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Near-Optimality of Linear Recovery in Gaussian Observation Scheme

under ‖ · ‖22-Loss

Anatoli Juditsky ∗ Arkadi Nemirovski †

Abstract

We consider the problem of recovering linear image Bx of a signal x known to belong to a
given convex compact set X from indirect observation ω = Ax + σξ of x corrupted by Gaussian
noise ξ. It is shown that under some assumptions on X (satisfied, e.g., when X is the intersection
of K concentric ellipsoids/elliptic cylinders), an easy-to-compute linear estimate is near-optimal
in terms of its worst-case, over x ∈ X , expected ‖ · ‖22-loss. The main novelty here is that the
result imposes no restrictions on A and B. To the best of our knowledge, preceding results on
optimality of linear estimates dealt either with one-dimensional Bx (estimation of linear forms) or
with the “diagonal case” where A, B are diagonal and X is given by a “separable” constraint like
X = {x :

∑
i a

2
ix

2
i ≤ 1} or X = {x : maxi |aixi| ≤ 1}.

1 Introduction

In this paper we address one of the most basic problems of High-Dimensional Statistics, specifically,
as follows: given indirect noisy observation

ω = Ax+ σξ [A : m× n, ξ ∼ N (0, Im)]

of unknown “signal” x known to belong to a given convex compact subset X of Rn, we want to recover
the image w = Bx ∈ Rν of x under a given linear mapping. We focus on the case where the quality
of a candidate recovery ω 7→ ŵ(ω) is quantified by its worst-case, over x ∈ X , expected ‖ · ‖22-error,
that is, by the risk

Risk[ŵ|X ] = sup
x∈X

[
Eξ
{
‖ŵ(Ax+ σξ)−Bx‖22

}]1/2
.

The simplest and the most studied type of recovery is affine one: ŵ(ω) = HTω + h; assuming X
symmetric w.r.t. the origin, we lose nothing when passing from affine estimates to linear ones – those
of the form ŵH(ω) = HTω. Starting from the pioneering works [13, 14], linear estimates received much
attention in the statistical literature (see, e.g., [21, 22, 5, 8, 19, 1] and references therein). An advantage
of linear estimates, from the computational point of view, is that under favorable circumstances (e.g.,
when X is an ellipsoid), minimizing risk over linear estimates is an efficiently solvable problem. On
the other hand, linear estimates are also of major importance to statistical theory. For instance, a
huge body of results on rate-optimality of linear estimates on various signal classes (which arise from
some classes of regular functions) form the backbone of classical nonparametric statistics (see, e.g.,
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[12, 24, 23]). Furthermore, for several important signal classes linear estimates occur to be near-
optimal on the class of all possible estimates. This is, for instance, the case for signal recovery from
direct observations (the case of B = A = I) in the situation where the set X of signals is an ellipsoid or
a box. The case of ellipsoidal X was studied first by M.S. Pinsker [20] who showed that in the problem
of recovery of the signal x ∈ X from direct observation ω = x+ σξ, X being a “Sobolev ellipsoid” of
the form {x ∈ Rn :

∑
j j

2αx2
j ≤ L2}, the ratio of the risk of a properly selected linear estimate to the

minimax risk Riskopt[X ] := infŵ(·) Risk[ŵ|X ] (the infimum is taken over all estimates, not necessarily
linear) tends to 1, as σ → +0, and this happens uniformly in n, α and L being fixed. Similar
“asymptotic optimality” results are also known for ellipsoids related to classes of analytic functions
[11] and for “diagonal” case, where X is the above ellipsoid/box and A, B are diagonal matrices [10]
(see also [9] for modern presentation of that approach). The results on non-asymptotic near-optimality
of linear estimates (up to a factor 1.11...) are also available for the case where A = B = I and X is
an ellipsoid (X = {x ∈ Rn :

∑
j a

2
jx

2
j ≤ 1} for given aj) or a box (X = {x ∈ Rn : maxj |ajxj | ≤ 1})

(see, e.g., [7]) (the corresponding argument can be easily extended to the case of diagonal A and B).
Note that the situation is quite different for the problem of estimation of a linear form w = bTx (i.e.,
the case of one-dimensional Bx). An exceptional from several points of view “general” (that is, not
imposing severe restrictions on how the geometries of X , A and B are linked to each other) result on
optimality of linear estimates in this case is due to D. Donoho who proved [6] that when recovering a
linear form, the best, over all linear estimates, risk is within the factor 1.11... of the minimax risk.

The goal of this paper is to establish a rather general result on near-optimality of properly built
linear estimates as compared to all possible estimates. Note that a result of this type is bounded to
impose some restrictions on X , since there are cases (e.g., the one of a high-dimensional ‖ · ‖1-ball
X ) where linear estimates are by far suboptimal. Our restrictions on the family of sets (we call them
ellitopes) X reduce to the existence of a special type representation of X and are satisfied, e.g., when
X is the intersection of K <∞ ellipsoids/elliptic cylinders:

X = {x ∈ Rn : xTSkx ≤ 1, 1 ≤ k ≤ K} [Sk � 0,
∑
k

Sk � 0]. (1)

In particular, X can be a symmetric w.r.t. the origin compact polytope given by 2K linear inequalities
−1 ≤ sTk x ≤ 1, 1 ≤ k ≤ K. Another instructive example is a set of the form X = {x : ‖Sx‖p ≤ L},
where p ≥ 2 and S is a matrix with trivial kernel. It should be stressed than while imposing some
restrictions on X , we require nothing from A and B. Our main result (Theorem 2.1) states, in
particular, that in the case of X given by (1) and arbitrary A, B, the risk of properly selected linear
estimate ŵH∗ , with both H∗ and the risk being efficiently computable, satisfies the bound

Risk[ŵH∗ |X ] ≤ O(1)

√
ln

(
O(1)‖B‖2K2κ−1

Risk2
opt[X ]

)
Riskopt[X ], (∗)

where ‖B‖ is the spectral norm of B, κ is the minimal eigenvalue of
∑

k Sk, Riskopt[X ] is the minimax
risk, and O(1) stands for an absolute constant. It should be mentioned that technique used to construct
lower bound for optimal risks leads to more precise oracle inequalities when imposing constraints on
the structure of the signal class X and matrices A, B; in particular, it allows to reproduce classical
“asymptotic” optimality results, e.g., in the situation considered in [20, 10]. On the other hand,
we do not know if the bound (∗) can be significantly improved in some important “simple cases”, for
instance, in the case where B = I and X is an ellipsoid, without imposing any restrictions on A. In this
work, however, we prefer to see our approach as “operational” – the provably nearly optimal estimate
itself, its risk and even the lower risk bound involved are all given by an efficient computation which
is supposed to provide precise near-optimality guaranties for each set of the problem data. From
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this point of view, the oracle inequality (∗) can be viewed as a general indication of a “goodness”
of linear estimates in a certain context, namely, where the signal set is an intersection of “not too
large” number of ellipsoids/elliptic cylinders. This is in sharp contrast with traditional results of non-
parametric statistics, where near-optimal estimates and their risks are given in a “closed analytical
form,” at the price of severe restrictions on the structure of the “data” X , A and B. This being said,
it should be stressed that one of the crucial components of our construction is completely classical –
this is the idea, going back to M.S. Pinsker [20], to bound from below the minimax risk via Bayesian
risk associated with properly selected Gaussian prior1.

The main body of the paper is organized as follows. Section 2 contains problem formulation
(section 2.1), construction of the linear estimate we deal with (section 2.2) and the central result on
near-optimality of this estimate (section 2.3). Section 3 contains some extensions. Specifically, we
present a version of our main result for the case when the usual worst-case expected ‖ · ‖22-risk is
replaced with properly defined relative risk (section 3.1) and provide a robust, w.r.t. uncertainty in
A,B, version of the estimate (section 3.2). In section 3.3 we show that the key argument underlying
the proof of our main result can be used beyond the scope of statistics, specifically, when quantifying
the approximation ratio of the semidefinite relaxation bound on the maximum of a quadratic form
over an ellitope. Proofs are relegated to section 4. Some of the proofs heavily rely upon Conic Duality;
brief outline of the related background is presented in Appendix C.

2 Situation and main result

2.1 Situation and goal

Given ν×n matrix B, consider the problem of estimating linear image Bx of unknown signal x known
to belong to a given set X ⊂ Rn via noisy observation

ω = Ax+ σξ (2)

where an m× n matrix A and σ>0 are given, and ξ ∼ N (0, Im) is the standard Gaussian observation
noise. From now on we assume that X ⊂ Rn is a set given by

X =
{
x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T ) : x = Py, yTSky ≤ tk, 1 ≤ k ≤ K

}
, (3)

where

• P is an n× n̄ matrix,

• Sk � 0 are n̄× n̄ matrices with
∑

k Sk � 0,

• T is a nonempty computationally tractable2 convex compact subset of RK
+ intersecting the

interior of RK
+ and such that T is monotone, meaning that the relations 0 ≤ τ ≤ t and t ∈ T

1[20] addresses the problem of ‖ · ‖2-recovery of a signal x from direct observations (A = B = I) in the case where X
is a high-dimensional ellipsoid with “regularly decreasing half-axes,” like X = {x ∈ Rn :

∑
j j

2αx2
j ≤ L2} with α > 0.

In this case Pinsker’s construction shows that as σ → +0, the risk of properly built linear estimate is, uniformly in n,
(1 + o(1)) times the minimax risk. This is much stronger than (∗), and it seems quite unlikely that a similarly strong
result may hold true in the general case underlying (∗).

2for all practical purposes, it suffices to assume that T is given by an explicit semidefinite representation

T = {t : ∃w : A(t, w) � 0},

where A(t, w) is a symmetric and affine in t, w matrix.
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imply that τ ∈ T .3 Note that under our assumptions int T 6= ∅.

We assume that BP 6= 0, since otherwise one has Bx = 0 for all x ∈ X and the estimation problem
is trivial. In the sequel, we refer to a set of the form (3) with data [P, {Sk, 1 ≤ k ≤ K}, T ] satisfying
just formulated assumptions as to an ellitope, and to (3) – as to ellitopic representation of X . Here
are instructive examples of ellitopes (in all these examples, P is the identity mapping):

• when K = 1, T = [0, 1] and S1 � 0, X is the ellipsoid {x : xTS1x ≤ 1};

• when K ≥ 1, T = {t ∈ RK : 0 ≤ tk ≤ 1, k ≤ K}, and X is the intersection⋂
1≤k≤K

{x : xTSkx ≤ 1}

of centered at the origin ellipsoids/elliptic cylinders. In particular, when U is a K × n matrix
of rank n with rows uTk , 1 ≤ k ≤ K, and Sk = uku

T
k , X is symmetric w.r.t. the origin polytope

{x : ‖Ux‖∞ ≤ 1};

• when U , uk and Sk are as in the latter example and T = {t ∈ RK
+ :

∑
k t
p/2
k ≤ 1} for some

p ≥ 2, we get X = {x : ‖Ux‖p ≤ 1}.

It should be added that the family of ellitope-representable sets is quite rich: this family admits a
“calculus”, so that more ellitopes can be constructed by taking intersections, direct products, linear
images (direct and inverse) or arithmetic sums of “basic ellitopes” given by the above examples. In
fact, the property to be an ellitope is preserved by all basic operations with sets preserving convexity
and symmetry w.r.t. the origin, see Appendix A.

