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Abstract The wear of materials continues to be a limiting factor in the lifetime
and performance of mechanical systems with sliding surfaces. As the demand for
low wear materials grows so does the need for models and methods to systemat-
ically optimize tribological systems. Elastic foundation models offer a simplified
framework to study the wear of multimaterial composites subject to abrasive slid-
ing. Previously, the evolving wear profile has been shown to converge to a steady-
state that is characterized by a time-independent elliptic equation. In this article,
the steady-state formulation is generalized and integrated with shape optimiza-
tion to improve the wear performance of bi-material composites. Both macroscopic
structures and periodic material microstructures are considered. Several common
tribological objectives for systems undergoing wear are identified and mathemati-
cally formalized with shape derivatives. These include (i) achieving a planar wear
surface from multimaterial composites and (ii) minimizing the run-in volume of
material lost before steady-state wear is achieved. A level-set based topology op-
timization algorithm that incorporates a novel constraint on the level-set function
is presented. In particular, a new scheme is developed to update material inter-
faces; the scheme (i) conveniently enforces volume constraints at each iteration, (ii)
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controls the complexity of design features using perimeter penalization, and (iii)
nucleates holes or inclusions with the topological gradient. The broad applicabil-
ity of the proposed formulation for problems beyond wear is discussed, especially
for problems where convenient control of the complexity of geometric features is
desired.

Keywords Wear · tribology · steady-state · geometric constraints · shape
optimization · level-set method · perimeter penalization · topological gradient

1 Introduction

The design of wear surfaces is an interdisciplinary endeavor often involving me-
chanics, materials, and chemistry. Wear is a facet of tribological systems that refers
to the gradual removal of a material from surfaces of solids subject to contact and
sliding (Hatchett (1803); Archard (1953); Archard and Hirst (1956)). Abrasive slid-
ing wear is the removal of material from a surface that is sliding against another
surface, typically harder materials against softer materials (see Figure 1a) (Rabi-
nowicz and Mutis (1965); Lancaster (1969); Sin et al (1979); Khruschov (1974);
Rabinowicz et al (1961)). Friction is commonly considered an instantaneous pro-
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Fig. 1: (a) Schematic of abrasive wear between a hard asperity and a sample. (b)
Illustration defining Archard wear rates.

cess (and frictional losses are of particular interest in engineering systems). Wear
of tribological systems is caused by continuous frictional interactions between two
surfaces in contact. These interactions lead to damage of a material’s microstruc-
ture near the surface. This damage accumulates until portions of the material’s
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surface are removed, which over time can cause failure at the contact interface.
In this context, friction and contact models are used to optimize system proper-
ties and characteristics such as fracture resistance, frictional energy loss, and heat
generation with respect to specific and instantaneous loading conditions (Hilding
et al (1995); Challis et al (2008); Schmidt and Hattel (2008)). In contrast, opti-
mizing wear performance is critical to improve the durability of systems subjected
to continuous abrasion.

Predicting the wear performance of a system, such as the topographical evolu-
tion of a wearing surface or the volume of material lost during wear is of practical
interest in many industrial applications. For example, these predictions can be
used in the mechanical design of components and to estimate service life (Põdra
and Andersson (1997, 1999a,b); Kim et al (2005); Mukras et al (2010, 2009);
Lengiewicz and Stupkiewicz (2013); Fregly et al (2005); Chongyi et al (2010); Tel-
liskivi (2004); Sawyer et al (2014)). Most wear models involve mechanics-based
relations between geometry, pressure, and material wear properties for a given
configuration of materials. Every material system has some resistance to material
removal that is described by a parameter called the wear rate (Figure 1b). This
wear rate is a system parameter that depends on the combinations of constituent
materials, environmental effects, sliding conditions, etc. (Blau (1997); Sawyer et al
(2014); Zum Gahr (1987)). Wear rates can be experimentally measured for mate-
rials using several standard procedures (ASTM Standard D3702-94 (1974/2014);
ASTM Standard G77-05 (1983/2010); ASTM Standard G99-05 (1990/2010); Ar-
chard and Hirst (1956); Colbert et al (2011); Schmitz et al (2004); Rowe et al
(2014); Erickson. et al (2015)). Depending on a model’s level of complexity, these
wear rates may be further related to material hardness, ductility, surface chemistry,
and adhesion (Zum Gahr (1987)).

To date, many techniques have been proposed to simulate wear that range from
molecular dynamics to simple analytical models (Blanchet (1997); Sawyer (2001);
Dickrell and Sawyer (2004); Telliskivi (2004); Põdra and Andersson (1999b); Mukras
et al (2009); Johansson (1994); Dickrell et al (2003); Kim et al (2005); Rowe et al
(2014); Sawyer (2004); Sawyer et al (2014); Jang et al (2007)). Most often the ap-
proach consists in simulating the wear evolution of a surface with iterative schemes
by assuming a relation between material removal rates and local contact pressures.
Each iteration evaluates the pressure distribution on the contact surface and with
this pressure, updates the geometry of the contact. As a consequence, the design
of tribological systems has primarily been studied with these numerical iterative
schemes. The absence of explicit, generic and continuous formulations as well as
the computational cost associated with the use of these iterative procedures have
prevented modern topology optimization and control techniques from being sys-
tematically applied to wearing systems (Feppon et al (2015)). Formally optimizing
wear performance is the focus of this article. In particular, sliding abrasive wear will
be considered because simplified mechanical models have already been developed
and experimentally validated for this kind of wear (Põdra and Andersson (1999b);
Fregly et al (2005); Kim et al (2005); Blanchet (1997); Dickrell et al (2003); Sawyer
(2004); Rowe et al (2014)). Predicting wear performance remains an open domain,
rich with challenges for industries aiming to design systems with improved or target
wear characteristics (Tankala and Kapoor (2001); Barron (1982); Prasad (2000)).
Few attempts have been made to improve the wear performance of systems with
mathematical optimization (Páczelt and Mróz (2005); Willing and Kim (2009);
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Markine et al (2007); Choi et al (2013)). These works have focused on optimiz-
ing indirect factors, such as contact forces or the pressure distributions for which
contact optimization theory is available (Hilding et al (1995); Myśliński (2012);
Strömberg and Klarbring (2010); Neittaanmäki et al (1988)), without optimizing
for wear and its long-term effects.

In Feppon et al (2015), it has been shown that the well-established frame-
work offered by elastic foundation models (Kerr (1964); Pasternak (1954)) allows
one to propose a continuous and mathematically well-posed formulation for the
abrasive sliding wear of composites or heterogeneous materials. Foundation mod-
els simplify the contact mechanics analysis by postulating explicit relationships
between surface topography and pressure distributions (Figure 2). While the con-
tact mechanics analysis is simplified, they are nevertheless commonly accepted
and experimentally validated models for calculating contact pressure distributions
(Põdra and Andersson (1999b); Kim et al (2005); Fregly et al (2005); Sawyer
(2001)). Experimentally, it is well-known that, under a constant average pressure
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Fig. 2: Representation of the evolution of topography and pressure distribution
for an initially flat bi-material surface. a) Initial distribution of two materials
(material “a” and material “b”) along the sliding surface. b) Example evolution
of contact pressure and surface topography for a bi-material surface after 0, 50,
and 250 sliding cycles.

load, the wear of an initially flat, heterogeneous distribution of materials may
lead to a non-planar worn surface. Eventually, the recessing wear profile reaches
a steady-state that continues to recess at a constant rate (Rowe et al (2014); Lee
et al (2002); Hilding et al (2001); Axén and Jacobson (1994)). This transient pe-
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riod before steady-state is reached is commonly called “run-in” wear. Foundation
models mathematically recover this run-in characteristic through the existence of
a corresponding asymptotic expansion of the wearing profile (Feppon et al (2015)).
Remarkably, the limit steady-state profile can be determined explicitly from the
solution of a time-independent, elliptic partial differential equation. This facilitates
the possibility to apply modern topology optimization techniques with the goal
of improving the wear performance of tribological systems (Bendsøe and Sigmund
(2003); Allaire (2007a); Eschenauer and Olhoff (2001); Vermaak et al (2014)). The
formulation proposed herein is also compatible with other elliptic models, which
could be used for example, to explore multi-physics wear optimization.

In this article, for the first time, a topology optimization framework is proposed
for wear applications. The focus will be on linear abrasive sliding wear for which
sliding direction is fixed. A generalization of the wear model employed in Rowe
et al (2014); Feppon et al (2015); Sawyer (2004), that is mathematically suitable
for topology optimization, is introduced in Section 2. Governing equations for the
corresponding steady-state solution are explained. A relaxation result is proven in
Section 3 that gives insight into the relationships between wear-optimal material
distributions, material volume fractions, and material microstructures. The limi-
tations of the underlying foundation models and the consequences for the topology
optimization of macroscopic structures and periodic material microstructures are
discussed. Objective functions for common wear performance metrics and their
shape derivatives are calculated. Minimizing these objectives with level-set based
topology optimization methods (Osher and Sethian (1988); Allaire et al (2004);
Wang et al (2003)) is considered in Section 4 for 2D multimaterial composites. This
article also presents a new way to control the complexity of design features that
is broadly applicable beyond wear and tribological problems. The level-set based
topology optimization method presented uses a novel constraint on the level-set
function (Section 5). This results in an evolution equation that can be used to si-
multaneously update the geometry (by moving the bi-material interface) and the
topology (by nucleating holes or inclusions). It is also shown that the simplicity
of the evolution equation allows one to both easily impose equality volume con-
straints at each iteration, and to control the complexity of design features through
perimeter penalization. Numerical results and optimal material distributions are
presented and discussed in Section 6.

