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Glycosides are an important potential source of aroma and flavour compounds for release as volatiles in flowers and fruit. The production of glycosides is catalysed by UDP-glycosyltransferases (UGTs) that mediate the transfer of an activated nucleotide sugar to acceptor aglycones. A screen of UGTs expressed in kiwifruit (Actinidia deliciosa) identified the gene AdGT4 which was highly expressed in floral tissues and whose expression increased during fruit ripening. Recombinant AdGT4 enzyme glycosylated a range of terpenes and primary alcohols found as glycosides in ripe kiwifruit. Two of the enzyme's preferred alcohol aglycones, hexanol and (Z)-hex-3-enol, contribute strongly to the 'grassy-green' aroma notes of ripe kiwifruit and other fruit including tomato and olive. Transient over-expression of AdGT4 in tobacco leaves showed that enzyme was able to glycosylate geraniol and octan-3-ol in planta whilst transient expression of an RNAi construct in Actinidia eriantha fruit reduced accumulation of a range of terpene glycosides. Stable over-expression of AdGT4 in transgenic petunia resulted in increased sequestration of hexanol and other alcohols in the flowers. Transgenic tomato fruit stably over-expressing AdGT4 showed changes in both the sequestration and release of a range of alcohols including 3-methylbutanol, hexanol and geraniol. Sequestration occurred at all stages of fruit ripening. Ripe fruit sequestering high levels of glycosides were identified as having a less intense, earthier aroma in a sensory trial. These results demonstrate the importance of UGTs in sequestering key volatile compounds in planta and suggest a future approach to enhancing aromas and flavours in flowers and during fruit ripening.

INTRODUCTION

In plants, glycosylation typically occurs as one of the last steps in natural product biosynthesis. Glycosides can be found for all major classes of natural compounds including flavonoids [START_REF] Jones | UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana[END_REF][START_REF] Frydman | Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus[END_REF], terpenoids [START_REF] Richman | Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana[END_REF][START_REF] Nagatoshi | Iridoid-specific Glucosyltransferase from Gardenia jasminoides[END_REF], carotenoids [START_REF] Moraga | Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas[END_REF], glucosinolates [START_REF] Grubb | Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[END_REF] and cyanohydrins [START_REF] Thorsoe | Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses[END_REF][START_REF] Franks | A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels[END_REF]. Glycosylation reactions are mediated by UDP-glycosyltransferases (UGTs) that catalyse the transfer of an activated nucleotide sugar (such as UDP-glucose) to acceptor aglycones to form O-, S-and N-glycosides as well as sugar esters. The addition of the sugar moiety to plant natural products changes their solubility, chemical properties, compartmentation, storage, and biological activity [START_REF] Bowles | Glycosyltransferases: managers of small molecules[END_REF]. Biochemical and molecular characterisation of UGTs has been driven by the pharmacological and agronomic importance of many glycosides, e.g. in human health [START_REF] Achnine | Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula[END_REF][START_REF] Ono | Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera)[END_REF], disease resistance [START_REF] Matros | Ectopic expression of a UDP-glucose: phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with potato virus Y[END_REF], plant development [START_REF] Jackson | Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase[END_REF][START_REF] Hou | N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana[END_REF], and flower and fruit colour [START_REF] Fukuchi-Mizutani | Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian[END_REF][START_REF] Montefiori | Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis of red-fleshed kiwifruit (Actinidia chinensis)[END_REF].

Plants contain large families of UGTs with over 100 genes being described in the genomes of Arabidopsis (A. thaliana), soybean (Glycine max), rice (Oryza sativa) and grape (Vitis vinifera) (Yonekura-Sakakibara and [START_REF] Yonekura-Sakakibara | An evolutionary view of functional diversity in family 1 glycosyltransferases[END_REF]. These genes have a common signature motif of ~44 amino acids that is thought to be involved in the binding of the UDP moiety of the activated sugar [START_REF] Li | Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[END_REF]. Many GTs show relatively broad substrate specificity [START_REF] Hefner | Arbutin synthase, a novel member of the NRD1b glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics[END_REF][START_REF] Landmann | FaGT2: a multifunctional enzyme from strawberry (Fragaria x ananassa) fruits involved in the metabolism of natural and xenobiotic compounds[END_REF]; however, there are examples of UGTs with quite specific activities [START_REF] Fukuchi-Mizutani | Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian[END_REF][START_REF] Jugd E | Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple[END_REF]. UGTs show high sequence divergence; however, phylogenetic analysis has established the presence of distinct groups (A-N) and families of UGT genes in plants [START_REF] Ross | Higher plant glycosyltransferases[END_REF]. Systematic classification has facilitated the characterisation of many new activities; nevertheless, there are still large numbers of uncharacterised UGTs and functionality is difficult to ascribe through phylogenetic relatedness.

In many flowers and fruit, aroma and flavour compounds accumulate as non-volatile glycosides [START_REF] Loughrin | Glycosidically bound volatile components of Nicotiana sylvestris and N. suaveolens flowers[END_REF][START_REF] Oka | Aroma evolution during flower opening in Rosa damascena Mill[END_REF][START_REF] Cabrita | Glycosidic aroma compounds of some Portuguese grape cultivars[END_REF][START_REF] Birtic | Changes in volatiles and glycosides during fruit maturation of two contrasted tomato (Solanum lycopersicum) lines[END_REF][START_REF] Aurore | Comparative study of free and glycoconjugated volatile compounds of three banana cultivars from French West Indies: Cavendish, Frayssinette and Plantain[END_REF]Garcia et al., 2011b). Glycosidically bound compounds are often significantly more abundant than free volatile aglycones, making glycosides an important potential contributor to aroma and flavour. In flowers, the release of odiferous volatile aglycones is dependent on floral maturity, is often diurnally regulated, and co-ordinate with increased b-glucosidase activity [START_REF] Loughrin | Glycosidically bound volatile components of Nicotiana sylvestris and N. suaveolens flowers[END_REF][START_REF] Reuveni | b-Glucosidase activity is involved in scent production in Narcissus flowers[END_REF][START_REF] Picone | Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. 'Quatre Saisons[END_REF]. In fruit, aglycones may be released from the sugar moiety during ripening, storage, and processing. In tomato, NON-SMOKY GLYCOSYLTRANSFERASE1 has been shown to prevent damage-induced release of smoky aroma-associated phenylpropanoids volatiles such guaiacol, methyl salicylate and eugenol. NSGT1 was induced during fruit ripening and converted cleavable diglycosides of smoky-related volatiles into noncleavable triglycosides [START_REF] Tikunov | NON-SMOKY GLY-COSYLTRANSFERASE1 prevents the release of smoky aroma from tomato fruit[END_REF]. SlUGT5 has also been shown to preferentially glycosylate the same substrates in vitro and the gene mapped to chromosome I in a region containing a QTL that affected the content of guaiacol and eugenol in tomato crosses [START_REF] Louveau | Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit[END_REF]. In Citrus species such as grapefruit and pummelo, accumulation of flavanone-7-O-neohesperidosides determines the bitter quality of the fruit. The 1,2 rhamnosyltransferase Cm1,2RhaT was shown in vitro to direct regiospecific rhamnosylation of naringenin 7-O-glucoside to produce the bitter compound [START_REF] Frydman | Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus[END_REF]. In strawberry FaGT2 catalyses the formation in vitro of glucose esters of cinnamic acid and pcoumaric acid which are the precursors of the volatile flavour compounds methyl and ethyl cinnamate. Transgenic strawberry fruit that were down-regulated for expression of FaGT2 showed decreased sequestration of cinnamoyl and p-coumaroyl glucose esters. However, the effect on methyl and ethyl cinnamate emissions could not be measured as they did not normally accumulate in the fruit of the cultivar used for transformation [START_REF] Lunkenbein | Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry[END_REF].