As another instructive, in the context of non-parametric statistics, example of an ellitope, consider
the situation where our signals x are discretizations of functions of continuous argument running
through a compact d-dimensional domain D, and the functions f we are interested in are those
satisfying a Sobolev-type smoothness constraint – an upper bound on the Lp(D)-norm of Lf , where L
is a linear differential operator with constant coefficients. After discretization, this restriction can be
modeled as ‖Lx‖p ≤ 1, with properly selected matrix L. As we already know from the above example,
when p ≥ 2, the set X = {x : ‖Lx‖p ≤ 1} is an ellitope, and as such is captured by our machinery.
Note also that by the outlined calculus, imposing on the functions f in question several Sobolev-type
smoothness constraints with parameters p ≥ 2, still results in a set of signals which is an ellitope.

Estimates and their risks. In the outlined situation, a candidate estimate is a Borel function
ŵ(·) : Rm → Rν ; given observation (2), we recover w = Bx as ŵ(ω). In the sequel, we quantify the
quality of an estimate by its worst-case, over x ∈ X , expected ‖ · ‖22 recovery error:

Risk[ŵ|X ] = sup
x∈X

[
Eξ∼N (0,Im)

{
‖ŵ(Ax+ σξ)−Bx‖22

} ]1/2

and define the optimal, or the minimax, risk as

Riskopt[X ] = inf
ŵ(·)

Risk[ŵ|X ],

where inf is taken over all Borel candidate estimates.

3The latter relation is “for free” – given a nonempty convex compact set T ⊂ RK
+ , the right hand side of (3) remains

intact when passing from T to its “monotone hull” {τ∈ RK
+ : ∃t ∈ T : τ ≤ t} which already is a monotone convex

compact set.
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Our initial observation is that when replacing matrices A and B with AP and BP , respectively,
we pass from the initial estimation problem of interest – one where the signal set X is given by (3),
and we want to recover Bx, x ∈ X , via observation (2), to the transformed problem, where the signal
set is

Y = {y ∈ Rn̄ : ∃t ∈ T : yTSky ≤ tk, 1 ≤ k ≤ K},

and we want to recover [BP ]y, y ∈ Y, via observation

ω = [AP ]y + σξ.

It is obvious that the considered families of estimates (the family of all linear and the family of all
estimates), same as the risks of the estimates, remain intact under this transformation; in particular,

Risk[ŵ|X ] = sup
y∈Y

[
Eξ{‖ŵ([AP ] y + σξ)− [BP ] y‖22}

]1/2
.

Therefore, to save notation, from now on and unless mentioned otherwise, we assume that matrix P
is identity, so that X is the ellitope

X =
{
x ∈ Rn : ∃t ∈ T , xTSkx ≤ tk, 1 ≤ k ≤ K

}
. (4)

Main goal of what follows is to demonstrate that a linear in ω estimate

ŵH(ω) = HTω (5)

with properly selected efficiently computable matrix H is near-optimal in terms of its risk. We start
with building this estimate.

2.2 Building linear estimate

Restricting ourselves to linear estimates (5), we may be interested in the estimate with the smallest
risk, that is, associated with a ν × m matrix H which is an optimal solution to the optimization
problem

min
H

{
R(H) := Risk2[ŵH |X ]

}
We have

R(H) = max
x∈X

Eξ‖HTω −Bx‖22 = Eξ‖HT ξ‖22 + max
x∈X
‖HTAx−Bx‖22

= σ2Tr(HTH) + max
x∈X

xT (HTA−B)(HTA−B)Tx.

This function, while convex, can be hard to compute. For this reason, we use a linear estimate yielded
by minimizing an efficiently computable convex upper bound on R(H) which is built as follows. Let
φT be the support function of T :

φT (λ) = max
t∈T

λT t : RK → R.

Observe that whenever λ ∈ RK
+ and H are such that

(B −HTA)T (B −HTA) �
∑
k

λkSk, (6)

for x ∈ X it holds
‖Bx−HTAx‖22 ≤ φT (λ). (7)

5



Indeed, in the case of (6) and with y ∈ X , there exists t ∈ T such that yTSky ≤ tk for all
t, and consequently the vector t̄ with the entries t̄k = yTSky also belongs to T , whence

‖Bx−HTAx‖22 = ‖Bx−HTAx‖22 ≤
∑
k

λkx
TSkx = λT t̄ ≤ φT (λ),

which combines with (4) to imply (7).

From (7) it follows that if H and λ ≥ are linked by (6), then

Risk2[x̂H |X ] = max
x∈X

E
{
‖Bx−HT (Ax+ σξ)‖22

}
= σ2Tr(HTH) + max

x∈X
‖[B −HTA]x‖22

≤ σ2Tr(HTH) + φT (λ).

We see that the efficiently computable convex function

R̂(H) = inf
λ

{
σ2Tr(HTH) + φT (λ) : (B −HTA)T (B −HTA) �

∑
k

λkSk, λ ≥ 0

}

(which clearly is well defined due to compactness of T combined with
∑

k Sk � 0) is an upper bound
on R(H).4 Therefore the efficiently computable optimal solution (H∗, λ∗) to the (clearly solvable)
convex optimization problem

Opt = minH,λ
{
σ2Tr(HTH) + φT (λ) : (B −HTA)T (B −HTA) �

∑
k λkSk, λ ≥ 0

}
= minH,λ

{
σ2Tr(HTH) + φT (λ) :

[ ∑
k λkSk BT −ATH

B −HTA Iν

]
� 0, λ ≥ 0

}
(8)

yields a linear estimate ŵH∗ with the risk upper-bounded by
√

Opt.

2.3 Lower-bounding optimal risk and near-optimality of ŵH∗

Let us consider the convex optimization problem

Opt∗ = max
Q,t

{
ϕ(Q) := Tr

(
B[Q−QAT (σ2Im +AQAT )−1QA]BT

)
,

Q � 0, t ∈ T, Tr(QSk) ≤ tk, 1 ≤ k ≤ K
} (9)

= max
Q,t

Tr(BQBT )− Tr(G) :

[
G BQAT

AQBT σ2Im +AQAT

]
� 0,

Q � 0, t ∈ T , Tr(QSk) ≤ tk, 1 ≤ k ≤ K

 . (10)

Note that the function ϕ(Q) has a transparent statistical interpretation. Specifically, given an n× n
matrix Q � 0, consider two independent Gaussian random vectors, ξ ∼ N (0, Im) and η ∼ N (0, Q).
We claim that

ϕ(Q) = inf
G(·):Rm→Rν

E[ξ,η]{‖G(σξ +Aη)−Bη‖22}. (11)

4It is well known that when K = 1 (i.e., X is an ellipsoid), the above bounding scheme is exact: R(·) ≡ R̂(·). For

more complicated X ’s, R̂(·) could be larger than R(·), although the ratio R̂(·)/R(·) is bounded by O(log(K)), see section
3.3.
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Indeed, by the Normal Correlation theorem (see, e.g., [17, Theorem 13.1]), the optimal, in terms of
expected ‖ · ‖22-error, recovery G∗(·) of Bη via observation σξ +Aη – the conditional, given σξ +Aη,
expectation of Bη – is linear, and the corresponding expected ‖ · ‖22-error is exactly ϕ(Q).

In the sequel, we set

Q = {Q ∈ Sn : Q � 0,∃t ∈ T : Tr(QSk) ≤ tk, 1 ≤ k ≤ K}.

Note that Q is a convex compact set due to
∑

k Sk � 0 combined with compactness of T .
Observe that if (Q, t) is feasible for (9), then the Gaussian random vector η ∼ N (0, Q) belongs to

X “on average” – it satisfies the constraints E{ηTSkη} = Tr(QSk) ≤ tk, k = 1, ...,K, and t ∈ T . The
lower bounding scheme we intend to implement goes back to Pinsker [20] and heavily relies upon this
fact – it bounds from below the minimax, over x ∈ X , risk of estimating Bx by comparing this risk
to the risk of optimal recovery of Bη in the Gaussian problem, where η ∈ X with “high probability,”
as is the case when Q ∈ ρQ with appropriate ρ < 1. Specifically, we have the following simple

Lemma 2.1 Given a positive semidefinite n × n matrix Q and δ ∈ (0, 1/5], let η ∼ N (0, Q) and
ξ ∼ N (0, Im) be independent from each other Gaussian vectors. Assume that

Prob{η /∈ X} ≤ δ ≤ 1/5.

Then

ϕ(Q) ≤ Risk2
opt[X ] + [M∗ +

√
2q1−δ/2‖BQ1/2‖2]2δ, (12)

where qα is the α-quantile of the standard normal distribution: 1√
2π

∫ qα
−∞ e−s

2/2ds = α, and

M∗ =
√

max
Q∈Q

Tr(BQBT ). (13)

In particular, if Q ∈ ρQ for some ρ ∈ (0, 1], then

ϕ(Q) ≤ Risk2
opt[X ] + [1 +

√
2ρq1−δ/2]2M2

∗ δ.

The second principal component of the construction of the lower bound for Riskopt is provided by the
following statement:

Lemma 2.2 In the premise of this section (10) is a conic problem which is strictly feasible and
solvable, with the conic dual problem equivalent to (8). As a consequence, one has

Opt∗ = Opt. (14)

Let now (Q, t) be an optimal solution to (9), and let for 0 < ρ ≤ 1, Qρ = ρQ. Note that ϕ(Qρ) ≥
ρϕ(Q) = ρOpt, and

Tr(BQρB
T ) = ρTr(BQBT ) ≤ ρM2

∗ .

In view of Lemma 2.1 as applied with Qρ in the role of Q, whenever ρ ∈ (0, 1] and there exists δρ ≤ 1/5
such that Probη∼N (0,Qρ){η 6∈ X} ≤ δρ, we have

ρOpt ≤ ϕ(Qρ) ≤ Risk2
opt[X ] + [1 +

√
2ρ q1−δρ/2]2M2

∗ δρ. (15)

To proceed, we need an upper bound δρ on the probability Probη∼N (0,Qρ){η /∈ X}. It is given by the
following simple result.

7



Lemma 2.3 Let S and Q be positive semidefinite n × n matrices with ρ := Tr(SQ) ≤ 1, and let
η ∼ N (0, Q). Then

Prob
{
ηTSη > 1

}
≤ inf

γ

{
exp

(
− 1

2

n∑
i=1

ln(1− 2γsi)− γ

)
: 0 ≤ γ < min

i
(2si)

−1

}
≤ e
− 1−ρ+ρ ln(ρ)

2ρ (16)

where si are the eigenvalues of Q1/2SQ1/2.

Now we are done. Indeed, note that the matrix Qρ satisfies Tr(SkQρ) ≤ ρtk for some t ∈ T ; applying
Lemma 2.3 and taking into account (4), we conclude that

Probη∼N (0,Qρ){η /∈ X} ≤
K∑
k=1

Prob{ηTSkη > tk} ≤ K exp

{
−1− ρ+ ρ ln(ρ)

2ρ

}
,

so we can set

δρ := min

[
K exp

{
−1− ρ+ ρ ln(ρ)

2ρ

}
, 1

]
. (17)

It is straightforward to verify that with the just defined δρ for 0 < ρ < 1 it holds

[1 +
√

2ρq1−δρ/2]2δρ ≤ 8K exp
{
−(3ρ)−1

}
,

Assuming that δρ ≤ 1/5, the latter bound combines with (15) to yield

ρOpt ≤ Risk2
opt[X ] + 8KM2

∗ exp
{
−(3ρ)−1

}
. (18)

Let us choose

ρ̄−1 = 3 ln

(
8KM2

∗
Risk2

opt[X ]

)
so that

8KM2
∗ exp

{
−(3ρ̄)−1

}
≤ Risk2

opt[X ].