2 Time-independent steady-state model for abrasive sliding wear

2.1 Governing equation for an evolving wear profile

In the following, a multimaterial composite system, Ω, subject to abrasive sliding
wear is assumed. The resistance to material removal in each point of the domain,
x ∈ Ω, is characterized by a wear rate coefficient, K(x). Mathematically, K may be
any measurable function satisfying Kmin 6 K 6 Kmax for some Kmin,Kmax > 0.
For a multimaterial distribution, K is a piecewise constant function in each of
the material phases (Figure 3). The wear profile height, z(s, x), depends on the 2D
position, x, and on the distance of abrasive sliding, s. Classically in wear prediction,
Archard’s law (Archard and Hirst (1956)) states that the layer of material, dz, to
be removed after a distance of sliding, ds, is proportional to the material wear rate
and to the pressure load, p, at each point. As wear is assumed to be a continuous
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Fig. 3: Schematic of the bi-material distribution

process, the following relationship for the wearing profile height, z(s, x), can be
derived (Feppon et al (2015)):

∂z

∂s
= −pK. (1)

In Rowe et al (2014); Feppon et al (2015); Sidebottom et al (2015), a Pasternak
elastic foundation model (Kerr (1964); Pasternak (1954)) was assumed to char-
acterize the pressure distribution, p, with a constant average pressure constraint

(Feppon et al (2015)), < p >=
1

|Ω|

∫
Ω

pdx = P0:

p = P0 + ks(z− < z >)− kg(∆z− < ∆z >), (2)

where ∆z =
∂2z

∂x2
+
∂2z

∂y2
is the Laplacian of z, and ks, kg > 0 are two elastic

foundation parameters. Elastic foundation models assume that wear contact can
be described in the context of a bed of spring elements (with rigidity ks) that are
coupled with a bending beam element (characterized by a tension constant kg,
Figure 4). Thus, the contact pressure distribution is related to the deflection of
each spring element and to the local curvature, ∆z (Kerr (1964); Pasternak (1954);
Sawyer (2004)).

Before discussing the boundary conditions for z, the solution of equation (2), it
should be noted that the approach presented is general and can accommodate most
types of boundary conditions. This includes even more general affine differential
relationships than equation (2) between the profile height, z, and the pressure
distribution, p. For example, a more general relation is found by introducing a
weak formulation of the equations, namely a bilinear form a and a linear form l,
defined on H1(Ω), the classical Sobolev space of bounded energy functions (see
Allaire (2007b)). This allows one to express the dependence between the profile
height, z ∈ H1(Ω), and the pressure, p ∈ L2(Ω), in a weak form as:

∀v ∈ H1(Ω),

∫
Ω

pvdx = −l(v) + a(z, v). (3)
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material amaterial a material b

composite sample

rigid foundation (countersample)

contact mechanics framework:
thin beam on elastic foundation

local contact pressure, p

evolving
surface shape

evolving 
local contact
pressure, p

h KP s∆ = ∆

p = P0 + ks (z− < z > ) − kg (∆z − < ∆z >)

k   (compression)s
k   (bending)g

Fig. 4: Physical description of the numerical wear model. The Pasternak elastic
foundation model is composed of spring elements that are coupled with bending
beam elements; the corresponding parameters are ks and kg, respectively. The
pressure applied at each node is a function of the deflection of the spring element
and the local curvature.

The average pressure constraint, < p >= P0, that must be satisfied by any profile,
z ∈ H1(Ω), is ensured by requiring that the bilinear form, a, is null on the constants
and l(1) = −|Ω|P0. The time dependent equation describing the evolution of the
profile, z, is obtained by combining equations (1) and (3) (see Feppon et al (2015)),
and is written in the weak form (Allaire (2007b)) as:

Find z ∈ L2(]0, T [;H1(Ω)) ∩ C([0, T ];L2(Ω)) such that

∀s > 0, ∀v ∈ H1(Ω),
d

ds

∫
Ω

zv

K
dx+ a(z, v) = l(v).

(4)

Of course, equation (4) must be supplemented with some initial conditions, z0 ∈
L2(Ω), such that z(0, ·) = z0. For physical applications, this article considers an
extension of the Pasternak foundation model by introducing a reference pressure,
f ∈ L2(Ω), satisfying:

< f >= P0, (5)

and by replacing equation (2) with:

p = f + ks(z− < z >)− kg(∆z− < ∆z >). (6)
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The reference pressure profile in (Feppon et al (2015); Rowe et al (2014); Sawyer
(2004)) and equation (2) was assumed to be flat, that is f = P0. The introduction
of a non-constant parameter, f , can be motivated by the fact that the pressure
distribution for a flat profile, z = 0, may not be uniform. Indeed, flat punch contact
theory predicts that a non-uniform pressure profile (with elevated values at the
edges) results from the contact between a rigid flat body on a Pasternak foundation
(Ciavarella et al (1998); Marzeda et al (2001)) (see Figure 5). The further relevance
of the introduction of this parameter will be discussed in Section 6.

Fig. 5: Theoretical flat punch pressure profile (from Ciavarella et al (1998)).

Boundary conditions in addition to equation (6) are required to ensure the
well-posedness of the model. In Rowe et al (2014); Feppon et al (2015), peri-
odic boundary conditions were considered by tribologists because they were both
conveniently implemented in iterative schemes and compatible with the study of
multimaterial composites on a periodic, unit-cell basis. For these reasons, they will
be used for the topology optimization results presented in Section 6. As far as the
authors are aware, no other boundary conditions have been proposed in the avail-
able wear literature for these elastic foundation models. The analysis performed
here shows that the following Fourier boundary conditions for the profile, z, are
also mathematically suitable:

kg
∂z

∂n
+ β(z− < z >) = g, (7)

where β is a positive bounded function, g represents a load on the boundary ∂Ω,
and n is the outward normal to the boundary ∂Ω. Note that in this more general
framework, Dirichlet boundary conditions (z =< z >) are found by taking the
limit, β → +∞. With this set of boundary conditions, the bilinear form a and the
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linear form l of equation (3) are given by:

a(u, v) =

∫
Ω

ks(u− < u >)(v− < v >) + kg∇u · ∇vdx

+β

∫
∂Ω

(u− < u >)(v− < v >)ds,

(8)

l(v) = −
∫
Ω

fvdx+

∫
∂Ω

g(v− < v >)ds. (9)

Periodic boundary conditions are also included in this analysis, as all of the
expressions obtained in this paper with homogeneous Neumann boundary condi-

tions

(
∂z

∂n
= 0 on the boundary, ∂Ω

)
can also be used without modification, for

the case of periodic boundary conditions. This is because both boundary condi-
tions share identical variational formulations. Indeed in both cases, the average

local change in height is null, that is < ∆z >=
1

|Ω|

∫
∂Ω

∂z

∂n
ds = 0.

Finally, the weak time-dependent system of equations (4) can be written in the
strong form to characterize the evolving wear profile, z:

1

K

∂z

∂s
+ ks(z− < z >)− kg(∆z− < ∆z >) = −f in Ω

kg
∂z

∂n
+ β(z− < z >) = g on ∂Ω.

(10)

2.2 A steady-state time-independent formulation

It has been shown in Feppon et al (2015) that the general variational formula-
tion expressed in equation (4) allows one to derive a time-independent governing
set of equations. The following asymptotic expansion for a wear profile, z, was
established:

Proposition 1 Assume that the bilinear form a, defined by (8), satisfies the following

hypotheses:

(i) a is coercive on the space VK =

{
v ∈ H1(Ω)

∣∣∣∣∫
Ω

v

K
dx = 0

}
(ii) a vanishes for constants, namely a(1, v) = a(v, 1) = 0 for any v ∈ H1(Ω)

Then, there exists a unique u ∈ VK solution of:

∀v ∈ VK , a(u, v) = l(v), (11)

or equivalently, assuming l(1) = −P0|Ω|, u ∈ VK is the unique solution of

∀v ∈ H1(Ω), a(u, v) = l(v) + P0

∫
Ω

< K−1 >−1

K
vdx. (12)

Similarly, equation (4) admits a unique solution z, satisfying the initial condition,

z(0, ·) = z0 ∈ L2(Ω). Furthermore, there exists a constant λ > 0, such that the

following asymptotic expansion holds true:

∀s > 0, z(s, x) = −P0 < K−1 >−1 s+

〈
< K−1 >−1

K
z0

〉
+ u(x) + g(s, x), (13)
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with g satisfying

〈
g(s, ·)
K

〉
= 0 for any s > 0 and

∀s > 0, ||g(s, ·)||K 6 e−λs
∣∣∣∣∣∣∣∣z0 −〈< K−1 >−1

K
z0

〉
− u
∣∣∣∣∣∣∣∣
K

, (14)

where || · ||K is the equivalent quadratic norm defined for all v ∈ L2(Ω) by ||v||K =√∫
Ω

v2

K
dx.