The volatile components of green-fleshed 'Hayward' kiwifruit (Actinidia deliciosa) have been well characterised (reviewed in Garcia et al., 2011a) with the major components being the esters methyl and ethyl butanoate and the C-6 aldehydes and alcohols (Z)-and (E)-hex-2-enal, hexanal, (Z)-and (E)-hex-3-enol, and methyl benzoate. The C-6 compounds are responsible for the fresh, grassy-green notes perceived by consumers when eating kiwifruit [START_REF] Wang | Changes in volatile production and sensory quality of kiwifruit during fruit maturation. 1. Actinidia deliciosa 'Hayward' and A. chinensis 'Hort16A[END_REF]. In comparison, there is relatively little information on the glycosidically bound volatile components of kiwifruit. [START_REF] Young | Characterisation of bound flavor components in kiwifruit[END_REF] identified 29 glycosides in 'Hayward' juice, whilst [START_REF] Garcia | Changes in the bound aroma profiles of 'Hayward' and 'Hort16A' kiwifruit (Actinidia spp.) during ripening and GC-olfactometry analysis[END_REF] identified 95 glycosides in extracts of ripe 'Hayward' fruit. The major compounds identified included terpenoids and C-6 alcohols as well as 3-methylbutanol, benzyl alcohol and 2phenylethanol (Table S1).

In this study we describe the isolation and in vitro biochemical characterisation of AdGT4, a glycosyltransferase that utilises compounds that contribute to the aroma of ripe green-fleshed kiwifruit. Transient expression studies using tobacco leaf and A. eriantha fruit and analysis of stable transgenic petunia and tomato plants are used to demonstrate that the enzyme sequesters 'grassy-green,' terpene and other volatiles in planta. Our results in tomato demonstrate that manipulating expression of GTs can affect the balance of volatile compound sequestration and release thereby affecting fruit flavour and aroma.

RESULTS

Identification of putative glycosyltransferases from ripe kiwifruit

Four contigs with homology to known UGT sequences were identified by BLAST searches from a library of expressed sequence tags derived from A. deliciosa 'Hayward' ripe fruit [START_REF] Crowhurst | Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening[END_REF]. Full-length cDNAs from each contig were sequenced and designated AdGT1-4 (Actinidia deliciosa glycosyltransferase 1-4). A framework phylogenetic tree was constructed with representative members of an Arabidopsis UGT phylogenetic tree described by [START_REF] Ross | Higher plant glycosyltransferases[END_REF]. This framework tree indicated that AdGT1-4 were placed in four different families, AdGT1 in UGT72, AdGT2 in UGT89, AdGT3 in UGT88 and AdGT4 in UGT85 (Figure 1). All four kiwifruit UGTs showed highest amino acid identity to predicted UGT proteins in the Vitis vinifera genome (57-75%). Homology to functionally characterised proteins was lower, with AdGT1 showing 46% amino acid identity to UGT72E2 from Arabidopsis thaliana capable of glycosylating coniferyl and sinapyl alcohols and aldehydes [START_REF] Lim | Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde[END_REF]. AdGT2 showed 50% identity to UGT89A2 from A. thaliana with specificity for 3,4-and 2,5-dihydroxybenzoic acid [START_REF] Lim | The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates[END_REF] and AdGT3 showed 63-66% identity to several UGTs with specificity to flavonoids, flavones and coumarin [START_REF] Tian | Phenylpropanoid glycosyltransferases from osage orange (Maclura pomifera) fruit[END_REF][START_REF] Witte | Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L[END_REF][START_REF] Kim | Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase[END_REF]. AdGT4 (99598) showed highest identity (72%) to the iridoid-specific UGT85A24 from Gardenia jasminoides [START_REF] Nagatoshi | Iridoid-specific Glucosyltransferase from Gardenia jasminoides[END_REF] and 64% identity to UGT85A19 a cyanohydrin mandelonitrile GT from Prunus dulcis [START_REF] Franks | A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels[END_REF]. More distantly AdGT4 showed homology to the cyanohydrin UGT85B1 from Sorghum bicolor [START_REF] Hansen | The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor[END_REF] and UGT85C2 from Stevia rebaudiana involved in the production of diterpene steviol glycosides [START_REF] Richman | Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana[END_REF]. All four kiwifruit ORFs encoded proteins of between 52 and 54 kDa and contained the PSPG motif of 44 amino acids found in most plant UGTs. An alignment of AdGT1-4 with other biochemically characterised UGT enzymes is shown in Figure S1.

Each AdUGT1-4 ORF was expressed as an N-terminal His 6 -tagged recombinant protein in Escherichia coli. Partially purified proteins were tested for their ability to glucosylate a pool of substrates containing geraniol, linalool and octan-3-ol or benzyl alcohol, 2-phenylethanol and hexanol. Only AdGT4 (designated ActdeUGT85A38 according to the systematic GT nomenclature of [START_REF] Ross | Higher plant glycosyltransferases[END_REF] showed significant GT activity towards the substrate pools and was purified by Ni 2+ affinity chromatography for further biochemical analysis.

