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The intrinsic dynamics of optimal transport *

The question of which costs admit unique optimizers in the Monge-Kantorovich problem of optimal transportation between arbitrary probability densities is investigated. For smooth costs and densities on compact manifolds, the only known examples for which the optimal solution is always unique require at least one of the two underlying spaces to be homeomorphic to a sphere. We introduce a (multivalued) dynamics which the transportation cost induces between the target and source space, for which the presence or absence of a sufficiently large set of periodic trajectories plays a role in determining whether or not optimal transport is necessarily unique. This insight allows us to construct smooth costs on a pair of compact manifolds with arbitrary topology, so that the optimal transportation between any pair of probility densities is unique.

Introduction

Let M and N be smooth closed manifolds (meaning compact, without boundary) of dimensions m and n ≥ 1 respectively, and c : M × N → R a continuous cost function. Given two probability measures µ and ν respectively on M and N , the Monge problem consists in minimizing the transportation cost

M ×N c x, T (x) dµ(x), (1.1) 
among all transport maps from µ to ν, that is such that T µ = ν. A classical way to prove existence and uniqueness of optimal transport maps is to relax the Monge problem into the Kantorovitch 1 problem. That problem is a linear optimization problem under convex constraints, it consists in minimizing the transportation cost M ×N c(x, y) dγ(x, y),

among all transport plans between µ and ν, meaning γ belongs to the set Π(µ, ν) of non-negative measures having marginals µ and ν. By classical (weak) compactness arguments, minimizers for the Kantorovitch problem always exist. A way to get existence and uniqueness of minimizers for the Monge problems is to show that any minimizer of (1.2) is supported on a graph. Assuming that c is Lipschitz and µ is absolutely continuous with respect to the Lebesgue measure, a condition which guarantees this graph property is the following nonsmooth version [START_REF] Chiappori | Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness[END_REF] [24] of the TWIST condition

D - x c •, y 1 ∩ D - x c •, y 2 = ∅ ∀y 1 = y 2 ∈ N, ∀x ∈ M,
where D - x c(•, y i ) denotes the sub-differential of the function x → c(x, y i ) at x. In this case, it is well-known how to use linear programming duality to prove that the Kantorovich minimizer is unique, and that Monge's infimum is attained [START_REF] Gangbo | [END_REF] [START_REF] Levin | Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem[END_REF].

Examples of Lipschitz costs satisfying the nonsmooth TWIST are given by any cost coming from variational problems associated with Tonelli Lagrangians of class C 1,1 (see [START_REF] Bernard | Optimal mass transportation and Mather theory[END_REF]), like the square of Riemannian distances (see [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF]). Those costs are never C 1 on compact manifolds such as M ×N . As a matter of fact, any cost c : M × N → R of class C 1 admits a triple x ∈ M, y 1 ∈ N, y 2 ∈ N, (take y 1 with c(x, y 1 ) = min{c(x, •)} and y 2 with c(x, y 2 ) = max{c(x, •)} ) such that ∂c ∂x

x, y 1 = ∂c ∂x x, y 2 , violating the nonsmooth TWIST condition. Indeed, we shall show the following holds. Assume that dim M = dim N and

∃(x, ȳ) ∈ M × N such that ∂ 2 c ∂x∂y (x, ȳ) is invertible. (1.3)
Then there is a pair µ, ν of probability measures respectively on M and N which are both absolutely continuous with respect to the Lebesgue measure for which there is a unique optimal transport plan for (1.2) and such that this plan is not supported on a graph. The set of costs c satisfying (1.

3) is open and dense in C 2 (M × N ; R).

The conclusion of Theorem 1.1 implies that solutions for the Monge problem with smooth cost do not generally exist in a compact setting. The purpose of the present paper is to study sufficient conditions for uniqueness of the Kantorovitch optimizer, and to exhibit smooth costs on arbitrary manifolds for which optimal plans are unique, despite the fact that such plans are not generally concentrated on graphs. Some examples of such costs have been given in [START_REF] Gangbo | Shape recognition via Wasserstein distance[END_REF] [START_REF] Ahmad | Optimal transportation, topology and uniqueness[END_REF] (see also [START_REF] Bianchini | On the extremality, uniqueness, and optimality of transference plans[END_REF]). However, if uniqueness is to hold for arbitrary absolutely continuous µ and ν on M and N , all previous examples which we are aware of that involve smooth costs have required at least one of the two compact manifolds be homeomorphic to a sphere. Here we go far beyond this, to construct examples of such costs on compact manifolds whose topology can be arbitrary. Our main idea is to relate the uniqueness of the Kantorovitch optimizer to a multivalued dynamics induced by the cost which does not seem to have been considered previously.

Before stating our results, we need to introduce some definitions.

Denoting the non-negative integers by N = {0, 1, 2, . . .} and the positive integers by N * = N \ {0}, we begin recalling the well-known notion of c-cyclical monotonicity.

Definition 1.2 (c-cyclical monotonicity). A set S ⊂ M × N is c-cyclically monotone when for all I ∈ N * and (x i , y i ) ∈ S for i = 1, . . . , I with x I+1 = x 1 , we have

I i=1 [c(x i+1 , y i ) -c(x i , y i )] ≥ 0.
For given µ, ν and c, it is also well-known [START_REF] Gangbo | The geometry of optimal transportation[END_REF] that some closed c-cyclically monotone subset S ⊂ M × N contains the support of all optimizers to (1.2). Note that of course, any subset of a c-cyclically monotone set is c-cyclically monotone as well. We come now to the concepts which will play a major role. is c-cyclically monotone and for every l = 1, . . . , L -1 there holds, either

x l = x l+1 and y l = y l+1 = y min{L,l+2} and ∂c ∂x (x l , y l ) = ∂c ∂x (x l , y l+1 ), (1.4) or y l = y l+1 and x l = x l+1 = x min{L,l+2} and ∂c ∂y (x l , y l ) = ∂c ∂y (x l+1 , y l ).

(1.5)

The chain is called cyclic if its projections onto M and N each consist of L/2 distinct points, in which case L must be even with y L = y 1 and x L = x 1 .

Note the existence of any cyclic chain ((x 1 , y 1 ), . . . (x L , y L )) permits the construction of an infinite chain {(x l , y l )} l∈N * by x kL+l , y kL+l := x l , y l ∀k ≥ 1, ∀l ∈ {1, . . . , L}.

(1.6)

Our first result is the following:

Theorem 1.4 (Optimal transport is unique if long chains are rare). Fix a cost c ∈ C 1 (M × N ).
Choose Borel probability measures µ on M and ν on N , both absolutely continuous with respect to Lebesgue, and let Π 0 denote the set of all optimizers for (1.2) on Π(µ, ν). Let E 0 ⊂ M × N be a σ-compact set which is negligible for all γ ∈ Π 0 , and denote its complement by S := (M × N ) \ E 0 . Let E ∞ denote the set of points which occur in k-chains in S for arbitrarily large k. Then E ∞ and its projections π M (E ∞ ) and π N (E ∞ ) are Borel. If γ(E ∞ ) = 0 for every γ ∈ Π 0 , then Π 0 is a singleton.

Remark 1.5 (Extension to singular marginals). When c ∈ C 1,1 , we can relax the absolute continuity of µ and ν in the preceding theorem provided neither concentrates positive mass on a cc hypersurface. Here cc hypersurface refers to one which can be parameterized in local coordinates as the graph of a difference of convex functions [START_REF] Zajíček | On the differentiability of convex functions in finite and infinite dimensional spaces[END_REF] [12] [START_REF] Gigli | On the inverse implication of Brenier-McCann theorems and the structure of (P 2 (M ), W 2 )[END_REF].

Corollary 1.6 (Sufficient notions of rarity). The condition γ(E ∞ ) = 0 in the statement of the theorem, and therefore its conclusions, follow from either µ(π

M (E ∞ )) = 0 or ν(π N (E ∞ )) = 0.
If there is a uniform bound K on the length of all chains in M × N , then our theorem applies a fortiori with S = M × N and E 0 = ∅, since E ∞ = ∅. We shall see this occurs in many cases of interest, including for the smooth costs that we construct on compact manifolds with arbitrary topology. The bound K will depend on the topology. On the other hand, an obstruction to the uniqueness of optimal plans is the existence of a non-negligible set of periodic orbits. As shown below, such a property is not typical: it fails to occur for costs c in a countable intersection C of open dense sets. Such a countable intersection is called residual. In the terminology of Hestir and Williams [START_REF] Hestir | Supports of doubly stochastic measures[END_REF], the absence of cyclic chains is sufficient to define (formally) a rooting set whose measurability would be sufficient for uniqueness. We refer the reader to Section 3 for further details on their approach and its aftermath [START_REF] Bianchini | On the extremality, uniqueness, and optimality of transference plans[END_REF] [1] [START_REF] Moameni | Supports of extremal doubly stochastic measures[END_REF]. We do not know if uniqueness of optimal plans between absolutely continuous measures holds for generic costs. However, elaborating on a celebrated result by Mañé [START_REF] Mañé | Generic properties and problems of minimizing measures of Lagrangian systems[END_REF] in the framework of Aubry-Mather theory, we are able to prove that uniqueness of optimal transport plans holds for generic costs in C k if the marginals are fixed. In C 0 , such a result was known already to Levin [START_REF] Levin | On the generic uniqueness of an optimal solution in an infinite-dimensional linear programming problem[END_REF]. Theorem 1.8 (Optimal transport between given marginals is generically unique). Fix Borel probability mesures on compact manifolds M and N . For each k ∈ N ∪ {∞}, there exists a residual set C ⊂ C k (M × N ; R) such that for every c ∈ C, there is a unique optimal plan between µ and ν.

