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Abstract

In this work, we propose a numerical framework to simulate fluid flows in inter-
action with moving porous media of complex geometry. It is based on the Lattice
Boltzmann method including porous effects via a Brinkman-Forchheimer-Darcy
force model coupled to the Immersed Boundary method to handle complex ge-
ometries and moving structures. The coupling algorithm is described in detail
and it is validated on well-established literature test cases for both stationary
and moving porous configurations. The proposed method is easy to implement
and efficient in terms of CPU cost and memory management compared to alter-
native methods which can be used to deal with moving immersed porous media,
e.g. re-meshing at each time step or use of a moving/chimera mesh. An overall
good agreement was obtained with reference results, opening the way to the
numerical simulation of moving porous media for flow control applications.

Keywords: Lattice Boltzmann method, Immersed Boundary method, moving
porous medium, poroelastic coating

1. Introduction

Fluid flows in porous media is a research topic of growing interest due to
its numerous applications in chemical or oil engineering [1, 2, 3], but also in
other areas such as biological flows or even aeronautics, where coatings made of
porous materials are more and more considered for flow control applications [4].
Indeed controlling the flow using a porous coating, or a porous actuator, has
been tested in previous literature studies and showed to yield a positive effect on
the aerodynamic performances of immersed bluff bodies [5]. The present work
is motivated by a potential use in aeronautical applications of a porous coating,
which would have a moving feature, i.e. would be capable of adapting its shape
to the flow topology to promote drag-reducing and lift-enhancement properties.
This breakthrough and novel technology for flow control actuators has recently
showed a promising potential [6], but there actually exist several issues in terms
of numerical modelling. The main challenge is to model numerically a moving
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or deformable porous medium interacting with a fluid flow at reasonable CPU
costs. Another interesting feature related to flow control applications is to be
able to simulate a porous medium of complex geometry (not aligned with the
mesh) for noise control applications.

For the applications we are targeting, solving the fluid flow at the porous
scale is generally costly and associated to prohibitive CPU costs because of
the number of points required to resolve the pores. To overcome this issue,
the so-called Representative Elementary Volume (REV) scale is adopted in the
present work. It consists of a control volume defined in the porous medium, of
size much larger than the pore scale, and much smaller than the characteristic
scale of the macroscopic problem [7]. At the REV scale, the porous medium
can be seen as a continuum and the fluid properties defined over that volume
are assumed to remain constant (density, velocity etc.). Moreover, the flow
can be characterized by empirical models such as Darcy’s law, stating that the
velocity through the porous medium is proportional to the pressure gradient.
By choosing not to resolve the flows at the pore scale, we are thus in this
work resolving the momentum equations averaged at the REV scale, for a fluid
described by some global properties such as porosity and permeability.

To solve the flow equations, we choose to use the Lattice Boltzmann Method
(LBM), which is particularly interesting for porous flows as it is relatively
straightforward to implement in the formalism various empirical macroscopic
models defined at the REV scale. Other advantages of using LBM include the
good parallelisation properties of the solver (due to the locality of the algo-
rithm) and the capability of adding relatively easily new physics to the model
(multiphase, etc.).

In literature, the first attempts to model porous media with LBM date back
to the Dardis-McCloskey model [8] based on pore scale. Almost at the same
time, [9] propose a formalism based on LBM at the REV scale, inspired by the
treatment of the pseudo-potential force in the Shan-Chen model for multiphase
flows [10]: the velocity is modified by a body force, mimicking the medium resis-
tance to the flow by a Darcy’s law, which then in turn modifies the equilibrium
function. These two approaches are actually solving the Brinkman equation,
and suffer from limitations related to the use of a simple force term to model
porous effects. To extend the model beyond Darcy and Brinkman laws, [11]
propose to include an extra term to take into account the non-linear resistance
of the medium : the Forchheimer term. This model takes the name of gener-
alised Lattice Boltzmann model, as it can be shown using the Chapman Enskog
analysis [12] in the incompressible limit that it is equivalent to solving the gener-
alised Navier Stokes equations given at §2.1. In this work we simulate stationary
porous objects using the model proposed by [12], while the model of [13] is used
for moving porous bodies.

The applications related to flow control using shape-adapting porous coating
or porous coating of complex geometry require the resolution of the coupled dy-
namics of structure and fluid. To avoid the prohibitive solution of remeshing at
each iteration the fluid domain as a function of the structure position, we adopt
here an approach based on Immersed Boundary Method (IBM) which consists
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in treating in one shot both the fluid momentum equations and the imposition
of unsteady boundary conditions at the porous walls. Originally proposed by
[14] the IBM approach is designed to simulate fluid flows interacting with solid
bodies. It consists in treating the fluid domain in an Eulerian fashion on a
fixed mesh, and the moving structure in a Lagrangian fashion using moving
Lagrangian markers. The same set of equations is solved in both the fluid and
solid domain, and the boundary condition at the wall is imposed via a system of
singular boundary forces. The interesting feature in the context of the applica-
tions considered in this work is the capability of positioning Lagrangian markers
which do not coincide with the underlying fluid Eulerian nodes. The IBM has
evolved rapidly over the last decades and has been successfully implemented in
LBM solvers [15, 16, 17, 18]. In this work we use a formulation proposed in
[18], adapted to porous flows by defining the porous forces on each Lagrangian
marker.