Enzymatic activity of recombinant AdGT4 enzyme

Purification of recombinant AdGT4 protein was indicated in SDS-PAGE and confirmed by western analysis using a His 6 -specific monoclonal antibody (Figure S2). AdGT4 activity was characterised initially by deconvoluting the original two substrate pools (described above) using UDP-glucose as the sugar donor. AdGT4 showed significant activity towards geraniol, hexanol and octan-3-ol, weak activity towards 2-phenylethanol and negligible activity towards benzyl alcohol and linalool. AdGT4 activity was then tested on a further 25 substrates selected from a range of chemical classes (Table 1). AdGT4 showed activity against a range of alcohols in particular nerol (the cis isomer of geraniol), a-terpineol, and (Z)-hex-3-enol. Low but detectable activity (>5%) was measured towards other alcohols including 2-furylmethanol, Furaneol â and (E)-hex-2-enol. Negligible activity was observed towards aromatic compounds such as resorcinol and hydroquinone and flavonoids such as quercetin and naringenin. Negligible activity was also shown for several other alcohols, e.g. butanol, and pentan-2-ol that have been reported in A. deliciosa fruit volatile headspace and solvent extraction analyses [START_REF] Crowhurst | Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening[END_REF][START_REF] Wang | Changes in volatile production and sensory quality of kiwifruit during fruit maturation. 1. Actinidia deliciosa 'Hayward' and A. chinensis 'Hort16A[END_REF]. 

Kinetic parameters of recombinant AdGT4 in vitro

AdGT4 activity towards geraniol and UDP-glucose was tested over a pH range of 5.0-10.0. The enzyme showed highest activity at pH 7.5 with activity decreasing to 50% at pH 7.0 and 9.0 but still more than 20% at pH 5.0 and 10.0 (Figure S3a). The enzyme showed similar activity over a broad temperature range from 20-40°C, but negligible activity at 50°C (Figure S3b). Enzyme activity was not strictly dependent on the presence of monovalent (Na + , K + ) or divalent cations (Mg 2+ , Mn 2+ ), but activity increased 1.7fold in the presence of 0.1-0.5 mM Mg 2+ and 1.5-fold in the presence of 10-20 lM Mn 2+ (Figure S3c,d). Kinetic parameters were determined for AdGT4 with respect to geraniol, octan-3-ol, hexanol and (Z)-hex-3-enol. The enzyme had similar apparent Km values for all four substrates (57-117 lM), however the catalytic efficiency towards geraniol was 6-17-fold higher compared with that of the two C-6 alcohols and octan-3-ol (Table 2). This result suggests that geraniol is the preferred sugar acceptor of the four substrates tested. The apparent Km for UDP-glucose was 44.7 AE 15.2 lM.

LC-MS analysis of reaction products

Products of 16 h reactions between AdGT4 + UDP-glucose and two substrates, geraniol and octan-3-ol were analysed by LC-MS. Base peak plots indicated that a single glucosylated product was formed with a retention time of 44.6 min with geraniol (Figure 2a) and a product with a retention time of 42.2 min with octan-3-ol (Figure 2c). Full scan and MS/MS mass spectral data were used to further characterise the AdGT4 enzyme reaction products. Geraniol-glucoside was detected predominantly as the corresponding formate adduct, m/z 361 [M + formate] À1 in full scan mode. MS 2 on the formate adducts identified the expected pseudo-molecular ion at m/z 315 for the geraniol-glucoside (Figure 2e). Octan-3-ol-glucoside was also detected as the corresponding formate adduct (m/z 337) in full scan mode and gave the expected pseudo-molecular ion at m/z 291 for the octan-3-ol-glucoside in MS 2 (Figure 2g).

The AdGT4 enzyme was then incubated for 16 h with geraniol and octan-3-ol in the presence of two additional activated sugar donors, UDP-galactose and UDP-xylose. Two peaks of similar intensity were observed in the base peak plots for geraniol + UDP-galactose at 44.1 and 44.6 min (Figure 2b). Full scan and MS/MS mass spectral data indicated that both peaks were consistent with a geraniol-glycoside (Figure 2f). The peak at 44.1 min most likely corresponds to geraniol-galactoside, as the peak at 44.6 min has the same retention time as geraniol-glucoside in Figure 2(a) (UDP-glucose being a minor contaminant of the UDP-galactose). A major peak was observed in the base peak plots for octan-3-ol + UDP-galactose at 42.2 min with a minor peak most likely corresponding to octan-3-ol galactoside at 41.3 min (Figure 2d). Full scan and MS/MS mass spectral data indicated that both peaks were consistent with an octan-3-ol-glycoside (Figure 2h). No reaction products were detected with geraniol or octan-3-ol in the presence of UDP-xylose.

Time course incubations using AdGT4 + UDP-glucose and AdGT4 + UDP-galactose with geraniol and octan-3-ol as substrates yielded the same reaction profiles (Table S2) as the 16 h incubations. Together these results suggest that, in vitro, AdGT4 acts primarily as a glucosyltransferase with weak but detectable galactosyltransferase activity.

Expression analysis of AdGT4 in kiwifruit

The tissue-specific expression of AdGT4 mRNA was determined by quantitative RT-PCR in young leaf, vegetative bud, mature fully-open flower and ripe fruit. Expression was highest in flower tissue, but was also high in bud and ripe fruit (Figure 3a). By analysing floral parts dissected from mature fully-open flowers, the high levels of AdGT4 expression in flowers appeared to be localised to sepal and stamen but not petal and pistil (Figure 3b). During 'Hayward' fruit ripening, expression of AdGT4 increased progressively as fruit softened from 100 N firmness (at harvest) to 20 N. A slight decrease in expression was observed as fruit achieved eating firmness (8 N) when they produce endogenous climacteric ethylene (Figure 3c). In kiwifruit, free volatile release is strongly linked to the production of climacteric ethylene [START_REF] Atkinson | Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using an ACC-oxidase knockdown line[END_REF].

AdGT4 expression appears to be developmentally-regulated during ripening, and not ethylene-regulated as has been reported for flavour-related genes in kiwifruit involved in ester production, e.g. AATs (G€ unther et al., 2011).

Transient over-expression of AdGT4 in tobacco

Transient over-expression in tobacco leaves was used to investigate the glycoside products produced by AdGT4 in planta. Leaves were infiltrated with pART27-AdGT4 or a control pHEX2-GUS construct in the presence/absence of the volatile aglycones geraniol, hexanol, (Z)-hex-3-enol, octan-3-ol and 2-phenylethanol. Glycosides were purified, treated with b-glucosidase and volatiles released were extracted into solvent for GC-MS analysis. Extremely low levels of glycosides were extracted from tobacco plants that were not co-infiltrated with volatile aglycones and no glycosylated hexanol was observed in either AdGT4 infiltrated or control plants. Elevated glycoside levels were observed in both AdGT4 infiltrated and control plants infiltrated with each volatile aglycone, particularly (Z)-hex-3-enol and 2-phenylethanol, suggesting the presence of native tobacco GT enzymes capable of glycosylating these substrates in planta. However, significantly higher levels of octan-3-ol (40-fold) and geraniol (2.5-fold) glycosides were observed in AdGT4 infiltrated plants (Figure 4).