The paper is organized as follows. We provide examples of costs satisfying the above results in Section 2. We develop preliminaries on numbered limb systems and details on Hestir and Williams' rooting sets in Section 3. We give the proofs of Theorem 1.4 in Section 4, of Theorem 1.7 in Section 6, and finally of Theorem 1.8 in Section A.

Examples and applications

2.1 Quadratic cost on a strictly convex set Let us begin by recasting an example of Gangbo and McCann [13] into the framework of (alternant) chains.

Fix N ⊂ R m+1 . Let M be the boundary of a strictly convex body Ω ⊂ R m+1 , that is a closed set which is the boundary of a bounded open convex set and such that for any z, z ∈ M ,

[z, z ] ⊂ M =⇒ z = z ,
where [z, z ] is the segment joining z to z . We aim to show that for any measures µ and ν (µ being absolutely continuous w.r.t. the Hausdorff m-dimensional measure H m measure on M ), we have uniqueness of optimal plans for the cost

c(x, y) = 1 2 |x -y| 2 ∀(x, y) ∈ M × N.
Let P(M × N ) denote the Borel probability measure on M × N and π M : M × N → M and π N : M × N → N the projections onto the first and second variables. Let µ and ν be probability measures on M and N . We recall that the support Γ ⊂ M × N of any plan γ ∈ P(M × N ) minimizing inf

M ×N c(x, y)dγ(x, y) | γ ∈ Π(µ, ν) (2.1) 
is c-cyclically monotone, which in the case c(x, y) = |y -x| 2 /2 reads

I i=1 y i , x i -x i+1 ≥ 0,
for all positive integer I, i = 1, . . . , I, (x i , y i ) ∈ A, x I+1 = x 1 . The uniqueness of optimal plans will follow easily from the next lemma.

Lemma 2.1 (Interior links are never exposed). Fix a hypersurface M ⊂ R m+1 , possibly incomplete. For any submanifold N ⊂ R m+1 of dimension n ≤ m + 1, let c(x, y) denote the restriction of

1 2 |x -y| 2 to M × N . If ((x 0 , y), (x 2 , y), (x 2 , y ), (x 4 , y )) is a chain in M × N , then no hyperplane strictly separates x 2 from M \ {x 2 }.
Proof. To derive a contradiction, suppose ((x 0 , y), (x 2 , y), (x 2 , y ), (x 4 , y )) forms a chain in M × R m+1 , yet x 2 is strictly separated from M \ {x 2 } by a hyperplane with inward normal n 2 , i.e.

x -

x 2 , n 2 > 0 (2.2)
for all x ∈ M \ {x 2 }. The chain conditions imply yy = αn 2 for some α ∈ R.

On the other hand, pairwise monotonicity of the points in the chain imply

x 4 -x 2 , y -y = α x 4 -x 2 , n 2 ≥ 0 x 2 -x 0 , y -y = α x 2 -x 0 , n 2 ≥ 0.
Using (2.2) we deduce α ≥ 0 from the first inequality and α ≤ 0 from the second. But α = 0 yields y = y, contradicting the definition of a chain.

As a consequence we have:

Corollary 2.2 (Chain bounds for strictly convex hypersurfaces). If c is the restriction of |x -y| 2 to M × N as above, where M ⊂ R m+1 is a strictly convex hypersurface, then M × N contains no chain of length L ≥ 5. Moreover, the projection of any 4-chain in M × N onto N consists of three distinct points, while its projection onto M consists of two distinct points. If N ⊂ R m+1 is also a strictly convex hypersurface, then M × N contains no chain of length L ≥ 4.

Proof. If a chain of length L ≥ 5 exists, it begins either with ((x 1 , y 2 ), (x 3 , y 2 ), (x 3 , y 4 ), (x 5 , y 4 )) (

or ((x 2 , y 1 ), (x 2 , y 3 ), (x 4 , y 3 ), (x 4 , y 5 ), (x 6 , y 5 )). Since M is strictly convex, each point x ∈ M is exposed, meaning it can be strictly separated from M \ {x} by a hyperplane. In the first case Lemma 2.1 would be violated by the chain (2.3) since x 2 is an exposed point of M ; in the second it would be violated by the chain ((x 2 , y 3 ), (x 4 , y 3 ), (x 4 , y 5 ), (x 6 , y 5 )) since x 4 is an exposed point of M . We are forced to conclude that no chain of length L ≥ 5 can exist. Moreover, any chain of length L = 4 in M × N must take the form ((x 2 , y 1 ), (x 2 , y 3 ), (x 4 , y 3 ), (x 4 , y 5 )) hence project onto three points y i ∈ N . The y i must all be distinct since y 1 = y 3 = y 5 from the definition of chain, while y 5 = y 1 would make the chain cylic, in which case it can be extended to an infinite chain (1.6) contradicting non-existence of a chain of length 5. The projection onto M therefore consists of the two points x 2 = x 4 , which are distinct by the definition of chain.

If N ⊂ R m+1 is also a strictly convex hypersurface then by symmetry, M × N can contain no chain which projects to more than two points on M and two points on N , hence no chain of length L ≥ 4.

Example 2.3. Let us consider the example of the lake that already appeared in [START_REF] Gangbo | Shape recognition via Wasserstein distance[END_REF] and [START_REF] Chiappori | Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness[END_REF]. Let M = N be the unit circle in the plane, that is the circle centered at the origin of radius 1 equipped with the quadratic cost c(x, y) = |y -x| 2 /2. Consider a small auxiliary circle centered on the vertical axis, for example the circle centered at (0, -5/2) of radius 1/8, denote by ψ the distance function to the disc D enclosed by the small circle (see Figure 2.3). By construction, ψ is convex and differentiable at every point of M with a gradient of norm 1.

Then we set ψ(x)

:= ψ(x) - 1 2 |x| 2 ∀x ∈ M and φ(y) := min ψ(x) + c(x, y) | x ∈ M ∀y ∈ M. M D x ȳ(x) ŷ(x)
Figure 1: The lake By construction, we check that

ψ(x) = max φ(y) -c(x, y) | y ∈ M ∀x ∈ M. (2.4)
Moreover, for every x ∈ M , the gradient ȳ(x) := ∇ x ψ ∈ R 2 belongs to the set ∂ c ψ(x) ⊂ M of optimizers for (2.4). As a matter of fact, we have by convexity of ψ,

ψ(x ) -ψ(x) ≥ ȳ(x), x -x ∀x, x ∈ R 2 .
Which can be written as

ψ(x) ≤ ψ(x ) + 1 2 x -ȳ(x) 2 - 1 2 x -ȳ(x) 2 ∀x, x ∈ R 2 .
Taking the minimum over x ∈ M , we infer that (ȳ(x) ∈ M )

c x, ȳ(x) ≤ φ ȳ(x) -ψ(x) ∀x ∈ M which, because φ -ψ ≤ c implies that c x, ȳ(x) = φ ȳ(x) -ψ(x) ∀x ∈ M, which means that ȳ(x) = ∇ x ψ always belongs to ∂ c ψ(x). For every x ∈ M , we set ŷ(x) := ȳ(x) + λ(x)x ∈ M,
where λ(x) ≥ 0 is the largest nonnegative real number λ such that ȳ(x) + λx belongs to M (in other terms, ŷ(x) is the intersection of the open semi-line starting from ȳ(x) with vector x if the intersection is nonempty and ŷ(x) = ȳ(x) otherwise). For every x ∈ M , the point ŷ(x) belongs to ∂ c ψ(x) as well. As a matter of fact, by convexity of M , the fact that the normal to M at x is x itself and the convexity of ψ, we have for every x, x ∈ M ,

ŷ(x), x -x = ȳ(x), x -x + λ(x) x, x -x ≤ ȳ(x), x -x ≤ ψ(x ) -ψ(x).
Proceeding as above we infer that ŷ(x) belongs to ∂ c ψ(x). We can check easily that for every point x close to the south pole (-1, 0) the points ŷ(x), ȳ(x) are distinct (see Figure 2.3). Proceeding as in the proof of Theorem 1.1, we can construct an example of optimal transport plan which is not concentrated on a graph.

Quadratic cost on nested strictly convex sets

Let

Ω 1 ⊂ Ω 2 ⊂ . . . ⊂ Ω L . (2.5)
be a nested family of strictly convex bodies with differentiable boundaries in

R m+1 . Set M = ∪ L i=1 U i , where U i = ∂Ω i \ ∂Ω i-1
is an embedding of (a portion of) the unit sphere. 

M L := ∂Ω 1 ∪ . . . ∪ ∂Ω L is a union of boundaries of a nested sequence (2.5) of strictly convex bodies Ω i ⊂ R m+1 , then M L × N contains
no chain of length 4L + 1. Moreover, any chain of length 4L has projections onto M L (respectively N ) which consist of 2L (respectively 2L + 1) distinct points.