To the knowledge of the authors, there is no literature work which addresses
completely the problem of a moving porous medium immersed in an unsteady
fluid flow. Although Wang et al.[13] derive a macroscopic momentum equation
for moving porous media from the pore-scale microscopic equations by means
of a volume-averaging approach, the motion of the porous body is achieved
by a grid movement technique. One can also find approaches which simulate
the dynamics of infinitely thin and porous boundaries. This is the case of
the paper of [19] which makes use of IBM to simulate porous membranes by
modelling the resistive behaviour of the membrane with a relative slip velocity
in the normal direction between the boundary and the surrounding flow. The
approach proposed by [20] is also based on IBM to simulate porous membranes
and models the resistive force of the membrane by Darcy’s law. Also taking
advantage of the natural efficiency of the IBM in this context, [21] model in
the same spirit the dynamics of a porous flapping filament by modelling the
porosity in a similar way as [19], and point out the stabilizing effect of porosity
on the wake, useful for flow control applications. These approaches are limited
to infinitely thin boundaries and the porous effects are imposed by modelling
the flux through the membrane, which is offering a given resistance to the flow.

In this work we also use the IBM approach, but the numerical framework
we are proposing allows one to treat a volumetric porous medium, instead of
simply the medium membrane, which is a significant improvement compared to
existing approaches. Additionally, the porous model is not only restricted to
modelling the flux through the membrane, but also includes the linear and non
linear porous effects inside the volume medium.

The article is organized as follows. First, the numerical framework is pre-
sented by describing the LBM model for stationary and moving porous media,
the IBM approach, and how the methods are coupled. Validation tests are
then subsequently presented in steady configurations first, by doing a thorough
comparison with existing literature results, and then on moving configurations
to test the numerical framework in the case of immersed porous media with
time-varying position.
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2. Numerical Methods

2.1. Lattice Boltzmann model for incompressible flows through stationary porous
media

The generalised model proposed by Nithiarasu et al. [11] is used to simu-
late isothermal incompressible fluid flows through stationary porous media. In
this approach, the flow is governed by the following generalised Navier-Stokes
equations:

∂u

∂t
+ (u · ∇)

(u
ε

)
= −1

ρ
∇ (εp) + νε∇2u+ F, (1)

satisfying the incompressibility condition∇·u = 0. In Eq.1, ρ is the fluid density,
u and p are the volume-averaged velocity and pressure field, respectively, νε is
an effective kinematic viscosity, and F represents the total force field due to the
presence of porous media and other external forces. This force term is given by:

F = −εν

K
u− εFε√

K
|u|u+ εG, (2)

where ν is the fluid kinematic viscosity, ε and K are the porosity and perme-
ability of the porous medium, respectively, Fε is its geometric function given by
Fε =

1.75√
150ε3

, and G is an external force field. Note that the second term on the

right side of Eq.1 is the Brinkman term, while the first and the second terms on
the right side of Eq.2 are the linear (Darcy) and nonlinear (Forchheimer) drags
due to the porous media, respectively. The dimensionless parameters that char-
acterise the flow governed by Eq.1 are the Reynolds number, the porosity, the
Darcy number, and the viscosity ratio, respectively defined by:

Re =
LU

ν
, ε =

Vvoid

Vtotal
, Da =

K

L2
, J =

νε
ν
, (3)

where L is the characteristic length and U the velocity. In the following, the
viscosity ratio is considered to be equal to 1.

In the LBM framework proposed by [12] to model an incompressible flow
through a porous medium, the discretisation of the Lattice Boltzmann equation
(LBE) takes the following form:

fk (x+ ekΔt, t+Δt)−fk (x, t) = −Δt

τ

(
fk (x, t)− f

(eq)
k (x, t)

)
+ΔtFk, (4)

where fk (x, t) refers to the distribution functions (DF) at the position x and
time t with particle velocity vector ek. The relaxation time τ is linked to the
effective kinematic viscosity by νε = c2s

(
τ − 1

2

)
Δt. The equilibrium distribution

function (EDF) is defined as:

f
(eq)
k = ωkρ

[
1 +

ek · u
c2s

+
uu :

(
ekek − c2sI

)
2εc4s

]
, (5)

4



where ωk are the weight coefficients and cs is the speed of sound. Both ωk and
cs depend on the chosen lattice arrangement for the velocity discretisation. For
the D2Q9 model, the discrete velocities are defined as follows:

ek = c

(
0 1 −1 0 0 1 −1 −1 1
0 0 0 1 −1 1 1 −1 −1

)
, k = 0, 1, . . . , 8, (6)

where c = Δx
Δt is the lattice speed, and Δx, Δt are the lattice spacing and the

time step, respectively. In the current normalisation, the lattice speed is set to
c = 1, cs = 1/

√
3, and the weight coefficients are given by: ω0 = 4/9, ω1−4 =

1/9, ω5−8 = 1/36. Following [22], in order to match Eq.1, the discretised force
term Fk takes the following form:

Fk = ωkρ

(
1− 1

2τ

)[
ek · F
c2s

+
uF :

(
ekek − c2sI

)
εc4s

]
. (7)

The macroscopic quantities (moments of the distribution function) are defined
as:

ρ =
∑
k

fk, (8a)

ρu =
∑
k

ekfk + ρ
Δt

2
F, (8b)

p =
c2sρ

ε
. (8c)

Note that Eq.8b is a nonlinear equation for the velocity u as F, given by Eq.2,
also contains the velocity. However, as presented hereafter, the numerical devel-
opments will not be complicated by this issue because Eq.8b is quadratic, and
thus, the velocity can be derived explicitly by:

u =
v

c0 +
√
c20 + c1|v|

, (9)

where v is a temporal velocity defined as:

ρv =
∑
k

ekfk +
Δt

2
ερG, (10)

and the parameters c0, c1 are given by:

c0 =
1

2

(
1 + ε

Δt

2

ν

K

)
, c1 = ε

Δt

2

Fε√
K

. (11)

The obtention of Eq.9 to 11 follows the classical resolution of a quadratic equa-
tion, and is given in Appendix A.