Equation (12) can be physically interpreted as the fact that the asymptotic pres-
sure, psteady, must be proportional to the inverse of the wear rate distribution, K,
that is (see equation (3)):

psteady = P0
< K−1 >−1

K
. (15)

This result is of practical importance for the analysis of wear profiles. The
asymptotic expansion (13) shows that the wear profile, z, is an affine function of
the sliding distance, s, up to a remainder term, g, which is exponentially decaying
with s. In other words, for large sliding distance s, the wear profile z admits a rigid
profile, u, which recesses at the equivalent wear rate, < K−1 >−1. To first order,
equation (13) proves that the total loss in height is asymptotically proportional
to the pressure load, P0, the sliding distance, s, and the equivalent wear rate
< K−1 >−1. The expression for the wear rate (< K−1 >−1) is also the “inverse
rule of mixtures” or “harmonic mean” from classical composite theory (Han and
Blanchet (1997); Lee et al (2002); Axén and Jacobson (1994)). For example, in
the case of a system with two materials (A and B) that have wear rates Ka and
Kb, and an area fraction A∗ of material A, the rule of mixtures is usually written
(Rowe et al (2014); Hovis et al (1986); Han and Blanchet (1997)):

< K−1 >−1=
Ka

A∗ + Ka
Kb

(1−A∗)
. (16)

In the physical case where the bilinear and the linear forms, a and l, are given
by equations (8) and (9), with f satisfying < f >= P0, the steady-state profile, u,
defined by equation (12), can be rewritten as the unique solution in H1(Ω) of the
differential system:

ks(u− < u >)− kg(∆u− < ∆u >) = −f + P0
< K−1 >−1

K
in Ω

kg
∂u

∂n
+ β(u− < u >) = g on ∂Ω〈

u

K

〉
= 0.

(17)

This governing equation (17) is a versatile formulation that is convenient to study
the long-term wear of multimaterial composites. In addition to the substantial
computational gain discussed in Feppon et al (2015), this formulation is also well
suited for optimization; this is in contrast to traditional iterative schemes in the
wear literature. The key factor is the introduction of explicit continuous govern-
ing equations. Directly considering the steady-state wear profile, u, instead of the



Introducting a level-set optimization method for wear 11

recessing time-dependent wear profile, z, allows one to formulate wear optimiza-
tion problems that have the advantage of depending only on the distribution of
material, K, and not on an arbitrarily-fixed sliding distance (a parameter that can
be interpreted as a pseudo-time) or on an initial profile, z0. The solution of the
system (17) can be computed in practice by using the following proposition.

Proposition 2 Let f1 ∈ L2(Ω) and g1 ∈ L2(∂Ω) be two functions such that < f1 >=
0. Let w0 and w1 be the unique solutions in H1(Ω) of:{

ksw0 − kg∆w0 = f1 in Ω

kg
∂w0

∂n
+ βw0 = g1 on ∂Ω,

(18)

{
ksw1 − kg∆w1 = 1 in Ω

kg
∂w1

∂n
+ βw1 = 0 on ∂Ω.

(19)

Then the unique solution, u0, in H1(Ω) of the system:
ks(u0− < u0 >)− kg(∆u0− < ∆u0 >) = f1 in Ω

kg
∂u0
∂n

+ β(u0− < u0 >) = g1 on ∂Ω

< u0 > = 0,

(20)

is given by:

u0 = w0− < w0 >
w1

< w1 >
. (21)

Proof The result is easily obtained by checking that the variational formulation of

equation (20), found using Green’s identity, and that of w0− < w0 >
w1

< w1 >
, are

identical. ut

Equations (18) and (19) can be solved using a standard finite-element solver
such as FreeFem++ (Hecht (2012)). For the remainder of this work:

f1 = −f + P0
< K−1 >−1

K
and g1 = g. (22)

Then, computing the solution, u0, of equation (20) allows one to determine the
steady-state profile, u (equation (17)), from the relation:

u = u0 −
〈
< K−1 >−1

K
u0

〉
. (23)

3 A relaxation result in the context of topology optimization

In the following, the bilinear and linear forms a and l are assumed to be indepen-
dent of the material distribution K, and a is also assumed to be coercive on the
space V1 = {v ∈ H1(Ω)| < v >= 0}. This is the case in previous works that use the
Pasternak foundation model (Rowe et al (2014); Sidebottom et al (2015)) and in
equation (2), but it is also true for the extended model (equations 5-9) considered
here. For any wear-rate coefficient, K ∈ L∞(Ω), satisfying 0 < Kmin 6 K 6 Kmax,
the notation u0(K) = u(K)− < u(K) > is used where u(K) denotes the solution of
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equation (12). Equivalently, u0(K) is the unique solution in V1 of the variational
problem:

∀v ∈ V1, a(u0(K), v) = l(v) + P0J(K)(v), (24)

where the linear form J(K) depends on the wear-rate coefficient, K, and is defined
by:

∀v ∈ L2(Ω), J(K)(v) =

∫
Ω

< K−1 >−1

K
vdx. (25)

It was shown in the previous section that the steady-state, u(K), defined by equa-
tion (12), is related to u0(K) by means of an additive constant (see equation (23)).
For this reason, the term “steady-state” will be used in the following to designate
both u(K) ∈ VK as well as u0(K) ∈ V1.

Topology optimization is now considered in the framework of Proposition 1.
Improving the wear performance of a given in-plane configuration of materials, K,
is accomplished by optimizing the corresponding steady-state wear profile, u0(K).
In the following, the system is assumed to be comprised of two materials, A and
B, with wear rates Ka,Kb. There is a sub-domain, Ωa ⊂ Ω, filled with material A,
and the complementary, Ω \ Ωa, is filled with material B (Figure 3). This means
that the coefficient, K(Ωa), is given by:

K(Ωa) = (Ka −Kb)1Ωa
+Kb, (26)

where 1Ωa
is the characteristic function of the domain Ωa.

A general optimization problem for wear with volume constraints is expressed as:

inf
Ωa, θ-|Ω|6|Ωa|6θ+|Ω|

J (u0(K(Ωa))), (27)

where J is assumed to be a continuous function from H1(Ω) in R, bounded from
below, and 0 ≤ θ− 6 θ+ ≤ 1 are two parameters that allow for equality or inequal-
ity volume constraints to be considered.
A relaxed formulation of equation (27) is found by replacing the characteristic
function, 1Ωa

, by a density function, θ ∈ L2(Ω, [0, 1]) (Allaire (2002)). The function
θ can be interpreted as a density ratio between materials A and B. The only subtle
point is that the variable coefficient K(Ωa) is replaced by its harmonic mean, K(θ),
defined by:

1

K(θ)
=

θ

Ka
+

1− θ
Kb

. (28)

The relaxation of equation (27) is then:

inf
θ∈L2(Ω), θ-6<θ>6θ+

J (u0(K(θ))), (29)

where u0(K(θ)) is a solution of equation (24) with the linear form J(K) defined
by equation (25) and K = K(θ). The justification of such a relaxed formulation
is given by the following result which states that, in some sense, equation (29) is
equivalent to the initial optimization problem (equation 27).

Proposition 3 The formulation of equation (29) is the relaxation of the shape opti-

mization problem (27) in the following sense:
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(i) There exists an optimal density θ∗ ∈ L2(Ω, [0, 1]) which minimizes equation (29).

(ii) For any minimizing sequence of sub-domains (Ωna ) for the problem (27), the asso-

ciated sequence of characteristic functions 1Ωn
a

converges weakly in L2(Ω), up to

a subsequence, to a minimizer θ∗ for the problem (29).

(iii) Any minimizer of (29) is attained as the limit of a minimizing sequence of sub-

domains (Ωna ) for (27).

In particular, the optimization problem (27) and its relaxation (29) share the same

minimal value:

min
θ∈L2(Ω), θ-6<θ>6θ+

J (u0(K(θ))) = inf
Ωa, θ-|Ω|6|Ωa|6θ+|Ω|

J (u0(K(Ωa))). (30)

Proof The proof requires only classical arguments of weak convergence in Hilbert
spaces and does not rely on more involved arguments of homogenization theory (see
e.g. Allaire (2002)). This simple proof is possible because the solution, u0(K(Ωa)),
of equation (24) depends on the sub-domain, Ωa, only through the linear form,
J(K(Ωa)), in the right hand side of the equation, which itself depends on the
characteristic function 1Ωa

. Since the sequence of characteristic functions, 1Ωn
a

,

is bounded in L2(Ω), one can extract a subsequence which converges weakly to
a limit, θ, in L2(Ω). Therefore, for this subsequence, the average < K(Ωna )−1 >

converges to < K(θ)−1 > and:

∀v ∈ L2(Ω), lim
n→+∞

∫
Ω

v

K(Ωna )
dx =

∫
Ω

v

K(θ)
dx.

As a consequence it can be shown, by taking the limit in the variational formulation
(equation 24), that the sequence of solutions u0(K(Ωna )) is also converging strongly
in H1(Ω) to the solution u(K(θ)). Indeed, the convergence:

∀v ∈ V 1, lim
n→+∞

J(K(Ωna ))(v) = J(K(θ))(v),

together with the coercive character of a, implies the weak convergence in H1(Ω)
of u0(K(Ωna )) towards the limit u0(K(θ)). Then, due to the Rellich compactness
theorem, the convergence holds strongly in L2(Ω). Eventually, using equation (24)
with the test function v = u0(K(Ωna )) yields the strong convergence of the sequence
in H1(Ω).