Transient down-regulation of AdGT4 in kiwifruit

As transgenic kiwifruit plants take 4-5 years to produce fruit in containment [START_REF] Atkinson | Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using an ACC-oxidase knockdown line[END_REF], transient downregulation of AdGT4 in A. eriantha fruit was used to determine the potential function of the enzyme in kiwifruit. Glycosides were purified, treated with b-glucosidase and volatiles released analysed by GC-MS. Significantly reduced levels of volatile terpene alcohol glycosides were observed in fruit inoculated with the pTKO27S-AdGT4 RNAi construct compared to the pHEX2-GUS control (Figure 5a). At the individual compound level there were significant decreases in geraniol, a-terpineol and carveol (Figure 5b, all compounds listed in Table S3) that contribute to the flavour of ripe kiwifruit.

Stable over-expression of AdGT4 in petunia flowers

Stable transgenic petunia plants were generated to investigate glycosylation by AdGT4 in flowers. Glycosides were purified, treated with b-glucosidase and the released volatiles analysed by GC-MS from three primary transformants over-expressing AdGT4 (T3157, T3152, T3148) and a wildtype control line. All three transformants showed significant increases (6-8-fold) in total volatile-alcohol glycosides (Figure 6a). At the individual compound level all three lines S2.
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showed significant increases in glycosides for hexanol, 3methylbutanol and 2-butyloctanol. Lines T3157 and T3152 also showed significant differences in glycosylated 2phenylethanol and octanol (Figure 6b). Levels of glycosides for most other alcohols including geraniol, decanol and benzyl alcohol (all compounds listed in Table S4) also increased in the transgenic lines, but not at P < 0.05 significance. Lines T3157 and T3152 also showed significant increases in total aldehydes arising from the glycoside fraction, with this variation being almost entirely due to an increase in benzaldehyde.

Stable over-expression of AdGT4 in tomato fruit

Glycoside analysis. Six homozygous transgenic tomato lines were generated (T518, T519, T528-T530 and T586) to investigate how AdGT4 over-expression affected sequestration and release of flavour and aroma compounds in red ripe fruit compared to a wildtype 'MicroTom' line. All six transgenic lines showed a significant increase (5-8-fold) in total extractable volatile-alcohol glycosides (Figure 7a). In contrast to petunia flowers, no difference in total aldehydes was observed in the glycoside fractions (Figure 7a). At the individual compound level, nearly all volatile-alcohol glycosides were more abundant in the transgenic lines than the control (all compounds listed in Table S5). 3-Methylbutanol was the most abundant volatile-alcohol glycoside detected in the control line and this compound was 10-30-fold more abundant as a glycoside in the AdGT4 over-expressing lines, with lines T519, T529 and T530 showing significant differences (P < 0.05). Hexanol, butanol, and geraniol glycosides were significantly more abundant in three to four of the transgenic lines (Figure 7b). Lines T529 and T530 showed the largest number of volatilealcohol glycosides with elevated levels compared with the control which is consistent with the higher level of AdGT4 transgene expression in these two transgenic lines (Figure S4). Despite changes in glycoside accumulation, fruit from all six transgenic lines were physiologically similar to the control for colour, firmness and crop load (Figure S5a-e). However, a significant increase in soluble solids content (3.5 to ~5°Bx) was observed in all lines (Figure S5f). Free volatiles and solvent extractions. Free volatiles released from red ripe fruit of the six transgenic AdGT4 lines were measured by dynamic headspace trapping and GC-MS analysis (all compounds listed in Table S6). Individual volatiles were categorised into alcohol, aldehyde, acid + ester, terpene and 'other' (ketone, sulfur, thiazole and nitrile, furan and hydrocarbon) categories. Total free volatile-alcohols were significantly decreased (2-9-fold) in all six transgenic tomato lines. No significant difference in total free volatile aldehydes, acids + esters, terpenes or 'other' compounds released was observed, with the exception of an increase in total free volatile acids + esters in line T528 (Figure 8a).

Volatile-alcohols and aldehydes in red ripe fruit were also extracted into solvent and analysed by GC-MS (all compounds listed in Table S7). Levels of total volatile-alcohols extracted into solvent were low (0.1 lg g À1 ) from both control and transgenic AdGT4 lines (Figure 8b). Significantly reduced levels were observed in three of the transgenic tomato lines. Extraction of volatile aldehydes into solvent was much higher (40 lg g À1 ), but levels were comparable between control and all transgenic lines (Figure 8b).

Glycosides in development.

Glycoside production was assessed during three additional stages of fruit development (green, breaker, and pink) using transgenic lines T529 and T530 that showed the most consistent changes in both free volatile and glycoside production in red ripe fruit. Significant differences in total extractable volatile-alcohol glycosides were observed in all stages of development for line T529 (Figure 9) and three of the four stages for T530. The most abundant compound contributing to the difference in the alcohol glycoside pool was 3-methylbutanol; however, the majority of alcohol glycosides observed in the control were sequestered at higher levels in both T529 and T530 (all compounds listed in Table S8). No significant difference in total aldehydes was observed in the glycoside fractions. Variability between samples was high for both control and T529. This was related to variation in the levels of (E)-hex-2-enal that was only found at breaker and pink stages in the control and T529 samples but not at any stage in T530.

Sensory analysis. A sensory panel investigated the impact of AdGT4 over-expression on ripe tomato fruit aroma. In triangle tests, panelists were clearly able to distinguish the aroma of transgenic T530 fruit from control fruit, with 27 correct answers out of a total of 47 tests (P < 0.001), run over three independent sessions. Panelists perceived the AdGT4 over-expressing fruit as having a significantly more 'earthy' aroma, and to be globally less 'intense' than control fruit (Table 3). The sensory analysis suggested also that T530 tomatoes were less floral, less sweet and less fruity, but without harboring a significant difference.

DISCUSSION

Using a molecular and biochemical screen we have isolated and characterised AdGT4, a ripening-related GT from kiwifruit with closest homology to Group 85A GTs. Recombinant AdGT4 enzyme showed a broad specificity, accepting many primary and secondary alcohols as substrates, but not phenolic substrates (e.g. resorcinol, hydroquinone). AdGT4 preferentially glycosylated geraniol, nerol, the C-6 alcohols hexanol, (Z)-hex-3-enol and (E)-hex-2-enol, and octan-3-ol. UGT85B1 from Sorghum bicolor shows a similar broad specificity but with a preference for cyanohydrin substrates not found in kiwifruit [START_REF] Hansen | The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor[END_REF]. The Km value for AdGT4 towards geraniol (76 lM) is lower than that reported for other UGT85 family members towards terpenoids e.g. 610 lM for UGT85A24 towards 7-deoxyloganetin [START_REF] Nagatoshi | Iridoid-specific Glucosyltransferase from Gardenia jasminoides[END_REF] and 140 lM for UGT85B1 towards geraniol [START_REF] Hansen | The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor[END_REF], but higher than those reported towards flavanols e.g. ~3 lM for UGT85H2 towards quercetin and kaempferol [START_REF] Li | Crystal structure of Medicago truncatula UGT85H2 -Insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase[END_REF]. LC-MS analysis indicated AdGT4 was primarily a glucosyltransferase with weak but detectable galactosyltransferase activity.

