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Non-convex regularization in remote sensing
Devis Tuia Senior Member, IEEE, Remi Flamary, Michel Barlaud,

Abstract— In this paper, we study the effect of different
regularizers and their implications in high dimensional image
classification and sparse linear unmixing. Although kernelization
or sparse methods are globally accepted solutions for processing
data in high dimensions, we present here a study on the impact
of the form of regularization used and its parametrization. We
consider regularization via traditional squared (`2) and sparsity-
promoting (`1) norms, as well as more unconventional nonconvex
regularizers (`p and Log Sum Penalty). We compare their
properties and advantages on several classification and linear
unmixing tasks and provide advices on the choice of the best
regularizer for the problem at hand. Finally, we also provide a
fully functional toolbox for the community1.

Index Terms— Hyperspectral, sparsity, regularization, remote
sensing, non-convex, classification, unmixing.

I. INTRODUCTION

Remote sensing image processing [1] is a fast moving area
of science. Data acquired from satellite or airborne sensors
and converted into useful information (land cover maps,
target maps, mineral compositions, biophysical parameters)
have nowadays entered many applicative fields: efficient and
effective methods for such conversion are therefore needed.
This is particularly true for data sources such as hyperspectral
and very high resolution images, whose data volume is big
and structure is complex: for this reason many traditional
methods perform poorly when confronted to this type of
data. The problem is even more exhacerbated when dealing
with multi-source and mult-imodal data, representing different
views of the land being studied (different frequencies, different
seasons, angles, ...). This created the need for more advanced
techniques, often based on statistical learning [2].

Among such methodologies, regularized methods are cer-
tainly the most successful. Using a regularizer imposes some
constraints on the class of functions to be preferred during the
optimization of the model and can thus be beneficial if we
know what these properties are. The more often, regulariz-
ers are used to favour simpler functions over very complex
ones, in order to avoid overfitting of the training data: in
classification, the support vector machine uses this form of
regularization [3], [4], while in regression examples can be
found in kernel ridge regression or Gaussian processes [5].
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But smoothness-promoting regularizers are not the only
ones that can be used: depending on the properties one
wants to promote, other choices are becoming more and
more popular. A first success story is the use of Laplacian
regularization [6]: by enforcing smoothness in the local
structure of the data, one can promote the fact that points that
are similar in the input space must have a similar decision
function (Laplacian SVM [7], [8] and dictionary-based
methods [9], [10]) or be projected close after a feature
extraction step (Laplacian eigenmaps [11] and manifold
alignment [12]). Another popular property to be enforced, on
which we will focus the rest of this paper, is sparsity [13].
Sparse models have only a part of the initial coefficients
which is active (i.e. non-zero) and are thus compact. This
is desirable in classification when the dimensionality of the
data is very high (e.g. when adding many spatial filters [14],
[15] or using convolutional neural networks [16], [17]) or
in sparse coding when we need to find a relevant dictionary
to express the data [18]. Even though non-sparse models
can work well in terms of overall accuracy, they still store
information about the training samples to be used at test time:
if such information is very high dimensional and the number
of training samples is important, the memory requirements,
the model complexity and – as a consequence – the execution
time are strongly affected. Therefore, when processing next
generation, large data using models generating millions of
features [19], [20], sparsity is very much needed to make
models portable, while remaining accurate. For this reason,
sparsity has been extensively used in i) spectral unmixing [21],
where a large variety of algorithms is deployed to select
endmembers as a small fraction of the existing data [18],
[22], [23], ii) image classification, where sparsity is promoted
to have portable models either at the level of the samples
used in reconstruction-based methods [24], [25] or in feature
selection schemes [15], [26], [27] iii) and in more focused
applications such as 3-D reconstruction from SAR [28], phase
estimation [29] or pansharpening [30].

A popular approach to recover sparse features is to solve
a convex optimization problem involving the `1 norm (or
Lasso) regularization [31]–[33]. Proximal splitting methods
have been shown to be highly effective in solving sparsity-
constrained problems [34]–[36]. The Lasso formulation based
on the penalty on the `1 norm of the model has been shown to
be an efficient shrinkage and sparse model selection method in
regression [37]–[39]. However, the Lasso regularizer is known
to promote biased estimators leading to suboptimal classifica-
tion performances when strong sparsity is promoted [40], [41].
A way out of this dilemma between sparsity and performance
is to re-train a classifier, this time non-sparse, after the feature
selection has been performed with Lasso [15]. Such scheme
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works, but at the price of training a second model, thus leading
to extra computational effort and to the risk of suboptimal
solutions, since we are training a model with the features that
were considered optimal by another. In unmixing, synthetic
examples also show that the Lasso regularization is not the
one leading to the best abundance estimation [42].