Note that the above convergence holds for any sequence of sub-domains Ωna ,
whether it is a minimizing sequence or not. From this property, finishing the proof
of the proposition follows the classical approach (see Allaire (2002) for details). In
particular, by continuity, the values of the objective function (J (u0(K(Ωna ))) are
also converging to the limit value J (u0(K(θ)). As a consequence, the infimum of
equation (27) remains unchanged by replacing the variable set, {K(Ωa) |Ωa ⊂ Ω},
with its weak closure, that is the set {K(θ)|θ ∈ L2(Ω, [0, 1])} (see Lemma 4.2 in
Tartar (2009)). ut

The term minimizing sequences refers to sequences of material distributions
whose cost function values are decreasing to the infimum. The limit coefficient,
K(θ) is thus in general not of the form K(Ω∗a), for a certain sub-domain Ω∗a ⊂ Ω,
since the limit density θ can take any pointwise values between 0 and 1.

This relaxation result (equation 30) has an important consequence. Numeri-
cally it is observed that a minimizing sequence of bi-material wear coefficients,
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K(Ωna ), converging weakly to K(θ), is in fact converging to a highly-distributed
composite material with a volume fraction, θ(x) of material A and (1 − θ(x)) of
material B, at every point, x ∈ Ω.

When a material discontinuity is present in the second order differential op-
erator of the elliptic equation (for example when considering discontinuous ther-
mal conductivity or elasticity tensors), the weak convergence of the material dis-
tribution does not imply the strong convergence of the associated solution. In-
deed, it does not imply that the convergence of the differential operator depends
on the material distribution. Instead, homogenization theory predicts that addi-
tional sub-sequences must be extracted to obtain the convergence (in the sense
of H−convergence) of the differential operator to an effective, homogenized, ten-
sor. In the context of periodic homogenization theory (Murat and Tartar (1985);
Allaire (2002); Bendsøe and Kikuchi (1988)), the properties of the homogenized
tensor are characterized by a unit-cell problem that defines a microstructure for
the limit anisotropic material. The infimum of the objective function is attained
for both a limit fractional distribution of the two materials, and an asymptotic
anisotropy described by the homogenized limit of the differential operator. In the
case of the steady-state equation (24), the differential operator does not depend
on the material distribution and thus does not lead to effective anisotropic homog-
enized tensors.

Thus, as is highlighted by the relaxation result of equation (30), the limit vol-

ume fraction is the sole parameter driving the optimization process. Within the field
of tribology, it has been experimentally established that wear properties of com-
posite materials do in fact depend on their physical microstructures or anisotropy
(Zmitrowicz (2006); Sawyer et al (2014)). This highlights the limitations of the un-
derlying wear model: it is limited at small scales when the distribution of materials
within the composite would begin to affect the microstructure of its constituents.
This is not surprising because Archard’s law (equation 1) is itself based on the
empirical observation that the average worn volume of material is proportional to
the sliding distance. If the microstructure of the constituent materials is signif-
icantly altered, the assigned wear rates would no longer be valid. Therefore the
law breaks down at a scale that is comparable to the size of the fragments of worn
material (Zum Gahr (1987)).

Nevertheless this model remains suitable for optimizing the wear performance
of multimaterial composites as long as a physical length scale for a minimum
feature size is specified. For example, a minimum thickness length scale in each
material phase or a minimum radius of curvature along material interfaces may
be prescribed. Numerically, identifying microstructures with target wear perfor-
mance and desired feature control is the focus of the following Section 5. Topology
optimization will be used to improve upon typical composite wear designs without
significant increase in geometric complexity.

4 Defining optimization objectives: minimizing run-in-wear volume and

achieving planar steady-state surfaces with multimaterial composites

4.1 Minimizing run-in-wear volume loss

Improving the wear performance of tribological systems can be done by minimiz-
ing the volume of material lost during the transient run-in period (here equal to
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−
∫
Ω

z(s, x)dx). By definition, wear involves material removal, but material lost

during transient wear is considered a waste to be minimized. This material loss
quantity is defined with respect to a given sliding distance, s, and is consequently
time-dependent. Instead, equation (13) simplifies the analysis by providing an
asymptotic expansion for the volume lost:

−
∫
Ω

z(s, x)dx = P0 < K−1 >−1 |Ω|s−
(∫

Ω

< K−1 >−1

K
z0dx+

∫
Ω

udx

)
+G(s),

(31)
where G(s) is decreasing exponentially to zero with the sliding distance, s.

Equation (31) shows that the first term to be considered when comparing
the volume of material lost between two material distributions, is the quantity:
P0 < K−1 >−1 |Ω|s. Consequently, to first order, the volume of material lost is
related to the equivalent wear rate, < K−1 >−1, and the asymptotic comparison of
two initial distributions has a physical meaning only if their respective equivalent
wear rates are equal. As the equivalent wear rate

< K−1 >−1=

[(
1

Ka
− 1

Kb

)
|Ωa|
|Ω| +

1

Kb

]−1

(32)

depends only on the proportion of the domain, Ωa filled by material A, this con-
straint implies that the volume fractions (θ0 and 1−θ0 for the constituent materials
A and B) must be fixed in the domain:

|Ωa| = θ0|Ω|.

Once the volume fraction, θ0, is prescribed, the comparison between two config-
urations of materials can be made by examining the second term of the asymptotic
expansion (31):

Vlost = −
(∫

Ω

< K−1 >−1

K
z0dx+

∫
Ω

udx

)
=

∫
Ω

< K−1 >−1

K
(u0 − z0)dx. (33)

This quantity is the volume of material lost due to the transient run-in wear period
when the initial profile, z0, converges to the steady-state profile, u0. In this way,
the quantity Vlost, defined by (33), enables one to compare the wear performance
of material distributions for any choice of initial profile, z0. In the case of an
initially flat profile, z0 = 0, the more general quantity, Vlost, is called the run-

in-wear volume, Vrun−in, in deference to the terminology used by the tribology
community (Sawyer et al (2014); Chattopadhyay (2001)):

Vrun−in = J(K)(u0) =

∫
Ω

< K−1 >−1

K
u0dx. (34)

The run-in-wear volume is determined assuming a known in-plane material dis-
tribution, K, and a fixed value of the equivalent wear rate, < K−1 >−1. This
unambiguously defines what is usually interpreted by tribologists as the volume
lost before reaching steady-state wear (Hirst and Lancaster (1956)). The optimiza-
tion problem is then set on the fixed space, V1 = {v ∈ H1(Ω)| < v >= 0}:
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inf
Ωa⊂Ω

J(K)(u0),

under the constraints:


K = K(Ωa) = (Ka −Kb)1Ωa

+Kb
|Ωa| = θ0|Ω|

u0 ∈ V1
∀v ∈ V1, a(u0, v) = l(v) + P0J(K)(v).

(35)

Note that it is not immediately obvious from the definition of equation (34), that
the objective function, J(K)(u0), is of the type J (u0(K(Ωa))), as in Section 3.
Based on equation (34), J(K)(u0) depends not only on u0(K(Ωa)), but also on
K(Ωa). However J(K)(u0) is indeed of the type J (u0(K(Ωa))), because the fol-
lowing equality is found (equation (35)):

J(K)(u0) =
1

P0
(a(u0, u0)− l(u0)). (36)

The relaxation result of Proposition 3 holds true in this case.

The shape derivative with respect to the interface, ∂Ωa, is obtained using Céa’s
fast derivation method (Céa (1986)). The following Lagrangian is defined for any
û0, p̂ ∈ V1 and Ωa ⊂ Ω:

L(û0, p̂, Ωa) = J(K)(û0)− a(û0, p̂) + l(p̂) + P0J(K)(p̂). (37)

The notationˆ in equation (37) means that the functions û0, p̂ are not the solutions
of any equations (it is only their optimal values, without ,̂ which are solutions).
The adjoint-state, p is defined as the unique solution in V1 of:

∀v ∈ V1,
∂L
∂u0

· v = J(K)(v)− a(v, p0) = 0, (38)

where
∂L
∂u0

· v denotes the directional partial derivative of the Lagrangian with

respect to u0 in the direction v. In the physical case where a and l are given by
equations (8) and (9), p, is defined as the solution of:


ks(p− < p >)− kg(∆p− < ∆p >) = −1 +

< K−1 >−1

K
in Ω

kg
∂p

∂n
+ β(p− < p >) = 0 on ∂Ω

< p > = 0.

(39)

Following the classical approach (Céa (1986); Allaire et al (2004)), the shape

derivative of the objective function is given by
dJ

dΩa
· θ =

∂L
∂Ωa

(u0, p, Ωa) · θ, where

the Lagrangian is evaluated in u0, satisfying the constraints of equation (35) and
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in p, the adjoint. Then a standard computation yields the shape derivative of the
objective function:

dJ

dΩa
· θ =

∂

∂Ωa

(
J(K)(u0 + P0p)

)
· θ (40)

=< K−1 >−1

(
1

Ka
− 1

Kb

)∫
∂Ωa

(
u0 + P0p

−
〈
< K−1 >−1

K
(u0 + P0p)

〉)
θ · nds. (41)

In practice, the resolution of the system (39) for the adjoint state can be performed
from Proposition 2. The equality volume constraint, |Ωa| = θ0|Ω|, will be addressed
in Section 5.