In transient assays using tobacco leaves, AdGT4 was able to glycosylate exogenous octan-3-ol and geraniol substrates thereby showing AdGT4 was an active GT in planta. However, analysis using this system was complicated by glycosylation via endogenous GTs in the leaves using (Z)hex-3-enol and 2-phenylethanol. Transient down-regulation of AdGT4 in unripe A. eriantha fruit indicated that the enzyme primarily glycosylates terpene alcohols in kiwifruit as significant reductions in geraniol, a-terpineol and carveol glycosides were observed. This suggests that in ripe A. deliciosa fruit, AdGT4 will glycosylate a-terpineol and especially geraniol which is found at 10-fold higher levels in ripe A. deliciosa fruit (Table S1) compared to unripe A. eriantha fruit (Table S3). No reduction in glycosides of hexanol and octan-3-ol was observed in transiently downregulated fruit and glycosides of (Z)-hex-3-enol and (E)hex-2-enol were not present even in control A. eriantha fruit. Whether AdGT4 influences glycosylation of these grassy-green aroma notes in ripe A. deliciosa fruit remains an open question.

In both transgenic petunia flowers and tomato fruit, stable over-expression of AdGT4 led to a significant increase in the total pool of volatile-alcohols that were sequestered. Significant increases in glycosylated hexanol and 3-methylbutanol were observed in both tomato and petunia, whilst increased glycosylation of other volatile-alcohols was specific to each system, e.g. octanol and decanol in petunia versus butanol, 6-methyl-5-hepten-2-ol and geraniol in tomato. These differences most likely relate to substrate availability, e.g. geraniol and 6-methyl-5-hepten-2-ol are reported as free volatile-alcohols in tomato fruit, e.g. [START_REF] Ortiz-Serrano | Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.)[END_REF], but not in petunia flowers, e.g. [START_REF] Verdonk | ODORANT1 regulates fragrance biosynthesis in petunia flowers[END_REF]. Differences in substrate availability are also likely to contribute to the changing glycoside profiles evident during fruit development. For example, 3-methylbutanol glycosides increased ~7-fold in control fruit as fruit ripened from green to red. An increase in 3-methylbutanol glycosides also occurred during ripening of the AdGT4 over-expressing lines, but to an even greater extent (80-140-fold; Table S8).

Aldehydes are not directly glycosylated by UGTs as they lack a hydroxyl group. However, the presence of aldehydes in glycosidic fractions is widely reported [START_REF] Birtic | Changes in volatiles and glycosides during fruit maturation of two contrasted tomato (Solanum lycopersicum) lines[END_REF][START_REF] Ortiz-Serrano | Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening[END_REF]. The ratio of alcohols to aldehydes in the glycosidic fraction can vary widely depending on the extraction conditions, as can been seen in Table S1 where benzyl alcohol:benzaldehyde and (Z)-hex-3-enol: (E)-hex-2-enal ratios varied markedly. In this study, a significant difference in total aldehydes was observed in the glycoside fractions of petunia flowers over-expressing AdGT4 but not from tomato fruit which might be due to the glycoside digestion with almond b-glucosidase versus Rapidase.

A decrease in the total pool of solvent extracted volatilealcohols was measured by GC-MS in three tomato lines over-expressing AdGT4, whilst the pool of free volatilealcohols decreased in all lines. No significant change in the Figure 9. Total extractable glycosides of volatile-alcohols and aldehydes that are sequestered during tomato fruit ripening. Glycosides were isolated from tomato transgenic lines T529 and T530 and a wildtype 'WT' control during tomato ripening stages green (grn), breaker (brk), pink (pnk) and red ripe. Glycosides were treated with b-glucosidase and the volatiles released extracted into solvent for GC-MS analysis. Data are presented as mean AE standard error of the mean (SEM) (n = 3 independent harvests). Statistical analysis as per Figure 6. *Different at the 0.05 level. pool of free volatile aldehydes, acids + esters, or terpenes was observed. The sensory panel analysis of line T530 versus control fruit highlighted that the changes in free volatiles were obvious to detect by sniffing, as the statistical significance of the triangle test was very strong (P < 0.001).

The descriptive sensory analysis suggests that the reduction in free volatile-alcohols leads to fruit that are perceived as having less overall aroma intensity and that are earthier than control fruit. Hexanol, (Z)-hex-3-enol, 6-methyl-5-hepten-2-ol, and geraniol are all noted as having grassy-green/fruity notes, whilst 3-methylbutanol and butanol have fusel/alcoholic/banana notes (http://www. thegoodscentscompany.com/search.html). Our hypothesis is that the increased sequestration of these compounds with fruity/floral notes leads to the perception of a fruit that is 'earthier.' Compounds such as 2-isobutylthiazole and 3-methylbutanal, which are noted as having musty/earthy aromas in tomato [START_REF] Baldwin | Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors[END_REF], were slightly reduced in the T530 line (Table S6). Our hypothesis is also consistent with sensory analysis of ripe tomato fruit with elevated ADH activity. These transgenic lines had higher levels of C-6 alcohols such as hexanal and (Z)-hex-3-enol and were identified as having a more intense 'ripe fruit' flavor [START_REF] Speirs | Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols[END_REF].

In conclusion, we have demonstrated that AdGT4 can glycosylate a range of terpenes and C-6 alcohols in vitro and four systems (including kiwifruit) in planta. Our results in tomato indicate that over-expression of AdGT4 influences volatile compound release which has a measurable effect on sensory perception of fruit aroma. This work further suggests that glycosyltransferases with specificity for key odour-active compounds are good candidate genes for manipulating levels of different aromas and flavours in flowers and fruit by transgenic or conventional breeding techniques.

EXPERIMENTAL PROCEDURES

Plant material

Actinidia deliciosa Lindl. var. deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson 'Hayward' samples were obtained from the PFR orchard in Te Puke, NZ. Outer pericarp tissue was sampled from fruit when immature (firmness 100 N), mature but unripe (80 N), during the rapid period of fruit softening (50 N or 20 N), and when eating ripe (8-10 N, producing endogenous ethylene, 1.03 lmol kg À1 sec À1 ). Fruit firmness was determined with an Effegi penetrometer (7.9 mm diameter head). Endogenous ethylene production was measured by flame ionisation chromatography [START_REF] Atkinson | Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using an ACC-oxidase knockdown line[END_REF]. Whole flowers were harvested at noon and immediately dissected into flower part samples [START_REF] Nieuwenhuizen | Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)[END_REF]. All tissues were snap frozen in liquid nitrogen immediately after collection and stored at À80°C.