In recent years, there has been a trend in the study of
unbiased sparse regularizers. These regularizers, typically the
`0, `q and Log Sum Penalty (LSP [40]), can solve the
dilemma between sparsity and performance, but are non-
convex and therefore cannot be solved by known off-the-
shelf convex optimization tools. Therefore, such regularizers
have until now received little attention in the remote sensing
community. A handful of papers using `q norm are found
in the field of spectral unmixing [42]–[44] where authors
consider nonnegatrive matrix factorization solutions; in the
modelling of electromagnetic induction responses, where the
model parameters were estimated by regularized least squares
estimation [45]; in feature extraction using deconvolutional
networks [46] and in structured prediction, where authors use a
non-convex sparse classifier to provide posterior probabilities
to be used in a graph cut model [47]. In all these studies,
the non-convex regularizer outperformed the Lasso, while still
providing sparse solutions.

In this paper, we give a critical explanation and theoretical
motivations for the success of regularized classification, with
a focus on non-convex methods. By comparing it with other
traditional regularizers (ridge `2 and Lasso `1), we advocate
the use of non-convex regularization in remote sensing image
processing tasks: non-convex optimization marries the advan-
tages of accuracy and sparsity in a single model, without the
need of unbiasing in two steps or reduce the level of sparsity
to increase performance. We also provide a freely available
toolbox for the interested readers that would like to enter this
growing field of investigation.

The reminder of this paper is as follows: in Section II, we
present a general framework for regularized remote sensing
image processing and discuss different forms of convex and
non-convex regularization. We will also present the optimiza-
tion algorithm proposed. Then, in Section III we apply the
proposed non-convex regularizers to the problem of multi- and
hyper-spectral image classification and therefore present the
specific data term for classification and study it in synthetic
and real examples. In Section IV we apply our proposed
framework to the problem of linear unmixing, present the
specific data term for unmixing and study the behaviour of
the different regularizers in simulated examples involving true
spectra from the USGS library. Section V concludes the paper.

II. OPTIMIZATION AND NON CONVEX REGULARIZATION

In this Section, we give an intuitive explanation of regular-
ized models. We first introduce the general problem of regu-
larization and then explore convex and non-convex regulariza-
tion schemes, with a focus on sparsity-inducing regularizers.
Finally, we present the optimization algorithms to solve non-
convex regularization, with accent put on proximal splitting
methods such as GIST [48].

TABLE I
DEFINITION OF THE REGULARIZATION TERMS CONSIDERED

Regularization term g(|wk|)
Ridge, `2 norm |wk|2
Lasso, `1 norm |wk|
Log sum penalty (LSP) log(|wk|/θ + 1)
`p with 0 < p < 1 |wk|p

−2 −1 0 1 2

wk

0

1

2

g
(|w

k
|)

Regularization functions g(·)
`2

`1

Log sum penalty
`p with p = 1/2

Fig. 1. Illustration of the regularization terms g(·). Note that both `2 and
`1 regularizations are convex and that log sum penalty and `p with p = 1/2
are concave on their positive orthant.

A. Optimization problem

Regularized models address the following optimization
problem:

min
w∈Rd

L(w) + λR(w) (1)

where L(·) is a smooth function (Lipschitz gradient), λ >
0 is a regularization parameter and R(·) is a regularization
function. This kind of problem is extremely common in data
mining, denoising and parameter estimation.
L(·) is often an empirical loss that measures the discrep-

ancy between a model w and a dataset containing real life
observations.

The regularization term R(·) is added to the optimization
problem in order to promote a simple model, which has been
shown to lead to a better estimation [49]. All the regularization
terms discussed in this work are of the form :

R(w) =
∑
k

g(|wk|) (2)

where g is a monotonically increasing function. This means
that the complexity of the model w can be expressed as a sum
of the complexity of each feature k in the model.

The specific form of the regularizer will change the assump-
tions made on the model. In the following, we discuss several
classes of regularizers of increasing complexity: differentiable,
non-differentiable (i.e. sparsity inducing) and finally both non-
differentiable and non-convex. A summary of all the regular-
ization terms investigated in this work is given in Table I,
along with an illustration of the regularization as a function
of the value of the coefficient wk (Fig. 1).

B. Non-sparse regularization

One of the most common regularizers is the square `2
norm of model w, i.e., R(w) = ‖w‖2 (g(·) = (·)2). This
regularization will penalize large values in the vector w but
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Fig. 2. Illustration of gradients and subgradients on a differentiable `2 (left)
and non-differentiable `1 (right) function.

is isotropic, i.e. it will not promote a given direction for
the vector w. This regularization term is also known as
`2, quadratic or ridge regularization and is commonly used
in linear regression and classification. For instance, logistic
regression is often regularized with a quadratic term. Also
note that Support Vector Machine are regularized using the `2
norm in the Reproducing Kernel Hilbert Space of the form
R(w) = w>Kw [50].