4.2 Achieving a planar steady-state profile

An alternative wear optimization objective may be a desired surface roughness or
topography. The following subsection focuses on the case when a planar steady-
state profile with no roughness at all must be achieved. This requires a new objec-
tive function and it is shown next that compliance is a good candidate. By analogy
with linear elasticity, one can define compliance in this wear model to be the work
done by the loads :

l(u) = −
∫
Ω

fudx+

∫
∂Ω

g(u− < u >)ds. (42)

Minimizing compliance is a very common objective or cost function in structural
optimization for linear elastic problems. However the problem considered is not
strictly equivalent, namely the linear forcing, l, depends on the material distribu-
tion, K. By virtue of equation (11) compliance satisfies l(u) = a(u, u), and further
examination of equation (8) reveals that a(u, u) is a measure of how far the pro-
file, u, is from being a constant. Thus compliance can also be interpreted as the
cost function associated with the objective of achieving a flat steady-state profile.
Noting that a(u, u) = a(u0, u0), the optimization problem is defined on the space
V1 by:

inf
Ωa⊂Ω

J (u0(K(Ωa))) = a(u0, u0),

under the same constraints (35). The shape derivative is calculated by introducing
the Lagrangian:

L(û0, p̂, Ωa) = a(û0, û0)− a(û0, p̂) + l(p̂) + P0J(K)(p̂).

The adjoint-state, p, is now defined as:

∀v ∈ V1,
∂L
∂u0

· v = 2a(v, u0)− a(v, p) = 0. (43)

It is deduced from equation (43) that p = 2u0, and the problem is self-adjoint.

The shape derivative is
dJ
dΩa

· θ =
∂

∂Ωa
(J(K)(2u0)) · θ , and a computation yields:
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dJ
dΩa

·θ = 2 < K−1 >−1

(
1

Ka
− 1

Kb

)∫
∂Ωa

(
u0 −

〈
< K−1 >−1

K
u0

〉)
θ ·nds. (44)

5 A topologically sensitive optimization algorithm with equality volume

constraints and perimeter penalization

5.1 Topology optimization of run-in wear with periodic boundary conditions

In the following, the focus is on optimizing the unit-cell of a bi-material composite
by minimizing the associated run-in wear volume (34). The unit-cell is a rectan-
gular domain Ω = [0, L] × [0, H] and periodic boundary conditions are assumed.
In this case, the reference pressure profile is a constant, f = P0. As stated above,
the previous results from Section 4 obtained for homogeneous Neumann bound-
ary conditions (g = β = 0) can be applied, without modification, to the case of
periodic boundary conditions.

With periodic boundary conditions and a constant pressure profile, minimizing
the run-in-wear volume (Section 4.1) is identical to minimizing compliance (Section
4.2). This is because both objective functions, J(K)(u0), defined by (34), and l(u),
defined by (42), are positively proportional (using equations (20) and (23)):

l(u) = −P0

∫
Ω

udx = P0J(K)(u0).

The global minimum of the objective function, J(K)(u0), under the constraints
(35) is zero; this is because compliance can also be interpreted as an energy:
P0J(K)(u0) = a(u0, u0) > 0. In view of relation (20), the minimum of the relaxed
formulation (29) is attained by constant profiles, u0, or equivalently, by uniform
material distributions, K =< K−1 >−1, corresponding to vanishing loads (22) for
u0. As a result of Proposition 3, any minimizing sequence K(Ωna ) of the original
problem (27) has the property that its inverse is weakly converging to a constant
and reciprocally, any sequence that converges weakly to a constant is on a mini-
mizing trajectory. Numerically, the minimizing sequences, K(Ωna ), exhibit features
that become vanishingly small while still respecting the required fixed volume
fractions of materials at every point in the domain. Figure 6 presents a typical

Fig. 6: A minimizing sequence of a bi-material distribution converging weakly to
a constant, while respecting a resource constraint ratio of 50% for each material
at each iteration.
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example of minimizing sequences obtained using a level-set based topology opti-
mization algorithm that imposes an equality volume constraint at each iteration
(see Section 5.3). Proceeding left to right, the microstructural features increase
in complexity and a highly-interconnected distribution of materials is observed.
These minimizing sequences are converging to the theoretical limit in which every
point in the domain is occupied by the prescribed volume fraction of materials.
For example, if a resource constraint with a volume fraction of 50% material A
(white) and 50% material B (black) was specified, the optimal solution would be
a domain in which every material point is comprised of 50% material A and 50%
material B (the domain would look completely grey).

For practical wear applications, it is desirable to avoid these types of density-
like solutions with finely distributed materials. The reasons are those mentioned in
Section 3 as well as considerations of manufacturability. Manufacturing and fab-
rication considerations limit the complexity of conceivable designs. This is a chal-
lenge commonly encountered in topology optimization (Allaire et al (2014b); Guest
et al (2004); Meisel et al (2013); Jansen et al (2013); Zhou et al (2014); Alexan-
dersen and Lazarov (2015); Schury et al (2012))— geometric constraints on the
boundary, ∂Ωa, must be added to ensure that minimizing sequences of the domain
converge toward a manufacturable shape (Delfour and Zolésio (2001); Ambrosio
and Buttazzo (1993)). Several methods are now available to address manufactura-
bility: these include perimeter penalization, minimum thickness constraints, mold-
ing constraints, and robust topology optimization (Allaire et al (2014b); Guest
et al (2004); Zhou et al (2014); Alexandersen and Lazarov (2015); Wang et al
(2011); Schevenels et al (2011); Sigmund (2009); Seepersad et al (2006)).

Methods that rely on the shape derivative of the signed distance function can
be difficult to handle numerically because they may require integration along rays
normal to the interface (Allaire et al (2014b,a)). Projection methods that optimize
the density of material often require extra penalizations to avoid graded materi-
als (Jansen et al (2013)). For these reasons, in the context of level-set methods,
perimeter penalization remains a convenient way to control the geometric com-
plexity of optimized structures. Although there is no formal guarantee that the
perimeter constraint will translate into manufacturable standards, it often guar-
antees the existence of optimal shapes – hence convergence –, that are expected
to be simplified, improving the chance of manufacturability in a general way (not
specific to a manufacturing process). In level-set methods, penalization schemes
are usually incorporated in the level-set transport equation through a diffusive
term that can take the form of a surface energy (Chen et al (2007); Luo et al
(2008); Yamada et al (2010)). The diffusive term tends to regularize the level-set.
Simultaneously, the equality volume constraint on the constituent materials must
be accounted for in the optimization process. To address these issues, a topol-
ogy optimization method that is suitable for a broad range of applications and
that takes a novel approach to implement perimeter penalization and resource
constraints is presented in the following section.

5.2 Lagrange multiplier for the equality volume constraint

Several techniques are available to handle equality constraints in gradient-based
optimization algorithms (Bertsekas (1996)). In this work, a multiplier, λ, for the
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equality volume constraint (|Ωa| = θ0|Ω|) is introduced and the following La-
grangian (different from the ones introduced in Section 4) is considered:

L(Ωa, λ) = J(K)(u0) + τ |∂Ωa|+ λ(|Ωa| − θ0|Ω|). (45)

The shape derivative of the Lagrangian is given by:

∂L
∂Ωa

· θ =
dJ
dΩa

· θ + τ

∫
∂Ωa

κθ · nds+ λ

∫
∂Ωa

θ · nds

=

∫
∂Ωa

(V + τκ+ λ)θ · nds,

(46)

where κ is the mean curvature of the boundary, ∂Ωa, and V is the velocity in the
shape derivative (equation 44) of the cost function, J(K)(u0):

V = 2 < K−1 >−1

(
1

Ka
− 1

Kb

)(
u0 −

〈
< K−1 >−1

K
u0

〉)
. (47)

A descent direction for the Lagrangian is obtained by considering a vector field,
θ, whose value on the interface, ∂Ωa, is θ = −(V + τκ + λ)n. At each iteration,
the value of the multiplier, λ, is updated to satisfy the equality volume constraint,
|Ωa| = θ0|Ω|.

5.3 A novel modification of the level-set based topology algorithm to impose an
equality volume constraint

Several methods exist to represent and evolve numerically the interface of a domain
Chen et al (2007); Dapogny (2013). The level-set method is used in this paper,
for its simplicity in allowing topological changes caused by the collision of moving
frontiers to occur (Osher and Sethian (1988); Allaire et al (2004); Wang et al
(2003)). The domain, Ω, is discretized on a fixed mesh and the distribution of
materials is described by a level-set function, φ, satisfying:

φ > 0 in Ωa
φ < 0 in Ω \Ωa
φ = 0 on ∂Ωa.