Sequence analysis

A 'Hayward' ripe fruit library containing ~10300 ESTs [START_REF] Crowhurst | Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening[END_REF] was BLAST-searched for sequences with homology to known GTs. Homologous contigs (expect value <exp À20 ) were identified and the most 5 0 EST was selected for full-length sequencing. For phylogenetic analysis amino acid sequences were initially aligned using CLUSTALX (version 1.8) then manually edited. Phylogenetic trees were constructed using PHYLIP, analysed using BOOTSTRAP N-J TREE and visualised in TREEVIEW (v.1.6.6, http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

Expression in Escherichia coli

The complete ORFs of AdGT1-4 were amplified using gene-specific primers (Table S9) into pET30A(+) (Novagen, http://www. novagen.com/). DNA from individual clones was sequence verified against the original ORF, then transformed into BL21-Codon-Plus RIL cells. For recombinant protein isolation, 30 ml cultures in LB broth containing 50 lg ml À1 kanamycin were grown at 37°C, 300 rpm, for 4 h until they reached an OD 600 of ~0.6. Cultures were induced by the addition of isopropyl b-D-1-thiogalactopyranoside (IPTG) to a final concentration 1 mM and grown for a further 72 h at 16°C. Cells were harvested and then lysed with 2 ml protein extraction buffer (B-PER in phosphate buffer) following manufacturer's instructions. Recombinant protein obtained at this point is referred to as 'partially purified'. Purified N-terminal His 6 -tagged AdGT4 protein was obtained using His SpinTrap columns (GE Healthcare Life Sciences, www.gelifesciences.com) following manufacturer's instructions. Protein concentrations were measured using an ND-1000 spectrophotometer (NanoDrop Technologies Inc., www.nanodrop.com).

Glucosyltransferase activity assays

Standard UGT activity assays were performed in 50 ll reactions containing 10 ll of 59 UGT assay buffer (50 mM Tris-HCl, pH 7.5, 2 mM dithiothreitol), 1 ng ll À1 recombinant protein, 0.2 mM substrate and 0.27 lM [ 3 H]-UDP-glucose (uridine diphospho-D-[6-3 H] glucose, 13.6 Ci mmol À1 ; GE Healthcare). Reactions were performed at 30°C for 30 min and terminated using 10 ll of 2 M HCl. Reaction mixtures were extracted with 100 ll of ethyl acetate, and 20 ll of organic phase was added to 1 ml of non-aqueous scintillation fluid and analysed by liquid scintillation counting (Tri-Carb 2900TR;PerkinElmer, www.perkinelmer.com). Boiled protein or empty vector protein as a negative control was treated in parallel with all enzyme activity reactions. Reactions were shown to be linear with respect to enzyme concentration and time under standard reaction conditions.

LC-MS analysis

Scaled-up reactions contained 100 ng enzyme, 100 lM substrate and 250 lM UDP-glycoside (UDP-glucose, UDP-galactose; Sigma-Aldrich, www.sigmaaldrich.com; or UDP-xylose, Carbosource Services). For Figure 2, reactions were incubated at 30°C for 16 h and stopped with 20 ll glacial acetic acid. Three reactions for each substrate:UDP-glycoside combination were pooled for LC-MS analysis. LC-MS employed an LTQ linear ion trap mass spectrometer fitted with an ESI interface coupled to an Ettan MDLC (GE Healthcare Life Sciences). Compound separation was achieved as described in Jugd e et al. (2008). Sample injection volume was 10 ll. MS data was acquired in the negative mode using a data-dependent LC-MS 3 method [START_REF] Jugd E | Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple[END_REF]. Authentic geraniol and octan-3-ol standards were obtained from Sigma-Aldrich.

For the LC-MS time course analysis of glycosides, scaled-up reactions were incubated for 10 min, 1 h or 16 h and analysed as described in Table S2.

Quantitative real-time PCR

RNA from kiwifruit was isolated according to [START_REF] Chang | A simple and efficient method for isolating RNA from pine trees[END_REF] and from tomato using NucleoSpin RNA Plant columns (Macherey-Nagel). cDNA was synthesised as described in [START_REF] Nieuwenhuizen | Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)[END_REF]. qRT-PCR gene expression analysis was performed on a LightCycler 480 platform using SYBR Green master mix. Results were analysed using the LightCycler 480 software (Roche Applied Science, www.roche.com). Amplification conditions included an initial denaturation step of 95°C for 5 min followed by 45 cycles of 95°C for 10 sec, 60°C for 10 sec and 72°C for 12 sec. Fluorescence was measured at the end of each annealing step followed by a melting curve analysis with continual fluorescence acquisition from 65 to 95°C to check for single product amplification. Expression was calculated relative to the control kiwifruit gene EF1a. qRT-PCR primer sequences are shown in Table S9 together with predicted product sizes.

Binary vectors and plant transformation

The over-expression construct pART27-AdGT4 (CaMV35S:AdGT4: nos) contained the full-length AdGT4 ORF in the binary vector pART27 [START_REF] Gleave | A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome[END_REF]. The first 610 bp of AdGT4 (excluding the conserved PSPG motif) was used to produce the RNAi hairpin construct pTKO27S-AdGT4 (CaMV35S:AdGT4:act2) in the binary vector pTKO2 [START_REF] Snowden | The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development[END_REF]. The control construct pHEX2-GUS (CaMV 35S:GUS reporter gene:nos) is as reported in [START_REF] Nieuwenhuizen | Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)[END_REF].

For transient expression, all constructs were electroporated into Agrobacterium strain GV3101. Transient experiments in tobacco leaves were performed as described in [START_REF] Hellens | Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants[END_REF]. Seven days after inoculation, leaves were infiltrated with a 100 lM solution of volatile aglycone (except geraniol 10 lM, as it was toxic at 100 lM). After 4 h the leaves were detached and frozen at À80°C for glycoside extraction. Transient experiments using unripe A. eriantha fruit were performed as described in [START_REF] Montefiori | Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis of red-fleshed kiwifruit (Actinidia chinensis)[END_REF]. Three fruit for each treatment were injected and then stored for 4 days at 25°C.