Proof. We prove the result by induction on L. Corollary 2.2 gives the result for L = 1. So assume that the property is proved for L ≥ 1 and prove it for L + 1. Note that although M L may not be a submanifold of R m+1 (if the boudaries of Ω i and Ω i+1 intersect), it may be regarded as C 1 embedding of the disjoint union

L i=1 U i of potentially incomplete manifolds U i = ∂Ω i \ ∂Ω i-1 .
Any chain in M L+1 × N of length 4L + 5 takes one of the forms

((x 1 , y 2 ), (x 3 , y 2 ), (x 3 , y 4 ), . . . , (x 4L+3 , y 4L+4 ), (x 4L+5 , y 4L+4 ), (x 4L+5 , y 4L+6 )) or (2.6) ((x 2 , y 1 ), (x 2 , y 3 ), (x 4 , y 3 ), . . . , (x 4L+4 , y 4L+3 ), (x 4L+4 , y 4L+5 ), (x 4L+6 , y 4L+5 )) . (2.7)
Strict convexity of ∂Ω L+1 shows any x ∈ ∂Ω L+1 can be separated from M L+1 \{x} by a hyperplane. Lemma 2.1 therefore implies {x 4 , . . . , x 4L+3 } ⊂ M L , so that apart from possibly the first and last pairs of points, the chains (2.6)-(2.7) above are contained in M L × N . But this contradicts the inductive hypothesis, which asserts that M L × N contains no chain of length 4L + 1.

Similarly, if M L+1 × N contains a chain of length 2L + 4, it must take the form of the first 2L+4 points in (2.7) rather than (2.6); in the latter case {x 3 , . . . , x 4L+3 } ⊂ M L whence M L × N would contain a chain of length 4L + 3, contradicting the inductive hypothesis. In the former case, {x 4 , . . . , x 4L+2 } ⊂ M L , whence M L × N contains a chain of length 4L which the inductive hypothesis asserts is comprised of 2L distinct points X 4L+2 , since otherwise we can extract a cycle and build an infinite chain in M L+1 × N .

Costs on manifolds:

Lemma 2.5 (Diffeomorphism from interior of simplex to punctured sphere). Fix the standard simplex ∆ = {(t 0 , . . . , t m ) | t i ≥ 0 and m i=0 t i = 1)} and unit ball Ω = B 1 (e 1 ) ⊂ R m+1 centered at e 1 = (1, 0, . . . , 0) ∈ R m+1 . There is a smooth map E : ∆ -→ ∂Ω which acts as a diffeomorphism from ∆ \ ∂∆ to ∂Ω \ {0} such that E and all of its derivatives vanish on the boundary ∂∆ of the simplex:

E(∂∆) = {0}. Proof. Let f : [0, 1] → [1, 2]
be a smooth function satisfying the following properties:

(a) f is nondecreasing, (b) f (s) = 1 for every s ∈ [0, 1/2],
(c) f (1) = 2 and all the derivatives of f at s = 1 vanish.

Denote by D m the closed unit disc of dimension m and by S m ⊂ R m+1 the unit sphere. We also denote by exp N : T N S m → S m the exponential mapping from the north pole N = (0, . . . , 0, 1) associated with the restriction of the Euclidean metric in R m+1 to S m . Then we set

F (v) = exp N π 2 f (|v|) v ∀v ∈ D m .
By construction, F is smooth on D m , F is a diffeomorphism from Int(D m ) to S m \ {S}, where S denotes the south pole of S m , F (∂D m ) = {S} and all the derivatives of F on ∂D m vanish. Therefore, in order to prove the lemma, it is sufficient to construct a Lipschitz mapping G : ∆ → D m which is smooth on Int(∆), is a diffeomorphism from Int(∆) to Int(D m ), and sends ∂∆ to ∂D m . The simplex ∆ is contained in the affine hyperplane

H = λ = (t 0 , . . . , t m ) | m i=0 t i = 1 .
Let t := (1/(m + 1), . . . , 1/(m + 1)) be the center of ∆, we check easily that ∆ is contained in the disc centered at t with radius 1 -1/(m + 1). For every t ∈ ∆ \ { t}, we set u t := (t -t)/|t -t| and ρ(t

) := min s ≥ 0 | λ + s u t ∈ ∂∆ ∀t ∈ ∆ \ { t}.
By construction, the function ρ : ∆ \ { t} → [0, +∞) is locally Lipschitz and satisfies for every unit vector u ∈ S m ∩ H 0 (with

H = t + H 0 ), ρ ( t + αu) = α u -α ∀α ∈ (0, α u ],
where α u > 0 is the unique α > 0 such that t+αu ∈ ∂∆. We note that since ∆ ⊂ B( t, 1 -1/(m + 1)), we have indeed α u ∈ (0, 1 -1/(m + 1)] for every u ∈ S m ∩ H 0 . We also observe that the mdimensional ball H ∩ B ( t, 1/(2(m + 1))) is contained in the interior of ∆ and that ρ ≥ 1/(2(m + 1)) on that set. Pick a smooth function g : [0, +∞) → [0, 1] satisfying the following properties:

(d) g is nonincreasing, (e) g(s) = 1 -3(m + 1)s for every s ∈ [0, 1/(4(m + 1))],

(f) g(s) = 0 for every s ≥ 1/(2(m + 1)).

Let D be the m-dimensional unit disc in H centered at t, define the function

G 0 : ∆ → D by G 0 (t) = t + [1 -g (ρ(t))] (t -t) + g (ρ(t)) u t .
By construction, G 0 is Lipschitz and smooth on each ray starting from t. Namely, for each unit vector u ∈ S m ∩ H 0 , we have

G 0 u (α) := G 0 ( t + αu) = t + [1 -g (α u -α)] (α u) + g (α u -α) u ∀α ∈ (0, α u ].
The derivative of G 0 on each ray t + R + u is given by

∂G 0 u ∂α (α) = [1 -g (α -α u ) + (α -1) g (α -α u )] u ∀α ∈ (0, α u ],
and there holds

1 -g (α -α u ) + (α -1) g (α -α u ) ≥ 1 -g (α -α u ) + 1 - 1 m + 1 -1 g (α -α u ) ≥ 1 -g (α -α u ) + -1 2(m + 1) g (α -α u ) ≥ 3 4 , by (d)-(f). Moreover, for every u ∈ S m ∩ H 0 , the ray t + R + u in invariant by G 0 , G 0 u (α u ) = t + u, and in addition G 0 (t) = t whenever t ∈ H ∩ B λ, 1/(2(m + 1)) . In conclusion, G 0 is Lipschitz and bijective from ∆ to D. If we work in polar coordinates z = (α, u) with α > 0 and u ∈ S m ∩ H 0 , then G 0 reads G0 (z) = G0 (α, u) = (G u (α), u) ,
for every z ∈ ∆, the domain of G 0 in polar coordinates (since G 0 coincides with the identity near λ we do not care about the singularity at α = 0). Thus for every z in the interior of ∆ where G0 is invertible, the Jacobian matrix of G0 at z, J z G0 is triangular and invertible. Recall that for every z in the interior of ∆, the generalized Jacobian of G0 at z is defined as

J z G0 := conv lim k J z k G0 | z k → k z, G diff. at z k .
By the above discussion and Rademacher's Theorem, for every z in the interior of ∆, J z G0 is always a nonempty compact subset of M m (R) which contains only invertible matrices. In conclusion, for every t ∈ Int(∆) the generalized Jacobian of G 0 at t satisfies the same properties, it is a nonempty compact subset of M m (R) which contains only invertible matrices. Thanks to the Clarke Lipschitz Inverse Function Theorem [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], we infer that the Lipschitz mapping G 0 : ∆ → D is locally bi-Lipschitz from Int(∆) to Int(D). It remains to smooth G 0 in the interior of ∆ by fixing G 0 on the boundary ∂∆.

To this aim, consider a mollifier θ : R m → R, that is a smooth function satisfying the following three conditions:

(g) θ ≥ 0, (h) Supp(θ) ⊂ Dm , (i) R m θ(x) dx = 1. The multivalued mapping λ ∈ Int(∆) → J λ G 0 ∈ M m (R) is uppersemicontinuous (its graph is closed in Int(∆) × M m (R)
) and is valued in the set of compact convex sets of invertible matrices. Hence, there is a continuous function : Int(∆) → (0, ∞) such that for every t ∈ Int(∆) and every matrix A ∈ M m (R), the following holds

d (A, conv ({J β G | β ∈ B(λ, (t)})) < (t) =⇒ A is invertible. (2.8)
Consider also a smooth function ν : H → R + such that:

(j) ν(t) = 0, for every t / ∈ Int(∆), (k) 0 < ν(t) < min {d(t, ∂∆), (t)}, for every t ∈ Int(∆), (l) for every t ∈ Int(∆), |∇ t ν| ≤ (t)/K, where K > 0 is a Lipschitz constant for G 0 .