Observe that by evident reasons M2
∗ ≥ Risk2

opt[X ], whence ρ̄−1 ≥ 3 ln(8K), which in view of (17)
implies that δρ̄ ≤ 1/5, so that (18) is applicable to ρ = ρ̄, thus implying that

Opt ≤ 2

ρ̄
Risk2

opt[X ] = 6 ln

(
8KM2

∗
Risk2

opt[X ]

)
Risk2

opt[X ].

Recalling that
√

Opt upper-bounds Risk[ŵH∗ |X ], we have arrived at our main result:

Theorem 2.1 The efficiently computable linear estimate ŵH∗(ω) = HT
∗ ω yielded by an optimal solu-

tion to the optimization problem (8) is nearly optimal in terms of its risk:

Risk[ŵH∗ |X ] ≤
√

Opt ≤

√
6 ln

(
8M2
∗K

Risk2
opt[X ]

)
Riskopt[X ] (19)

with M∗ given by (13).

2.4 Discussion

The result of Theorem 2.1 merits few comments.

8



1. Simplifying expression for nonoptimality factor. Relation (19) states that when X is an
ellitope (3), the risk

√
Opt of the efficiently computable linear estimate yielded by (8) is just by a

logarithmic in M2
∗K

Risk2
opt[X ]

factor worse than the optimal risk Riskopt[X ]. A minor shortcoming of (19)

is that the “nonoptimality factor” is expressed in terms of unknown to us optimal risk. This can be
easily cured. For example, setting

ρ̄−1 = 6 ln

(
17KM2

∗
Opt

)
,

it is immediately seen that
ρ̄

2
Opt ≥ 6KM2

∗ exp{−(3ρ̄)−1},

and δρ̄ as given by (17) with ρ = ρ̄ is ≤ 1/5, implying by (18) that 1
2 ρ̄Opt ≤ Risk2

opt[X ], whence

Risk2
opt[X ] ≥

[
12 ln

(
17KM2

∗
Opt

)]−1

Opt. (20)

Note that all the quantities in the right hand side of (20) are efficiently computable given the problem
data, and that

√
Opt is an upper bound on Risk[ŵH∗ |X ].

Furthermore, if a simple though less precise expression of the factor in terms of this data is required,
it can be obtained as follows. Recall that two points x = x+ and x = −x+ of X can be distinguished
through the observation Ax + σξ with maximal probability of error 0 < α < 1 only if ‖Ax‖2 ≥ cασ,
cα > 0;5 by the standard argument one conclude that the risk of estimation of Bx satisfies, for some
absolute constant c > 0:

Risk2
opt[X ] ≥ max {‖Bx‖2 : ‖Ax‖2 ≤ cσ, x ∈ X} . (21)

Now let B = I, and consider two typical for the traditional non-parametric statistics types of X :

• X is the ellipsoid {x ∈ Rn :
∑

i a
2
ix

2
i ≤ 1} with 0 < a1 ≤ a2 ≤ ... ≤ an (for properly selected

ai this set models the restriction onto a regular n-point grid of functions from a Sobolev ball).
Here K = 1, T = [0, 1], S1 = Diag{a2

1, ..., a
2
n}. When choosing x = te1, where e1 is the first basic

orth and t ∈]0, 1], using (21) we get Riskopt[X ] ≥ min [1/a1, cσ/‖[A]1‖2] where [A]1 is the first
column of A. On the other hand, we have M2

∗ = a−2
1 , and the simplified risk bound reads

Risk[ŵH∗ |X ] ≤ O(1)

√
ln

(
1 +
‖[A]1‖2
σa1

)
Riskopt[X ].

• X is the box {x ∈ Rn : ai|xi| ≤ 1, 1 ≤ i ≤ n}, where, as above, 0 < a1 ≤ a2 ≤ ... ≤ an.
Here K = n, T = [0, 1]n, xTSkx = a2

kx
2
k, resulting in M2

∗ =
∑

i a
−2
i ≤ na−2

1 . The same bound
Riskopt[X ] ≥ min [1/a1, cσ/‖[A]1‖2] holds in this case and, consequently,

Risk[ŵH∗ |X ] ≤ O(1)

√
lnn+ ln

(
1 +
‖[A]1‖2
σa1

)
Riskopt[X ].

Now let B be a general-type matrix, and assume for the sake of simplicity that B has trivial kernel.
We associate with the data the following quantities:

• size of T , T = maxt∈T
∑

k tk, and κ – the minimal eigenvalue of
∑

k Sk. Note that for any
x ∈ X ,

∑
k x

TSkx ≤ T , thus the radius r(X ) = maxx∈X ‖x‖2 of X satisfies r(X ) ≤
√
T/κ;

5In fact, one can choose cα = q1−α, the 1− α-quantile of the standard normal distribution.
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• `1/`∞-condition number of T

Cond(T ) =

√√√√ T

max
t∈T

min
k≤K

tk
=

√√√√√max
t∈T

∑
k tk

max
t∈T

min
k≤K

tk
;

by our assumptions, T intersects the interior of RK
+ and thus

√
K ≤ Cond(T ) <∞;

• condition number of B: Cond(B) = σmax(B)
σmin(B) , where σmax(B) and σmin(B) are, respectively, the

largest and the smallest singular values of B.

Corollary 2.1 In the situation of this section

Risk[ŵH∗ |X ] ≤ O(1)

√
ln

(
KCond2(B)

[
Cond2(T ) +

‖A‖2T
σ2κ

])
Riskopt[X ]; (22)

here and in what follows, O(1) stands for a properly selected positive absolute constant.

It is worth to note that, surprisingly, the logarithmic factor in (22) does not depend of the structure of
singular spectrum of A, the entity which, as far as the role of A is concerned, is primarily responsible
for Riskopt[X ].

2. Relaxing the symmetry requirement. Sets X of the form (3) – we called them ellitopes –
are symmetric w.r.t. the origin convex compacts of special structure. This structure is rather flexible,
but the symmetry is “built in.” We are about to demonstrate that, to some extent, the symmetry
requirement can be relaxed. Specifically, assume instead of (3) that for some α ≥ 1 it holds{

x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T ) : x = Py & yTSky ≤ tk, 1 ≤ k ≤ K
}︸ ︷︷ ︸

X

⊂ X ⊂ αX ,

with Sk and T possessing the properties postulated in section 2.1. Let Opt and H∗ be the optimal
value and optimal solution of the optimization problem (8) associated with the data S1, ..., SK , T
and matrices Ā = AP , B̄ = BP in the role of A, B, respectively. It is immediately seen that
the risk Risk[ŵH∗ |X ] of the linear estimate ŵH∗(ω) is at most α

√
Opt. On the other hand, we

have Riskopt[X ] ≤ Riskopt[X ], and by Theorem 2.1 also
√

Opt ≤
√

6 ln
(

8M2
∗K

Risk2
opt[X ]

)
Riskopt[X ]. Taken

together, these relations imply that

Risk[ŵH∗ |X ] ≤ α

√
6 ln

(
8M2
∗Kα

Risk2
opt[X ]

)
Riskopt[X ]. (23)

In other words, as far as the “level of nonoptimality” of efficiently computable linear estimates is
concerned, signal sets X which can be approximated by ellitopes within a factor α of order of 1 are
nearly as good as the ellitopes. To give an example: it is known that whenever the intersection X
of K elliptic cylinders {x : (x − ck)

TSk(x − ck) ≤ 1}, Sk � 0, concentric or not, is bounded and
has a nonempty interior, X can be approximated by an ellipsoid within the factor α = K + 2

√
K 6.

6specifically, setting F (x) = −
∑K
k=1 ln(1 − (x − ck)TSk(x − ck)) : intX → R and denoting by x̄ the analytic center

argminx∈intXF (x), one has

{x : (x− x̄)TF ′′(x̄)(x− x̄) ≤ 1} ⊂ X ⊂ {x : (x− x̄)TF ′′(x̄)(x− x̄) ≤ [K + 2
√
K]2}.
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Assuming w.l.o.g. that the approximating ellipsoid is centered at the origin, the level of nonoptimality
of a linear estimate is bounded by (23) with O(1)K in the role of α. Note that bound (23) rapidly
deteriorates when α grows, and this phenomenon to some extent “reflects the reality.” For example,
a perfect simplex X inscribed into the unit sphere in Rn is in-between two centered at the origin
Euclidean balls with the ratio of radii equal to n (i.e. α = n). It is immediately seen that with
A = B = I, in the range σ ≤ nσ2 ≤ 1 of values of n and σ, we have

Riskopt[X ] ≈
√
σ, Riskopt[ŵH∗ |X ] = O(1)

√
nσ,

with ≈ meaning “up to logarithmic in n/σ factor.” In other words, for large nσ linear estimates indeed
are significantly (albeit not to the full extent of (23)) outperformed by nonlinear ones.

Another “bad for linear estimates” situation suggested by (19) is that where the description (3)
of X , albeit possible, requires a huge value of K. Here again (19) reflects to some extent the reality:
when X is the unit `1 ball in Rn, (3) takes place with K = 2n−1; consequently, the factor at Riskopt[X ]
in the right hand side of (19) becomes at least

√
n. On the other hand, in the range σ ≤ nσ2 ≤ 1 of

values of n, σ, and with A = B = I, the risks Riskopt[X ], Riskopt[ŵH∗ |X ] are basically the same as
in the case of X being the perfect simplex inscribed into the unit sphere in Rn, and linear estimates
indeed are “heavily non-optimal” when nσ is large.

2.5 Numerical illustration

Observe that inequality (15) taken together with an efficiently computable upper bound δρ for
the probability that η /∈ X for η ∼ N (0, Qρ) yields a single-parametric family of lower bounds on
Riskopt[X ]:

Risk2
opt[X] ≥ ρOpt− [1 +

√
2ρ q1−δρ/2]2M2

∗ δρ.

We can compute the right hand side for several values of ρ, take the largest of the resulting lower
bounds on Riskopt[X ] and compare the result with the risk

√
Opt of the efficiently computable linear

estimate yielded by the optimal solution to (8). In this way, we hopefully will end up with less
pessimistic assessment of the level of non-optimality of linear estimates than the one yielded by (19).
On the other hand, better lower bounds can be computed using directly the inequality (12) of Lemma
2.1 along with an efficiently computable approximation of the constraint Prob{η /∈ X} ≤ δ on the
distribution N (0, Q) of η. Indeed, given 0 < δ ≤ 1/5, suppose that Qδ is a convex subset of the
positive semidefinite cone such that for any Q ∈ Qδ and η ∼ N (0, Q) one has Prob{η /∈ X} ≤ δ.
Then, according to (12), the quantity

Optδ − [M∗ +
√

2q1−δ/2‖BQ
1/2
δ ‖2]2δ, (24)

where
Optδ = max

Q∈Qδ
ϕ(Q)

and Qδ is the corresponding optimal solution, is a lower bound on Riskopt[X ].
We have conducted two experiments aimed to compare the sub-optimality factors obtained numer-

ically with their theoretical counterparts. In both experiments B and P are set to be n × n identity
matrices, and n×n sensing matrix A is a randomly rotated matrix with singular values λj , 1 ≤ j ≤ n,
forming a geometric progression, with λ1 = 1 and λn = 0.01. In the first experiment the signal set X1

is an ellipsoid:

X1 = {x ∈ Rn :
n∑
j=1

j2x2
j ≤ 1},

11



that is, K = 1, S1 =
∑n

j=1 j
2eje

T
j (ej are basic orths), and T = [0, 1]. With two natural implemen-

tations of the outlined bounding scheme (for the sake of completeness, the details of the lower bound
computation are provided in Appendix B), we arrived at simulation results presented on Figures 1
and 2. It is worth to mention that the theoretical estimation of the “suboptimality factor” computed
according to (20) varies in the interval [31.6, 73.7] in this experiment.