(48)

The domain Ωa is updated at each iteration by moving each point of the boundary
along its outer normal at the speed v, using the following Hamilton-Jacobi equation
(Osher and Sethian (1988)):

∂φ

∂t
− v|∇φ| = 0. (49)

The negative sign in front of the speed, v, results from the convention that φ

must be positive in Ωa (see equation (48)). In order to ensure numerical stability
and to guarantee the accuracy of the finite-difference schemes used to solve this
equation, the level-set function, φ, is usually initialized as the opposite of the
signed-distance function, dΩa

, of the domain Ωa (Osher and Fedkiw (2004)). This
property is maintained at each iteration by a reinitialization procedure (Osher
and Fedkiw (2004)). No explicit relationship is available a priori that relates the
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multiplier, λ, and the volume, |Ωa|, of the updated domain. The multiplier, λ,
can be determined by dichotomy (Allaire (2002)) or by augmented Lagrangian
methods (Bertsekas (1996)). Using a dichotomy may be computationally costly
as the domain may need to be updated several times before the correct value of
the multiplier, λ, is found. A disadvantage of the augmented Lagrangian approach
is that the value of the volume multiplier, λ, is correct only at convergence. The
implication is that the objective function does not necessarily decrease at each
iteration.

To avoid these issues, a protocol that includes a novel constraint on the level-set
function is proposed instead. An approximate, but affine relationship between the
Lagrange multiplier and the volume, |Ωa|, is proposed. Furthermore, it is shown
that the expression of the topological gradient is a straightforward extension of
the speed of the shape derivative inside the domain. This has the added benefit of
allowing for the nucleation of a material inclusion (A or B).

In order to simplify the volume calculation, a small parameter, ε > 0, is intro-
duced and a further constraint that the level-set function, φ, must be constant in
each material domain at a distance, ε, from the interface, ∂Ωa, is imposed (Fig-
ure 7):

φ = 2Hε(−dΩa
)− 1, (50)

where Hε is a regularized Heaviside function over an interface zone of thickness
2ε. The regularization proposed by Osher and Fedkiw (2004) is applied:

Hε(x) =


0 if x 6 −ε
1

2
+

x

2ε
+

1

2π
sin
(
πx

ε

)
if − ε 6 x 6 ε

1 if x > ε.

(51)

Fig. 7: On the left, is a 3D profile of the level-set function. On the right : the inter-
polation zone for the level-set.

Thus φ is still a level-set function for Ωa because the constraint equation (48) is sat-
isfied; but it also has a value that is constant (either −1 or +1) at a fixed distance,
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ε, from the boundary (Figure 7). The practical interest of equation (50) is that
the volume, |Ωa|, is related to the level-set, φ, by means of an affine relationship.
Indeed, denoting Ωa,ε = {x ∈ D | dΩa

(x) 6 −ε}, and assuming the interface, ∂Ωa,
is a closed smooth curve, an application of a coarea formula and Gauss-Bonnet
theorem yields the affine relation (Chavel (2010)):

∫
Ω

φ(x) + 1

2
dx =

∫
Ω

Hε(−dΩa
(x))dx

= |Ωa,ε|+
∫
∂Ωa

∫ ε

−ε
Hε(z)(1− κ(y)z)dydz

= |Ωa,ε|+ ε|Γ | − ε2

3

(
1 +

3

π2

)
2πN∂Ω .

(52)

This is compared to the actual volume, |Ωa|:

|Ωa| = |Ωa,ε|+
∫
∂Ωa

∫ 0

−ε
(1 + zκ(y))dzdy = |Ωa,ε|+ ε|Γ | − ε2πN∂Ωa

, (53)

where N∂Ωa
is the index or winding number of the curve ∂Ωa (defined here in

two dimensions), which is also the number of holes or inclusions in the material
distribution. In this way the quantity defined by equation (52) is a good approx-
imation for the volume, |Ωa|, as long as: (i) the number of inclusions, N∂Ωa

and
the parameter ε remain small, and (ii) the extent of the domain, Ωa, is greater
than ε (Delfour and Zolésio (2001)). This affine relationship will be exploited to
determine an explicit formula for the Lagrange multiplier at each iteration. In the
numerical implementation, the signed distance function is computed at each itera-
tion from the knowledge of the level-set function φ. The Heaviside function, Hε, is
subsequently applied to ensure that the constraint equation (50) on the level-set
is satisfied at the beginning of the next iteration.

5.4 Updating scheme for moving the boundary and allowing the nucleation of
inclusions

The transport equation (49) is used to move the interface, ∂Ωa, at each itera-
tion. At the beginning of each iteration, the level-set function, φ, is defined by
equation (50), which implies that its gradient and its Laplacian are given by:
∇φ = −2H ′ε(−dΩa

)∇dΩa
and ∆φ = 2H ′′ε (−dΩa

) − 2H ′ε(−dΩa
)∆dΩa

, respectively.
In particular, the following equalities are obtained at the interface, ∂Ωa:

∇φ = −2

ε
n and ∆φ = −2

ε
κ.

Then, assuming that these relations remain approximately exact during the next
iteration, the transport equation (49) with the velocity, v = −(V + τκ+λ), can be
written at the interface, ∂Ωa:

∂φ

∂t
− τ∆φ = −2

ε
(V + λ) . (54)



Introducting a level-set optimization method for wear 23

This equation (extended to the whole domain, Ω) for updating the level-set
function, φ, is convenient because it is affine with respect to φ. With the mod-
ified transport equation (54), perimeter penalization is achieved by the diffusive
term (−τ∆φ), which regularizes the level-set function (Allaire (2007b); Yamada
et al (2010)). As remarked in Osher and Fedkiw (2004), the level-set function solv-
ing equation (54) does not respect the constraint (50) for t > 0. Thus equation
(54) is just a convenient approximation of the advection equation (49), under the
constraint (50), over a sufficiently small time interval [0; dt]. This approximation
would be exact for a velocity field, v, constant along the normal vector, n, and if
no topological change occurs (see section 3 in Allaire et al (2014a) and Gomes and
Faugeras (1999)). After a short time, dt, the level-set function must be reinitialized
by recomputing it through equation (50).

Yamada et al (2010) used the same equation (54) and interpreted it as a gradi-
ent descent scheme for optimizing a criterion formulated in terms of the level-set
function, φ. The main differences in Yamada et al (2010) compared to the approach
presented here are, first, in the way equation (54) is introduced and motivated, and
second, in the fact that the topological derivative was used instead of the shape
gradient. As a consequence, reinitializing the levelset function was not possible as
it would affect the value of the objective function. Furthermore, the width of the
interpolation zone was not controlled, leading to potential numerical issues (cre-
ating an artificial interpolation zone may decrease the cost function). In contrast
to Yamada et al (2010), equation (54) is interpreted here as a transport equation
whose single purpose is to update the geometry of the domain, Ωa. To comply
with the constraint (50), the level-set function is regularly reinitialized without
interfering with the cost function.

The perimeter penalization term (|∂Ω|) is evaluated in practice by using equa-
tion (50), which yields ∇φ = −2H ′ε(−dΩa

)∇dΩa
, and a coarea formula:

|∂Ω| = ε

3

∫
Ω

|∇φ|2dx. (55)

This is convenient because computing

∫
Ω

|∇φ|2dx is straightforward using the

associated finite element stiffness matrix. Again, one can note that the fictitious
energy introduced in Yamada et al (2010) to penalize the moving interface is found
but, in the present approach, it is rigorously related to the perimeter by equation
(55).

So far, equation (54) is justified only on the boundary ∂Ωa, although it is used
in numerical practice, throughout the whole domain Ω. A justification is now given
such that equation (54) may be used in the whole domain without modification.
Indeed, the velocity, V , defined by equation (47), is valid, not only on ∂Ωa, but on
the whole domain, because its expression is identical to the topological gradient
of the objective function, J(K)(u0) (Céa et al (2000); Sokolowski and ˙ Zochowski
(1999)). The topological gradient, dT J (x0), of a cost function, J , at a point,
x0 ∈ Ω, is defined when the following asymptotic expansion holds true:

J (Ωa ∪ B(x0, ρ)) = J (Ωa) + ρd|ωd|dT J (x0) + o(ρd), (56)

where B(x0, ρ) is the ball of center x0 and radius ρ; and d is the dimension of
the domain and |ωd| is the measure of the unit ball in dimension d. As a result,
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when dT J is negative, it is advantageous to nucleate a small inclusion filled with
material A at x0. Since the level-set function has a constant value, φ ∈ {−1, 1}, at
a distance larger than ε from the interface ∂Ωa, following the approach of He et al
(2007); Yamada et al (2010); Allaire and Jouve (2006), a gradient descent on the

level-set function (here normalized by the coefficient
2

ε
) can be used to nucleate

an inclusion:

∂φ

∂t
= −2

ε
dT J . (57)

This scheme is expected to nucleate holes or inclusions wherever the topo-
logical derivative, dT J , is sufficiently large. The determination of how large is
large enough is made by comparing the value of the topological derivative to the

coefficient,
ε

2dt
, where dt is the time increment used in the discretization of equa-

tion (57). It should be noted that the perimeter is not topologically differentiable
according to the definition given by equation (56); as such it is not taken into
account in the optimization scheme (57). Any decrease in the objective function
gained by adding new inclusions should outweigh the associated costs incurred by
increasing the perimeter. It is indeed shown in the next section that an appropriate
discretization of the scheme (54) allows one to prevent the topological derivative
from creating too many holes or inclusions and impacting the penalization τ |∂Ωa|.
As the level-set function is constant (equal to ±1) at a distance, ε, from the inter-
face, ∂Ωa, and its Laplacian is zero (∆φ = 0), the implication is that the equations
(54) and (57), moving the interface and updating the topology, are identical at a
distance, ε, from the boundary, ∂Ωa.