Transgenic petunia (Petunia hybrida) 'V26' plants were regenerated according to [START_REF] Jorgensen | Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs antisense constructs and single-copy vs complex T-DNA sequences[END_REF] using pART27-AdGT4 in Agrobacterium strain LBA4404 and rooted in the presence of kanamycin (100 lg ml À1 ). The presence of the AdGT4 transgene was confirmed in transgenic plants using primers YKGTF1 and YKGTR1 (Table S9). Transgenic tomato (Solanum lycopersicum Mill.) 'MicroTom' plants were regenerated according to [START_REF] Wang | The tomato Aux/IAA transcription factor IAA 9 is involved in fruit development and leaf morphogenesis[END_REF] and rooted in the presence of kanamycin (50 lg ml À1 ). Plants were self-pollinated to produce homozygous seed lines. Transgenic and control plants were grown under containment greenhouse conditions with a minimum/maximum temperature range of 20-30°C and a minimum of 12 h light. Fully-open petunia flowers with mature pollen were harvested at 10:30 am. Tomato fruit were harvested according to the standard ripening scale (Del-laPenna et al., 1986). For glycoside analysis and solvent extraction, pools of at least 10 petunia flowers and 15 tomato fruit were collected from multiple plants for each time point and frozen at À80°C.

Extraction and hydrolysis of volatile glycosides

Frozen tobacco leaf (1-2 g), petunia flower (~2-3 g), and tomato fruit (~8 g) material were ground, mixed with 20-35 ml water, and centrifuged (2000 g for 15 min). The supernatant was collected and 35 ll of 1 mM n-heptyl-D-glucopyranoside (Calbiochem, www.merckmillipore.com) added as internal control. The supernatant was loaded onto a 15 ml Amberlite XAD-2 column (prepared according to manufacturer's instructions, Supelco), washed with 50 ml water followed by 40 ml diethyl ether/pentane (1:1) to remove non-glycosylated compounds. The glycosylated compounds were eluted using 20-50 ml methanol and dried.

Glycosidic eluates were resuspended in 2 ml of deglycosylation buffer (4.2 g citric acid, 2.84 g Na 2 HPO 4 in 100 ml, pH 5) and extracted 39 with 2 ml of diethyl ether/pentane to remove any non-glycosylated compounds. Petunia glycosides were hydrolysed using almond b-glucosidase (2 mg) and the volatile products trapped onto SPME fibres coated with 65 lM polydimethylsiloxane-divinylbenzene (Supelco, www.sigmaaldrich.com). Volatile collection was for 24 h at 37°C in a water bath with gentle rocking. Tomato and tobacco glycosides were digested with Rapidase AR2000 (4 mg; DSM Food Specialities, www.dsm.com). Reactions were overlaid with 100 ll diethyl ether/pentane and incubated for 16 h at 37°C. Reactions were then extracted 29 with 0.8 ml diethyl ether/pentane and water removed by passage through a Na 2 SO 4 column.

Headspace collection and solvent extraction of tomato volatiles

Headspace volatiles were collected by sealing 15 fruit without sepals in 100 ml sampling jars for 20 min to equilibrate without flow and then purging the headspace with dry purified air at a flow rate of 25 ml min À1 for 1 h. Volatiles were trapped onto direct thermal desorption liners (ATAS GL) packed with 80 mg of 60-80 mesh Chromosorb 105 adsorbent (Shimadzu).

For solvent extraction, fruit (20 g) were blended in 22% CaCl 2 (20 ml) and mixed with 40 ml diethyl ether/pentane (1:1) for 30 min at room temperature. The pulp was re-extracted with 20 ml diethyl ether/pentane for 10 min at room temperature, the combined extracts passed through a Na 2 SO 4 column to remove water then stored at À20°C.

GC-MS analysis

GC-MS analysis of solvent extracts was performed on an Agilent 6890N GC coupled to a Waters GCT time of flight-mass spectrometer, as described previously [START_REF] Nieuwenhuizen | Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple[END_REF]. The oven temperature program was 1 min at 35°C, 5°C min À1 to 230°C, and hold for 5 min. Headspace volatiles were desorbed directly from the direct thermal desorption tubes and cryo-focused as described in the legend to Table S6.

Volatile compounds were identified by comparing their mass spectra and retention data with those of a series of authentic standards, supplemented with the NIST 98 and Wiley 7 mass spectral libraries. Amounts of each chemical were semi-quantified with an average detector response factor based on a range of standards. Concentrations of glycoside volatiles were also corrected for recovery of the internal standard (n-heptyl-D-glucopyranoside).

Sensory panel analysis

The panel consisted of 16 individuals and included 10 men and 6 women. Participation was voluntary and all participants gave their written consent prior to participation in the study. Although panelists knew the general purpose of the experiment, none was aware of the exact nature of the samples. Red ripe tomato fruit without sepals (30 AE 1 g) from the control and a representative AdGT4 over-expressing line (T530, showing a 40-fold increase in total volatile-alcohol glycosides and nine-fold decrease in total free volatile-alcohols) were placed in individual wine glasses. There was no visual difference between samples. A watch glass was placed over each glass before and after sampling so headspace volatiles could accumulate within the glass. For the triangle tests, three samples were presented with a random code to the panelist: two the same, and one different. Each panelist was asked to smell in each glass and identify which sample was different. For the descriptive analysis panelists were asked to choose from a set of five aroma descriptors: intense, green, floral, sweet, fruity and earthy. The presented results are the average occurrence for each descriptor. The experiment was repeated three times with independent sets of samples presented to each panelist. Significance was analysed using probability tables developed for sensory analysis [START_REF] Lawless | Sensory Evaluation of Foods: Principles and practices, 2nd edn[END_REF].

GenBank accession numbers

AdGT1 (KF954941); AdGT2 (KF954942); AdGT3 (KF954943); AdGT4 (KF954944).

Figure 1 .

 1 Figure1. Phylogenetic analysis of AdGT1-4 with other selected plant glycosyltransferases. Actinidia deliciosa AdGT1 (GenBank KF954941), AdGT2 (KF954942), AdGT3 (KF954943), AdGT4 (KF954944); Vitis vinifera Vv323 (XP_002264323), Vv383 (XP_002268383), Vv546 (XP_002276546), Vv770 (XP_002285770); Maclura pomifera MpUGT88A4 (ABL85471); Hieracium pilosella HpUGT88A9 (ACB56925); Populus deltoides PGT3 (ACV87307); Gardenia jasminoides GjUGT85A24 (BAK55737); Prunus dulcis PdUGT85A19 (ABV68925); Sorghum bicolor SbUGT85B1 (AAF17077) and Stevia rebaudiana SrUGT85C2 (AAR06916). All other UGT sequences were from Arabidopsis thaliana and obtained from http:// www.p450.kvl.dk/UGT.shtml. Bootstrap values supporting the separation of the four highlighted families were 100% based on 1000 replicates.

Figure 2 .