In the second experiment, the signal set X is the box circumscribed around the above ellipsoid:

X = {x ∈ Rn : j|xj | ≤ 1, 1 ≤ j ≤ n} [K = n, Sk = k2eke
T
k , k = 1, ...,K, T = [0, 1]K ].

In this case only one implementation of the bounding scheme is used. The simulation results of the
second experiment are given on Figures 3 and 4. In this experiment also, the theoretical estimation of
the non-optimality of the linear estimate is very conservative – for different values of parameters the
factor in the bound (20) varies between 73.2 and 115.4.

3 Extensions

3.1 Estimation in relative scale

In this section we consider the setting as follows. Assume that, same as in section 2, we are given a
ν × n matrix B, and a noisy observation

ω = Ax+ σξ, ξ ∼ N (0, Im),

of a signal x ∈ X with known m × n matrix A and σ > 0, and we aim to recover w = Bx. We are
given a positive semidefinite symmetric n × n matrix S, and we quantify the quality of a candidate
estimate ŵ(·) by its S-risk – the quantity

RiskS[ŵ|X ] = inf
{√

τ : E{‖ŵ(Ax+ σξ)−Bx‖22} ≤ τ(1 + xTSx) ∀x ∈ X
}
. (25)

The S-risk can be seen as risk with respect to the scale given by the “regularity parameter” xTSx of
the unknown signal x. In particular, when S = BTB, squared S-risk can be thought of as relative
risk – the worst, over x ∈ Rn, expected ‖ · ‖22-error of recovering Bx scaled by ‖Bx‖22; when S = 0,
we arrive at the usual risk Risk[ŵ|X ].

Same as in section 2, we assume w.l.o.g. that X is an ellitope given by (4) 7. Besides this, we
assume that B 6= 0 – otherwise the estimation problem is trivial.

We are about to prove that in the situation in question, efficiently computable linear estimate is
near-optimal.

3.1.1 Building linear estimate

Given a linear estimate ŵH(ω) = HTω and τ ≥ 0, let λ ≥ 0 be such that [B −HTA]T [B −HTA] �∑
k λkSk + τS, see (3), implying that for all x ∈ X , there exists t = tx ∈ T such that

Eξ{‖ŵH(Ax)−Bx‖22} ≤ xT [
∑

k
λkSk + τS]x+ σ2Tr(HTH) ≤

∑
k

tkλk + xTSx+ σ2Tr(HTH),

so that for all x ∈ X

Eξ{‖ŵH(Ax+ σξ)−Bx‖22} ≤ φT (λ) + τxTSx+ σ2Tr(HTH),

7To reduce the general case (3) to this one with P = I it suffices to “lift” A, B, S to the y-space according to A 7→ Ā =
AP , B 7→ B̄ = BP , S 7→ S̄ = PTSP and then replace X with the set Y = {y ∈ Rn̄ : ∃t ∈ T : yTSky ≤ tk, 1 ≤ k ≤ K}.

12



where φT is the support function of T . As a result, whenever H, τ ≥ 0 and λ ≥ 0 are such that

σ2Tr(HTH) + φT (λ) ≤ τ, (HTA−B)T (HTA−B) �
∑
k

λkSk + τS,

we have
RiskS[ŵH |X ] ≤

√
τ .

We arrive at the convex problem

Opt = min
τ,H,λ

{
τ :

[ ∑
k λkSk + τS BT −ATH
B −HTA Iν

]
� 0, σ2Tr(HTH) + φT (λ) ≤ τ, λ ≥ 0

}
. (26)

The H-component H∗ of an optimal solution to this problem yields linear estimate ŵH∗(ω) = HT
∗ ω

with S-risk ≤
√

Opt.

3.1.2 Lower-bounding the optimal S-risk and near-optimality of ŵH∗

Consider the problem

Opt∗ = max
W,G,s,v

Tr(BWBT )− Tr(G) :

[
G BWAT

AWBT σ2sIm +AWAT

]
� 0,

W � 0, Tr(WSk) ≤ vk, 1 ≤ k ≤ K,
Tr(WS) + s ≤ 1, [v; s] ∈ T

 (27)

where
T = cl{[t; τ ] ∈ RK ×R : τ > 0, τ−1t ∈ T } ⊂ RK+1

+ (28)

is a closed and pointed convex cone in RK+1 with a nonempty interior. We have the following
counterpart of Lemma 2.2 for the present setting.

Lemma 3.1 Problem (27) is strictly feasible and solvable. Furthermore, if (W,G, [v; s]) is an optimal
solution to (27), then s > 0, and

Opt = Opt∗ = Tr
(
B[W −WAT (σ2sIm +AWAT )−1AW ]BT

)
. (29)

Now let W, v and s stem from an optimal solution to (27). Then, as we have seen, s > 0, and we
can set t = v/s, so that t ∈ T . Let also ρ ∈ (0, 1], and let us put Qρ = ρW/s and η ∼ N (0, Qρ). We
have S−1W � 0 and Tr(s−1WSk) ≤ tk, k ≤ K, so that s−1W ∈ Q and therefore Qρ ∈ ρQ. Hence,
same as in the case of the usual risk, by Lemma 2.3,

Prob{η 6∈ X} ≤ δρ := min

[
K exp

{
−1− ρ+ ρ ln(ρ)

2ρ

}
, 1

]
. (30)

We also have the following analog of Lemma 2.1:

Lemma 3.2 Given ρ ∈ (0, 1], Q ∈ ρQ and δ ≤ 1/5, let η ∼ N (0, Q) and ξ ∼ N (0, Im) be independent
from each other Gaussian vectors. Assume that

Prob{η /∈ X} ≤ δ.

Then

ϕ(Q) ≤ RiskS2
opt[X ](1 + Tr(QS)) + [1 +

√
2ρq1−δ/2]2M2

∗ δ, (31)
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where M∗ is given by (13), qα, same as in Lemma 2.1, is the α-quantile of the standard normal
distribution, and

RiskSopt[X ] = inf
ŵ(·)

RiskS[ŵ|X ].

is the minimax S-risk associated with X .

Now note that

ϕ(Qρ) = Tr
(
B[Qρ −QρAT (σ2Im +AQρA

T )−1AQρ]B
T
)

=
ρ

s
Tr
(
B[W − ρWAT (sσ2Im + ρAWAT )−1AW ]BT

)
≥ ρ

s
Opt∗ =

ρ

s
Opt

(we have used (29) and the positivity of s). Thus, when applying Lemma 3.2 with Qρ and δρ in the
role of Q and δ, we obtain for all 0 < ρ ≤ 1 such that δρ ≤ 1/5:

ρ
sOpt ≤ RiskS2

opt[X ] (1 + Tr(QρS)) +
[
1 +
√

2ρq1−δρ/2
]2
M2
∗ δρ

= RiskS2
opt[X ]

(
1 + ρ

sTr(WS)
)

+
[
1 +
√
ρq1−δρ/2

]2
M2
∗ δρ.

(32)

Similarly to section 2.3, setting

ρ̄−1 = 3 ln

(
8KM2

∗
RiskS2

opt[X ]

)
we ensure that

8KM2
∗ exp

{
−(3ρ̄)−1

}
≤ RiskS2

opt[X ].

Now, same as in the case of usual risk, we clearly have M2
∗ ≥ RiskS2

opt[X ], whence δρ̄ ≤ exp{− 1
3ρ̄} ≤

1/5, see (30), so that (32) is applicable with ρ = ρ̄, thus implying that

ρ̄

s
Opt ≤ RiskS2

opt[X ]
(

1 +
ρ̄

s
Tr(WS)

)
+ 8KM2

∗ exp{− 1

3ρ̄
},

and

ρ̄Opt ≤ RiskS2
opt[X ] (s+ ρ̄Tr(WS)) + 8sKM2

∗ exp{− 1

3ρ̄
}

≤ RiskS2
opt[X ] + 8KM2

∗ exp{− 1

3ρ̄
} = 2RiskS2

opt[X ]

(note that s+ ρ̄Tr(WS) ≤ s+Tr(WS) ≤ 1 by constraints in (27)). Recalling that
√

Opt upper-bounds
RiskS[ŵH∗ |X ], we arrive at the following

Proposition 3.1 The efficiently computable linear estimate ŵH∗(ω) = HT
∗ ω yielded by an optimal

solution to the optimization problem in (26) is nearly optimal in terms of S-risk:

RiskS[ŵH∗ |X ] ≤
√

6 ln
(

8KM2
∗

RiskS2
opt[X]

)
RiskSopt[X],

where M∗ is given by (13).
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3.1.3 The case of X = Rn

The problem of minimizing the worst-case, over x ∈ X , S-risk over linear/all possible estimates makes
sense for unbounded X ’s as well as for bounded ones. We intend to consider the case where X = Rn

and to show that in this case an efficiently computable linear estimate is exactly optimal.
Similar to (26), the problem of building the best, in terms of its worst-case over x ∈ Rn S-risk,

linear estimate reads

Opt = min
τ,H

{
τ :

[
τS BT −ATH

B −HTA Iν

]
� 0, σ2Tr(HTH) ≤ τ

}
; (33)

a feasible solution (τ,H) to this problem produces an estimate ŵH(ω) = HTω with RiskS[ŵH |Rn] ≤√
τ . We are about to demonstrate that

Proposition 3.2 Assuming problem (33) feasible, the problem is solvable, and its optimal solution
(Opt, H∗) induces linear estimate ŵH∗ which is minimax optimal:

RiskS[ŵH∗ |Rn] =
√

Opt = inf
ŵ(·)

RiskS[ŵ(·)|Rn]. (34)

It may be interesting to compare the optimal S-risk RiskS[ŵH∗ |Rn] =
√

Opt to the maximal risk
Risk[ŵH∗ |XS ] of the optimal linear estimation of Bx over the ellipsoid XS = {x ∈ Rn : xTSx ≤ 1},
so that H∗ is the optimal solution to (8) with K = 1, S1 = S and T = [0, 1]; note that in this case
the optimal value in (8) is exactly Risk[ŵH∗ |XS ], and not just an upper bound on this risk. When
comparing (8) with (33) one can easily see that both risks are equivalent up to a factor

√
2:

RiskS[ŵH∗ |Rn] ≤ Risk[ŵH∗ |XS ] ≤
√

2RiskS[ŵH∗ |Rn].

Note also that by the definition of S-risk, we have Risk[ŵH∗ |XS ] ≤
√

2RiskS[ŵH∗ |XS ] ≤
√

2RiskS[ŵH∗ |Rn],
which combines with the above inequalities to imply that

Risk[ŵH∗ |XS ] ≤
√

2Risk[ŵH∗ |XS ].

However, the estimate ŵH∗ cannot be seen as adaptive over the family of “coaxial” ellipsoids X κS = {x ∈
Rn : xTSx ≤ κ}, κ ∈ K ⊂ R+, see, e.g., [16]. For instance, the maximal over X κS risk Risk[ŵH∗ |X κS ]
does not scale correctly for κ� 1 and κ� 1.

3.1.4 Numerical illustration

In the above considerations, we treated matrix S as part of the data. In fact, we can make S a variable
restricted to reside in a given computationally tractable convex subset S of the positive semidefinite
cone, and look for minimal, over linear estimates and matrices S ∈ S, S-risk. This can be done as
follows. We consider a parametric family of problems with τ in (26) being a parameter rather than
a variable, and S being a variable restricted to reside in S; then we apply bisection in τ to find the
smallest value of τ for which the problem is feasible. With S and linear estimate yielded by this
procedure, the S-risk of the estimate clearly possesses near-optimality properties completely similar
to those we have just established for the case of fixed S.