Then, we define the function G : ∆ → D by (we identify H 0 with R m )

G(t) = R m θ(x) G 0 (t -ν(t)x) dx ∀t ∈ ∆.
By construction, G is Lipschitz on ∆, it coincides with G 0 on ∂∆, it satisfies G(Int(∆)) ⊂ Int(D), and it is smooth on Int(∆). For every t ∈ Int(∆), its Jacobian matrix at t is given by

J t G = R m θ(x) J t-ν(t)x G 0 • I n -x • ∇ t ν * dx.
Hence, we have for every t ∈ Int(∆),

J t G - R m θ(x) J t-ν(t)x G dx ≤ K |∇ t ν| and R m θ(x) J t-ν(t)x G dx ∈ conv J β G | β ∈ B(t, ν(t)) .
Using (2.8) and (j)-(l), we infer that G is a local diffeomorphism at every point of Int(∆). Moreover, G is surjective. If not, there is y ∈ D such that y does not belong to the image of G. Since G = G 0 on ∂∆, y does not belong to ∂D. Thus there is y ∈ ∂G(∆) \ ∂D. Since G is a local diffeomorphism at any preimage of y , we get a contradiction. In conclusion, G is a Lipschitz mapping from ∆ to D which sends bijectively ∂∆ to ∂D, which sends Int(∆) to Int(D), which is surjective, and which is a smooth local diffeomorphism at every point of Int(∆). Moreover, D is simply connected. Hence G : ∆ → D is a Lipschitz mapping which is a smooth diffeomorphism from Int(∆) to Int(D). We conclude easily. M (0 m+1 ). Define the analogous map

E N : N -→ Ñ ⊂ R n+1 where Ñ = k N k=1 k∂B 1 (e 1 ) ⊂ R n+1 and N 0 = E -1 N (0 n+1 ). In case n < m, we embed R n+1 into R m+1 by identifying R n+1 with {(x 1 , . . . , x m+1 ) ∈ R m+1 | x n+2 = • • • = x m+1 = 0}. The cost c(x, y) := |E M (x) -E N (y)| 2 /2
on M × N then satisfies the conclusions of the proposition. Its smoothness follows from that of E M and E N . Lemma 2.4 shows that no chains of length greater than 4k M lie in (M \ M 0 ) × (N \ N 0 ). On the other hand, the simplex boundaries M 0 lies in a finite union of smooth hypersurfaces, hence are µ-negligible. Similarly, N 0 is ν-negligible. The desired conclusion now follows from Theorem 1.4.

3 Preliminaries on numbered limb systems

Classical numbered limb systems

The concept of numbered limb system was introduced by Hestir and Williams in [START_REF] Hestir | Supports of doubly stochastic measures[END_REF]. Like Benes and Stepan [START_REF] Beneš | The support of extremal probability measures with given marginals[END_REF], their aim was to find necessary and sufiicient conditions on the support of a joint measure to guarantee its extremality in the space of measures which share its marginals.

Definition 3.1 (Numbered limb system). Let X and Y be subsets of complete separable metric spaces. A relation S ⊂ X × Y is a numbered limb system if there are countable disjoint decompositions of Xand Y,

X = ∞ i=0 I 2i+1 and Y = ∞ i=0 I 2i ,
with a sequence of mappings

f 2i : Dom(f 2i ) ⊂ Y -→ X and f 2i+1 : Dom(f 2i+1 ) ⊂ X -→ Y such that S = ∞ i=1 Graph(f 2i-1 ) ∪ Antigraph(f 2i ) (3.1)
and

Dom(f k ) ∪ Ran(f k+1 ) ⊂ I k ∀k ≥ 0. (3.2) I1 I3 I5 I7 I9 I0 I2 I4 I6 I8 I10
Figure 4: A numbered limb system with N = 10

The following statement from [START_REF] Ahmad | Optimal transportation, topology and uniqueness[END_REF] extends and relaxes a result of Hestir and Williams [START_REF] Hestir | Supports of doubly stochastic measures[END_REF]. Here π X (x, y) = x and π Y (x, y) = y. Theorem 3.2 (Measures on measurable numbered limb systems are simplicial). Let X and Y be Borel subsets of complete separable metric spaces, equipped with σ-finite Borel measures µ on X and ν on Y . Suppose there is a numbered limb system

S = ∞ i=1 Graph(f 2i-1 ) ∪ Antigraph(f 2i ) (3.3)
with the property that Graph(f 2i-1 ) and Antigraph(f 2i ) are γ-measurable subsets of X × Y for each i ≥ 1 and for every γ ∈ Γ(µ, ν) vanishing outside of S. If the system has finitely many limbs or µ[X] < ∞, then at most one γ ∈ Γ(µ, ν) vanishes outside of S. If such a measure exists, it is given by γ = ∞ k=1 γ k where for every i ≥ 1,

γ 2i-1 = id X × f 2i-1 η 2i-1 , γ 2i = f 2i × id Y η 2i , η 2i-1 = µ -π X γ 2i | Dom f2i-1 , η 2i = ν -π Y γ 2i+1 | Dom f2i . (3.4)
Here η k is a Borel measure on I k and f k is measurable with respect to the η k completion of the Borel σ-algebra. If the system has N < ∞ limbs, γ k = 0 for k > N , and η k and γ k can be computed recursively from the formula above starting from k = N .

The statement of Theorem 3.2 from Ahmad, Kim and McCann, like its antecedent in [START_REF] Hestir | Supports of doubly stochastic measures[END_REF], give a sufficient condition for extrememality. It is separated from Benes and Stepan [START_REF] Beneš | The support of extremal probability measures with given marginals[END_REF] and Hestir and Williams' [START_REF] Hestir | Supports of doubly stochastic measures[END_REF] necessary conditions for extremality by the γ-measurability assumed for the graphs and antigraphs (which is satisfied, for example, whenever the graphs and antigraphs are Borel.) For sets S of the form (3.3) whose graphs and antigraphs fail to be measurable, there may exist non-extremal measures vanishing outside of S, as shown by Hestir and Williams using the axiom of choice [START_REF] Hestir | Supports of doubly stochastic measures[END_REF]. Such issues are further explored by Bianchini and Caravenna [START_REF] Bianchini | On the extremality, uniqueness, and optimality of transference plans[END_REF] and Moameni [START_REF] Moameni | Supports of extremal doubly stochastic measures[END_REF], who arrive at their own criteria for extremality. Moameni's is closest in spirit to the approach developed below based on chain length: he gets his measurability by assuming the existence of a measurable Lyapunov function to distinguish different levels of the dynamics. 

ψ(x) = max φ(y) -c(x, y) | y ∈ N ∀x ∈ M, (4.1) 
φ(y) = min ψ(x) + c(x, y) | x ∈ M ∀y ∈ N, (4.2) 
S ⊂ ∂ c ψ := (x, y) ∈ M × N | c(x, y) = φ(y) -ψ(x) , (4.3) 
such that any plan γ ∈ Π(µ, ν) is optimal if and only if Supp(γ) ⊂ S. Indeed, we henceforth S to be the smallest compact set with these properties. We recall that the c-subdifferential of ψ at x ∈ M and the c-superdifferential of φ at y ∈ N are defined using (4.3):

∂ c ψ(x) := y ∈ N | (x, y) ∈ ∂ c ψ and ∂ c φ(y) := x ∈ M | (x, y) ∈ ∂ c ψ .
Note that since both ψ and φ are Lipschitz and µ and ν are both absolutely continuous with respect to Lebesgue, thanks to Rademacher's theorem, ψ and φ are differentiable almost everywhere with respect to µ and ν respectively. Let Dom dψ denotes the subset of M on which ψ is differentiable. Following Clarke [START_REF] Clarke | Generalized gradients and applications[END_REF], for every x ∈ M (resp. y ∈ N ), we denote by D * ψ(x) and ∂ψ(x) (resp. D * φ(y) and ∂φ(y)) the limiting and generalized differentials of ψ at x (resp. φ at y) which are defined by (we proceed in the same way with φ) (ii) For every x ∈ M , ψ is differentiable at x if and only if ∂ψ(x) is a singleton.

D * ψ(x) = lim k→∞ p k | p k = dψ(x k ), x k → x, x k ∈ Dom dψ ⊂ T * x M,
(iii) For every y ∈ N , φ is differentiable at y if and only if ∂φ(y) is a singleton.

(iv) The singular sets M 0 := M \ Dom dψ and N 0 := \ Dom dφ are σ-compact.

Proof of Proposition 4.1. Assertion (i) is well-known [START_REF] Clarke | Generalized gradients and applications[END_REF], and follows easily from the definitions of ∂ψ and ∂φ. Let x ∈ M be such that ψ is differentiable at x. From (4.1)-( 4.3) we have

- ∂c ∂x (x, y) = dψ(x) ∀y ∈ ∂ c ψ(x). (4.4) 
Argue by contradiction and assume that ∂ψ(x) is not a singleton. This means that D * ψ(x) is not a singleton too, let p = q be two one-forms in D * ψ(x). Then there are two sequences {x k } k , {x k } k converging to x such that ψ is differentiable at x k and x k and

lim k→∞ dψ(x k ) = p, lim k→∞ dψ(x k ) = q.
For each k, there are

y k ∈ ∂ c ψ(x k ), y k ∈ ∂ c ψ(x k ) such that - ∂c ∂x x k , y k = dψ(x k ) and - ∂c ∂x x k , y k = dψ(x k ).
By compactness of N , we may assume that the sequences {y k } k , {y k } k converge respectively to some ȳ ∈ ∂ c ψ(x) and ȳ ∈ ∂ c ψ(x). Passing to the limit , we get

- ∂c ∂x x, ȳ = p and - ∂c ∂x x, ȳ = q,
which contradicts (4.4). On the other hand, if ∂ψ(x) is a singleton, then ψ is differentiable at x (indeed, dψ : Dom dψ -→ T * M is continuous at x, so x is a Lebesgue point for dψ ∈ L ∞ loc ). (iv) The set of x such that ∂ψ(x) is a singleton is σ-compact because the multi-valued mapping x → ∂ψ(x) had s closed graph, and the mapping x → diam(∂ψ(x)) is upper semicontinuous. For every whole number q, this implies those x with diam(∂ψ(x)) ≥ 1/q form closed subset of the compact manifold M . The singular set M \ Dom dψ is the union of such subsets over q = 1, 2, . . . 