In this case, one can show using the considerations of Section 3 that the ex-
tension of the speed, V , defined in equation (47) is equivalent to the expression of
the topological derivative of the objective function, J(K)(u0). It can thus be used
as a descent direction for the objective function with respect to the topology away
from the interface, ∂Ωa. In this way, equation (54) is used on the whole domain,
Ω, to update the topology and the geometry of the interface, ∂Ωa.

It should be noted that the expression for the topological derivative is, in
general, different from the one for the shape derivative (see Allaire et al (2005)).
When this is the case, the method described above can still be applied by finding a
speed, V , for the scheme (54) that is equal to the shape derivative on the boundary,
∂Ωa, and to the topological gradient in Ωa,ε with some interpolation zone, of width
2ε, between the two derivatives.

5.5 Discretizing scheme and updating the volume Lagrange multiplier

Equation (54) can be discretized using an implicit scheme, for example:

φn+1 − φn

dt
− τ∆φn+1 = −2

ε
(V + λ), (58)

where ∆φn+1 is the discretized Laplacian of the level-set function φn+1, at time-
step n + 1. The speed, V , is also evaluated at iteration n. The use of an implicit
scheme is numerically advantageous because it removes the need for stabilizing
CFL conditions (Allaire (2007b)). This equation can be rewritten:
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φn+1 = R−1φn − 2

ε
dtR−1(V + λ), (59)

where R−1 is the iteration matrix of the implicit scheme for the regularization
operator (Id − τdt∆)−1. As a consequence, a hole or inclusion can be nucleated
only if:

|R−1(V + λ)| > ε

2dt
|R−1φn|. (60)

That is, nucleation occurs only when the regularized topological derivative (R−1(V+
λ)) is sufficiently large in comparison to the regularized level-set, R−1φn. The reg-
ularization naturally removes any features that are too small, suppressing the nu-
cleation of too many holes or inclusions. For a value of the penalization parameter,
τ , that is sufficiently small, the amplitude of variations in the regularized level-set,
R−1φn, and of the regularized topological gradient, R−1(V + λ), are then lim-
ited. Thus, inclusions will typically be nucleated when the value of the topological

gradient is greater than
ε

2dt
.

Finally, an approximation is used to update the volume Lagrange multiplier,
λ. A discretized version of equation (58) (either by finite differences or by finite
elements) is the following linear system:

Sφn+1 = Pφn +Q(V + λ1), (61)

where P and Q are two mass matrices, S is a weighted sum of the mass and rigidity
matrix that comes from the finite element discretization, and 1 is the discretized
unit constant function. Although φn+1 is no longer exactly given by relation (50),
one can still expect (for not too large dt) that the discretization of the quantity,∫
Ω

φn+1 + 1

2
dx, is a valid approximation of the volume, Ωa, for the next iteration.

With this assumption, the advantage of the proposed method is that one can find
an approximate value of the volume Lagrange multiplier, λ, ensuring that the
equality volume constraint is satisfied at the next iteration. Indeed, for the desired
constraint value, |Ωa| = θ0|Ω|, the finite difference scheme of equation (58) can be
explicitly inverted, yielding:

λ =
2θ0− < S−1Pφn + S−1QV + 1 >

< S−1Q1 >
, (62)

where < · > denotes the discretized average operator. Thus, an algorithm that

handles equality volume constraints, perimeter penalization, and topological sensitivity

through the use of a single updating equation is obtained.

Topology optimization algorithm :

1. For a given domain Ω, solve the steady-state equation (20) and com-
pute the shape derivative, V , defined by (47).

2. Compute the volume multiplier λ, using formula (62).
3. Update the sub-domain Ωa by solving equation (58).
4. Reinitialize the level-set function φn+1 as follows. (i) Compute the

signed-distance function of the domain Ωn+1
a , corresponding to φn+1.

(ii) Apply formula (50) to get the reinitialized value of φn+1.
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6 Numerical results & discussion

In this section, the algorithm (proposed in Section 5) is applied to optimize the
unit-cell of a periodic composite material by minimizing its run-in-wear volume
loss. The constituent material wear rates are taken to be Ka = 2.5×10−2mm3/Nm
and Kb = 2.5 × 10−3mm3/Nm. Materials A and B are represented in black and
white, respectively. The unit-cell, Ω, is square, of size 10mm× 10mm, and is dis-
cretized into a 100×100 node grid with dx = 0.1mm. The reference pressure is set
to f = P0 = 0.083N/mm2, and the elastic foundation parameters (Section 2) are
ks = 0.28N/mm3, kg = 2.8N/mm. A resource ratio of θ0 = 50% for each material is
specified as the equality volume constraint. Lastly, the following parameters were
set: ε = 6dx and dt = 0.05. At each iteration, the speed (V +λ+τκ) was multiplied

by the coefficient
dt

2cε|maxV | , where c is a constant set to control the effects of

the topological gradient (equation 56).
When it is desirable to suppress the nucleation of holes or inclusions, the topo-

logical sensitivity of the algorithm can be disabled by multiplying the right-hand
side of the evolution equation (54) by the regularized Dirac function, δε = H ′ε.
Since the support of δε is localized near the interface, new holes cannot be nucle-
ated away from the boundary, ∂Ωa, thus cancelling the effects of the topological
gradient descent (equation 57). An affine relationship remains between the volume
Lagrange multiplier, λ, and the volume of Ωa. With this relation intact, one can
conveniently impose the volume constraint with the explicit equation (62) for the
Lagrange multiplier, λ.
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(a) Results with perimeter penalization parameter, τ = 1.5 × 10−4. Initial profile, Iteration 7,
10, 17, Final design (Iteration 48), and a 3×3 tiling of the final design for periodic visualization.

(b) Results with perimeter penalization parameter, τ = 5×10−3. Initial profile, Iteration 7, 15,
66, Final design (Iteration 84), and a 3 × 3 tiling of the final design for periodic visualization.

(c) Results with perimeter penalization parameter, τ = 1.5 × 10−2. Initial profile, Iteration 7,
15, 24, Final design (Iteration 71), and a 3×3 tiling of the final design for periodic visualization.

Fig. 8: Minimizing sequences of bi-material distributions that reduce the run-in
wear volume under periodic boundary conditions. Results for three values of the
perimeter penalization constant, τ , are shown. From left to right : the initial design,
three intermediate profiles, the optimal design obtained at convergence and an
extension by periodicity (3×3 unit cells) for ease of visualization. The topological
gradient is disabled.
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(a) Results with perimeter penalization parameter, τ = 1.5 × 10−4. Initial profile, Iteration
1, 25, 40, Final design (Iteration 100), and a 3 × 3 tiling of the final design for periodic
visualization.

(b) Results with perimeter penalization parameter, τ = 5×10−3 . Initial profile, Iteration 1, 25,
40, Final design (Iteration 100), and a 3× 3 tiling of the final design for periodic visualization.

(c) Results with perimeter penalization parameter, τ = 1.5 × 10−2. Initial profile, Iteration
1, 25, 40, Final design (Iteration 100), and a 3 × 3 tiling of the final design for periodic
visualization.

Fig. 9: Minimizing sequences of bi-material distributions that reduce the run-in
wear volume loss under periodic boundary conditions. Results for three values of
the perimeter penalization constant, τ , are shown. From left to right : the initial
design, three intermediate profiles, the optimal design obtained at convergence
and an extension by periodicity (3×3 unit cells) for ease of visualization. The
topological gradient is enabled.
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(a) Topological gradient enabled.
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(b) Topological gradient disabled.

Fig. 10: The convergence curves for τ = 5 × 10−3. On the left, the topological
gradient is enabled and disabled on the right. On the top, the decrease of the
Lagrangian L = J(K)(u0) + τ |∂Ωa| with the number of iterations is shown and on
the bottom, the respective control curve for the resource constraint volume ratio
θ0 = 50%.

Figure 10 shows typical convergence diagrams for the objective function, L =
J(K)(u0) + τ |∂Ωa|, with perimeter penalization. The volume constraint is re-
spected: the percentage ratio of material A oscillates within an acceptable range
of 2% around the constraint value, θ0 = 50%. Optimal in-plane material distri-
butions for the minimization of run-in wear volume loss are shown on Figures
8 (topological gradient disabled) and 9 (topological gradient enabled). Several
material configurations are presented for cases with increasingly severe levels of
perimeter penalization (τ = 1.5×10−4, 5×10−3, 1.5×10−2): (i) the initial material
distribution, (ii) three intermediate profiles, (iii) the final unit-cell design obtained
by the minimization algorithm, and (iv) a 3× 3 tiling of the periodic unit-cell for
ease of visualization. The values of the objective function at convergence for all of
the cases shown in Figures 8 and 9 are presented in Table 1.