As an illustration of these ideas, consider the following experiment. Let [r; v] be state of pendulum
with friction – the 2-dimensional continuous time dynamical system obeying the equations

ṙ = v,
v̇ = −ν2r − κv + w,
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where w is the external input. Assuming this input constant on consecutive time intervals of duration
∆, the sequence zτ = [r(τ∆); v(τ∆)], τ = 0, 1, ..., obeys finite-difference equation

zτ = Pzτ−1 +Qwτ , τ = 1, 2, ...

with P = exp
{

∆

ϑ︷ ︸︸ ︷[
0 1
−ν2 −κ

]}
, Q =

∫ ∆
0 exp{sϑ}[0; 1]ds; here wτ is the value of w(·) on the (continuous-

time) interval ((τ − 1)∆, τ∆). Assume that we are observing corrupted by noise positions rτ = r(τ∆)
of the pendulum on the discrete-time horizon 1 ≤ τ ≤ T and want to recover the inputs ws,
T − K + 1 ≤ s ≤ T . Denoting by x = [z0;w1;w2; ...;wT ] the “signal” underlying our observa-
tions, we can easily build a T × (T + 2) matrix A and 1× (T + 2) matrices Bt such that the trajectory
r := [r1; ...; rT ] of pendulum’s positions is given by r = Ax, and wt = Btx. What we want to recover
from noisy observations

ω = Ax+ σξ, ξ ∼ N (0, IT )

of pendulum’s (discrete time) trajectory, are the inputs wt, 1 ≤ t ≤ T , and their collections wK =
[wT−K+1;wT−K+2; ...;wT ] = B(K)x.8

We intend to process our estimation problems by building the best, in terms of its S-risk taken
over the entire space RT+2 of signals, estimate; in our design, S is not fixed in advance, but is instead
restricted to be positive semidefinite with trace ≤ 1. Thus, the problems we want to solve are of the
form (cf. (33))

Opt[B] = min
τ,H,S

{
τ :

[
τS BT −ATH

B −HTA IT

]
� 0, σ2Tr(HTH) ≤ τ, S � 0, Tr(S) ≤ 1

}
, (35)

where B depends on what we want to recover (B = Bt when recovering wt, and B = B(K) when
recovering wK). By Proposition 3.2, the linear estimate HT

B,∗ω yielded by an optimal solution
(Opt[B], HB,∗, SB,∗) to the above (clearly solvable) problem is minimax optimal in terms of its S-
risk RiskS[·|RT+2] taken with respect to S = SB,∗, and the corresponding minimax optimal risk is
exactly

√
Opt[B].

The rationale behind restricting S to have its trace ≤ 1 is as follows. Imagine that we
have reasons to believe that the entries in x “are of order of 1;” the simplest way to
model this belief is to assume that x is uniformly distributed over the sphere S of radius√

dimx =
√
T + 2. Under this assumption, the claim that an estimate ŵ(·) has S-risk,

taken over the entire space w.r.t. a matrix S � 0 with Tr(S) ≤ 1, at most
√
τ means that

Eξ∼N (0,IT ){‖ŵ(Ax+ σξ)−BKx‖22} ≤ τ(1 + xTSx) ∀x.

This relation, after taking expectation over the uniformly distributed over S signal x,
implies that the expectation, over both ξ and x, of the squared recovery risk is at most
2τ . Thus, optimising the S-risk over the linear estimates and S � 0, Tr(S) ≤ 1, can
be interpreted as a kind of safe minimization of the Bayesian risk taken w.r.t. a specific
Bayesian prior (uniform distribution on S). In this context, “safety” means that along with
guarantees on the Bayesian risk, we get some meaningful upper bound on the expected
‖ · ‖22-error of recovery applicable to every individual signal.

In view of the above considerations, in the sequel we take the liberty to refer to the optimal
value of (35) as to the Bayesian risk of recovering Bx.

8Note that estimating wK is not the same as “standalone” estimation of each individual entry in wK .
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In the experiment we are about to report, we use ∆ = 1, κ = 0.05 and select ν to make the eigenfre-
quency of the pendulum equal to 1/8; free motion of the pendulum in the (r, v)-coordinates is shown
on Figure 5. We used σ = 0.075, T = 32, and solved problem (35) for several “B-scenarios.” The
results are presented on Figure 5 (b) – (d). Plots (b) and (c) show the bound

√
2Opt[B], see above, on

the Bayesian risk along with the risk of the best, in terms of its worst-case over signals from the ball X
bounded by S, risk of linear recovery of Bx as given by the optimal values of the associated problems
(8) (blue). Plot (b) shows what happens when recovering individual inputs (B = Bt, t = 1, 2, ..., T )
and displays the risks as functions of t; plot (c) shows the risks of recovering blocks uK = B(K)x of
inputs as functions of K = 1, 2, 4, ..., 32. Finally, plot (d) shows the eigenvalues of the S-components
of optimal solutions to problems (35) with B = B(K).9

3.2 Adding robustness

In this section we address the situation where the data A,B of problems (8) and (26) is not known
exactly, and we are looking for estimates which are robust w.r.t. the corresponding data uncertainties.
We lose nothing when restricting ourselves with problem (26), since (8) is the particular case S = 0
of (26), with ellitope X given by (3). We intend to focus on the simplest case of unstructured norm-
bounded uncertainty

[A;B] :=

[
A
B

]
∈ Ur =

{
[A;B] = [A∗;B∗] + ET∆F : ∆ ∈ Rp×q, ‖∆‖ ≤ r

}
; (36)

here A∗ ∈ Rm×n, B∗ ∈ Rν×n are given nominal data, and E ∈ Rp×(m+ν), F ∈ Rq×n are given
matrices.10 Our goal is to solve the robust counterpart

RobOpt = min
τ,H,λ

{
τ :

[ ∑
k λkSk + τS BT −ATH
B −HTA Iν

]
� 0, ∀[A;B] ∈ U

σ2Tr(HTH) + φT (λ) ≤ τ, λ ≥ 0

} (37)

of problem (26). Plugging into (37) the parametrization of [A;B] via ∆, the uncertainty-affected
semidefinite constraint becomes

M(λ, τ,H) + ET [H]∆F + FT∆TE [H] � 0 ∀(∆ : ‖∆‖ ≤ r),

M(λ, τ,H) =

[ ∑
k λkSk + τS BT

∗ −AT∗H
B∗ −HTA∗ Iν

]
, (38)

E [H] = [0p×n, EB − EAH], F = [F, 0q×ν ],

where
E = [EA, EB]

is the partitioning of the p× (m+ ν)-matrix E into the blocks comprised by the first m and the last
ν columns. A well-known result of [4] (see also [2, section 8.2.1]) states that when F 6= 0 (this is the

9With B = Bt, S-components of optimal solutions to (35) turn out to be of rank 1 for all t.
10Recall that in the case of P 6= I we have to replace matrices A, B and S with AP , BP and PTSP , respectively, and

modify the definition of Ur accordingly: namely, when [A;B] runs through the set Ur, [AP ;BP ] runs through

Ur =
{

[A;B] = [A∗P ;B∗P ] + ET∆FP : ∆ ∈ Rp×q, ‖∆‖ ≤ r
}

;

where A∗, B∗ E and F are as in (36).
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only nontrivial case), the semi-infinite Linear Matrix Inequality in (38) holds true if and only if there
exists µ such that [

M(λ, τ,H)− r2µFTF [E [H]]T

E [H] µIp

]
� 0.

It follows that the semi-infinite convex problem (37) is equivalent to the explicit convex program

RobOpt = min
τ,H,λ,µ

{
τ :

 ∑k λkSk + τS − µr2F TF BT
∗ −AT∗H

B∗ −HTA∗ Iν ETB −HTETA
EB − EAH µIp

 � 0,

σ2Tr(HTH) + φT (λ) ≤ τ, λ ≥ 0

}
.

(39)

The H-component of optimal solution to (39) yields robust w.r.t. uncertainty (36) estimate HTω of
Bx via observation Ax + σξ, and the expected ‖ · ‖22-error of this estimate does not exceed RobOpt,
whatever be x ∈ X and [A;B] ∈ U .

3.3 Byproduct on semidefinite relaxation

A byproduct of our main observation (section 2.3) we are about to present has nothing to do with
statistics; it relates to the quality of the standard semidefinite relaxation. Specifically, given a quadratic
from xTCx and an ellitope X represented by (3), consider the problem

Opt∗ = max
x∈X

xTCx = max
y∈Y

yTP TCPy. (40)

This problem can be NP-hard (this is already so when X is the unit box and C is positive semidefinite);
however, Opt admits an efficiently computable upper bound given by semidefinite relaxation as follows:
whenever λ ≥ 0 is such that

P TCP �
K∑
k=1

λkSk,

for y ∈ Y we clearly have

[Py]TCPy ≤
∑
k

λky
TSky ≤ φT (λ)

due to the fact that the vector with the entries yTSky, 1 ≤ k ≤ K, belongs to T . As a result, the
efficiently computable quantity

Opt = min
λ

{
φT (λ) : λ ≥ 0, P TCP �

∑
k

λkSk

}
(41)

is an upper bound on Opt∗. We have the following

Proposition 3.3 Let C be a symmetric n× n matrix and X be given by ellitopic representation (3),
and let Opt∗ and Opt be given by (40) and(41). Then

Opt

4 ln(5K)
≤ Opt∗ ≤ Opt. (42)
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4 Proofs

4.1 Proof of Lemmas 2.1 and 3.2

Since Lemma 2.1 is the particular case S = 0 of Lemma 3.2, we prove here only the latter statement.
Let ŵ(·) be an estimate of w = Bx, and let R be its S-risk, so that

∀(x ∈ X) : Eξ∼N (0,Im){‖ŵ(Ax+ σξ)−Bx‖22} ≤ R2(1 + xTSx),

see (25). Our intention is to bound R from below. Observe that xxT ∈ Q when x ∈ X , whence
‖Bx‖2 =

√
Tr(BxxTBT ) ≤ M∗ for all x ∈ X , see (13). It follows that projecting the estimate onto

the ‖ · ‖2-ball of radius M∗ centered at the origin, we can only reduce the risk of the estimate, and for
the projected estimate the risk is at most M∗. Consequently, we can assume w.l.o.g. that

R ≤M∗ & ‖ŵ(ω)‖2 ≤M∗ ∀ω ∈ Rm. (43)

When taking expectation with respect to the distribution of the Gaussian vector [η, ξ] with independent
ξ ∼ N (0, Im) and η ∼ N (0, Q), and taking into account (43), we have for any γ > 0

ϕ(Q) ≤ E[ξ,η]

{
‖ŵ(Aη + σξ)−Bη‖22

}
[by (11)]

= Eη
{
Eξ
{
‖ŵ(Aη + σξ)−Bη‖22

}}
= Eη

{
Eξ
{
‖ŵ(Aη + σξ)−Bη‖22

}
1η∈X

}
+ Eη

{
Eξ
{
‖ŵ(Aη + σξ)−Bη‖22

}
1η/∈X

}
≤ R2Eη

{
(1 + ηTSη)1η∈X

}
+ Eη

{
[M∗ + ‖Bη‖2]21η/∈X

}
≤ R2Eη

{
(1 + ηTSη)

}
+ Eη

{[
(1 + 1/γ)M2

∗ + (1 + γ)‖Bη‖22
]

1η/∈X
}

≤ R2(1 + Tr(QS)) +

[
(1 + 1/γ)M2

∗ δ + (1 + γ)E
{
‖Bη‖221η/∈X

}︸ ︷︷ ︸
I

]
;

(44)

recall that δ ≤ 1/5 is an upper bound on the probability for η ∼ N (0, Q) not to belong to X . Let
us upper-bound I. We can find an orthogonal U such that the matrix UTQ1/2BTBQ1/2U is diagonal
and can represent η ∼ N (0, Q) as η = Q1/2Uζ with ζ ∼ N (0, I); denoting Z = {ζ : Q1/2ζ 6∈ X}, we
get

I = E
{
ζTUTQ1/2BTBQ1/2Uζ1ζ∈Z

}
,

with
Prob{ζ ∈ Z} ≤ δ.