 2 Figure 2. LC-MS analysis of AdGT4 reaction products. LC-ESI-MS base peak plots in negative mode for (a) geraniol + UDP-glucose; (b) geraniol + UDP-galactose; (c) octan-3-ol + UDP-glucose; (d) octan-3-ol + UDPgalactose;and (e) full scan and MS 2 data for peak 1; (f) full scan and MS 2 data for peak 2; (g) full scan and MS 2 data for peak 3; and (h) full scan and MS 2 data for peak 4. Results from 16 h incubations are presented. Time course data are presented in TableS2.

Figure 3 .

 3 Figure 3. Relative expression of AdGT4 in kiwifruit tissues. Relative gene expression was determined by qRT-PCR in three different tissue sets (a) young leaf, vegetative bud, mature fully-open flower and ripe fruit, (b) dissected flower parts and (c) a ripening fruit series (firmness in N). Data are presented as mean AE standard error of the mean (SEM) (n = 12). Means with the same letter are not significantly different at the 0.05 level.

Figure 4 .

 4 Figure 4. Glycosides produced by transient over-expression in tobacco.Leaves were infiltrated with pART27-AdGT4 or a control pHEX2-GUS construct in the presence '+' or absence 'À' of four volatile aglycones. Purified glycosides were treated with b-glucosidase and the volatiles released were extracted into solvent for GC-MS analysis. Data are presented as mean AE standard error of the mean (SEM) (n = 3 for '+' aglycone; n = 9 for 'À' aglycone). Means with the same letter are not significantly different at the 0.05 level for each compound.

Figure 5 .Figure 6 .

 56 Figure 5. Glycosides produced by transient down-regulation in kiwifruit. A. eriantha fruit were infiltrated with the RNAi construct pTKO27S-AdGT4 or control pHEX2-GUS. Purified glycosides were treated with b-glucosidase and the volatiles released trapped on SPME columns and analysed by GC-MS. (a) Total extractable glycosides of volatile 'terpene alcohols' and 'other alcohols.' (b) Glycosides of selected individual terpene alcohols. Data are presented as mean AE standard error of the mean (SEM) (n = 3). *Different at the 0.05 level.

Figure 7 .

 7 Figure 7. Glycosides sequestered in red ripe tomato fruit. Glycosides were isolated from six tomato transgenic lines over-expressing AdGT4 and a wildtype 'WT' control and treated with b-glucosidase. Volatiles released were extracted into solvent for GC-MS analysis. (a) Total extractable volatile-alcohol glycosides and aldehydes. (b) Glycosides of selected individual compounds showing significant change. Data are presented as mean AE standard error of the mean (SEM) (n = 3 independent harvests). Statistical analysis as per Figure 6. *Different at the 0.05 level.

Figure 8 .

 8 Figure 8. Volatiles in red ripe tomato fruit. (a) Total alcohol, aldehyde, acid + ester, and terpene volatiles released from six tomato transgenic lines over-expressing AdGT4 and a wildtype 'WT' control. Volatiles were trapped onto Chromasorb and analysed by GC-MS. Data are presented as mean AE standard error of the mean (SEM) (n = 3 independent harvests of 15 fruit) and exclude ethanol and acetic acid which are typically associated with over-ripeness/fermentation. (b) Total alcohol and aldehyde solvent-extracted volatiles. Data are presented as mean AE SEM (n = 3). Statistical analysis as per Figure 6. *Different at the 0.05 level.

Table 1

 1 Relative activity of purified recombinant AdGT4 enzyme

		Relative		Relative
	Compound	activity (%)	Compound	activity (%)
	Geraniol	100	Quercetin	2.7 AE 0.3
			dihydrate	
	Nerol	47.6 AE 10.2 Propanol	2.6 AE 0.2
	Octan-3-ol	28.2 AE 2.6	Hydroquinone	2.5 AE 0.3
	Hexanol	25.9 AE 1.5	Linalool	2.5 AE 0.1
	a-Terpineol	22.9 AE 1.1	Resorcinol	2.4 AE 0.1
	(Z)-Hex-3-enol	11.9 AE 0.4	3-Methylbut-3-	2.2 AE 0.2
			enol	
	2-Phenylethanol	7.9 AE 0.1	cis-Linalool oxide 2.2 AE 0.2
	(E)-Hex-2-enol	7.2 AE 1.0	Propan-2-ol	2.0 AE 0.2
	Furaneol â	6.1 AE 0.2	Butanol	1.6 AE 0.4
	2-Furylmethanol	5.0 AE 0.3	Cyanidin chloride 1.2 AE 0.1
	Butan-2-ol	4.3 AE 0.1	Naringenin	1.0 AE 0.1
	3-Methylbutanol	4.3 AE 0.5	Chlorogenic acid 0.9 AE 0.1
	Pentan-2-ol	4.3 AE 0.1	Caffeic acid	0.6 AE 0.1
	2-Methylbutanol	3.8 AE 0.2	Menthol	0.6 AE 0.1
	Benzyl alcohol	3.3 AE 0.4	Pyrogallol	0.3 AE 0.1

UGT activity towards geraniol is set at 100%. Data are presented as mean AE standard error of the mean (SEM) (n = 3).

Table 2

 2 Kinetic properties of purified recombinant AdGT4 enzyme UDP-glucose: 100 lM) and 500 ng of protein. The Km for UDP-glucose was determined by varying the concentration of UDP-glucose from 300 to 0.27 lM in the presence of geraniol (500 lM) and [ 3 H]-UDP-glucose (0.27 lM). Data are presented as mean AE standard error (SE) (n = 3).

				kcat/Km
	Substrate	kcat (sec À1 )	Km (lM)	(sec À1 M À1 )
	Geraniol	11.05 AE 0.42	76.2 AE 11.1	14 500
	Octan-3-ol	0.75 AE 0.07	66.6 AE 16.2	1130
	Hexanol	2.72 AE 0.18	116.9 AE 28.1	2330
	(Z)-Hex-3-enol	0.49 AE 0.04	57.0 AE 20.0	860
	UDP-glucose	6.93 AE 0.74	44.7 AE 15.2	15 550
	Substrate concentrations were varied from 5 mM to 2 lM with a
	fixed UDP-glucose concentration of 100.27 lM ([ 3 H]-UDP-glucose:
	0.27 lM +			

Table 3

 3 Sensory comparison of ripe transgenic T530 and control tomato fruit

	Descriptor	Intense	Green	Floral	Sweet	Fruity	Earthy
	T530	0.8 AE 0.5 a	4.0 AE 0.6	1.5 AE 0.5	0.8 AE 0.3	2.8 AE 0.6	9.0 AE 0.7 a
	Control	3.2 AE 0.8	3.8 AE 0.7	2.6 AE 0.5	1.8 AE 0.5	4.4 AE 1.1	5.6 AE 0.2

Data are the average occurrence of each descriptor AE standard error of the mean (SEM) (n = 3 independent sessions with 16 panelists). Statistical analysis was performed using a t-test. a Different at the 0.05 level.
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