C. Sparsity promoting regularization

In some cases, not all the features or observations are of
interest for the model. In order to get a better estimation, one
wants the vector w to be sparse, i.e. to have several compo-
nents exactly 0. For linear prediction, sparsity in the model
w implies that not all features are used for the prediction2.
This means that the features showing a non-zero value in wk
are then “selected”. Similarly, when estimating a mixture one
can suppose that only few materials are present, which again
implies sparsity of the abundance coefficients.

In order to promote sparsity in w one needs to use a
regularization term that increases when the number of active
component grows. The obvious choice is to use the `0 pseudo-
norm that returns directly the number of non-zero coefficients
in w. Nevertheless, the `0 term is non-convex and non-
differentiable, and cannot be optimized exactly unless all the
possible subsets are tested. Despite recent works aiming at
solving directly this problem via discrete optimization [51],
this approach is still computationally impossible even for
medium-sized problems. Greedy optimization methods have
been proposed to solve this kind of optimization problem and
have lead to efficient algorithms such as Orthogonal Matching
Pursuit (OMP) [52] or Orthogonal Least Square (OLS) [53].
However, one of the most common approaches to promote
sparsity without recurring to the `0 regularizer is to use the
`1 norm instead. This approach, also known as the Lasso in
linear regression, has been widely used in compressed sensing
in order to estimate with precision a few component in a large
sparse vector.

Now we discuss the intuition why using a regularization
term such as `1 promotes sparsity. The reason behind the
sparsity of the `1 norm lies in the non-differentiability at 0
shown in Fig. 1 (dashed blue line). For the sake of readability,

2Note that zero coefficients might happen also in the `2 solution, but the
regularizer itself does not promote their appearence.

we will suppose here that R(·) is convex, but the intuition
is the same and the results can be generalized to the non-
convex functions presented in the next section. For a more
illustrative example we use a 1D comparison between the `2
and `1 regularizers (Fig. 2).

- When both the data and regularization term are differen-
tiable, a stationary point w? has the following property:

∇L(w?) + λ∇R(w?) = 0. (3)

In other words, the gradients of both functions have
to cancel themselves exactly. This is true for the `2
regularizer everywhere, but also for the `1, with the
exception of wk = 0. If we consider the `2 regularizer as
an example (left plot in Fig. 2), we see that each point
has a specific gradient, corresponding to the tangent to
each point (e.g. the red dashed line). The stationary point
is reached in this case for wk = 0, as given by the black
line in the left plot of Fig. 2.

- When the second term in Eq (3) is not differentiable
(as in the `1 case at 0 presented in the right plot of
Fig. 2), the gradient is not unique anymore and one has to
use the sub-gradients and sub-differentials. For a convex
function R(·) a sub-gradient at wt is a vector x such that
R(w) ≥ x>(w −wt) + R(wt), i.e. it is the slope of a
linear function that remains below the function. In 1D,
a sub-gradient defines a line touching the function at the
non-differentiable point (in the case of Fig. 2, at 0), but
stays below the function everywhere else, e.g. the black
and green dotted-dash lines in Fig. 2 (right). The sub-
differential ∂R(wt) is the set of all the sub-gradients that
respect the minoration relation above. The sub-differential
is illustrated in Fig. 2, by the the area in light blue, which
contains all possible solutions.
Now the optimality constraints cannot rely on equality
since the sub-gradient is not unique, which leads to the
following optimality condition

0 ∈ ∇L(w?) + λ∂R(w?) (4)

This is very interesting in our case because this condition
is much easier to satisfy than Eq. (3). Indeed, we just need
to have a single sub-gradient in the whole sub-differential
∂R(·) that can cancel the gradient ∇L(·). In other words,
only one of the possible straight lines in the blue area is
needed to cancel the gradient, thus making the chances
for a null coefficient much higher. For instance, when
using the `1 regularization, the sub-differential of variable
wi in 0 is the set [−λ, λ]. When λ becomes large enough
it is larger than all the components of the gradient ∇L(·)
and the only solution verifying the conditions is the null
vector 0.

The `1 regularization has been largely studied. Because it
is convex meaning it avoids the problem of local minima, and
many efficient optimization procedures exists to solve it (e.g.
LARS [54], Forward Backward Splitting [55]). But the sparsity
of the solution using `1 regularization often comes with a cost
in term of generalization. While theoretical studies show that
under some constraint the Lasso can recover the true relevant
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Fig. 3. Example for a 2-class toy example with 2 discriminant features
and 18 noisy features. The regularization parameter of each method has been
chosen as the minimal value that leads to the correct sparsity with only 2
features selected.

variables and their sign, the solution obtained will be biased
toward 0 [56]. Figure 3 illustrates the bias in a two-class
toy dataset: the `1 decision function (red line) is biased with
respect to the Bayes decision function (blue line). In this case,
the bias corresponds to a rotation of the separating hyperplane.
In practice, one can deal with this bias by estimating again the
model on selected subset of variables using an isotropic norm
(e.g. `2) [15], but this requires to solve again an optimization
problem. The approach we propose in this paper is to use a
non-convex regularization term that will still promote sparsity,
while minimizing the aforementioned bias. To this end, we
present non-convex regularization in the next section.