5



2.2. Lattice Boltzmann model for incompressible flows through moving porous
media

For configurations involving moving porous structures, the unsteady effects
of the porous media on the fluid are captured by the REV model proposed by
[13], which consists in volume averaging the microscopic governing equations at
the pore scale. As pointed out by [13], Galilean invariance can be obtained when
using the intrinsic phase average velocity, and thus the macroscopic equations
and the corresponding LBE model are only given in terms of the latter, which
is defined as:

〈uk〉k =
1

Vk

∫
Vk

ukdV, (12)

where k ∈ {f, s} with f and s denoting the fluid and solid phase, respectively.
Thus, Vf is the volume occupied by the fluid phase in a representative volume
V within the porous medium, and Vs = V − Vf the volume occupied by the
solid phase.

Consider a homogeneous and isotropic porous medium immersed in a New-
tonian fluid. We assume that the medium moves with a rigid-body motion:
us = Up +Ωp × r, where Up and Ωp are the translational and rotational ve-
locity, respectively, and r is the position vector measured from the body center.
Note that Up and Ωp remain unchanged even after taking the intrinsic phase
average, and thus, for simplicity, 〈us〉s will be denoted as Vp in the following.
The flow is governed by the following macroscopic momentum equations:

∂〈uf 〉f
∂t

+ 〈uf 〉f · ∇〈uf 〉f = − 1

ρf
∇〈pf 〉f + ν∇2〈uf 〉f + F̃, (13)

satisfying the incompressibility condition ∇ · 〈uf 〉f = 0. The total force field F̃
in Eq.13 is given by:

F̃ = −εν

K

(〈uf 〉f −Vp

)− ε2Fε√
K

|〈uf 〉f −Vp|
(〈uf 〉f −Vp

)
+ G̃, (14)

where G̃ is an external force field.
The LBE is given by Eq.4, as in §2.1. However, following [13], the EDF

and the discretised force term need to be modified as follows for the model to
solve the volume-averaged equations for incompressible flows in moving porous
media:

f
(eq)
k = ωkρ

[
1 +

ek · 〈uf 〉f
c2s

+
〈uf 〉f 〈uf 〉f :

(
ekek − c2sI

)
2c4s

]
, (15)

and

Fk = ωkρ

(
1− 1

2τ

)[
ek · F̃
c2s

+
〈uf 〉f F̃ :

(
ekek − c2sI

)
c4s

]
. (16)

The macroscopic quantities are then obtained as follows:

ρ =
∑
k

fk, (17a)
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ρ〈uf 〉f =
∑
k

ekfk + ρ
Δt

2
F̃, (17b)

p = c2sρ. (17c)

As done previously in §2.1, an explicit formula for the velocity 〈uf 〉f can be
found by solving the quadratic nonlinear Eq.17b:

〈uf 〉f =
〈vf 〉f

d0 +
√
d20 + d1|〈vf 〉f |

+Vp, (18)

where 〈vf 〉f is a temporal velocity defined as:

ρ〈vf 〉f =
∑
k

ekfk − ρVp +
Δt

2
ρG̃, (19)

and d0, d1 are parameters given by:

d0 =
1

2

(
1 + ε

Δt

2

ν

K

)
, d1 = ε2

Δt

2

Fε√
K

. (20)

2.3. Immersed Boundary method

The Immersed Boundary (IB) method is coupled to the LBE following the
formulation presented in [18]. As in other variations of the IB method [14, 15,
23, 24, 25], a fixed Eulerian lattice is used for the flow field covering both the
inside and outside of the immersed object, while a set of Lagrangian markers
is used to track its boundary. However, in the present work, the basic idea is
slightly different than the classical use of IB, as the force distributions fIB which
include the Darcy-Forchheimer porous force (Eq.2 or Eq.14) are computed on
each Lagrangian marker to restore the desired velocity values in the immersed
object at each time step. In particular, as can be seen in Fig.1, Lagrangian
markers need to be placed also at the inside of it for its internal flow to be
captured correctly.

As in classical IB methods, an interchange of information between the Eu-
lerian lattices and the Lagrangian markers needs to be performed. To clarify
notations, in the following lower case letters refer to variables evaluated on the
Eulerian lattices, whilst upper case ones are used for the variables defined at
the Lagrangian markers. Suppose that the velocity field u (x, t) is known at
time t. Let Xl (t+Δt) and Vp,l (t+Δt) (l = 1, . . . , Nl) be the desired posi-
tion and velocity of the Lagrangian markers, respectively, to be obtained at time
step completion. Then, the value of the velocity field interpolated at the l-th
Lagrangian marker is given by the following discrete convolution:

Ul = I [u] (Xl) =
∑
x

u (x, t) δ̃ (x−Xl) (Δx)
d
, (21)

where
∑

x implies the summation over all the lattices x, δ̃ is a discretised Dirac’s
delta function, and d is the dimensionality of the problem. Note that the term
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Figure 1: Schematic view of the Eulerian lattice points represented by the intersection points
of the mesh lines and the Lagrangian markers denoted by the solid points used by the IB
method for immersed porous objects.