Recalling that the matrix UTQ1/2BTBQ1/2U is diagonal and � 0, we have

I ≤

=Tr(Q1/2BTBQ1/2)︷ ︸︸ ︷
Tr(UTQ1/2BTBQ1/2U) max

1≤i≤n
E{ζ2

i 1ζ∈Z} = ‖BQ1/2‖22 max
1≤i≤n

1√
2π

∫ ∞
−∞

s2e−s
2/2χZ(s)ds

where χZ(s) is the conditional, given that ζi = s, probability for ζ ∼ N (0, In) to belong to Z, so that
0 ≤ χZ(s) ≤ 1, and

1√
2π

∫ ∞
−∞

χZ(s)e−s
2/2ds ≤ δ.

An immediate conclusion is that

I ≤ ‖BQ1/2‖22

√
2

π

∫ ∞
q1−δ/2

s2e−s
2/2ds
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where qt is the t-quantile of the standard normal distribution:

1√
2π

∫ qt

−∞
e−s

2/2ds = t, 0 < t < 1.

On the other hand, for δ ≤ 1/5 one has√
2

π

∫ ∞
q1−δ/2

s2e−s
2/2ds ≤ 2

√
2

π
q2

1−δ/2

∫ ∞
q1−δ/2

e−s
2/2ds = 2q2

1−δ/2δ,

and
I ≤ 2‖BQ1/2‖22q2

1−δ/2δ.

When substituting the latter bound into (44) we conclude that

ϕ(Q) ≤ R2(1 + Tr(QS)) +

[
(1 + 1/γ)M2

∗ + 2(1 + γ)‖BQ1/2‖22q2
1−δ/2

]
δ

Hence, when optimizing in γ > 0 we obtain

ϕ(Q) ≤ R2(1 + Tr(QS)) + [M∗ +
√

2q1−δ/2‖BQ1/2‖2]2δ.

When passing to the limit as R→ RiskSopt[X ] + 0, we come to

ϕ(Q) ≤ Risk2
opt[X ](1 + Tr(QS)) + [M∗ +

√
2q1−δ/2‖BQ1/2‖2]2δ,

what is (12) for S = 0. Finally, when Q ∈ ρQ, by (13) we get ‖BQ1/2‖2 ≤
√
ρM∗, and we arrive at

(31). �

4.2 Proof of Lemma 2.2

We set (cf. (28))
T = cl{[t; τ ] ∈ RK ×R : τ > 0, τ−1t ∈ T } ⊂ RK+1

+ ;

recall that T is a closed and pointed convex cone in RK+1 with a nonempty interior such that

T = {t : ∃τ ≤ 1 : [t; τ ] ∈ T} = {t : [t; 1] ∈ T}.

Note that (10) is nothing but the conic problem

Opt∗ = max
Q,G,t

Tr(BQBT )− Tr(G) :

[
G BQAT

AQBT σ2Im +AQAT

]
� 0

Q � 0, [t; 1] ∈ T, Tr(QSk) ≤ tk, 1 ≤ k ≤ K

 . (45)

This problem clearly is strictly feasible (since int T contains a positive vector) and bounded (the latter
is due to

∑
k Sk � 0), so that its optimal value is equal to the optimal value of its conic dual problem,

and all we need in order to prove (14) is to verify is that the latter problem is equivalent to (8).
Let us build the dual to (45) (for “guidelines,” see Appendix C). Note that the cone dual to T is

T∗ = {[g; s] : s ≥ φT (−g)}.

Denoting the Lagrange multiplier for the first �-constraint in (45) by

[
U V
V T W

]
� 0, for the

second �-constraint by L � 0, for ≤-constraints by −λ, λ ∈ RK
+ , and for the constraint [t; 1] ∈ T –
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by [g; s] ∈ T∗, multiplying the constraints by the multipliers and summing up the results, we see that
the constraints in (45) imply that on the feasible set of (45) it holds

−Tr(UG)− Tr(Q[BTV A+ATV TB])− Tr(Q[ATWA])− Tr(LQ) +
∑
k

λkTr(QSk)−
∑
k

λktk

−
∑
k

gktk ≤ σ2Tr(W ) + s.
(46)

Now to get the dual to (45) problem, we need to impose on the Lagrange multipliers the constraint
that the left hand side in (46) is identically in Q,G, t equal to the objective Tr(BQBT ) − Tr(G) of
(45), and to minimize over the multipliers under this constraint (in addition to those introduced when
specifying the multipliers) the right hand side of (46). Thus, the problem dual to (45) is

[Opt∗ = ] min
U,V,W,L,λ,g,s

{
σ2Tr(W ) + s :

[
U V
V T W

]
� 0, L � 0, λ ≥ 0, s ≥ φT (−g),

gk = −λk, 1 ≤ k ≤ K, U = Iν , −BTV A−ATV TB −ATWA− L+
∑
k

λkSk = BTB

}
= min

V,W,λ,s

{
σ2Tr(W ) + s :

W � V TV, λ ≥ 0, s ≥ φT (λ),∑
k λkSk � BTB +BTV A+ATV TB +ATWA

}
= min

V,W,λ

{
σ2Tr(V TV ) + φT (λ) :

W = V TV, λ ≥ 0∑
k λkSk � BTB +BTV A+ATV TB +ATWA

}
= min

V,λ

{
σ2Tr(V TV ) + φT (λ) :

∑
i

λkSk � (B + V A)T (B + V A), λ ≥ 0

}
,

that is, Opt∗ = Opt (substitute H = −V T in (8)). �

4.3 Proof of Lemma 2.3

Representing η = Q1/2ζ with ζ ∼ N (0, In), we reduce the situation to the one where (Q,S) is replaced
with (In, S̄ = Q1/2SQ1/2), so that it suffices to prove (16) in the special case of Q = In. Moreover, we
clearly can assume that S is diagonal with diagonal entries si ≥ 0, 1 ≤ i ≤ n, so that ρ =

∑
i si. Now

the relation we should prove reads

Probη∼N (0,In)

{
n∑
i=1

siη
2
i > 1

}
≤ e
− 1−ρ+ρ ln(ρ)

2ρ .

Let γ ≥ 0 be such that 2γmaxi si < 1. Then

ln
(
Eη{exp{γ

∑n
i=1 siη

2
i }}
)

=
∑n

i=1 ln
(
Eη{exp{γsiη2

i }}
)

= −1
2

∑n
i=1 ln(1− 2γsi),

what implies the first inequality of (16). Furthermore, for 0 ≤ γ < 1
2 maxi si

≤ 1
2ρ ,

ln

(
Eη

{
exp

[
γ

n∑
i=1

siη
2
i

]})
≤ −1

2
ln(1− 2γρ)

(indeed, the convex function −1
2

∑n
i=1 ln(1 − 2γsi) of s varying in the simplex {s ≥ 0,

∑
i si = ρ}

attains its maximum at a vertex of the simplex). Specifying γ = 1−ρ
2ρ , we conclude that

Prob

{
n∑
i=1

siη
2
i > 1

}
≤ Eη{exp{γ

n∑
i=1

siη
2
i }} exp{−γ} ≤ exp{−1

2
ln(1− 2γρ)− γ}

= exp{−1− ρ+ ρ ln(ρ)

2ρ
},
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as claimed. �

4.4 Proof of Corollary 2.1

Observe that X contains a point x̄ with

‖x̄‖2 ≥ r :=

√
T

Cond(T )
√
κ
.

Indeed, by definition of Cond(T ), T contains a vector t̄ with all entries ≥ T/Cond2(T ); let now x̄ = re,
where e is the eigenvector of the matrix S =

∑K
k=1 Sk corresponding to the minimal eigenvalue κ of

this matrix. We have (recall that Sk � 0, k = 1, ...,K)

x̄TSkx̄ ≤ κr2 = T/Cond2(T ) ≤ t̄k, 1 ≤ k ≤ K,

that is, x̄ ∈ X . Selecting the largest t ∈ [0, 1] such that t‖Ax̄‖2 ≤ cσ, where c is the positive absolute
constant from (21), we conclude by (21) that Riskopt[X ] ≥ t‖Bx̄‖2, or

Riskopt[X ] ≥ ‖Bx̄‖2 min

[
1,

cσ

‖Ax̄‖2

]
.

Hence, we get

Riskopt[X ] ≥ σmin(B)‖x̄‖2 min

[
1,

cσ

‖A‖ ‖x̄‖2

]
≥ ‖B‖

Cond(B)
min

[
‖x̄‖2,

σ

‖A‖

]
≥ ‖B‖

Cond(B)
min

[
r,

σ

‖A‖

]
=

‖B‖
Cond(B)

min

[ √
T

Cond(T )
√
κ
,
σ

‖A‖

]
Note that the quantity M∗ = maxQ∈Q ‖BQ1/2‖2 admits simple bound:

M∗ ≤ ‖B‖
√
T/κ

(indeed, since
∑

k Tr(QSk) ≤ T for all Q ∈ Q, one has Tr(Q
∑

k Sk) ≤ T , whence Tr(Q) ≤ T/κ by
the origin of κ, and therefore M2

∗ = Tr(BQBT ) ≤ ‖BTB‖Tr(Q) ≤ ‖B‖2T/κ). As a result,

M∗
√
K

Riskopt[X ]
≤ c′ Cond(B)

√
TK

κ
max

[
Cond(T )

√
κ
T
,
‖A‖
σ

]
≤ c′ Cond(B)

√
K

[
Cond(T ) +

‖A‖
√
T

σ
√
κ

]

with an absolute constant c′; together with (19) this implies (22). �

4.5 Proof of Lemma 3.1

1o. We claim that (27) is a strictly feasible conic problem with bounded level sets of the objective
(the sets where the objective is ≥ a, for every fixed a ∈ R); in particular, the problem is solvable.

Indeed, strict feasibility follows from the fact that the interior of the cone T contains a positive
vector, see assumptions on T in section 2.1. Further, the projections of the feasible set onto the [v; s]-
and W -spaces are bounded (the first – since at a feasible solution it holds 0 ≤ s ≤ 1, and the second
– due to the boundedness of the set of v-components of feasible solutions combined with

∑
k Sk � 0).