D. Non-convex regularization

In order to promote more sparsity while reducing the bias,
several works have looked at non-convex, yet continuous reg-
ularization. Such regularizers have been proposed for instance
in statistical estimation [57], compressed sensing [40] or in
machine learning [41]. Popular examples are the Smoothly
Clipped Absolute Deviation (SCAD) [57], the Minimax Con-
cave Penalty (MCP) [58] and the Log Sum Penalty (LSP)
[40] considered below (see [48] for more examples). In the
following we will investigate two of them in more detail: `p
pseudo-norm with p = 1

2 and LSP, both also displayed in
Figure 1.

All the non-convex regularization above share some par-
ticular characteristics that make them of interest in our case.
First (and as the `0 pseudo-norm and `1 norm) they all have a
non-differentiability in 0, which – as we have seen in the
previous section – promotes sparsity. Second they are all
concave in their positive orthant, which limits the bias because
their gradient will decrease for large values of wi limiting the
shrinkage (as compared to the `1 norm, whose gradient for
wi 6= 0 is constant). Intuitively, this means that with a non-
convex regularization it will become more difficult for large

coefficients to be shrinked toward 0, because their gradient is
small. On the contrary, the `1 norm will treat all coefficients
equally and apply the same attraction to the stationary point to
all of them. The decision functions for the LSP and `p norms
are shown in Fig. 3 and are much closer to the actual (true)
Bayes decision function.

E. Optimization algorithms

Thanks to the differentiability of the L(·) term, the op-
timization problem can be solved using proximal splitting
methods [55]. The convergence of those algorithms to a global
minimum are well studied in the convex case. For non-
convex regularization, recent works have proved that proximal
methods can be used with non-convex regularizers when a
simple closed form solution of the proximity operator for
the regularization can be computed [48]. Recent works have
studied the convergence of proximal methods with non-convex
regularization and proved convergence to a local stationnary
point for a large family of loss functions [59].

In this work, we used the General Iterative Shrinkage
and Thresholding (GIST) algorithm proposed in [48]. This
approach is a first order method that consists in iteratively
linearizing L(·) in order to solve very simple proximal oper-
ators at each iteration. At each iteration t + 1 one computes
the model update wt+1 by solving

min
w

∇L(wt)>(w −wt) + λR(w) +
µ

2
‖w −wt||22. (5)

When µ is a Lipschitz constant of L(·), the cost function above
is a majorization of L(·) + λR(·) which ensures a decrease
of the objective function at each iteration. Problem (5) can be
reformulated as a proximity operator

proxλR(v) = argmin
w

λR(w) +
µ

2
‖w − vt‖22, (6)

where vt = wt − 1
µ∇L(wt) can be seen as a gradient

step w.r.t. L(·) followed by a proximal operator at each
iteration. Note that the efficiency of a proximal algorithm
depends on the existence of a simple closed form solution for
solving the proximity operator in Eq. (6). Luckily, there exists
numerous operators in the convex case (detailed list in [55])
and some non-convex proximal operator can be computed on
the regularization used in our work (see [48, Appendix 1] for
LSP and [60, Equ. 11] for `p with p = 1/2). Note that efficient
methods, which estimate the Hessian matrix [61], [62] exist, as
well as a wide range of methods based on DC programming,
which have shown to work very well in practice [62], [63] and
can handle the general case p ∈ (0, 1] for the `p pseudo-norm
(see [64] for an implementation).

Finally, when one wants to perform variable selection using
the `0 pseudo-norm as regularization, the exact solution of the
combinatorial problem is not always necessary. As mentioned
above, greedy optimization methods have been proposed to
solve this kind of optimization problem and have lead to
efficient algorithms such as Orthogonal Matching Pursuit
(OMP) [52] or Orthogonal Least Square (OLS) [53]. In this
paper, we won’t consider these methods in detail, but they
have been shown to perform well on least square minimization
problems.
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III. CLASSIFICATION WITH FEATURE SELECTION

In this section, we tackle the problem of sparse classifica-
tion. Through a toy example and a series of real data experi-
ments, we will study the interest of non convex regularization.

A. Model

The model we will consider in the experiments is a simple
linear classifier of the form f(x) = w>x+ b where w ∈ Rd
is the normal vector to the separating hyperplane and b is a
bias term. In the binary case (yi ∈ [−1; 1]), the estimation is
performed by solving the following regularized optimization
problem:

min
w,b

1

n

n∑
i=1

L(yi, f(xi)) +R(w), (7)

where R(w) is one of the regularizers in Table I and
L(yi, f(xi)) is a classification loss that measures the dis-
crepancy between the prediction f(xi) and the true label yi.
Hereafter, we will use the squared hinge loss:

L(yi, f(xi)) = max(0, 1− yif(xi))2.
When dealing with multi-class problems, we use a One-

Against-All procedure, i.e. we learn one linear function fk(·)
per class k and then predict the final class for a given observed
pixel x as the solution of argmink fk(x). In practice, this
leads to an optimization problem similar to Eq. (7), where
we need to estimate a matrix W, containing the coefficients
per each class. The number of coefficients to be estimated
is therefore the size d of the input space multiplied by the
number of classes C.

