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ABSTRACT 

This study describes the assimilation of synthetically-generated river water level observations in a flood wave 

propagation model.  For this approach to be applied in the framework of real-time flood forecasting, the cost of the 

data assimilation procedure, mostly related to the estimation of the background error covariance matrix, should be 

bound.  An Ensemble Kalman Filter (EnKF) algorithm is applied, with a steady observation network, to demonstrate 

how the assimilation modifies the background correlation function at the observation point . It is shown that an initially 

Gaussian correlation function turns into an anisotropic function at the observation point, with a shorter correlation 

length-scale downstream of the observation point than upstream, and that the variance of the error in the water level 

state is significantly reduced downstream of the observation point . The covariance matrix resulting from the EnKF is 

then used as an invariant background error covariance matrix for a series of successive Best Linear Unbiased 

Estimation (BLUE) algorithms which emulate an EnKF  at a lower cost.  This study shows how the background error 

covariance matrix can be computed off-line, with an advanced algorithm, and then used with a cheaper algorithm for 

real-time application. 

1. INTRODUCTION 

Flood forecasting is a key issue in hydrology and remains a challenging problem in operational hydrology.  It 

has already been demonstrated that the limitations of the hydraulic models can be overcome using a data 

assimilation (DA) approach (Durand et al. [1], Ricci et al. [2], Jean-Baptiste et al. [3]).  For most DA 

algorithms, the description of the background error covariance matrix is essential but generally fastidious and 

costly, which is not compatible with real-time forecasting.  The aim of this study is to demonstate how the 

cost of an Ensemble Kalman Filter (EnKF) algorihm can be reduced allowing for the use of DA in the 

framework of real-time flood forecasting.  The model used for this study is a simplified and parsimonious 

hydraulic model, representing the 1D diffusive flood wave propagation equations. 
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 A key point of the paper relies on the evolution of correlation functions of the water level state by both 

the intrinsic dynamics of the model and the data assimilation process.  When imposing an upstream flow 

forcing as a random signal of gaussian statistics with a gaussian shaped temporal covariance function, the 

water level states are random functions whose spatial covariance functions can be approximated, when the   

diffusion is small compared to the advection, by a Gaussian with an increasing correlation length-scale.  This    

results can be shown analytically and is illustrated here by a numerical ensemble approach. 

 

 However, when the water level profiles are corrected through a data assimilation procedure, the 

theoretical description of the evolution of the correlation function is not straightforward and a numerical 

approach is prefered.  An EnKF algorithm was thus applied, with a steady observation network (in terms of 

location, frequency and error statistics), to demonstrate how the assimilation modifies the background 

correlation function at the observation points.  It was shown that an initial correlation function of Gaussian 

shape turns into an anisotropic
2
 function at the observation point, with a shorter correlation length-scale 

downstream of the observation point than upstream, and that the error variance of the state is significantly 

reduced downstream of the observation point.  The use of the information brought by the observations as 

well as by the implicit propagation of the background error covariance function by the EnKF algorithm, 

leads to the formulation of a steady covariance matrix, different from the Gaussian initially prescribed in the 

system.  This matrix was finally used as an invariant background error covariance matrix for an ensemble of 

assimilation runs to emulate an EnKF.  This paper presents how the results from this Emulated EnKF 

algorithm (EEnKF) and from the EnKF algorithm compare.  Additionally, the reduction of the error variance 

and the correlation length downstream of the observation point was formulated as a function of the ratio 

between the background and the observation error standard deviation at the observation point.  Using this 

information, the EnKF can be emulated for observation networks that differ in terms of error statistics. 

 

 The outline of the paper is as follows: Section 2 describes the diffusive flood wave propagation model. 

It also provides theoretical proof for the generation of a signal with a Gaussian spatial covariance function 

and for the evolution of the correlation function and length-scale without assimilation.  The numerical 

validation, with an ensemble approach, for these theoretical results is presented as well.  A brief description 

of the ensemble based DA algorithms used in the paper is then given in Section 3.  The results of the EnKF 

and EEnKF algorithms regarding the evolution of water level and its error statistics are finally outlined. 