(Δx)d is an Eulerian quadrature coming from the discrete approximation of an
integral. Given Ul, a system of singular forces FIB (Xl) can be defined on the
Lagrangian markers. For a stationary porous object, Vp,l (t+Δt) = 0 and the
set of singular forces is given by Eq.2 as follows:

FIB (Xl) = −εν

K
Ul − εFε√

K
|Ul|Ul + εGl. (22)

Although the non-slip boundary condition is not explicitly enforced in the above
equation, it will be shown later that the porous object behaves as a solid one for
a low Darcy number, i.e. Da ≤ 10−6. For a moving porous object, Vp,l (t+Δt)
is found by solving the motion equations, and the system of singular forces is
given by Eq.14 as:

FIB (Xl) = −εν

K
(Ul −Vp,l)− ε2Fε√

K
|Ul −Vp,l| (Ul −Vp,l) + G̃l. (23)

Finally, the singular forces FIB (Xl) are spread onto the neighboring lattices
using the following formula:

fIB = S [FIB ] (x) =

Nl∑
l=1

FIB (Xl) δ̃ (x−Xl) εl, (24)

where εl is a Lagrangian quadrature determined so as to enforce the reversibility
of the interpolation and spreading operations. It is found by solving the linear
system:

A−→ε =
−→
1 , (25)
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withA = {αk,l}k,l=1,...,Nl
=

∑
x δ̃ (x−Xl) δ̃ (x−Xk) (Δx)

d
and

−→
1 = (1, 1, . . . , 1)

T
.

More details can be found in [18, 26].
Here, the discretised Dirac’s delta δ̃ proposed by Roma et al.[27] has been

chosen to perform the convolution in Eqs.21 and 24:

δ̃ (r) =

⎧⎪⎪⎨
⎪⎪⎩

1
6

(
5− 3|r| −

√
−3 (1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5,

1
3

(
1 +

√−3r2 + 1
)

, |r| ≤ 0.5,
0 , 1.5 ≤ |r|.

(26)

If r is a vector, then the multidimensional discretised Dirac’s delta is simply
given by: δ̃ (x, y, z) = 1

Δx3 δ̃
(

x
Δx

) · δ̃ ( y
Δx

) · δ̃ ( z
Δx

)
. For more details, the reader

is referred to [26].

2.4. Algorithm of computation

The computational procedure of the proposed IB-LBM framework for sim-
ulating the coupled dynamics between a moving [or stationary] porous object
and a surrounding fluid can be summarized as follows:

Step 0 Set the initial values of the density and velocity field at time t =
0, ρ (x, t = 0) and 〈uf 〉f (x, t = 0) [u (x, t = 0)], and compute the EDF,

f
(eq)
k (x, t = 0), using Eq.15 [Eq.5]. Assign fk (x, t = 0) = f

(eq)
k (x, t = 0).

Step 1 Compute the desired position and velocity of the Lagrangian markers,
Xl (t+Δt) and Vp,l (t+Δt), to be obtained at time step completion,
by solving the motion equations. The matrices related to the porous
structure, namely ε and Da, as well as δ̃ and εl need to be updated due to
the position change of the Lagrangian markers. [For a stationary porous
object, this step is neglected.]

Step 2 Obtain the velocity field Ul at the l-th Lagrangian marker by Eq.21.

Step 3 Compute the Lagrangian forcing, FIB (Xl), required to enforce the
desired Darcy-Forchheimer drags due to the presence of the porous object,
and impose the desired velocity condition at each Lagrangian marker, for
a kinematic compatibility to be provided between the porous and the fluid
motion, using Eq.23 [Eq.22].

Step 4 Spread the Lagrangian forcing onto the lattice neighbours using Eq.24.

Step 5 Obtain the density and velocity field at the next time step, ρ (x, t+Δt)
and 〈uf 〉f (x, t+Δt) [u (x, t+Δt)], by solving the LBEq. 4. The solution
process of the LBE can be outlined below:

1. Discretise the Eulerian forcing, fIB , obtained by Step 4 on the lattice
discrete directions using Eq.16 [Eq.7]. Perform the collision process:

f∗
k (x, t) = fk (x, t) (1− ωΔt) + ωΔtf

(eq)
k (x, t) + ΔtFk,

where ω = 1
τ is the relaxation frequency.
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2. Perform the streaming: fk (x+ ekΔt, t+Δt) = f∗
k (x, t).

3. Modify the DF, fk, at the boundaries of the computational domain
to satisfy the desired boundary conditions.

4. Calculate the macroscopic quantities at the next time step t + Δt
using Eqs.17a-20 [Eqs.8a-11].

5. Calculate the EDF at the next time step, f
(eq)
k (x, t+Δt), using

Eq.15 [Eq.5].

Step 6 Repeat the Steps 1-5 until a desired convergence criterion is satisfied.