B. Toy example

First we consider in detail the toy example in Fig. 3: the data
considered are 20-dimensional, where the first two dimensions
are discriminative (they correspond to those plotted in Fig. 3),
while the other are not (they are generated as Gaussian noise).
The correct solution is therefore to assign non zero coefficients
to the two discriminative features and wk = 0 for all the
others.

Figure 3 show the classifiers estimated for the smallest
value of the regularization term λ, which leads to the correct
sparsity level (2 features selected). This ensures that we have
selected the proper components, while minimizing the bias
for all methods. This also illustrates that the `1 classifier
has a stronger bias (i.e. provides a decision function further
away from the optimal Bayes classifier) than the classifiers
regularized by non-convex functions.

Let’s now focus on the effect of the regularization term
and of its strength, defined by the regularization parameter
λ in Eq. (7). Figure 4 illustrates a regularization path, i.e.,
all the solutions obtained by increasing the regularization
parameter λ3. Each line corresponds to one input variable

3A “regularization path” for the Lasso is generally computed using ho-
motopy algorithms [65]. However, experiments show that the computational
complexity of the complete Lasso path remains high for high-dimensional
data. Therefore, in our experiments we used an approximate path (i.e., a
discrete sampling of λ values along the path).
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Fig. 4. Regularization paths for the toy example in Fig. 3. Each line
corresponds to the coefficients wk attributed to each feature along the different
values of λ. The best fit is met for each regularizer at the black vertical line,
where all coefficients but two are 0. The unbiased Bayes classifier coefficients
(the correct coefficients) are represented by the horizontal dashed lines.

and those with the largest coefficients (and in color) are the
discriminative ones. Considering the `2 regularization (top left
panel in Fig. 4), no sparsity is achieved and, even if the two
correct features have the largest coefficients, the solution is
not compact. The `1 solution (top right panel) shows a correct
sparse solution for λ = 10−1 (vertical black line, where all
the coefficients but two are 0), but the smallest coefficient is
biased (it is smaller than expected by the Bayes classifier,
represented by the horizontal dashed lines). The two non-
convex regularizers (bottom line of Fig. 4) show the correct
features selected, but a smaller bias: the coefficient retrieved
are closer to the optimal ones of the Bayes classifier. Moreover,
the non zero coefficients stay close to the correct values for a
wider set of regularization parameters and then drop directly
to zero: this means that the non-convex model either has
not enough features to train or has little feature with the
right coefficients, contrarily to the `1 that can retrieve sparse
solution with wrong coefficients, as it can be seen in the part
to the right of the vertical black line of the `1 regularization
path.

C. Remote sensing images

Data. The real datasets considered are three very high resolu-
tion remote sensing images.

1) THETFORD MINES. The first dataset is acquired over
the Thetford mines site in Québec, Canada and contains
two data sources: a VHR color image (three channels,
red-green-blue) at 20 cm resolution and a long wave
infrared (LWIR, 84 channels) hyperspectral image at
approximatively 1 m resolution4. The LWIR images are
downsampled by a factor 5, to match the resolution of

4The data were proposed as the Data Fusion Contest 2014 [66] and
are available on the IADF TC website for download http://www.grss-
ieee.org/community/technical-committees/data-fusion/

http://www.grss-ieee.org/community/technical--committees/data--fusion/
http://www.grss-ieee.org/community/technical--committees/data--fusion/
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(a) RGB (b) LWIR band 1

(c) GT training (d) GT test
Fig. 5. The THETFORD MINES 2014 dataset used in the classification
experiments, along with its labels.

the RGB data, leading to a (4386×3769×87) datacube.
The RGB composite, band 1 of the LWIR data and the
train / test ground truths are provided in Fig. 5.

2) HOUSTON. The second image is a CASI image ac-
quired over Houston with 144 spectral bands at 2.5m
resolution. A field survey is also available (14‘703
labeled pixels, divided in 14 land use classes). A LiDAR
DSM was also available and was used as an additional
feature5. The CASI image was corrected with histogram
matching for a large shadowed part on the right side (as
in [27]) and the DSM was detrended by a 3m trend on
the left-right direction. Image, DSM and ground truth
are illustrated in Fig. 6.