Some conclusive remarks and perspectives are given in Section 4. 

2. THE DYNAMICS OF THE FLOOD WAVE PROPAGATION MODEL 

2.1 Model equations and boundary conditions  

In the framework of the diffusive flood wave approximation, the Saint Venant equations can be crudely 

approximated as 
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where the water level is described as a perturbation  to the equilibrium state  such that 

 (with  the Strickler coefficient),  for a constant slope  on a 1D domain defined 

for , with  km and discretised in 200 points.  Eq. (1) is a classical advection-diffusion 

equation where  is the diffusion coefficient,  is the advection speed and  is the Water Level 

Anomaly (WLA).  In order to use this model as a support for data assimilation, an open boundary condition 

is imposed downstream with .  The upstream boundary condition is imposed by 

, where  is characteristic of a flow up to a multiplicative constant.  Here,  is modelled as a 

stationnary Gaussian random process characterised by a temporal covariance function in time  

  that has gaussian shape of correlation time scale , .  Using Fourier 

transform,  can be written as a sum of harmonic signals
3
 .  Due to the stationnarity 
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of the random process, the complex amplitudes  are uncorrelated so that , 

where  is the Dirac distribution and where the energy spectrum  is the Fourier transform 

of  (Wiener-Khintchine theorem).  From a numerical point of view, the amplitudes 

 can be built as  where  is a complex Gaussian random variable whose module has zero 

mean and standard deviation 1 and . 

2.2 Covariance function for the WLA  

Knowing the characteristics of the temporal covariance of the boundary condition flow , the spatial 

covariance of the WLA state can be derived.  Given the linearity of the problem, the solution  can be 

formulated as the superposition of modal solutions.  Assuming that the forcing is a sinusoidal function 

, a modal solution for Eq. 1 reads  and the general solution reads 

. 

 

 In the case of advection only ( ),  of which the covariance function  is a gaussian of 

constant length-scale , defined as : 

 , (2) 

 

 In the case of advection with small diffusion, which reads , a straightforward expansion leads to 

, and a more elaborated asymptotic analysis shows that  can locally be 

approximated by 

 , (3) 

that is a Gaussian covariance function of correlation length-scale : 

 

, (4) 

and variance : 

 . (5) 

2.3 Validation with an ensemble approach  

These theoretical results were validated computing the covariance matrix  of an ensemble of  WLA 

states  on the 1D domain , generated with different forcings  with 

 that follows the statistics described in Sect. 2.1.  The correlation length-scale  is computed with the 

correlation function  between two points distant of  and  (Pannekoucke and al. [4]). 

 Figure 1-a displays the covariance -functions  at three different points  of the 1D 

domain for the advection only case (dashed lines) and for the advection-diffusion case (solid lines), for 

.  In the first case, the initially Gaussian function is advected.  The characteristics of the 

covariance function remain unchanged as illustrated in Fig. 1-b where  is constant (dashed thick line), in 

agreement with the theoretical value (dashed thin line).  When diffusion occurs, the covariance function of 

the WLA state is diffused as shown in Fig. 1-a and  increases with  (solid thick line on Fig 1-b), still 

in agreement with the theoretical value (solid thin line).  The WLA variance initially prescribed at 1 m² 

remains constant for the advective case and decreases with  for the diffusive case as described in Fig.1-a 

(amplitude max of the covariance functions in solid line). 
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(a) (b) 
Figure 1: (a) Covariance -function  from  for (b) Correlation length-scale  

3. THE DYNAMICS OF THE FLOOD WAVE PROPAGATION MODEL 

3.1 Data assimilation algorithms  

The EnKF algorithm was implemented on Eq. (1), using the identical-twin experiment framework (also 

known as OSE
4
).  A reference run was integrated using a given forcing , to simulate the true WLA 

.  The observation  was then calculated in the middle of the 1D domain 

 where  is a Gaussian noise defined by its standard deviation , thus defining the 

observation vector
5
 .  The background trajectories  for the ensemble approach were integrated 

using a perturbed set of forcing  with , defining the background vectors .  The 

observation frequency is equal to 3 model time steps. 