3. Numerical Validation

To validate the proposed numerical method, a three-step process is per-
formed. First, a static configuration of a circular porous cylinder in cross flow
is considered for different Reynolds numbers in §3.1. Although this kind of con-
figuration can be tackled without the use of IB, it allows to assess in detail the
ability of the method to capture both integral and local quantities, by comparing
with existing literature studies on a detailed and clearly defined flow topology.
In a second step, a more complex configuration is examined in §3.2, where the
proposed algorithm is needed to capture both porosity and motion of the geom-
etry in a steady flow. It consists of a porous circular cylinder positioned at the
middle of the channel. The problem is solved in two frames of reference, out of
which the first one is fixed on the cylinder, while the second one is fixed on the
channel walls. This configuration allows us to validate the proposed coupled
method in the case of a moving porous body, showing alongside the Galilean
invariance of the macroscopic equations derived in terms of the intrinsic phase
average velocity. Finally, a cylinder undergoing forced oscillations in cross flow
is examined in the rigid case (§3.3) to compare with existing literature results.
Through this test case, we can demonstrate a good agreement with reference
results for unsteady flows, and particularly in the crucial case of a locked-in
configuration.

3.1. Flow around and through a stationary porous circular cylinder in steady
flow

The flow around and through a stationary porous circular cylinder at low
Reynolds numbers (based on the free-stream velocity U∞ and the cylinder di-
ameter D) is chosen to validate the proposed method. The cylinder is placed
at the center of a computational domain of dimensions 60D × 60D. A uniform
velocity U∞ is assigned at the inlet plane [28], while a convective boundary con-
dition is implemented at the far field boundaries [29]. The flow is considered to
be converged to a steady-state if the relative L2 error norm of the velocity field,

namely ‖u(x,t+Δt)−u(x,t)‖2

‖u(x,t+Δt)‖2
, is less than or equal to 10−6. At this steady-state,

a recirculation bubble may be formed either at the rear side of the cylinder,
or inside of it. The wake parameters measured here are: the wake length Lf
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normalised by D, and the separation angle θs from the rear stagnation point
of the cylinder. The drag coefficient, defined by CD = 2FD

ρU2∞D (where FD is the

drag force), is another important flow parameter to be computed.
The present simulations were performed using both the model of Guo &

Zhao (discussed in §2.1) as well as the algorithm proposed in §2.4. The fluid
density is taken as ρ = 1, while the relaxation time is set to be τ = 0.65.
The Reynolds number varies between 10 and 40 with a Darcy number equal
to 2.5 · 10−3 or 2.5 · 10−4 in the porous region. The porosity is chosen such

that the Carman-Kozeny equation is satisfied, K =
ε3d2

p

180(1−ε)2
(where dp is the

characteristic diameter of a particle in the porous aggregate, taken the value
of 100μm here as in [3]), resulting in the corresponding values ε = 0.993 or
ε = 0.977. In the fluid region, the porosity is set equal to 1 and a value of 107 is
assigned for the Da, as in the work of Nithiarasu et al.[11]. Note that the drag
force is computed by the momentum exchange method for the model of Guo
& Zhao. Although FD is usually calculated from the summation of the forces
at the Lagrangian markers in the IB methods, it was found that this approach
could not provide a correct estimation of the drag in the case of the present
porous configuration. For that reason, the control volume method is preferred
to compute the force coefficients. Both methods mentioned here for the drag
calculation are briefly reviewed in Appendix B.

To ensure a grid-independent solution, a study was performed with three
different mesh sizes at Re = 20 andDa = 2.5·10−3 (ε = 0.993). The comparison
of the drag coefficient, the wake length and the separation angle at the various
mesh sizes is shown in Table 1. For the results obtained by the model of Guo &
Zhao, the differences in the aforementioned variables between the two meshes of
1201× 1201 and 2401× 2401 are all less than 1.5%, indicating that the mesh of
1201×1201 is fine enough. However, the solutions obtained by our algorithm are
more sensitive to the mesh size. Although the difference in the drag coefficient
and the separation angle between the second and the third case is less than 1.5%
and 2.5%, the corresponding difference in the wake length is of 6.2%. Therefore,
the mesh of the third case is chosen for the following simulations.

In order to examine the accuracy of the present method, simulations were
performed for different Reynolds numbers and Da = 2.5 · 10−3 or 2.5 · 10−4,

Case Mesh Size References Cd Lf θs
D = 10 601× 601 Guo & Zhao model 2.028 0.800 28.6°

Present method 2.106 0.940 31.6°
D = 20 1201× 1201 Guo & Zhao model 1.934 0.700 27.9°

Present method 2.017 0.770 29.3°
D = 40 2401× 2401 Guo & Zhao model 1.909 0.700 27.7°

Present method 1.989 0.725 28.6°

Table 1: Effect of mesh size on the drag coefficient, the wake length and the separation angle
at Re = 20 and Da = 2.5 · 10−3 (ε = 0.993).
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Case References Cd Lf θs

Re = 10 Guo & Zhao model 2.668 - -
Present method 2.781 - -
Yu et al.[30] 2.531 - -

Bhattacharyya et al.[3] 2.767 - -
Re = 20 Guo & Zhao model 1.909 0.700 27.7°

Present method 1.989 0.725 28.6°
Yu et al.[30] 1.870 - -

Bhattacharyya et al.[3] 2.007 0.700 29.0°
Re = 30 Guo & Zhao model 1.632 1.330 32.6°

Present method 1.694 1.390 33.2°
Yu et al.[30] 1.610 - -

Bhattacharyya et al.[3] 1.716 1.400 34.0°
Re = 40 Guo & Zhao model 1.489 2.030 33.5°

Present method 1.570 2.103 33.9°
Yu et al.[30] 1.464 - -

Bhattacharyya et al.[3] 1.557 2.000 37.0°

Table 2: Comparison of the drag coefficient, the wake length and the separation angle at
different Reynolds numbers and Da = 2.5 · 10−3 (ε = 0.993).

