of the
CEEMDAN algorithm. In order to estimate the effectiveness
of the quality processing system, HR is estimated before and
after applying the classification process. From Table IV, it

TABLE IV
THE MAE FOR G1 AND G2 BEFORE AND AFTER CLASSIFICATION.

MAE (before) MAE (after)

G1 11.16 7.26
G2 15.24 9.68

Average 13.2 8.47

can be noted that, the MAE is largely reduced from (G1:
11.16 and G2: 15.24) to (G1: 7.26 and G2: 9.68) after
classification. As a result, the quality processing system can

effectively increase robustness of the system for vital signs
monitoring.

VI. CONCLUSION AND FUTURE DIRECTIONS

In wellness applications, the necessity for sensor data
processing is not immediate. However, opportunistic sensing
can be used. The activity considered in this paper is resting
on a massage chair, with the sensor embedded into the
headrest of the massage chair. The algorithm presented
makes use of machine learning techniques to process the
quality of sensor data, thereby filtering out only significant
segments of the signal. Random forest classifier achieves
the best classification performance to identify informative
and non-informative signals with respect to their heart rate
information. The heart rate is detected using CEEMDAN
algorithm, where each local maximum of the 6th decomposi-
tion component corresponds to the periodicity of the J-Peaks
of the BCG signal. The performance of the CEEMDAN is
determined according to MAE measurement. The proposed
quality processing system plays a key role to eliminate the
erroneous of the system to monitoring vital signs. In the
future, we would like to propose a more robust approach to
compute heart beats in addition to respiratory efforts.

REFERENCES

[1] G. Acampora, D. Cook, P. Rashidi, and A. Vasilakos, “A survey on
ambient intelligence in healthcare,” Proceedings of the IEEE, vol. 101,
pp. 2470–2494, Dec 2013.

[2] J. Schumm, Quality assessment of physiological signals during am-
bulatory measurements. Ph.D. dissertation, ETH Zurich, 2010.

[3] J. Wang, “A new method for evaluating ecg signal quality for multi-
lead arrhythmia analysis,” in Computers in Cardiology, 2002, pp. 85–
88, Sept 2002.

[4] S. Lee, C. Ling, A. Nahapetian, and M. Sarrafzadeh, “A mechanism
for data quality estimation of on-body cardiac sensor networks,”
in Consumer Communications and Networking Conference (CCNC),
2012 IEEE, pp. 194–198, Jan 2012.

[5] O. Inan, P.-F. Migeotte, K.-S. Park, M. Etemadi, K. Tavako-
lian, R. Casanella, J. Zanetti, J. Tank, I. Funtova, G. Prisk, and
M. Di Rienzo, “Ballistocardiography and seismocardiography: A re-
view of recent advances,” Biomedical and Health Informatics, IEEE
Journal of, vol. 19, pp. 1414–1427, July 2015.

[6] Z. Chen, X. Yang, J. T. Teo, and S. H. Ng, “Noninvasive monitoring of
blood pressure using optical ballistocardiography and photoplethysmo-
graph approaches,” in Engineering in Medicine and Biology Society
(EMBC), 2013 35th Annual International Conference of the IEEE,
pp. 2425–2428, July 2013.

[7] Y. Zhu, H. Zhang, M. Jayachandran, A. Ng, J. Biswas, and Z. Chen,
“Ballistocardiography with fiber optic sensor in headrest position: A
feasibility study and a new processing algorithm,” in Engineering in
Medicine and Biology Society (EMBC), 2013 35th Annual Interna-
tional Conference of the IEEE, pp. 5203–5206, July 2013.

[8] J. Biswas, Y. Zhu, H. Zhang, J. Maniyeri, Z. Chen, and C. Guan, “In-
formation processing of optical sensor data in ambient applications,”
in Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2014 IEEE Ninth International Conference on, pp. 1–6,
April 2014.

[9] Z. Chen, J. T. Teo, S. H. Ng, X. Yang, B. Zhou, Y. Zhang, H. P. Loo,
H. Zhang, and M. Thong, “Monitoring respiration and cardiac activity
during sleep using microbend fiber sensor: A clinical study and new
algorithm,” in Engineering in Medicine and Biology Society (EMBC),
2014 36th Annual International Conference of the IEEE, pp. 5377–
5380, Aug 2014.

[10] I. Sadek, J. Biswas, V. F. S. Fook, and M. Mokhtari, “Automatic heart
rate detection from fbg sensors using sensor fusion and enhanced
empirical mode decomposition,” in Signal Processing and Informa-
tion Technology (ISSPIT), 2015 IEEE International Symposium on,
pp. 349–353, Dec 2015.