3) ZURICH SUMMER. The third dataset is a series of 20
QuickBird images acquired over the city of Zurich,
Switzerland, in August 20026. The data have been
pansharpened at 0.6 m spatial resolution and a dense
ground truth is provided for each image. Eight classes
are depicted: buildings, roads, railway, water, swimming
pools, trees, meadows and bare soil. More information
on the data can be found in [68]. To reduce compu-
tational complexity, we extracted a set of superpixels
using the Felzenszwalb algorithm [69], which reduced
the number of samples from ∼ 106 pixels per image to a
few thousands. An example of the superpixels extracted
on image tile #3 is given in Fig. 7.

Setup. For all datasets, contextual features were added to

5The data were proposed as the Data Fusion Contest 2013 [67] and
are available on the IADF TC website for download http://www.grss-
ieee.org/community/technical-committees/data-fusion/

6The dataset is freely available at https://sites.google.com/site/
michelevolpiresearch/data/zurich-dataset
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Fig. 6. The HOUSTON dataset used in the classification experiments: (top)
true color representation of the hyperspectral image (144 bands); (middle):
detrended LiDAR DSM; (bottom) labeled samples (all the available ones, in
15 classes).

Fig. 7. Example on tile #3 of the superpixels extracted by the Felzenszwalb
algorithm [69].

the spectral bands, in order to improve the geometric quality
of classification [14]: morphological and texture filters were
added, following the list in [15]. Each image was processed
to extract the most effective filters for its processing:
• For the THETFORD MINES dataset, the filters were ex-

tracted from the RGB image and from a normalized
ratio between the red band and the average of the LWIR
bands (following the strategy of the winners of the 2014
Data Fusion Contest [66]), which approaches a vegetation
index. Given the extremely high resolution of the dataset,
the filters were computed with the size range {7, ... 23},
leading to 100 spatial features.

• For the HOUSTON case, the filters were calculated on
both the 3 first principal components projections extracted
from the hyperspectral image and the DSM. Given the
smaller resolution of this dataset, the convolution sizes of
the local filters are in the range {3, ..., 15} pixels. This
leads to 240 spatial features.

• For the ZURICH SUMMER dataset spatial filters were
computed directly on the four spectral bands, plus the
NDVI and the NDWI indices. Then, average, minimum,
maximum and standard deviation values per superpixel
were extracted as feature values. Since the spatial reso-
lution is comparable to the one of the HOUSTON dataset,
the same sizes of convolution filters are used, leading to
a total of 360 spatial features.

The joint spatial-spectral input space is obtained by stacking

http://www.grss-ieee.org/community/technical--committees/data--fusion/
http://www.grss-ieee.org/community/technical--committees/data--fusion/
https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset/
https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset/
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the original images to the spatial filters above. It is therefore
of dimension 188 in the THETFORD MINES data, 384 in the
HOUSTON data and 366 in the ZURICH SUMMER case.

Regarding the classifier, we considered the linear classifier
of Eq. (7) with a squared hinge loss:
• In the THETFORD MINES case, we use 5000 labeled

pixels per class. Given the spatial resolution of the image
and the 568‘242 labeled points available in the training
ground truth, this only represents approximatively 5%
of the labeled pixels in the training image. For test,
we use the entire test ground truth, which is spatially
disconnected to the training one (except for the class
‘soil’, see Fig. 5) and carries 1.5 million labeled pixels.

• In the HOUSTON case, we also proceed with pixel
classification. All the models are trained with 60 labeled
pixels per class, randomly selected, and all the remaining
labeled pixels are considered as the test set. We report
performances on the entire test set provided in the Data
Fusion contest 2013, which is spatially disconnected from
the training set (Fig. 6).

• For the ZURICH SUMMER data, we deal with superpixels
and 20 separate images. We used images #1-15 to train
the classifier and then tested on the five remaining images
(Fig. 8). Given the complexity of the task (not all the
images have all the classes and the urban fabrics depicted
vary from scene to scene), we used 90% of the available
superpixels in the 15 training images, which resulted in
30‘649 superpixels. All the labeled superpixels in the test
images (8‘960 superpixels) are used as test set.

Regarding the regularizers, we compare the four regularizers
of Tab. I (`1, `2, Log sum penalty and `p with p = 1/2)
and study the joint behavior of accuracy and sparsity along
a regularization path, i.e. for different values of λ: below
λ = {1e−5, . . . , 1e−1}, with 18 steps. For each step, the
experiment was repeated ten times with different train/test sets
(each run with the same training samples for all regularizers)
and the average Kappa and number of active coefficients is
reported in Fig 9. Also note that we report the total number of
coefficients in the multiclass case, wj,k, which is equal to the
number of features multiplied by the number of classes, plus
one additional feature per class (bias term). In total, the model
estimates 1‘504 coefficients in the case of the THETFORD
MINES data, while for the HOUSTON and ZURICH SUMMER
cases it deals with 5‘775 and 3‘294 coefficients, respectively.
Results. The results are reported in Fig. 9, comparing the
regularization paths for the four regularizers and the three
datasets presented above. The graphs can be read as a ROC
curve: the most desirable situation would be a classifier with
both accuracy and little active features, i.e., a score close to
the top-left corner. The `2 model shows no variation on the
sparsity axis (all the coefficients are active) and very little
variability on the accuracy one: it is therefore represented
by a single green dot. It is remarkably accurate, but is the
less compact model, since it has all the coefficients active.
Employing the `1 regularizer (red line), as it is mainly done in
the literature of sparse classification, achieves a sharp decrease
in the number of active coefficients, but at the price of a

steep decrease in performances of the classifier. When using
100 active coefficients, the `1 model suffers of a 20% drop
in performance, a trend is observed in all the experiments
reported.