Case References Cd Lf θs

Re = 10 Guo & Zhao model 2.802 0.230 29.6°
Present method 2.919 0.250 29.6°

Bhattacharyya et al.[3] 2.904 0.200 24.0°
Re = 20 Guo & Zhao model 1.976 0.850 41.0°

Present method 1.991 0.890 41.9°
Bhattacharyya et al.[3] 2.021 0.875 38.0°

Re = 30 Guo & Zhao model 1.646 1.480 46.1°
Present method 1.783 1.550 47.2°

Bhattacharyya et al.[3] 1.811 1.550 44.0°
Re = 40 Guo & Zhao model 1.474 2.150 49.0°

Present method 1.619 2.230 50.0°
Bhattacharyya et al.[3] 1.602 2.200 48.0°

Table 3: Comparison of the drag coefficient, the wake length and the separation angle at
different Reynolds numbers and Da = 2.5 · 10−4 (ε = 0.977).

and the results were compared with the numerical ones of Bhattacharyya et
al.[3] and Yu et al.[30]. Tables 2 and 3 compare in detail the methods on the
computation of an integrated quantity which is classically used in literature to
assess the validity of numerical methods, the drag coefficient, as well as two
local quantities characterising the topology of the flow, the wake length and the
separation angle.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Streamlines of the flow through the porous cylinder at Da = 2.5 · 10−3 (ε = 0.993)
and (a-b) Re = 10, (c-d) Re = 20, (e-f) Re = 30, (g-h) Re = 40. The figures on the left
column have been obtained by Bhattacharyya et al.[3], while the right column ones are the
results obtained with the proposed method.

The overall agreement is excellent. The average relative error in the drag
coefficient between the results of our algorithm and the ones of Bhattacharyya et
al.[3] is around 1%, while the corresponding error rises up to 5% for the results
obtained by the model of Guo & Zhao. In general, the wake length found by
our method lies closer to the reference length than the one predicted by Guo &
Zhao’s model. The relative error is in average around 2%, apart from the first
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case of Table 3. A significant declination in the separation angle can also be
observed for this case, while the average relative difference in θs is up to 6%.
The body-fitted mesh used in the work of Bhattacharyya et al.[3] could be a
possible explanation for this discrepancy, as the flow field close to the cylinder
surface can be better captured by such a mesh. Finally, the streamlines for
Da = 2.5 · 10−3 are presented in Fig.2. The very good agreement is confirmed
by looking at the close similarities in both the internal and external flow fields.
In particular, the formation of the small and symmetrical recirculation bubble
at the rear side of the cylinder at Re = 10 is properly captured (Fig.2 a-b). The
comparisons provided on the subsequent subfigures of Fig.2 clearly show that
the thickness and length of the external recirculation bubble is similar to [3],
while the internal flow through the cylinder, and at its rear part of the cylinder
is correctly captured by the proposed method.

3.2. Flow past a porous circular cylinder inside a channel

In this section, the flow past a porous circular cylinder inside a channel is
investigated. Following the methodology of Wang et al. [13], the simulations
are performed in two frames of reference. In the first case, denoted by R1, the
channel walls move with a constant horizontal velocity U , while the cylinder is
fixed at the centerline of the domain. In the case R2, the walls of the channel are
fixed, whilst the cylinder is moving along the channel centerline with a constant
horizontal velocity −U . Since the macroscopic equations with the intrinsic phase
average velocity are employed in the current work, the Galilean invariance of
the R1 and R2 frames is ensured, meaning that the relative motion between the
channel flow and the porous cylinder is identical in the two frames.

As in the work of Wang et al. [13], the cylinder of diameter D = 24 is
initially located at the middle of the computational domain. The channel of
dimensions L × H = 15D × 15D is covered by a 360 × 359 uniform mesh.
Periodic boundary conditions are considered at the channel inlet and outlet
for both frames of reference. In the R1 frame, the Zou & He known velocity
boundary conditions [28] are implemented at the channel walls, while a half-way
bounce-back scheme is applied on them in the R2 case. In the latter case, the
motion of the cylinder is accomplished by the proposed algorithm considering
that Vp,l (t+Δt) = (−U, 0). Two simulations are performed here; the first one
is for ε = 0.7 and Da = 10−3, while the second one corresponds to ε = 0.3 and
Da = 10−4. The Reynolds number, defined as: Re = UD

ν , is set to the value of
1 for all the simulations.

In Fig. 3 and 4, the profiles of the intrinsic phase average velocity through
the channel vertical centerline (Fig. 3, 4(a)) and along the horizontal lines at
y/H = 0.4708 (Fig. 3, 4(b)) and y/H = 0.4986 (Fig. 3, 4(c)) as well as the drag
force Fx against the dimensionless time tU

L (Fig. 3, 4(d)) are presented. As it
can be seen from the figures, an excellent agreement is obtained for the results
between the two reference frames for both the simulations. The results in the R1
and R2 frames are perfectly superimposed, demonstrating the aforementioned
Galilean invariance of the macroscopic equations. Also, the present results are
in excellent agreement with the ones of Wang et al. [13].
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(a)

(b)

(c)

(d)

Figure 3: Velocity profiles and the drag force for ε = 0.7 and Da = 10−3.
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(a)

(b)

(c)

(d)

Figure 4: Velocity profiles and the drag force for ε = 0.3 and Da = 10−4.
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3.3. Flow around and through a porous circular cylinder with forced cross-flow
oscillations

To further validate the method, the configuration of a porous circular cylin-
der undergoing forced cross-flow oscillations in an unsteady flow is studied. The
challenge here is two-fold: a first difficulty is the implementation of the motion
of a porous immersed object in unsteady flow, and on the other hand there is
a lack of literature studies for such a porous configuration. However, a similar
configuration has been extensively studied both numerically and experimentally
in the case of a rigid cylinder [31, 32, 33, 34, 35, 36, 37]. For this reason, we
choose to simulate the flow around an unsteady solid cylinder by assigning a low
value for the porosity and Darcy number inside the cylinder, namely ε = 0.1
and Da = 10−6.