M 0 ) = ν(N 0 ) = γ(M 0 × N 0 ) = 0 for every plan γ ∈ Π(µ, ν).
Proof of Proposition 4.2. Since S is compact, the σ-compactness of E 0 follows from that shown in Proposition 4.1(iv) for M 0 and N 0 (a product of unions being the union of the products). If µ and ν are absolutely continuous with respect to Lesbesgue, Rademacher's theorem asserts µ[M 0 ] = 0 and ν[N 0 ] = 0. Otherwise c ∈ C 1,1 , in which case Gangbo and McCann show the potentials φ and -ψ are semiconvex [START_REF] Gangbo | The geometry of optimal transportation[END_REF], meaning their distributional Hessians admit local bounds from below in L ∞ . In this case the conclusion of Rademacher's theorem can be sharpened: Zajicek [START_REF] Zajíček | On the differentiability of convex functions in finite and infinite dimensional spaces[END_REF] shows M 0 and N 0 to be contained in countably many cc hypersurfaces, on which µ and ν are assumed to vanish. Finally γ(M 0 × N 0 ) ≤ γ(M 0 × N ) = µ(M 0 ) = 0.

Since our manifolds M and N are compact, any open subset is σ-compact; in particular the complement of S is σ-compact. In view of this fact and the proposition preceding it, by enlarging E 0 if necessary we may henceforth assume (i) (M × N \ S) ⊂ E 0 and (ii) M 0 × N 0 ⊂ E 0 . Then S := M × N \ E 0 ensures that for all pairs (x, y) ∈ S := M × N \ E 0 we have differentiability of ψ at x and of φ at y. We conclude easily since both ψ and φ are differentiable respectively at x and y.

We call L-chain in S any ordered family of pairs (x 1 , y 1 ), . . . (x L , y L ) ⊂ SL such that for every l = 1, . . . , L -1 there holds, either

x l = x l+1 , y l = y l+1 = y min{L,l+2} or y l = y l+1 , x l = x l+1 = x min{L,l+2} .
Note that by construction, the set of pairs of any L-chain in S is c-cyclically monotone as a subset of S, so by (4.5), any L-chain in S is indeed an L-chain with respect to c (Definition 1.3). We define the level (x, y) of each (x, y) ∈ S to be the supremum of all natural numbers L ∈ N * such that there is at least one chain ((x 1 , y 1 ), . . . (x L , y L )) in S of length L such that (x, y) = (x L , y L ). Moreover, given a chain ((x 1 , y 1 ), . . . (x L , y L )) with L ≥ 2 in S, we say that (x L , y L ) is a horizontal end if y L = y L-1 and a vertical end if x L = x L-1 . We set

SL := (x, y) ∈ S | (x, y) ≥ L ∀L ∈ N * ,
and denote by Sh L (resp. Sv L ) the set of pairs (x, y) ∈ SL such that there exists a L-chain ((x 1 , y 1 ), . . . (x L , y L )) in S such that (x, y) = (x L , y L ) and y L-1 = y L (resp. x L-1 = x L ). Although projections of Borel sets are not necessarily Borel (see [START_REF] Srivastava | A course on Borel sets[END_REF]), the following lemma holds. 

∞ p=1 ∩ ∞ q=1 U p,q
, where the sets U 1,1 and U p-1,q ⊂ U p,q ⊂ U p,q-1 are open for each p, q ≥ 2.

Proof of Lemma 4.4. Given L ≥ 3 odd, we shall show that Sh L has the asserted structure. The other cases are left to the reader. Endow the manifolds M and N with Riemannian distances d M and d N , and let d L denote the product distance on the product manifold (M × N ) L . For every integer p ≥ 1, denote by S p the set of L-tuples (x 1 , y 1 ), . . . (x L , y L ) ⊂ S L satisfying for every i = 1, . . . , L -1, for l even : x l+1 = x l and d N (y l+1 , y l ) ≥ 1/p, for l odd:

y l+1 = y l and d M (x l+1 , x l ) ≥ 1/p.
Since S is compact, the set S p is compact too. On the other hand, σ-compactness of E 0 yields (M ×N )\E 0 = ∞ q=1 V q for a monotone sequence of open sets V q ⊂ V q-1 . For every integer q ≥ 1, we denote by S q the open set of L-tuples

(x 1 , y 1 ), . . . (x L , y L ) ⊂ V q L . A pair (x, y) ∈ M × N belongs to Sh L if and only if there is p ≥ 1 such that (x, y) ∈ Proj L q S p ∩ S q ,
where the projection Proj L : (M × N ) L → S is defined by Proj L ((x 1 , y 1 ), . . . (x L , y L )) := (x L , y L ).

For integers p, q ≥ 1, let S q p the set of points which are at distance d L < 1/q from S p in (M × N ) L . Since S p is compact, for every p we have q S p ∩ S q = q S q p ∩ S q .

Moreover since for every p, the sequence of sets {S q p ∩S q } is non-increasing with respect to inclusion, we have for every p,

Proj L q S q p ∩ S q = q Proj L S q p ∩ S q .
The open sets U p,q = Proj L S q p ∩ S q then have the asserted monotonicities U p-1,q ⊂ U p,q ⊂ U p,q-1 with respect to p and q, and we find Sh L = ∞ p=1 ∞ q=1 U p,q is the desired countable union of G δ sets.

Corollary 4.5 (Borel measurability of projections). For i ≥ 1, the projections π M ( Si ) and π N ( Si ) of Si (and of Sh i , Sv

i if i > 1) take the form ∪ ∞ p=1 ∩ ∞ q=1 V pq , where V 1,1 and V p-1,q ⊂ V p,q ⊂ V p,q-1 are open for each p, q ≥ 2. Proof. If Sh/v i = ∪ p ∩ q U h/v p,q for i > 1 with U h/v p-1,q ⊂ U h/v p,q ⊂ U h/v p,q-1 then setting V p,q = π M (U p,q ) with U p,q = U h p,q ∪ U v p,q shows π M ( Si ) = ∪ p ∩ q V p
,q as desired. The other cases are similar. We recall that a set S ⊂ M × N is called a graph if for every (x, y) ∈ S there is no y = y such that (x, y ) ∈ S. A set S ⊂ M × N is called an antigraph if for every (x, y) ∈ S there is no x = x such that (x , y) ∈ S. Any graph is the graph of a function defined on a subset of M and valued in N while any antigraph is the graph of a function defined on a subset of N and valued in M . We call Borel graph or Borel antigraph any graph or antigraph which is a Borel set in M × N . We are now ready to construct our numbered limb system. Motivated by the inclusion Sk+1 ⊂ Sk , we set E 1 := S1 \ S2 ,

E k := Sk \ Sk+1 and    E h k := E k ∩ Sh k , E h- k = E k \ Sv k , E v k := E k ∩ Sv k , E v- k = E k \ Sh k , E hv k := E h k ∩ E v k , ∀k ≥ 2. (4.6) 
Notice that E k consists precisely of the points in S at level k. All these sets are Borel according to Lemma 4. [START_REF] Bernard | A generic property of families of Lagrangian systems[END_REF].

Letting E ∞ := ∞ k=1 Sk gives a decomposition S = E ∞ ∪ E 1 ∪ ∞ k=2 E h- k ∪ E hv k ∪ E v- k (4.7)
of S into disjoint Borel sets. The next lemma implies the E h k are graphs and the E v k are antigraphs; E 1 is simultaneously a graph and an antigraph, as are the E hv k .

Lemma 4.6 (Graph and antigraph properties). (a) Let (x, y i ) ∈ E i and (x, y j ) ∈ E j with j ≥ i ≥ 1 and y i = y j . Then i ≥ 2. Moreover, if j > i then (x, y i ) ∈ E h i and (x, y j ) ∈ E v- i+1 so j = i + 1; otherwise j = i and both (x, y i ), (x, y j ) ∈ E v- i . (b) Similarly, suppose (x i , y) ∈ E i and (x j , y) ∈ E j with j ≥ i ≥ 1 and x i = x j . Then i = 2 and if j > i then (x i , y) ∈ E v i and (x j , y) ∈ E h- i+1 so j = i + 1; otherwise j = i and both (x, y i ), (x, y j ) ∈ E h- i . Proof. (a) Let (x, y i ) ∈ E i and (x, y j ) ∈ E j with j ≥ i ≥ 1 and y i = y j . Then (x, y i ), (x, y j ) form a 2-chain and both points lie in S2 , forcing i ≥ 2. If (x, y j ) ∈ E h j , there is a j-chain in S terminating in the horizontal end (x, y j ). Appending (x, y i ) to this chain produces a chain of length j + 1 with vertical end (x, y i ), whence i = (x, y i ) ≥ j + 1. This contradicts our hypothesis i ≤ j. We therefore conclude (x, y j ) ∈ E v- j . Note that if (x, y i ) ∈ E h i , the same argument shows j = (x, y j ) ≥ i + 1.

(

Whether or not this is true, S contains a j-chain (x 1 , y 1 ), . . . , (x j , y j ) (4.9)

terminating in the vertical end (x, y j ), so

x = x j = x j-1 , and y j = y j = y j-1 .

Now either (c) (x, y i ) ∈ E h i or (d) (x, y i ) ∈ E v- i .
In case (c), we claim y j-1 = y i . Otherwise the sequence (x 1 , y 1 ), . . . , (x j-1 , y j-1 ), (x, y i ) would be a j-chain in S of length j ≤ (x, y i ) = i, contradicting (4.8). Thus y j-1 = y i and i = (x, y i ) ≥ j -1, which implies equality holds in (4.8).