Using the non-convex regularizers provides the best of both
worlds: the `p regularizer (black line with ‘�’ markers) in
particular, but also the Log sum penalty regularizer (blue line
with ‘×’ markers) achieve improvements of about 15-20%
with respect to the `1 model. More stable results along the
regularization path are observed: the non-convex regularizers
are less biased than the `1 norm in classification and achieve
competitive performances with respect to the (non-sparse) `2
model with a fraction of the features (around 1-2%). Note
that the models of all experiments were initialized with the
0 vector.This is sensible for the non-convex problem, since
all the regularization discussed in the paper (even `2) tend
to shrink the model toward this point. By initializing at 0 for
non-convex regularization, we simply promote a local solution
not too far from this neutral point. In other words one can see
the initialization as an additional regularization. Moreover the
experiments show that the non-convexity leads to state-of-the-
art performance.

IV. SPARSE LINEAR UNMIXING

In this section we express the sparse linear unmixing
problem in the same optimization framework as Eq. (7). We
discuss the advantage of using non-convex optimization. The
performance of the `2, `1 and the non convex `p and LSP
regularization terms are then compared on a simulated example
using real reflectance spectra (as in [18]).

A. Model

Sparse linear unmixing can be expressed as the following
optimization problem

min
α≥0

1

2
‖y −Dα‖22 + λR(α), (8)

where y is a noisy spectrum observed and D is a matrix
containing a dictionary of spectra (typically a spectral library).
This formulation adds a positivity constraint to the vector α
w.r.t. problem (7). In practice, (8) can be reformulated as the
following unconstrained optimization problem

min
α

1

2
‖y −Dα‖22 + λR(α) + ıα≥0, (9)

where ıα≥0 is the indicator function that has value +∞ when
one of the component of α is > 0 and value 0 when it is
in the positive orthant. By supposing that ıα≥0 is equivalent
to λıα≥0,∀λ > 0, we can gather the last two terms into
R̃(α) = R(α) + ıα≥0, thus leading to a problem similar
to Eq. (7). All the optimization procedures discussed above
can therefore be used for this reformulation, as long as the
proximal operator w.r.t. R̃(·) can be computed efficiently. The
proximal operator for all the regularization terms in Table I
with additional positivity constraints can be obtained by an
orthogonal projection on the positive orthant followed by the
proximal of R :

proxλR+ıα≥0
(v) = proxλR(max(v, 0)), (10)
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Fig. 8. The five test images of the Zurich Summer dataset (from left to right, tiles #16 to #20), along with their ground truth.
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Fig. 9. Performance (Kappa) vs. compactness (number of coefficients wj,k > 0) for the different regularizers in the THETFORD MINES, HOUSTON and
ZURICH SUMMER datasets.

where max(v, 0) is taken component-wise. This shows that
we can use the exact same algorithm as in the classification
experiments of Section III, since we have an efficient proximal
operator.

We know that when the solution of Eq. (8) the resulting α
must only have a few nonzero components: one might want to
promote more sparsity with a non-differentiable regularization
term. Therefore, in the following we investigate the use of
non-convex regularization for linear unmixing. We focus on
problem (8), but a large part of the unmixing literature works
with an additional constraint of sum to 1 for the α coefficients.
This additional prior can sometimes reflect a physical measure
and adds some information to the optimization problem. In our
framework, this constraint can make the direct computation
of the proximal operator non-trivial. In this case it is more
interesting to use multiple splitting instead of one and to use
other algorithms such as generalized FBS [70] or ADMM, that
has already been used for remote sensing applications [71].

B. Numerical experiments

In the unmixing application we consider an example sim-
ulated using the USGS spectral library7: from the library,
we extract 23 spectra corresponding to different materials
(by keeping spectra with less than 15◦ angular distance to
each other). Using these 23 base spectra, we simulate mixed

7The dataset can be downloaded from http://www.lx.it.pt/

˜bioucas/

pixels by creating random linear combinations of nact ≤ 23
endmembers. The random weight of the active components
are obtained using an uniform random generation in [0, 1]
(leading to weights that do not sum to 1). We then add to the
resulting signatures some Gaussian noise n ∼ N (0, σ2). For
each numerical experiments we solve the unmixing problem by
least squares with the four regularizers of Table I: `2, `1, `p and
LSP. An additional approach that consists in performing a hard
thresholding on the positive least square solution (so, the `2)
has also been investigated (named ‘LS+threshold’ hereafter).
As for the previous example on classification, we calculate the
unmixing performance on a regularization path, i.e. a series
of values of the regularization parameter λ in Eq. (8), with
λ = [10−5, ..., 103]. We assess the success of the unmixing
by the model error ‖α − αtrue‖2. We repeat the simulation
50 times, to account for different combination of the original
elements of the dictionary: all results reported are averages
over those 50 simulations.