Boundedness of a level set of the objective follows from the fact that if a sequence of feasible solutions
{(Wi, Gi, [v

i; si]), i = 1, 2, ...} goes to ∞, then, by the above, the sequence {Wi, [v
i; si]} is bounded, so

that ‖Gi‖ → ∞ as i→∞; since Gi � 0 due to the constraints of the problem, we have Tr(Gi)→∞
as i→∞, which combines with boundedness of {Wi} to imply that the objective along our sequence
of feasible solutions goes to −∞, which is impossible for a sequence of feasible solutions from a level
set of the objective.
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2o. Our next claim is that at an optimal solution (W,G, [v; s]) to (27) one has s > 0.
Indeed, otherwise v = 0 due to [v; s] ∈ T and the origin of T, whence W = 0 due to W � 0 and∑
k Sk � 0; besides this, G � 0, so that assuming s = 0, we see that Opt∗ = 0, which clearly is not

the case: T contains a vector [v̄; s̄] with, say, s̄ = 0.1 and positive v̄, implying that for some τ̄ > 0 and
all τ ∈ [0, τ̄ ] tuples

Wτ = τI,Gτ = [σ2s̄]−1[BWτA
TAWτB

T ] = [σ2s̄]−1τ2BATABT , [v̄; s̄]

are feasible solutions to (27); since B 6= 0, for small positive τ the value of the objective of (27) at
such a solution is positive, which would be impossible when Opt∗ = 0.

Furthermore, observe that if (W,G, v, s) is an optimal solution to (27) (whence, as we already
know, s > 0), when replacing G with the matrix

Ḡ := BWAT (σ2sIm +AWAT )−1AWBT

(so that G � Ḡ and (W, Ḡ, t, s) is feasible for (27)), we keep the solution optimal, thus

Opt∗ = Tr
(
B[W −WAT (σ2sIm +AWAT )−1AW ]BT

)
.

3o. To complete the proof of the lemma it suffices to show that the conic dual to (27) is equivalent
to (26); since (27), as we have already mentioned, is strictly feasible and bounded, this would imply
that Opt = Opt∗.

To build the problem dual to (27), let the Lagrange multipliers for the constraints be, respectively,[
U V
V T Z

]
� 0, L � 0, −λ, λ ∈ RK

+ , −τ , τ ≥ 0, and [g; r] ∈ T∗, where

T∗ = {[g; r] : r ≥ φT (−g)}

is the cone dual to T. Taking inner products of the constraints of (27) with the multipliers and
summing up the results, we arrive at the aggregated constraint

Tr(GU) + Tr(W [ATV TB +BTV A+ATZA+ L−
∑

k λkSk − τS])
+
∑

k[λk + gk]vk + s[σ2Tr(Z)− τ + r] + τ ≥ 0

To get the dual problem, we impose on the multipliers the restriction for the resulting inequality to
have the homogeneous in W,G, v, s component identically equal to minus the objective of (27), which
amounts to the relations

U = Iν , τ = r + σ2Tr(Z), gk = −λk ∀k,
[ATV TB +BTV A+ATZA+ L−

∑
k

λkSk − τS] = −BTB.

Under these relations, the aggregated constraint reads

Tr(BWBT −G) ≤ τ

for all feasible solutions to (27), thus Opt∗ ≤ τ . Therefore, the problem dual to (27) is to minimize
the resulting upper bound on Opt∗, that is, the dual is

min
τ,V,Z,L,λ,[g;r]

τ :

[
Iν V
V T Z

]
� 0, L � 0, λ ≥ 0, τ ≥ 0, r ≥ φT (−g)

BTB +ATV T + V A+ATZA =
∑

k λkSk + τS − L
g = −λ, τ = r + σ2Tr(Z)

 .
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Now partial minimization in Z and r results in Z = V TV which, after eliminating L and [g; r], reduces
the dual problem to

min
τ,V,λ

{
τ :

(B + V A)T (B + V A) �
∑

k λkSk + τS,
λ ≥ 0, τ ≥ φT (λ) + σ2Tr(V TV )

}
.

The resulting problem clearly is equivalent to (26) (substitute V = −HT ). Thus, (29) is proved. �

4.6 Proof of Proposition 3.2

Under the premise of the proposition, the feasible set of (33) is nonempty, and the objective clearly
goes to ∞ along every going to ∞ sequence of feasible solutions (τi, Hi), implying that the problem
is solvable. The optimal value Opt in the problem clearly is positive due to σ > 0 and B 6= 0. Now
assume that (34) does not hold, so that there exists α and estimate ŵ∗(·) such that

α < Opt & Eξ∼N (0,Im){‖ŵ∗(Ax+ σξ)−Bx‖22} ≤ α(1 + xTSx) ∀x ∈ Rn, (47)

and let us lead this assumption to contradiction.
Consider the conic problem (cf. (27))

Opt∗ = max
W,G,s

Tr(BWBT )− Tr(G) :

[
G BWAT

AWBT σ2sIm +AWAT

]
� 0,

W � 0, Tr(WS) + s ≤ 1, s ≥ 0

 . (48)

This conic problem clearly is strictly feasible; the same argument as in the case of (27) shows that the
conic dual of this problem is equivalent to (33) and therefore is feasible. By Conic Duality Theorem,
it follows that both (48) and (33) have equal optimal values, and since σ > 0, B 6= 0, Opt is positive.
Thus,

Opt∗ = Opt > 0.

This relation, due to α < Opt, implies that there is a feasible solution to (48) with the value of the
objective > α. Since the problem is strictly feasible, feasible solutions with s > 0 are dense in the
feasible set, implying that the above feasible solution, let it be (Ŵ ,G, ŝ), can be selected to have ŝ > 0.

Further, keeping Ŵ and ŝ intact and replacing G with Ĝ = BŴAT [σ2ŝIm + AŴAT ]−1AŴBT , we
preserve feasibility and can only increase the objective of (48). The bottom line is that we can point

out a feasible solution (Ŵ , Ĝ, ŝ) to (48) such that

α̂ := Tr(BT [Ŵ − ŴAT [σ2ŝIm +AŴAT ]−1AŴ ]B) > α,

ŝ > 0, Ŵ � 0, Tr(ŴS) + ŝ ≤ 1.
(49)

Observe that
α̂ = ŝϕ(ŝ−1Ŵ ) (50)

(see (9)). Now let η ∼ N (0, ŝ−1Ŵ ) be independent of ξ ∼ N (0, Im). We have

E[η;ξ]{‖ŵ∗(Aη + σξ)−Bη‖22} = Eη
{
Eξ{‖ŵ∗(Aη + σξ)−Bη‖22}

}
≤ Eη

{
α(1 + ηTSη)

}
[by (47)]

= α(1 + ŝ−1Tr(ŴS)).

By (11), the initial quantity in this chain is ≥ ϕ(ŝ−1Ŵ ) = ŝ−1α̂ (see (50)), so that the chain yields

ŝ−1α̂ ≤ α(1 + ŝ−1Tr(ŴS)), that is,

α̂ ≤ α(ŝ+ Tr(ŴS)) ≤ α,

where the last ≤ stems from the last inequality in (49). The resulting inequality contradicts the first
inequality in (49); we have arrived at the desired contradiction. �
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4.7 Proof of Proposition 3.3

We need the following

Lemma 4.1 Let S be a positive semidefinite n̄× n̄ matrix with unit trace and ξ be a Rademacher n̄-
dimensional random vector (i.e., the entries in ξ are independent and take values ±1 with probabilities
1/2). Then

E
{

exp
{

1
4ξ
TSξ

}}
≤ 3
√

2, (51)

implying that
Prob{ξTSξ > s} ≤ 3

√
2 exp{−s/4}, s ≥ 0.

Proof. Let S =
∑n̄

i=1 λigig
T
i be the eigenvalue decomposition of S, so that λi ≥ 0,

∑
i λi = 1 and

‖gi‖2 = 1. Then

E
{

exp
{

1
4ξ
TSξ

}}
= E{exp{1

4

∑
i

λi(g
T
i ξ)

2}}

is a convex function of λ and therefore it attains its maximum over nonnegative vectors λ with unit
sum of entries at a basic orth. Thus, it suffices to verify (51) when S = ggT with unit vector g. By
the Hoeffding inequality on has

Prob{|gT ξ| > s} ≤ 2 exp{−s2/2}.

It follows that Prob{(gT ξ)2 > r} ≤ 2 exp{−r/2}, and thus p(r) := Prob{1
4(gT ξ)2 ≥ r} ≤ 2 exp{−2r}.

Consequently,

E
{

exp{ 14(gT ξ)2}
}

=
∫∞

0 exp{r}[−dp(r)] =
∫∞

0 exp{r}p(r)dr + 1

≤
∫∞

0 exp{r}min[1, 2 exp{−2r}]dr + 1 = 1 +
∫ 1

2
ln(2)

0 exp{r}dr + 2
∫∞

1
2

ln(2) exp{−r}dr = 3
√

2.
�

20. The right inequality in (42) has already been justified. To prove the left inequality in (42), we,
similarly to what was done in section 2.3, introduce the conic problem

Opt∗ = max
Q,t

{
Tr(P TCPQ) : Q � 0,Tr(QSk) ≤ tk ∀k ≤ K, [t; 1] ∈ T

}
, (52)

and acting exactly as in the derivation of (14), we arrive at

Opt = Opt∗. (53)

Indeed, (52) is a strictly feasible and bounded conic problem, so that its optimal value is equal to the
one in its conic dual, that is,

Opt∗ = min
λ,[g;s],L

{
s :

Tr([
∑

k λkSk − L]Q−
∑

k[λk + gk]tk = Tr(P TCPQ) ∀(Q, t),
λ ≥ 0, L � 0, s ≥ φT (−g)

}
= min

λ,[g;s],L

{
s :

∑
k λkSk − L = P TCP, g = −λ,

λ ≥ 0, L � 0, s ≥ φT (−g)

}
= min

λ

{
φT (λ) :

∑
k

λkSk � P TCP, λ ≥ 0

}
= Opt.
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30. With Lemma 4.1 and (53) at our disposal, we can now complete the proof of Proposition 3.3
by adjusting the technique from [18]. Specifically, problem (52) clearly is solvable; let Q∗, t

∗ be an

optimal solution to the problem. Next, let us set R∗ = Q
1/2
∗ , C̄ = R∗P

TCPR∗, let C̄ = UDUT be the
eigenvalue decomposition of C̄, and let S̄k = UTR∗SkR∗U . Observe that

Tr(D) = Tr(R∗P
TCPR∗) = Tr(Q∗P

TCP ) = Opt∗ = Opt,

Tr(S̄k) = Tr(R∗SkR∗) = Tr(Q∗Sk) ≤ t∗k.

Now let ξ be Rademacher random vector. For k with t∗k > 0, applying Lemma 4.1 to matrices S̄k/t
∗
k,

we get for s > 0
Prob{ξT S̄kξ > st∗k} ≤ 3

√
2 exp{−s/4}; (54)

if k is such that t∗k = 0, we have Tr(S̄k) = 0, that is, S̄k = 0, and (54) holds true as well. Now let

s∗ = 4 ln(5K),

so that 3
√

2 exp{−s∗/4} < 1/K. The latter relation combines with (54) to imply that there exists a
realization ξ̄ of ξ such that

ξ̄T S̄kξ̄ ≤ s∗t∗k ∀k.

Let us set ȳ = 1√
s∗
R∗Uξ̄. Then

ȳTSkȳ = s−1
∗ ξ̄TUTR∗SkR∗Uξ̄ = s−1

∗ ξ̄T S̄kξ̄ ≤ t∗k ∀k

implying that ȳ ∈ Y, and

ȳTP TCPȳ = s−1
∗ ξ̄TUTR∗CR∗Uξ̄ = s−1

∗ ξ̄TDξ̄ = s−1
∗ Tr(D) = s−1

∗ Opt.