In case (d), (x, y i ) ∈ E v- i , we replace (x j , y j ) with (x, y i ) in (4.9) to produce a chain of length j ≤ (x, y i ) = i, forcing i = j as desired.

Part (b) of the lemma now follows from part (a) by symmetry.

We define the graphs and antigraphs of our numbered limb system.

G 1 := E 1 ∪ E h- 2 , G 2i := E v- 2i ∪ E hv 2i ∪ E v- 2i+1 = E v 2i ∪ E v- 2i+1 , and (4.10) 
G 2i+1 := E h- 2i+2 ∪ E hv 2i+1 ∪ E h- 2i+1 = E h 2i+2 ∪ E h- 2i+1
for all integers i ∈ N * , and adopt the convention G 0 = ∅.

Lemma 4.7 (Disjointness of domains and ranges). For k ∈ N set

I k = π M (G k ∪ G k+1 ) if k odd and π N (G k ∪ G k+1 ) if k even. (4.11)
Then the subsets {I 2i+1 } ∞ i=0 of M are disjoint, as are the subsets {I 2i } ∞ i=1 of N .

Proof. For i = N, we shall show the sets I 2i+1 ⊂ M are disjoint. Disjointness of the subsets {I 2i } ∞ i=1 of N is proved similarly, using Lemma 4.6(b). To derive a contradiction, suppose x ∈ I 2i+1 ∩ I 2j+1 with i < j. Depending on whether i = 0 or i ≥ 1, there exist (x, y) 

∈ E 1 ∪E h- 2 ∪E h 2i+1 ∪E h- 2i+2 and (x, y ) ∈ E h 2j+1 ∪E h- 2j+2 . Since 2i+2 < 2j +1 disjointness of the E k imply y = y .
G 2i+1 := E h- 2i+2 ∪ E hv 2i+1 ∪ E h-
2i+1 is a graph: Let (x, y) = (x, y ) be distinct points in G 2i+1 . Lemma 4.6(a) asserts that at least one of the two points lies in E v- 2i+1 or E v- 2i+2 -a contradiction. The fact that G 2i is an antigraph follows by symmetry, and the fact that G 1 is a graph is checked similarly.

We can therefore write G 2i+1 = Graph(f 2i+1 ) and G 2i = Antigraph(f 2i ) for some sequence of maps f k : Dom 

Noting dim M = dim N , let (x, ȳ) ∈ M × N be such that ∂ 2 c
∂y∂x (x, ȳ) is invertible. The mapping

F : y ∈ N -→ ∂c ∂x (x, y) ∈ T xM
is C 1 and since its differential at ȳ is not singular, its image contains an open set in T xM . By Sard's theorem (see [10, §3.4.3]), the image of critical points of F has Lebesgue measure zero, so we may assume without loss of generality that F (ȳ) is a regular value of F , meaning there is no y with ∂ 2 c ∂y∂x (x, y) singular such that F (y) = F (ȳ). The next lemma then follows from topological arguments. Note that since F is a local diffeomorphism in a neighborhood of ȳ, the above condition still holds if we replace F by F a smooth (of class C ∞ ) regularization of F sufficiently close to F . So without loss of generality we may assume that F is smooth. Define the mapping G : N \ {ȳ} → S n-1 by

G(y) := F (y) -F (ȳ) |F (y) -F (ȳ)| ∀y ∈ N \ {ȳ}.
The mapping G is smooth, so by Sard's Theorem it has a regular value λ. Then the set This shows that the closure of G -1 (λ) is a compact one dimensional submanifold whose boundary is ȳ. But the boundary of any compact submanifold of dimension one is a finite set with even cardinal (see [START_REF] Milnor | Topology from the differential viewpoint[END_REF]), a contradiction.

G -1 (λ) := y ∈ N \ {ȳ} | G(y) = λ
We need now to construct a c-convex function whose c-subdifferential at each point near x takes values near both ȳ and ŷ. We note that since F (ȳ) is a regular value of F (y) = ∂c ∂x (x, y) and F (ŷ) = F (ȳ), both linear mappings D y F (ȳ), D y F (ŷ) are invertible. 

Lemma 5.2. There is a pair of functions

ψ : M → R, φ : N → R such that ψ(x) = max y∈N φ(y) -c(x, y) ∀x ∈ M (5.
∂ c ψ(x) ∩ V ∪ V = ȳ(x), ŷ(x) ∀x ∈ Ū . (5.4)
Proof of Lemma 5.2. Since we work locally in neighborhoods of x, ȳ and ŷ, taking charts, we may assume that we work in R n . For every symmetric n × n matrix Q, there is a function

f : M → R of class C 2 such that d xf = - ∂c ∂x x, ȳ = - ∂c ∂x x, ŷ (5.5) 
and

Hess xf = Q. ( 5.6) 
Let Q be fixed such that

Q + ∂ 2 c ∂x 2 x, ȳ , Q + ∂ 2 c ∂x 2 x, ŷ > 0, (5.7) 
we claim that there is a c-convex function ψ : M → R which coincide with f in an neighborhood of f and which satisfies the required properties. Since both ∂ 2 c ∂x∂y (x, ȳ) and 

x ∈ Ū -→ ȳ(x) ∈ V , x ∈ Ū -→ ŷ(x) ∈ V such that ȳ(x) = ȳ ŷ(x) = ŷ and ∂c ∂x (x, ȳ(x)) = -d x f ∂c ∂x (x, ŷ(x)) = -d x f ∀x ∈ Ū . (5.8) 
Taking one derivative at x in the latter yields

∂ 2 c ∂x 2 x, ȳ + ∂ 2 c ∂y∂x x, ȳ ∂ ȳ ∂x (x) = ∂ 2 c ∂x 2 x, ŷ + ∂ 2 c ∂y∂x x, ŷ ∂ ŷ ∂x (x) = -Hess xf,
which can be written as

     ∂ ȳ ∂x (x) = -∂ 2 c ∂y∂x x, ȳ -1 Hess xf + ∂ 2 c ∂x 2 x, ȳ ∂ ŷ ∂x (x) = -∂ 2 c ∂y∂x x, ŷ -1 Hess xf + ∂ 2 c ∂x 2 x, ŷ .
Therefore, by (5.6)-(5.7) we infer that ∂ ȳ ∂x (x) and ∂ ŷ ∂x (x) are invertible. Then restricting Ū , V , V if necessary, we may assume that the mappings

x ∈ Ū -→ ȳ(x) ∈ V , x ∈ Ū -→ ŷ(x) ∈ V are diffeomorphisms. Moreover, the functions of class C 2 given by Ḡ : x ∈ Ū -→ f (x) -f (x) + c (x, ȳ(x)) -c (x, ȳ(x)) and Ĝ : x ∈ Ū -→ f (x) -f (x) + c (x, ŷ(x)) -c (x, ŷ(x))
satisfy (using (5.6)-(5.8))

Ḡ(x) = Ĝ(x) = 0, d x Ḡ = d x Ĝ = 0, Hess x Ḡ = Hess x Ĝ = -Q + ∂ 2 c ∂x 2 x, ȳ < 0,
so we may also assume that

f (x ) -f (x) + c (x , ȳ(x )) -c (x, ȳ(x )) < 0 f (x ) -f (x) + c (x , ŷ(x )) -c (x, ŷ(x )) < 0 ∀x ∈ Ū \ {x}, ∀x ∈ Ū . (5.9) 
As a matter of fact, freezing x in the first line of (5.9) and setting

Ḡx (x ) = f (x ) -f (x) + c (x , ȳ(x )) -c (x, ȳ(x )) ∀x ∈ Ū ,
we check that for every x ∈ Ū , we have Ḡx (x) = 0, d x Ḡx = d x f + ∂c ∂x x, ȳ(x) = 0 and for every x ∈ Ū

d x Ḡx = d x f + ∂c ∂x x , ȳ(x ) + ∂c ∂y x , ȳ(x ) - ∂c ∂y x, ȳ(x ) ∂ ȳ ∂x (x ) which implies Hess x Ḡx = Hess x f + ∂ 2 c ∂x 2 x, ȳ(x) + ∂ 2 c ∂y∂x x, ȳ(x) ∂ ȳ ∂x (x) + ∂ 2 c ∂x∂y x, ȳ(x) ∂ ȳ ∂x (x)
Define the functions φ 0 : N → R and ψ : M → R by

φ 0 (y) :=    f ȳ-1 (y) + c ȳ-1 (y), y if y ∈ V f ŷ-1 (y) + c ŷ-1 (y), y if y ∈ V -∞ if y / ∈ V ∪ V ∀y ∈ N and ψ(x) = max y∈N φ 0 (y) -c(x, y) ∀x ∈ M.
with equality in the first inequality if and only if γ is concentrated on the set of (x, y) ∈ M × N with x ∈ Ū and y ∈ ∂ c ψ(x) ∩ ( V ∪ V ). This shows that γ is the unique optimal plan with marginals µ and ν.

It remains to show that the set of costs satisfying (1.

3) is open and dense in C 2 (M ×N ; R). The openness is obvious. Let us prove the density. Let c be fixed in C 2 (M × N ; R) such that (1.3) is not satisfied. Let r ∈ {0, . . . , n -1} be the maximum of the rank of

∂ 2 c ∂y∂x (x, y) for (x, y) ∈ M × N , pick some (x, ȳ) ∈ M × N such that rank ∂ 2 c ∂y∂x (x, y) = r.
Since the rank mapping is lower semicontinuous, there are two open sets U ⊂ M and V ⊂ N such that the rank of ∂ 2 c ∂y∂x (x, y) is equal to r for any (x, ȳ) ∈ U × V . Moreover restricting U and V if necessary and taking local charts, we may assume that we work in R n . Let X : V → R n be the mapping defined by X(y) = ∂c ∂x (x, y), for any y ∈ V . Doing a change of coordinates in x and y if necessary, we may assume that the r × r matrix By construction, we have X(z) i = z i ∀i = 1, . . . , r, ∀z ∈ Z.