First, we compare the different regularization schemes for
different noise levels (Figure 10). We set nact = 3 and report
the model error along the regularization path (varying λ) on
the top row of Figure 10. On the bottom row, we report
the model error as a function of the number of selected
components, again along the same regularization path. We
observe that the nonconvex strategies achieve the lowest errors
(triangle shaped markers) on low and medium noise levels,
but also that `p seems to be more robust to noise. The `1
norm also achieves good results, in particular in high noise

http://www.lx.it.pt/~bioucas/
http://www.lx.it.pt/~bioucas/
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Fig. 10. Linear unmixing results on the simulated hyperspectral dataset. Each column represetns a different noise level: (a) σ = 0.01 (b) σ = 0.05 and (c)
σ = 0.10. Model error ‖α− αtrue‖2 is plotted either as a function of the regularization parameter λ (top row) of of the number of active coefficients of
the final solution (bottom row). The marker show the best performances of each regularization strategy.

situations. Regarding the error achieved per level of sparsity
(represented in the bottom row of Fig. 10) , we observe that the
nonconvex regularizers achieve far better reconstruction errors,
in particular around the right number of active coefficient (here
nact = 3). On average, the best results are obtained by the
the LSP and `p regularization. Note that the `1 regularizer
needs a larger number of active component in order to achieve
good model reconstruction (of the order of 9 when the actual
number of coefficient is 3). The LS+threshold approach seem
to work well for component selection, but leads to an important
decrease in accuracy of the model.

In order to evaluate the ability of a method to estimate a
good model and select the good active components at the same
time, we run simulations with a fixed noise level σ = 0.05 but
for a varying number of true active components nact, from 1
to 23. In this configuration, we first find for all regularizations
the smallest λ that leads to the correct number of selected
component nsel = nact. The average model error as a function
of nact is reported in Figure 11(a). We can see that the
non-convex regularization leads to better performances when
the correct number of spectra is selected (compared to `1
and LS+threshold). In Figure 11(b) we report the number of
selected components as a function of the true number of active
components when the model error is minimal. We observe that
nonconvex regularization manages to both select the correct
components and estimate a good model when a small number
of components are active (nact ≤ 10), but also that it fails
(as `1 does) for large numbers of active components. This
result illustrates the fact that non-convex regularization is more
aggressive in term of sparsity and obviously performs best
when sparsity is truly needed.
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Fig. 11. Linear unmixing results on the simulated hyperspectral dataset for
increasing number of active spectra in the mixture: (a) model error, for the
best solution with the number of selected spectra closest to nact and (b)
number of selected spectra for the model with the lowest error.

V. CONCLUSIONS

In this paper, we presented a general framework for non-
convex regularization in remote sensing image processing.
We discussed different ways to promote sparsity and avoid
the bias when sparsity is required via the use of non-convex
regularizers. We applied the proposed regularization schemes
to problems of hyperspectral image classification and linear
unmixing: in all scenarios, we showed that non-convex reg-
ularization leads to the best performances when accounting
for both sparsity and quality of the final product. Non convex
regularizers promote compact solutions, but without the bias
(and the decrease in performance) related to nondifferentiable
convex norms such as the popular `1 norm.
Non convex regularization is a flexible and general framework
that can be applied to every regularized processing scheme:
keeping this in mind, we also provide a toolbox to the
community to apply non-convex regularization to a wider
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number of problems. The toolbox can now be accessed online
(see also the Appendix of this article for a description of the
toolbox).
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APPENDIX

A. Optimization toolbox

In order to promote the use of non-convex regularization
in the remote sensing community, we provide the reader with
a simple to use Matlab/Octave generic optimization toolbox.
The code will provide a generic solver (complete rewriting
of GIST) for problem (7) that is able to handle a number
of regularization terms (at least all the terms in Table I) and
any differentiable data fitting term L. We provide several
function for performing multiclass classification tasks such as
SVM, logistic regression and calibrated hinge loss. For linear
unmixing we provide the least square loss, but extension to
other possibly more robust data fitting terms can be performed
easily. For instance, performing unmixing with the more
robust Huber loss [72] would require the change of only
two lines in function ‘‘gist least.m’’, i.e. the compu-
tation of the Huber loss and its gradient. The toolbox can
now be accessed at https://github.com/rflamary/
nonconvex-optimization. It is freely available on
Github.com as a community project and we welcome con-
tributions.
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