A computational domain of dimensions 46.5D × 22D, where D is the cylin-
der diameter, is considered. The center of the cylinder is initially placed at
(12.5D, 11D). The free-stream velocity U∞ is considered at the inflow, while a
convective boundary condition is applied at the outflow. A Neumann boundary
condition is implemented at the top and bottom boundary. The motion of the
cylinder is governed by the following equations:

x = constant
y (t) = Ymax sin (2πF0t) ,

(27)

where Ymax and F0 are the amplitude and the frequency of the oscillation. The
dimensionless parameters are the Reynolds number, defined as: Re = U∞D

ν ,
the adimensional amplitude A = Ymax/D and the frequency ratio F = F0/Fs,
where Fs is the natural frequency of the flow around the stationary cylinder.

Resulting from the coupling between the forced oscillations of the cylinder
and the flow structure, the so-called lock-in phenomenon occurs here, when the
vortex shedding frequency synchronizes to the natural vibration frequency of
the cylinder. Two simulations are performed with the present algorithm for
A = 0.2, and the results are compared to those of Nobari & Naderan [36]. The
first simulation at F = 0.6 corresponds to an unlocked case, while the second
at F = 1.05 recovers a locked one.

As the grid dependence on this unsteady configuration is particularly impor-
tant, a grid-sensitivity analysis is initially performed for the stationary cylinder
case. Table 4 shows the comparison of the mean drag coefficient

(
CD

)
, the

Case CD C′
D C′

L St
D = 20 1.513 ±0.015 ±0.367 0.159
D = 40 1.414 ±0.011 ±0.356 0.164
D = 80 1.375 ±0.010 ±0.336 0.166

Table 4: Effect of the grid size on the aerodynamic coefficients and the Strouhal number at
Re = 100 and Da = 10−6 (ε = 0.1) .
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References CD C′
D C′

L St

Present method (D = 40) 1.414 ±0.011 ±0.356 0.164
Williamson [32] (exp.) - - - 0.166

Lai & Peskin [38] 1.447 - ±0.330 0.165
Uhlmann [34] 1.453 ±0.011 ±0.339 0.169
Wu & Shu [15] 1.364 - ±0.344 0.163

Nobari & Naderan [36] 1.720 - - 0.170

Table 5: Comparison of the aerodynamic coefficients and the Strouhal number for the flow
around a stationary cylinder at Re = 100.

amplitude of the drag (C ′
D) and lift (C ′

L) fluctuations and the Strouhal num-
ber (St) obtained on three different grids. Although the relative errors in the
mean drag coefficient and the Strouhal number between the grids of the sec-
ond and third case are both less than 3%, the difference in the amplitude of
the lift fluctuations is up to 6%. However, we choose to use the second grid
(D = 40) to reduce the computational cost, while keeping a reasonable margin
of error. The results for this grid are compared to literature ones in Table 5.
Both the mean drag coefficient and the Strouhal number are within the range of
the reference results, while the amplitude of the drag fluctuations is in excellent
agreement with the one of Uhlmann [34]. The maximal lift coefficient is quite
over-predicted, but the percentage difference from the work of Wu & Shu [15],
where the flow is also solved by an IB-LB method, is less than 3.5%.

The time histories of the drag and lift coefficient for the oscillating cylinder
at Re = 100, A = 0.2 and F = 0.6 or F = 1.05 are presented in Figs.5 and
6. When the lock-in phenomenon occurs, the coupled system is dominated by
a single frequency, and thus the time evolution of the aerodynamic coefficients
is characterised by a pure sinusoidal response, as in Figs.5(b) and 6(c-d). In
the case where lock-in does not happen, the aerodynamic coefficients do not
exhibit any longer a sinusoidal form, but a more complex beating behaviour is
observed, resulting from the presence of multiple frequencies in the flow. As it

(a) (b)

Figure 5: Variation of the drag coefficient versus the adimensional time t∗ = tU∞
D

at (a)
F = 0.6 and (b) F = 1.05.
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(a) (c)

(b) (d)

Figure 6: Variation of the lift coefficient versus the adimensional time t∗ at (a-b) F = 0.6 and
(c-d) F = 1.05. The figures (b) and (d) were obtained by Nobari & Naderan [36].

can be seen in Figs.5(a) and 6(a-b), the drag and lift signals are not periodic
over two successive oscillation cycles, but rather over several ones.

Globally, the current results agree well with the ones of Nobari & Naderan
[36]. The mean drag coefficients found here are 1.44 and 1.75 for F = 0.6 and
F = 1.05 respectively, while the reference ones are 1.72 and 2.00. These rela-
tively high differences with [36] are balanced by the fact that the reference mean
drag coefficient is over-predicted compared to the other numerical results even
in the case of the stationary cylinder, CD,ref = 1.720 (see Table 5). Regarding
the lift coefficient, both the amplitude and the peaks for the unlocked case are
well captured. The amplitude of the highest peak in Fig.6(a) is found to be
0.44 which agrees well with the reference one of 0.49. A value of C ′

L = ±0.61
is found for the locked configuration, which is in excellent agreement with the
reference one, C ′

L,ref = ±0.61.