Thus, maxy∈Y y
TP TCPy ≥ s−1

∗ Opt, which is the first inequality in (42). �
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A Calculus of ellitopes

We present here the rules of the calculus of ellitopes. Specifically,
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• Intersection X =
I⋂
i=1
Xi of ellitopes Xi = {x ∈ Rn : ∃(yi ∈ Rni , t ∈ Ti) : x = Piy

i & [yi]TSiky
i ≤

tk, 1 ≤ k ≤ Ki}, is an ellitope:

X = {x ∈ Rn : ∃(y = [y1; ...; yI ] ∈ Y, t = (t1, ..., tI) ∈ T = T1 × ...× TI) :

x = Py := P1y
1 & [yi]TSiky

i︸ ︷︷ ︸
yTS+

iky

≤ tik, 1 ≤ k ≤ Ki, 1 ≤ i ≤ I},

Y = {[y1; ...; yI ] ∈ Rn1+...+nI : Piy
i = P1y

1, 2 ≤ i ≤ I}

(note that Y can be identified with Rn̄ with a properly selected n̄);

• Direct product X =
I∏
i=1
Xi of ellitopes Xi = {xi ∈ Rni : ∃(yi ∈ Rn̄i , t ∈ Ti) : xi = Piy

i, 1 ≤ i ≤

I & [yi]TSiky
i ≤ tk, 1 ≤ k ≤ Ki} is an ellitope:

X = {[x1; ...;xI ] ∈ Rn1 × ...×RnI : ∃
(

y = [y1; ...; yI ] ∈ Rn̄1+...n̄I

t = (t1, ..., tI) ∈ T = T1 × ...× TI

)
)

x = Py := [P1y
1; ...;PIy

I ], [yi]TSiky
i︸ ︷︷ ︸

yTS+
iky

≤ tik, 1 ≤ k ≤ Ki, 1 ≤ i ≤ I}

• The linear image Z = {Rx : x ∈ X}, R ∈ Rp×n, of an ellitope X = {x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T ) :
x = Py & yTSky ≤ tk, 1 ≤ k ≤ K} is an ellitope:

Z = {z ∈ Rp : ∃(y ∈ Rn̄, t ∈ T ) : z = [RP ]y & yTSky ≤ tk, 1 ≤ k ≤ K}.

• The inverse linear image Z = {z ∈ Rq : Rz ∈ X}, R ∈ Rn×q, of an ellitope X = {x ∈ Rn :
∃(y ∈ Rn̄, t ∈ T ) : x = Py & yTSky ≤ tk, 1 ≤ k ≤ K} under linear mapping z 7→ Rz : Rq → Rn

is an ellitope, provided that the mapping is an embedding: KerR = {0}:

Z = {z ∈ Rq : ∃(y ∈ Y, t ∈ T ) : z = P̄ y & yTSky ≤ tk, 1 ≤ k ≤ K},
Y = {y ∈ Rn̄ : Py ∈ ImR},
P̄ : P̄ y = ΠR, where Π : ImR→ Rq is the inverse of z 7→ RZ : Rq → ImR

(Y can be identified with some Rk, and Π is well defined since R is an embedding).

• The arithmetic sum X = {x =
∑I

i=1 x
i : xi ∈ Xi, 1 ≤ i ≤ I}, of ellitopes Xi is an ellitope, with

representation readily given by those of X1, ...,XI .
Indeed, X is the image of X1×, , ,×XI under the linear mapping [x1; ...;xI ] 7→ x1 + ....+ xI , and
taking direct products and images under linear mappings preserve ellitopes.

Note that the outlined “calculus rules” are fully algorithmic: representation (3) of the result of an
operation is readily given by the representations (3) of the operands.

B Numerical lower bounds of the minimax risk

To implement efficiently the bounding scheme sketched in section 2.5 we need to provide a convex
(and numerically tractable) set Qδ of covariance matrices Q such that for any Q ∈ Qδ,

Probη∼N (0,Q){η ∈ X} = Probη∼N (0,Q)

{
∃t ∈ T : ηTSkη ≤ tk, 1 ≤ k ≤ K,

}
≥ 1− δ.
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Such sets can be constructed straightforwardly in the case where X is an ellipsoid or a parallelotope
(e.g., a box).

To build a lower bound for an optimal risk on the ellipsoid

X1 = {x ∈ Rn : xTS1x ≤ 1},

where S1 � 0 is a given matrix, recall that for any β > 2 maxiwi, where wi are the eigenvalues of the

matrix W = [S
1/2
1 QS

1/2
1 ] we have (see, e.g., Lemma 2.3)

Probη∼N (0,Q){ηTS1η > 1} ≤ exp

{
− 1

2

n∑
i=1

ln(1− 2β−1wi)− β−1

}
= exp

{
− 1

2 ln Det
[
I − 2β−1W

]
− β−1

}
(55)

(this relation is given by the first equality in (16) with S1 in the role of S and β = 1/γ). Let now
δ > 0; we conclude that for all Q ∈ Q1,δ where

Q1,δ =
{
Q � 0 : ∃β > 0 : βI � 2W, W = [S

1/2
1 QS

1/2
1 ]

−β
2 ln Det

[
I − 2β−1W

]
+ β ln(1/δ) ≤ 1,

}
,

one has Probη∼N (0,Q){η /∈ X} ≤ δ. Though efficiently tractable, the set Q1,δ is still difficult to deal
with numerically – solving the problem

min
Q∈Q1,δ

ϕ(Q) (56)

(e.g., using CVX) takes hours already for small problem sizes. Therefore, in the experiments presented
in section 2.5 we used two simple substitutes

[1. ] an appropriate “contraction” Qρ,δ of Q := {Q � 0 : Tr(QS1) ≤ 1}:

Qρ,δ = {Q � 0 : Tr(QS1) ≤ ρ},

where ρ was chosen according to Lemma 2.3 to ensure that Probη∼N (0,Q){η /∈ X1} ≤ δ for all
Q ∈ Qρ,δ. This construction underlies the lower bound represented by red curves on Figures 1
and 2;

[2. ] a “quadratic approximation” Q1,δ ⊆ Q1,δ (see, e.g., [15, Lemma 1]):

Q1,δ =
{
Q � 0 : Tr(QS1) + 2‖QS1‖2

√
ln(1/δ) + 2‖QS1‖ ln(1/δ) ≤ 1

}
.

This approximation is used to compute the lower bound represented by magenta curves on
Figures 1 and 2.

The strategy we use to compute the lower estimates for Riskopt[X1] amounts to solve the problem (56)
with Qρ,δ or Q1,δ in the role of Qδ for several values of δ. Then the bound (55) with the computed
optimal solution Q to (56) is used to obtain a refined estimate δ′ for the probability that η 6∈ X which
is then substituted into the lower risk bound (24); due to its origin, δ′ ≤ δ.

Let us now consider the situation where the set of signals is a parallelotope, namely,

X2 = {x ∈ Rn : xTSkx ≤ 1, Sk = aka
T
k , ak ∈ Rn, 1 ≤ k ≤ K}.
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When η ∼ N (0, Q), random variables ζk = aTk η follow Gaussian distribution, ζk ∼ N (0, aTkQak), and
Prob{ζ2

k ≥ 1} ≤ α, 0 < α ≤ 1 if aTkQakq
2
1−α/2 ≤ 1 where qβ is the β-quantile of the standard normal

distribution. We conclude that if Q ∈ Q2,δ,

Q2,δ :=
{
Q � 0, aTkQakq

2
1−δ/(2K) ≤ 1, 1 ≤ k ≤ K

}
,

one has Probη∼N (0,Q){η /∈ X2} ≥ 1 − δ. Finally, to lower bound Riskopt[X2], given 0 < δ < 1, we
compute an optimal solution to (56) with Q1,δ replaced with Q2,δ, and then apply the bound (12).

C Conic duality

A conic problem is an optimization problem of the form

Opt(P ) = max
x

{
cTx : Aix− bi ∈ Ki, i = 1, ...,m, Px = p

}
(P )

where Ki are regular (i.e., closed, convex, pointed and with a nonempty interior) cones in Euclidean
spaces Ei. Conic dual of (P ) “is responsible” for upper-bounding the optimal value in (P ) and is built
as follows: selecting somehow Lagrange multipliers λi for the conic constraints Aix − bi ∈ Ki in the
cones dual to Ki:

λi ∈ K∗i := {λ : 〈λ, y〉 ≥ 0 ∀y ∈ Ki},

and a Lagrange multiplier µ ∈ Rdim p for the equality constraints, every feasible solution x to (P )
satisfies the linear inequalities 〈λi, Aix〉 ≥ 〈λi, bi〉, i ≤ m, same as the inequality µTPx ≥ µT p, and
thus satisfies the aggregated inequality∑

i

〈λi, Aix〉+ µTPx ≥
∑
i

〈λi, bi〉+ µT p.

If the left hand side of this inequality is, identically in x, equal to −cTx (or, which is the same,
−c =

∑
iA
∗
iλi + P Tµ, where A∗i is the conjugate of Ai), the inequality produces an upper bound

−〈λi, bi〉 − pTµ on Opt(P ). The dual problem

Opt(D) = min
λ1,...,λm,µ

{
−
∑
i

〈λi, bi〉 − pTµ : λi ∈ K∗i , i ≤ m,
∑
i

A∗iλi + P Tµ = −c

}
(D)

is the problem of minimizing this upper bound. Note that (D) is a conic problem along with (P ) –
it is a problem of optimizing a linear objective under a bunch of linear equality constraints and conic
inclusions of the form “affine function of the decision vector should belong to a given regular cone.”
Conic Duality Theorem (see, e.g., [3]) states that when one of the problems (P ), (D) is bounded11 and
strictly feasible, then the other problem in the pair is solvable, and Opt(P ) = Opt(D). In this context,
strict feasibility exactly means that there exists a feasible solution for which all conic inclusions are
satisfied strictly, that is, the left hand side of the inclusion belongs to the interior of the right hand
side cone.

11for a maximization (minimization) problem, boundedness means that the objective is bounded from above (resp.,
from below) on the feasible set.
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Figure 1: Recovery on ellipsoids: risk bounds as functions of the noise level σ, dimension n = 32. Left plot:
upper bound of the risk of linear recovery (solid blue line); red dash line and magenta dash-dot line – lower
bounds utilizing two implementations of the bounding scheme. Right plot: suboptimality ratios.
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Figure 2: Recovery on ellipsoids: risk bounds as functions of problem dimension n, noise level σ = 0.01. Left
plot: upper bound of the risk of linear recovery (solid blue line), red dash line and magenta dash-dot line – lower
bounds on Riskopt utilizing two implementations of the bounding scheme. Right plot: suboptimality ratios.
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Figure 3: Recovery on a box: risk bounds as functions of the noise level σ, dimension n = 32. Left plot:
upper bound of the risk of linear recovery (solid blue line) and lower risk bound (red dash line). Right plot:
suboptimality ratios.
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Figure 4: Recovery on a box: risk bounds as functions of problem dimension n, noise level σ = 0.01. Left plot:
upper bound of the risk of linear recovery (solid blue line) and lower bound on Riskopt (red dash line). Right
plot: suboptimality ratio.
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Figure 5: Numerical illustration, section 3.1.4. (a): free motion (w ≡ 0) of pendulum in (r, v)-plane
in continuous (dashed line) and discrete (circles) time. (b): Bayesian (blue) and worst-case (magenta)
risks of recovering wt vs. t = 1, 2, ..., 32. (c): Bayesian (blue) and worst-case (magenta) risks of
recovering wK := [wT−K+1;wT−K+2; ...;wT ] vs. K. (d): eigenvalues λi(SK) of SK (K = 32 – black,
K = 16 – magenta, K = 8 – red, K = 4 – green, K = 2 – cyan, K = 1 – blue); we plot 10 largest
eigenvalues of the S-matrices; the preceding 24 eigenvalues for all these matrices vanish.
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