G = ∂X i ∂y j (ȳ)
Therefore, since X has rank r, the coordinates Xr+1 , . . . , Xn do not depend upon the variables z r+1 , . . . , z n . Let δ : R n × R n → R be the smooth function defined by δ(x, z) = n i=r+1

x i z i ∀x, z ∈ R n and let ϕ : R n → [0, 1] be a cut-off function which is equal to 1 in a neighborhood of G(ȳ) and 0 outside Z. Then for every > 0 the function c : (x, z) -→ c x, G -1 (z) + ϕ(z)δ(x, z) has a mixed partial derivative which is invertible at (x, z) and tends to c (in (x, z) coordinates) in C 2 topology as > 0 goes to zero.

Generic costs in smooth topology

The proof of Theorem 1.7 follows by classical transversality arguments. We refer the reader to [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] for further details on the results from Thom transversality theory that we use below.

Recall that dim M = dim N = n. Denote by J 2 (M × N ; R) the smooth manifold of 2-jets from M × N to R and denote by V the set consisting of 2-jets ((x, y), λ, p, H) where H is a symmetric matrix consisting of four n × n blocks

H = H 1 H 2 H 3 H 4 ,
with H 2 of corank ≥ 1. The set V is closed and stratified by the smooth submanifolds ) is transverse to V is residual. For these costs the set Σ := (j 2 c) -1 (V ) ⊂ M × N is stratified of codimension ≥ 1 and it is nonempty. As a matter of fact, for every x ∈ M , the mapping ∂c ∂x (x, •) : N → T * x M is smooth and its image I is a compact subset of T *

x M . Thus for every boundary point p ∈ ∂I, the function ∂c ∂x (x, •) cannot be a local diffeomorphism in a neighborhood of any y ∈ N such that ∂c ∂x (x, y) = p, which shows that for such y the linear mapping ∂ 2 c ∂y∂x (x, y) cannot be invertible. This shows that Σ is not empty. The fact that Σ is stratified of codimension ≥ 1 (and so of zero measure) comes from the fact that it is the inverse image by j 2 c : M × N → J 2 (M × N ; R) of V which is transverse to j 2 (M × N ) (see [START_REF] Golubitsky | Stable mappings and their singularities[END_REF]Theorem 4.4 

p. 52]).

Using a similar argument, we next show that the set of costs without periodic chains is residual in C ∞ (M × N ; R). Lemma 6.1 (Cyclic chains yield optimal alternatives). Let We conclude easily.

We need now to work with 1-multijets of smooth functions from M × N to R. For every even integer L = 2K ≥ 4, we denote by W L the set of tuples 

Theorem 1 . 1 (

 11 Non-genericity of twist). Let c : M × N → [0, ∞) be a cost function of class C 2 .

Definition 1 . 3 (

 13 Alternant chains). For each (x, y) ∈ M × N assume c(x, •) and c(•, y) are differentiable. Fixing S ⊂ M × N , we call chain in S of length L ≥ 1 (or L-chain for short) any ordered family of pairs (x 1 , y 1 ), . . . , (x L , y L ) ∈ S L such that the set (x 1 , y 1 ), . . . (x L , y L )

Theorem 1 . 7 (

 17 Costs admitting cyclic chains are non-generic). When dim M = dim N , there is a residual set C in C ∞ (M × N ; R) such that no cost in C admits cyclic chains, and for every cost c ∈ C, there is a nonempty closed set Σ ⊂ M × N of zero (Lebesgue) volume such that ∂ 2 c ∂x∂y (x, y) is invertible for any (x, y) ∈ M × N \ Σ.

S 1 S 2 S 3 S 4 Figure 2 :

 12342 Figure 2: Nested convex sets

4 : 3 : 4 ⊂

 434 = {x 4 , x 6 , . . . , x 4L+2 } and 2L + 1 distinct points Y 4L+3 = {y 3 , y 5 , . . . , y 4L+3 }. Now x 2 and x 4L+4 both lie outside X 4L+2 M L , since otherwise M L × N contains a chain longer than 4L. Moreover x 2 = x 4L+4 , since otherwise we can form a cycle (of length 4L + 2), hence an infinite chain in M L+1 × N , contradicting the length bound already established. Similarly, y 1 = y 4L+5 are disjoint from Y 4L+3 3

Proposition 2 . 6 (Figure 3 :

 263 Figure 3: A bouquet of nested convex sets

4

  Proof of Theorem 1.4 and Remark 1.5 Since the source and target spaces are closed manifolds and the cost c ∈ C 1 , Gangbo and Mc-Cann [12] provide a c-cyclically monotone compact set S ⊂ M × N and Lipschitz potentials ψ : M → R and φ : M → R which satisfy

Proposition 4 . 1 .

 41 and ∂ψ(x) = conv (D * ψ(x)) ⊂ T * x M. By Lipschitzness, for every x ∈ M , the sets D * ψ(x) and ∂ψ are nonempty and compact, and of course ∂ψ(x) is convex. The next three propositions are relatively standard; the lemmas which follow them are new. For c ∈ C 1 , the potentials ψ and φ of (4.1)-(4.2) satisfy: (i) The mappings x ∈ M → ∂ψ(x) and y ∈ N → ∂φ(y) have closed graph.

  . σ-compactness of N \ Dom dφ = ∞ q=1 {y ∈ N | diam(∂φ(y)) ≥ 1/q} follows by symmetry. Proposition 4.2 (Differentiability a.e.). The sets M 0 := M \ Dom dψ, N 0 := N \ Dom dφ and M 0 × N 0 are σ-compact, and µ(

Proposition 4 . 3 (. 5 )

 435 Marginal cost is marginal price). For every (x, y) ∈ S, (4.1)-(4.3) imply dψ(x) = -∂c ∂x (x, y) and dφ(x) = ∂c ∂y (x, y). (4Proof of Proposition 4.3. Let (x, y) ∈ S, then we have by (4.1)-(4.2), φ(y )c(x, y ) ≤ ψ(x) ∀y ∈ N and φ(y)c(x, y) = ψ(x) ψ(x ) + c(x , y) ≥ φ(y) ∀x ∈ M and ψ(x) + c(x, y) = φ(y).

Lemma 4 . 4 (

 44 Borel measurability). The sets S1 = S and Sh 2 , Sv 2 , . . . , Sh L , Sv L are Borel: each takes the form ∪

Lemma 4 . 8 (

 48 Lemma 4.6(a) then asserts (x, y ) ∈ E v- 2j+1 ∪ E v- 2j+2 -the desired contradiction. Thus the subsets {I 2i+1 } ∞ i=0 of M are disjoint. Numbered limbs). The Borel sets {G 2i+1 } ∞ i=0 of (4.10) form the graphs and {G 2i } ∞ i=1 form the antigraphs of a numbered limb system: G 2i+1 = Graph(f 2i+1 ) and G 2i = Antigraph(f 2i ), with Dom f k ∪ Ran f k+1 ⊂ I k from (4.11) for all k ∈ {0, 1, . . . , K}. Proof. The sets G k are Borel by their construction (4.6), (4.10) and Lemma 4.4. If i > 0 we claim

  f k -→ Ran f k with domains Dom f k ⊂ M and ranges Ran f k ⊂ N if k odd, and Dom f k ⊂ N and Ran f k ⊂ M if k even. The fact that Dom f k ∪ Ran f k+1 ⊂ I k follows directly from (4.11), while Lemma 4.7 implies disjointness of the I 2i+1 ⊂ M and of the I 2i ⊂ N . If M = M \ ∪ ∞ i=0 I 2i+1 or Ñ := N \ ∪ ∞ i=0 I 2i is non-empty, we replace I 0 by I 0 ∪ Ñ and I 1 by I 1 ∪ M to complete our verification of the properties of a numbered limb system (Definition 3.1). Proof of Theorem 1.4 and Remark 1.5. To recapitulate: Gangbo and McCann [12] provide a ccompact set S containing the support of every optimizer γ ∈ Π 0 , and a pair of Lipschitz potentials (4.1)-(4.3) such that S ⊂ ∂ c ψ. We take S to be the minimal such set without loss of generality. Proposition 4.2 shows M 0 := M \ Dom dψ to be µ-negligible and N 0 := N \ Dom dφ to be νnegligible; both are σ-compact by Proposition 4.1. Without loss of generality, we therefore assume M 0 × N 0 ⊂ E 0 and M × N \ S ⊂ E 0 , the γ-negligible σ-compact set. Lemma 4.8 provides a decomposition (4.7) of S := M × N \ E 0 into a numbered limb system consisting of Borel graphs and antigraphs -apart from a Borel set E ∞ = Sk . But we have γ(E ∞ ) = 0 for each γ ∈ Π 0 by hypothesis. Theorem 3.2 therefore asserts that at most one γ ∈ Π 0 vanishes outside S \ E ∞ . But since all γ ∈ Π 0 have this property, Π 0 must be a singleton. Finally, since Sk+1 ⊂ Sk we see π M (E ∞ ) = ∞ k=1 π M ( Sk ) and π N (E ∞ ) are Borel using Corollary 4.5. 5 Proof of Theorem 1.1

Lemma 5 . 1 ( 1 .