Topological gradi-
ent

Perimeter penal-
ization (τ)

Objective function
(inf J(K)(u0))

Final objective as
percentage of the
initial design

Enabled 1.5 × 10−4 0.15 5.8%

Disabled 1.5 × 10−4 0.16 6.2%

Enabled 5 × 10−3 0.28 11%

Disabled 5 × 10−3 0.39 15%

Enabled 1.5 × 10−2 0.68 26%

Disabled 1.5 × 10−2 0.74 29%

Table 1: Optimal values for the run-in wear volume, J(K)(u0), depending on the
perimeter penalization, τ , and the use of the topological gradient, for a fixed
percentage ratio θ0 = 50% between the two materials. The run-in wear value for
the initial design was J(K)(u0) = 2.58.
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These results show that increasing the value of the perimeter penalization co-
efficient, τ , allows one to reduce the complexity of the final design, although at
the expense of increasing the run-in wear volume loss. In addition to perimeter
penalization, the shape of the final design can also be influenced by two separate
factors (i) the choice of the initial configuration and (ii) by enabling or disabling
the topological gradient. If the topological gradient is disabled, Figure 8 demon-
strates that the level-set method still allows interface collisions to affect dramatic
topological changes.

One of the useful applications of this method for wear optimization, is to im-
prove upon existing composite designs from tribology literature. Table 1 shows
that the initial guess, a matrix of material A with a circular inclusion filled with
material B (a typical intuitive guess for designing composites), can be signifi-
cantly improved upon. The run-in-wear volume lost decreased by more than 70%
in all of the cases studied, including those with the highest perimeter penalization
(τ = 1.5 × 10−2). The results also indicate that, in comparison to the calculated
steady-state profiles for the initial configurations, the optimized steady-state pro-
files are significantly more flat; this is according to the measures described in Sec-
tion 4.2. In the periodic unit-cell framework, the numerical examples in Figures 8
and 9 illustrate that topology optimization may be used to design manufacturable
periodic composites with improved wear performance and controlled complexity
at the composite meso-or-microstructural scale.

The optimization of bulk tribological systems at a macroscopic structural
scale can be achieved by replacing the periodic boundary conditions with non-
homogeneous Fourier conditions (equation 7) and by replacing the constant pres-
sure profile, P0, with a generic profile, f . The formulation presented here is not
restricted to the specific relationship between pressure and wear profile (equation
6) used in Section 2. The existence of a steady-state solution and the expressions
for the shape derivatives obtained in Section 4 are valid for any H1(Ω) contin-
uous bilinear form, a, coercive on VK and null on the constants (Feppon et al
(2015)). This implies that some changes in the relationship between the pressure
distribution, p, and the profile, z (equation 6), can be taken into account without
modification of the theory. For example, an additional convective term of the form
∇z · u, for an appropriate vector field, u, could be used to include a dependence
of the pressure distribution on the direction of sliding. Certainly, more general
operators beyond the Laplacian, could also be used. These topics are to be the
subject of future work.

As an illustration of the utility of the formulation for bulk macroscopic struc-
tures, the model is calibrated with experimental data. In Rowe et al (2014), an
experimental steady-state surface profile was obtained through the abrasive wear
of a bi-material distribution of nine equally spaced inclusions (Figure 11). The ex-
perimental parameters were L = 20mm, H = 19.8mm, Ka = 2.24× 10−1mm3/Nm
(in black), Kb = 1.98× 10−2mm3/Nm (in white), ks = 3.07× 10−1N/mm3, kg =
2.8 N/mm, and P0 =< f >= 0.083 MPa. Figure 12 presents the experimental
steady-state surface measured by a profilometer as well as a smoother version of
the data with noise reduction (using a Fast Fourier Transform technique (Duhamel
and Vetterli (1990))). For each of the 3D profiles shown, an additional plot along
a line scan y = 4.8mm is also included for ease of comparison.

Figure 13a presents the profile that was predicted in Rowe et al (2014), using
a uniform pressure profile, f = P0. In order to match the experimental data, the
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Fig. 11: Material distribution considered by Rowe et al (2014).
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Fig. 12: On the left : experimental profile measured in Rowe et al (2014). On the

right : smoothed experimental profile after noise reduction.

sensitivity of the model to the parameter f has been computed and used in a
gradient method (see Allaire (2007a)) to derive a non-uniform pressure profile, f ,
that results in a steady surface profile that matches the experimental data. The
shape of this new reference pressure profile (Figure 14) is consistent with flat punch
theory, which predicts elevated pressures at domain edges (Ciavarella et al (1998);
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(a) Prediction of the steady-state profile using a uniform reference pressure, f = P0.
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(b) Prediction of the steady-state profile using the calibrated profile of Figure 14.

Fig. 13: Top: prediction of the steady state profile under Neumann or periodic
boundary conditions and with a uniform pressure profile, f = P0, as was done in
Rowe et al (2014). Bottom: prediction of the steady state using the non-uniform
pressure profile, f , of Figure 14 and Neumann boundary conditions.

Marzeda et al (2001)) (Figure 5). Figure 13b shows the steady-state surface profile
that is predicted by the model with this non-uniform pressure profile.

This methodology demonstrates that the formulation presented can be cal-
ibrated with experimental data, and optimized material configurations can be
identified for specific experimental set-ups. However, additional modifications of
the proposed model must be considered. Close attention must be paid to spec-
ifying experimentally relevant boundary conditions. The example considered by
Rowe et al (2014) shows that periodic or homogeneous Neumann boundary condi-
tions combined with a uniform pressure profile, f = P0, are not able to capture the
rounded features found at sample edges of experimentally determined steady-state
wear profiles. On the other hand, inhomogeneous Neumann boundary conditions
with a source term (g 6= 0 described in equation (7)) may not be physically relevant
because they must apply throughout the entire wear process, including the initial
conditions where the surface may be flat and g = 0. Furthermore, considering a
non-uniform pressure profile, f , may not be sufficient to obtain acceptable predic-
tions, since this profile may depend itself on the material distribution, K (it has
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Fig. 14: Calibrated pressure profile to match the experimental data of Figure 12.

been observed numerically that the example calibrated pressure profile does not
result in rounded edges when changes in the material distribution occur near the
boundary). Future work could focus on proposing models for the behavior of this
pressure profile parameter with respect to experimentally relevant constraints.

Finally, the optimization method proposed in this article is also relevant for
broader applications of topology optimization beyond wear performance. When-
ever the topological gradient is an extension of the velocity of the shape derivative
of the interface, ∂Ωa, the method offers substantial advantages related to imposing
equality constraints (with affine relationships to the volume), controlling feature
complexity, and topological sensitivity. The key ingredient of the proposed ap-
proach is the constraint (equation 50) on the level-set function. This constraint
allows one to obtain an evolution equation for the interface that is linear and it also
allows one to use the topological gradient beyond the interface zone (at distances
greater than ε from the zero level-set).

7 Conclusion

A framework has been presented to optimize the performance of multimaterial
composites subject to sliding abrasive wear. The optimization focuses on the
steady-state wear profile which is characterized by an elliptic partial differential
equation. The steady-state solution can be directly determined from known mate-
rial distributions, allowing time-independent optimization to be applied. Common
wear objectives are identified and formalized for optimization, like run-in volume
loss and surface roughness. A relaxation result is presented that demonstrates lim-
itations of scale that must be considered in the optimization scheme. This frame-
work has been applied to the wear optimization of a bi-material periodic unit-cell
(representing the meso-or-microstructural design of composite materials). Numer-
ical examples demonstrate the reduction of material loss made possible by designs
guided by topology optimization. They also illustrate how target steady-state wear
surface roughness may be achieved. Initial results and perspectives for applica-
tion of the proposed scheme to macroscopic structural design without periodic
boundary conditions are provided. Several approaches to control the complexity
of designs are proposed in order to respect the scale limitations of the underlying
physical wear model in the optimization scheme. Broader applications of these con-
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trol schemes for other types of problems, beyond wear, in topology optimization
are discussed.
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effects on the topology optimizationof multi-phase structures using a level set method.
Structural and Multidisciplinary Optimization 50(4):623–644

Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust
formulations in topology optimization. Structural and Multidisciplinary Optimization
43(6):767–784

Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization.
Computer Methods in Applied Mechanics and Engineering 192(1-2):227–246

Willing R, Kim IY (2009) Three dimensional shape optimization of total knee replacements
for reduced wear. Structural and Multidisciplinary Optimization 38(4):405–414



38 F. Feppon et al.

Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based
on the level set method incorporating a fictitious interface energy. Computer Methods in
Applied Mechanics and Engineering 199(45-48):2876–2891

Zhou M, Lazarov BS, Sigmund O (2014) Topology optimization for optical projection lithog-
raphy with manufacturing uncertainties. Applied optics 53(12):2720–2729

Zmitrowicz A (2006) Wear patterns and laws of wear - a review. Theoretical And Applied
Mechanics 44(1803):219–253

Zum Gahr KH (1987) Microstructure and wear of materials, vol 10. Amsterdam; New York;
Elsevier


	Introduction
	Time-independent steady-state model for abrasive sliding wear
	A relaxation result in the context of topology optimization
	Defining optimization objectives: minimizing run-in-wear volume and achieving planar steady-state surfaces with multimaterial composites
	A topologically sensitive optimization algorithm with equality volume constraints and perimeter penalization
	Numerical results & discussion
	Conclusion