4. Conclusions

A new algorithm based on the Lattice Boltzmann and Immersed Boundary
methods for incompressible flows through stationary or moving porous media
has been proposed. Contrary to previous works where a stair-case approxima-
tion or a body-fitted mesh are used to represent curved porous objects, the
immersed porous surface can now be described smoothly by the Lagrangian
markers regardless of its geometry, while the flow is still solved on a Cartesian
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mesh. This approach allows one to tackle easily the fluid-structure interaction
of moving porous bodies, while avoiding a costly grid movement technique.

The method has initially been applied to the steady flow through a sta-
tionary porous circular cylinder for different Reynolds and Darcy numbers. An
excellent agreement has been obtained for the wake parameters and the drag
coefficient, while the flow field has also been properly captured both internally
and externally. The steady flow past a porous circular cylinder inside a channel
has then been considered so as to validate the method in the case of a moving
porous object. The simulations were performed in two frames of reference, and
their results presented a perfect agreement with each other as well as with the
reference ones. The forced cross-flow oscillations of a porous circular cylinder
have finally been examined for validating the proposed algorithm in the case of
a moving porous object in unsteady flow. The aerodynamic coefficients have
demonstrated a good agreement with the reference results for both a locked and
an unlocked configuration.

The present approach constitutes a stepping-stone for the numerical sim-
ulation of moving porous media for flow control applications. In particular,
poroelastic coatings around bluff bodies will be considered in the future for sepa-
ration control and increased aerodynamic performance purposes. The proposed
algorithm will also be extended for simulating volumetric porous membranes
undergoing deformation.

Appendix A. Derivation of the explicit formula of the velocity field
(Eq.9-11) from the quadratic nonlinear Eq.8b (based
on [12])

By substituting Eq.2 to Eq.8b, one can find that:

ρu =
∑
k

ekfk + ρ
Δt

2

(
−εν

K
u− εFε√

K
|u|u+ εG

)
⇒

ρ
Δt

2

εFε√
K

|u|u+ ρ

(
1 +

Δt

2

εν

K

)
u−

(∑
k

ekfk + ρ
Δt

2
εG

)
= 0,

where the DF fk, the density ρ, the velocity field u and the external force field
G are all determined at position x and time t. Defining the temporal velocity
field v and the parameters c0, c1 as in Eqs.10 and 11, the above equation takes
the following form:

ρc1|u|u+ 2ρc0u− ρv = 0.

Since ρ 
= 0, it should hold that:

c1|u|u+ 2c0u− v = 0 ⇒

u =
v

c1|u|+ 2c0
.
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Notice that the denominator is a scalar. Taking the norm of the above condition,
we get a quadratic equation with respect to |u|:

|u| = |v|
c1|u|+ 2c0

⇒

c1|u|2 + 2c0|u| − |v| = 0,

whose roots are:

− 1

c1

(
c0 +

√
c20 + c1|v|

)
and − 1

c1

(
c0 −

√
c20 + c1|v|

)
.

Only the second root is accepted, as the first one would require the norm of the
velocity field |u| to get a negative value. By substituting the accepted formula
for |u| to the aforementioned condition, we conclude to the desired Eq.9.

Appendix B. Calculation of the Aerodynamic Forces

Appendix B.1. Momentum Exchange Method

Consider the scalar array w (i, j) at which is assigned a value of 0 if the
lattice (i, j) is occupied by fluid, or a value of 1 if the lattice (i, j) is inside
the porous body. The momentum exchange (per unit time) in the k-th lattice
direction and its opposite one k̄ between the porous boundary lattice xb and
the neighboring fluid node xn = xb + ek̄Δt at time t is:

1

Δt
(ekfk (xb, t)− ek̄fk̄ (xn, t)) ,

where ek̄ = −ek denotes the particle velocity vector in the opposite of the k-
th direction. Summing the contribution of the momentum exchange with all
possible neighboring fluid-state lattices over all the porous boundary nodes xb,
the total force F = (FD, FL) exerted on the fluid by the porous body is found
to be:

F =
∑
xb

∑
k �=0

ek (fk (xb, t) + fk̄ (xb + ek̄Δt, t)) (1− w (xb + ek̄Δt))
Δx2

Δt
.

Further details can be found in the work of Mei et al.[39].

Appendix B.2. Control Volume Method

Let Ω be a flow domain bounded by the surface S which contains a stationary
solid body of volume Ωb. The total force acting on the fluid by the rigid body
is:

Fstat = − ∂

∂t

∫
Ω

ρudV −
∮
S

ρu (u · dS)−
∮
S

p · dS+

∮
S

¯̄τ · dS+

∫
Ω

ρGdV,
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where dS is the unit normal vector on the body surface, ¯̄τ is the stress tensor

defined as τij = νρ
(

∂ui

∂xj
+

∂uj

∂xi

)
for a Newtonian fluid, and G is the external

force field.
If the immersed body moves with a velocity us, the contribution of the

internal or virtual flow, namely the unsteady flow inside the body domain,
should be taken into account when calculating the total force Fmov. Following
Reference [40], it is found that:

Fmov = Fstat + ρ

∫
Ωb

∂us

∂t
dV.
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