 
Figure 2: Ensemble data assimilation algorithms, assimilation cycle . 

  

 As illustrated on Fig. 2 for the assimilation cycle , the ensemble analysed states are propagated 

by the diffusive flood wave model  from the observation time  to  to provide the background 

states  over which the background error covariance matrix  is computed.  The 
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assimilation step at  consists in assimilating a perturbed observation vector  to correct the 

background vector , using the Kalman filter gain matrix  : 

  (6) 

 

 , (7) 

 After 1000 assimilation cycles,  converges to a steady matrix denoted  (its associated 

correlation matrix is ). The BLUE
6
 algorithm can be viewed as a Kalman Filter in which the ensemble 

is replaced by one single forcing  with the gain matrix : 

 , (8)  

where  is a constant matrix. This DA method can of course be applied to an ensemble of forcings 

 at successive time  and a comparison of the results of the EnKF and this ensemble of BLUE 

algorithms can be made, as pictured in Fig. 2. 

 

 With the choice , one misses the fact that the background error covariance matrix should be 

impacted by the previous assimilation steps.  In the following, the ensemble of BLUE analysis using 

 is called the EnBLUE algorithm and the covariance matrix computed over the assimilated 

members is denoted by .  If one chooses  where  is the converged matrix 

previously computed, the reduction of uncertainty brought by the previous BLUE steps is likely to be 

represented, at least after several time steps.  This ensemble based approach emulates the EnKF algorithm 

but saves the computationnal cost of the time evolving background error matrix.  It is named here Emulated 

Kalman Filter (EEnKF).  In the following, the ensemble of BLUE analysis using  is called 

the EEnKF algorithm and the covariance matrix computed over the assimilated members is denoted by 

. 

3.2 Data Assimilation results  

The initial background covariance matrix prescribed for the assimilation system is , its associated 

correlation function is noted .  Figure 3-a illustrates how the initally isotropic correlation function in  

(dashed line) is modified by the analysis and propagation steps of the EnKF algorithm, at the end of the 

assimilation procedure.  Considering a steady observation network, the shape of the correlation function in 

 (solid line) converges towards an anisotropic correlation function with a shorter correlation length-

scale downstream of the observation point than upstream.  The correlation between the observation point and 

its neighbours is reduced since information at the observation point was introduced at this location by the 

analysis procedure through the observation vector. 

 

 The correlation length-scale  is computed for both EnBLUE and EnKF algorithms.  As presented on 

Fig. 3-b, the evolution of the correlation lenght-scale on the 1D domain follows the theory (solid thin line) 

upstream of the observation point and a discontinuity is introduced at the observation point.  For the EnKF 

algorihtm (solid thick line), the reduction of the correlation length-scale spreads over the entire domain 

downstream of the observation point, where as for the EnBLUE algorithm (dashed thin line), this reduction is 

local. 
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(a) (b) 

Figure 3 : (a) Correlation function at the observation point, for the initial correlation matrix  (dashed line) 

and for  (solid line). (b) Correlation length-scale  in theory without assimilation (thin solid line), 

for  (thin dashed line) and  (thick solid line). 

 

 In order to estimate the impact of the EnBLUE, EnKF and EEnKF algorithms, the variances of the 

background error covariance matrix are presented in Fig. 4-a.  The error variance is significantly reduced at 

the observation point and beyond with the EnKF (solid thick line), compared to the initially prescribed 

variances (solid thin line).  However, when  is kept invariant and isotropic, the reduction of the variance is 

only located in the close neighboring of the observation point (dashed thin line); the invariant matrix is not 

optimal and the EnBLUE algorithm overcorrects the state downstream of the observation point.  In this case, 

the merits of using a DA algorithm that evolves the background error statistics with the dynamics are 

demonstrated; the shorten length-scale of  prevents from overcorrecting downstream of the observation 

once information from the observation was taken into account.  The EEnKF algorithm shows the same 

results as the EnKF meaning that the computation of the EnKF evolved background covariance matrix can be 

achieved at first and then used for further assimilation with a reduced computationnal cost.  