 511 Generic failure of twist). Fix (x, ȳ) ∈ M × N such that F (ȳ) is a regular value of F (y) = ∂c ∂x (x, y). There is ŷ ∈ N such that F (ŷ) = F (ȳ), i.e. We argue by contradiction and assume that ∀y ∈ N, y = ȳ =⇒ F (y) = F (ȳ).

  is a one dimensional submanifold of N \ {ȳ}. Moreover, since the differential of F at ȳ is invertible, there are a open neighborhood U of ȳ and a C 1 curve γ : [-, ] → N with γ(0) = ȳ and γ(0) = 0 such that G (γ(±t)) = ±λ ∀t ∈ (0, ] and G -1 (λ) ∩ U = γ ((0, )) .

2 )

 2 and φ(y) = min ψ(x) + c(x, y) | x ∈ M ∀y ∈ N, (5.3) together with an open neighborhood Ū of x, two open neighborhoods V ⊂ N of ȳ and V ⊂ N of ŷ with V ∩ V = ∅, and two C 1 diffeomorphisms ȳ : Ū → V ŷ : Ū → V with ȳ(x) = ȳ and ŷ = ŷ(x), such that

  ∂ 2 c ∂x∂y (x, ŷ) are invertible and (5.5) holds with ȳ = ŷ, the Implicit Function Theorem yields a open neighborhood Ū ⊂ M of x, two disjoint open neighborhoods V , V ⊂ N of ȳ, ŷ respectively, and two functions of class C 1

  1≤i,j≤r is invertible. Define the mapping G :V → R n by G(y 1 , . . . , y n ) = (X(y) 1 , . . . , X(y) r , y r+1 , . . . , y n ) ∀y ∈ V.The function G is of class C 1 and by construction the differential of G at ȳ is invertible. Then G is a local diffeomorphism from a open neighborhood V ⊂ V of ȳ onto an open neighborhood Z of z := G(ȳ). The function X in z coordinates is given by X(z) := X x G -1 (z) ∀z ∈ Z.

V

  r := ((x, y), λ, p, H) | rank(H 2 ) = r ∀r = 0, . . . , n -1, of codimension ≥ 1. By the Thom Transversality Theorem (see [15, Theorem 4.9 p. 54]), the setC 1 of costs c ∈ C ∞ (M × N ; R) such that j 2 c(M × N

(x 1

 1 , y 1 ), . . . (x L , y L ) ∈ (M × N ) L be a chain with x 2 = x 1 , x L = x 1 , and y L = y 1 . Then L = 2K for some integer K ≥ 2 andK-1 k=0 c x 2k+1 , y 2k+1 = K-1 k=0 c x 2k+1 , y 2k+2 .Proof of Lemma 6.1. We have for any k ∈ {0, K -1},x 2k+2 = x 2k+1 and y 2k+3 = y 2k+2 .Then, since the set {(x 1 , y 1 ), . . . (x L , y L )} is c-cyclically monotone, we have 2k+1 , y 2k+1 .

(x 1

 1 , y 1 ), . . . (x L , y L ) , λ 1 , . . . , λ L , (p x 1 , p y 1 ), . . . (p x L , p y L ) satisfying (x i , y i ) = (x j , y j ) ∀i = j ∈ {1, . . . , L},x 2k+2 = x 2k+1 y 2k+3 = y 2k+2 , p x 2k+2 = p x 2k+1 p y 2k+3 = p y 2k+2 , for all k ∈ {0, K -1} and The set W L is a submanifold of J 1 L (M × N ; R) of dimension D = 4Kn + L -1 = (2n + 1)L -1 and J 1 L (M × N ; R) has dimension (4n + 1)L.Thus W L has codimension 2nL + 1. By the Multijet Transversality Theorem (see [15, Theorem 4.13 p. 57]), for each K = 2, 3 . . ., the set C K of costs c for which j 1 2K c is transverse to W 2K is residual. The intersectionC = C 1 ∩ (∩ ∞ K=2 C K )satisfies the conclusions of Theorem 1.7.By the continuity part in Lemma A.2, each set C l is open and by Lemma A.4, it is dense as well. Then the set C := l∈N * C l does the job.

* The authors thank the University of Nice Sophia-(MSRI) and Toronto's Fields' Institute for the Mathematical Sciences for their kind hospitality during various stages of this work. They acknowledge partial support of RJM's research by Natural Sciences and Engineering Research Council of Canada Grant 217006-08, and, during their Fall 2013 residency at MSRI, by the National Science Foundation under Grant No. 0932078 000. c 2015 by the authors.

We observe that we have for every x ∈ Ū , φ 0 ȳ(x)c x, ȳ(x) = φ 0 ŷ(x)c x, ŷ(x) .

Then we have

By the above construction and (5.9), we have for every x ∈ Ū and any x ∈ Ū \ {x},

We infer that

we check that (5.2)-(5.4) are satisfied.

Returning to the proof of the second case, let us consider an absolutely continuous probability measure µ on M whose support is contained in Ū . Then define the nonnegative measures ν, ν on N by ν := 1 2 ȳ µ and ν := 1 2 ŷ µ, and set ν := ν + ν.

Since the functions ȳ and ŷ are diffeomorphism, ν is an absolutely continuous probability measure on N whose support in contained in V ∪ V . Moreover, the plan γ defined by

has marginals µ and ν and is concentrated on the set of (x, y) ∈ M × N with x ∈ Ū and y ∈ ∂ c ψ(x) ∩ ( V ∪ V ). By (5.2)-(5.3), any plan γ with marginals µ and ν satisfies

A Generic uniqueness of optimal plans for fixed marginals

Elaborating on a celebrated result by Mañé [START_REF] Mañé | Generic properties and problems of minimizing measures of Lagrangian systems[END_REF] in the framework of Aubry-Mather theory, it is possible to prove that for fixed marginals the set of costs for which uniqueness of optimal transport plans holds is generic. Such a result was first obtained by Levin [START_REF] Levin | On the generic uniqueness of an optimal solution in an infinite-dimensional linear programming problem[END_REF]. We include an argument here for comparison.

Let M and N be smooth closed manifolds (meaning compact, without boundary andµ, ν be two Borel probability mesures, we recall that Π(µ, ν) denotes the set of probability measures in M × N with first and second marginals µ and ν. By the way, a measure on M × N is a continuous linear functional on the set of continuous functions C 0 (M × N ; R) and the set E = C 0 (M × N ; R) * of such measures is equipped with the topology of weak- * convergence saying that some sequence

The following will also be useful. We refer the reader to [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] for the definition of the C k -topology.

Lemma A.2. The mapping

is continuous with respect to the weak- * topology on E and the C k -topology on C k (M × N ; R). Moreover, for every

For every c ∈ C k (M × N ; R) let M(c) be the set of optimal transport plans between µ and ν, that is

By construction, M(c) is a nonempty compact convex subset of Π(µ, ν).

Theorem A.3 (Levin). There exists a residual set C ⊂ C k (M × N ; R) such that for every c ∈ C, the set M(c) is a singleton.

Here residual refers to a countable intersection of sets with dense interiors. Theorem A.3 follows easily from results of Mañé [START_REF] Mañé | Generic properties and problems of minimizing measures of Lagrangian systems[END_REF] (or from arguments developed subsequently by Bernard and Contreras [START_REF] Bernard | A generic property of families of Lagrangian systems[END_REF]). For sake of completeness we provide its proof which is based (following the approach of Bernard and Contreras [START_REF] Bernard | A generic property of families of Lagrangian systems[END_REF]) on the next lemma. It shows that near any given cost function can be found another for which the minimizing facet of K has arbitrarily small diameter.

Lemma A.4. The weak- * topology on K can be metrized by a distance d with the following property. Let c 0 ∈ C k (M × N ; R) be fixed. For every neighborhood U of c 0 in C k (M × N ; R) and every > 0, there is c ∈ U such that diam M(c) < .

Proof of Lemma A.4. Let U and > 0 be fixed. By compactness of K := Π(µ, ν) with respect to the weak- * topology, there is a sequence {f l } l∈N of continuous functions that defines a metric d on Π(µ, ν) by

which is compatible with the weak topology. We claim that there is an integer l > 0 and

such that the continuous map

where the latter refers to the diameter with respect to d of the set of measures in Π(µ, ν) sent to p through Pl. For every c ∈ C k (M × N ; R), let

By Lemma A.2, the sets W c are open and their union covers the complement of the diagonal D = {(π, π) | π ∈ K}. Since this complement is open in the metrizable set K × K, we can extract a countable subcovering from this covering. So there is a sequence {c l } l∈N such that

We need to check that Pl satisfies (A.1) if l is large enough. If not, there are two sequences

Then up to taking subsequences, {π 1 l } l and {π 2 l } l converge respectively to some π 1 , π 2 ∈ K with d(π 1 , π 2 ) ≥ . But by (A.2), there is m such that

But we have

which passing to the limit gives P m π 1 = P m π 2 , a contradiction. Let K := Pl(K) which is a nonempty convex compact set in R l, denote by Φ : R l → R the function defined by

and denote by Φ : R l → R its conjugate, that is

for every y ∈ R l. By construction, Φ is convex and finite on R l, moreover for every ȳ ∈ R l and every x ∈ R l such that Φ ȳ = ȳ, x -Ψ x , we have

This means that x belongs to ∂Φ ȳ , the subdifferential of Φ at ȳ. If in addition π ∈ K satisfies Pl π = x and