 

  
(a) (b) 

Figure 4 : (a) Background error variances for the inital covariance matrix  without assimilation (thin 

solid line), for  (thin dashed line), for  (thick solid line) and for  (thick dashed line) 

(b) WLA for the BLUE analysis with  (thick dashed line for ) and  (thick solid line for 

). The observation is denoted by a circle, the true state  by a thin solid line. 

   

 This result is of particular interest in the framework of real-time forecasting where a single analysis is 

usually carried out instead of an ensemble of analysis (what we are looking for is the forecasted WLA state 

and not its covariance matrix).  Assuming that an EnKF analysis has previously been carried out, the real-
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time data assimilation procedure can be achieved with a non expensive BLUE algorithm, using  as the 

invariant background error covariance matrix for a single analysis.  This idea was implemented here, the 

improvement of the WLA for a BLUE analysis using  or  is shown in Fig. 4-b.  When the BLUE 

assimilation is carried with  the analysed state  EEnKF (thick solid line) is significantly 

close to the true state  (thin solid line) at the observation point and beyond.  On the contrary when the 

assimilation is carried with , the analysed state  EnBLUE (thick dashed line) is only locally 

brought closer to the true state at the observation point. 

3.3 Extension of the results to an observation network with different error statistics 

Section 3.2 showed that the asymptotic background error covariance matrix of the EnKF can be used as an 

invariant matrix within a non expensive BLUE algorithm to emulate the EnKF.  At the observation point, the 

reduction on the error variance and the downstream correlation length scale are well reproduced.  Both 

depend on the ratio  (where  and  respectively denote the background without assimilation 

and observation error standard deviations at the observation point) and should be evaluated as  varies (  

is assumed to be fixed and  varies to represent different observation error statistics).  

 

  
(a) (b) 

Figure 5 : Abacus for (a)  and (b)  as function of the ratio . 

 

 In order to quantify the anisotropy  at the observation point, a set of EnKF experiments were carried 

out for  and leads to the construction of an abacus Fig. 5-a. Similarly, an abacus was achieved to 

quantify the reduction of the variance error  at the observation point (Fig. 5-b).  Globally, the error 

variance reduction and the anisotropy decrease when the observation error increases. A linear regression in 

logarithmic scale leads to : 

 , (9) 

 Away from the observation point,  and  are derived from the analytical expressions (4) and 

(5) :  

 , (10)  
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  (11) 

 Thus for any observation error variance , the impact of the assimilation can be estimated using Eqs. 

(9-11). The covariance function is fully described for all  by  and  and the asymptotic 

background error covariance matrix  can be built without integrating the EnKF algorithm.  Finally this 

matrix is to be used with the BLUE algorithm as described in Section 3.2 to emulate an EnKF with a reduced 

computationnal cost, consistently with the real-time analysis constraints for flood forecasting. 

4. CONCLUSION 

This study describes how the evolution of the background error covariance matrix with an EnKF algorithm 

provides the optimal matrix for the assimilation system with a diffusive flood wave propagation model and 

steady observation network.  The resulting correlation function at the observation point is anisotropic as the 

assimilation and propagation steps tend to shorten the correlation length-scale downstream of the observation 

point.  The anisotropy introduced at the assimilation cycle  has an impact on cycle  and the dynamics 

of the covariance matrix should be taken into account.  The evolved covariance matrix from EnKF can be 

used as an invariant matrix.  This approach leads to the same result as the EnKF but with a much reduced 

computational cost, allowing for the use of DA for real-time flood forecasting.  Finally the anisotropy in the 

correlation length as well as the reduction of the error variance resulting from the EnKF assimilation were 

described by abacus, as linear functions of the observation error variance.  Thereby, once the abacus are 

built, the background error covariance matrix is fully described and the emulation of the EnKF can be 

achieved for other observation networks with any observation error variance.  The solution for building the 

background error covariance matrix using prescribed anisotropic correlation lengths and variances is not 

developed in this paper.  The use of a diffusion equation to do so is described in Weaver and Mirouze [6] and 

will be applied to the present study in further work. 
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