
HAL Id: hal-01335854
https://hal.science/hal-01335854v1

Submitted on 23 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

THESARD: on The road to resiliencE in SoftwAre
defined networking thRough self-Diagnosis

Jose Manuel Sanchez Vilchez, Imen Grida Ben Yahia, Noel Crespi

To cite this version:
Jose Manuel Sanchez Vilchez, Imen Grida Ben Yahia, Noel Crespi. THESARD: on The road to
resiliencE in SoftwAre defined networking thRough self-Diagnosis. 2nd conference on Network Soft-
warization (Netsoft2016), Jun 2016, Seoul, South Korea. �hal-01335854�

https://hal.science/hal-01335854v1
https://hal.archives-ouvertes.fr

THESARD: on The road to resiliencE in SoftwAre-

defined networking thRough self-Diagnosis

José Manuel Sánchez, Imen Grida Ben Yahia

Orange Labs

Paris, France

Noël Crespi

Institut-Mines Télécom, Télécom SudParis, CNRS

UMR5157

Evry, France

Abstract—This demonstration presents THESARD, the

implementation of a self-diagnosis platform for SDN based

networks. This platform automates the diagnosis by building and

updating on-the-fly the fault propagation model of a streaming

application. Self-healing actions are also shown to illustrate the

recovery process for both the SDN underlying network and the

streaming application, once the root cause is identified via this

model.

I. INTRODUCTION

Software Defined Networking (SDN) promises flexibility and

elasticity on services through programmability and network

abstraction. However, two challenges arise in SDN: 1) the

resilience of the SDN controller, which becomes a single point

of failure, and 2) the dynamicity of the SDN infrastructure in

terms of continuous changes in the forwarding flows, network

topology and type of control (in-band and out-of-band). In this

paper, we propose THESARD, a self-diagnosis platform able

to cope with resiliency and dynamicity challenges in SDN.

The innovation of THESARD comes from two angles: 1) an

automated generation of the fault propagation model as well as

its update and 2) the identification of the root cause with finer

granularity based on this generated model. The self-healing

actions are also shown so to complete the feedback

management loop.

The structure of the paper is as follows: section II details the

THESARD architecture and section III details the goal of the

demo, its implementation environment, scenario and the

demonstrated uses cases.

II. THESARD ARCHITECTURE

THESARD platform is part of the management plane of the

SDN infrastructure. It is then technology-agnostic and

independent from the type of SDN controller in use. Indeed,

THESARD platform is independent from the southbound

interface and obtains a global view of the network topology

from the controller’s northbound interface. THESARD builds

on-the-fly and updates a fault propagation model and then

identifies the root cause of service and network resources

failures (with network component granularity) by exploiting

this model. THESARD is composed of three blocks (Fig. 1 in

yellow):

1) Wrapper and classifier block: an SDN application that

receives the network topology from the SDN controller

through its northbound interface in a JSON format and

provides as output with a machine-readable file that contains

the classified network elements: hosts, switches, logical ports,

control links, access links and inter switch links.

2) Self-Modeling block: it takes this machine-readable file

and generates the fault propagation model by instantiating and

assembling the templates of the discovered network elements.

The control links and the SDN controller are included in this

fault propagation model.

3) Root Cause analysis block: it pinpoints the root cause at a

finer-granularity (the faulty network element and its faulty

inner component) by propagating a set of network

observations through the generated fault propagation model.

Application

Plane

Bayesian

Networks

Fault

Propagation Model

Root Cause

Analysis

Management Plane

Data

Plane

Control

Plane

Network

Self-Modeling

network topology

(machine

readable)

Topology-Aware Self-Diagnosis block

Network Observations

Wrapper &

Classifier

OpenFlow

SDN Controller

REST

Templates

1

2

3

Figure 1. Simplified THESARD Architecture

III. DEMONSTRATION

THESARD platform ensures two levels of diagnosis based on

two approaches: 1) a topology-aware self-diagnosis approach

[1] to model and diagnose the dynamic software-defined

infrastructure and 2) a service-aware self-diagnosis approach

[2] to include on that model the overlying networking services

utilizing virtual resources (VNFs and virtual links) allocated

over the software-defined infrastructure, which was presented

to the current NetSoft2016 edition. The THESARD platform

in this demonstration enables the diagnosis of a streaming

application and the underlying resources of the software-

defined infrastructure involved in that streaming application.

Indeed, THESARD completes the self-healing control-loop

composed of detection, diagnosis, and recovery blocks to

automatically recover the video streaming application and the

SDN infrastructure, with recovery actions such as instantiating

on-the-fly the SDN controller when is faulty and restoring

faulty control and data links.

Steps of this demo: THESARD platform is based on three

key steps, shown in Figure 2 in red:

Step 1: Transformation of the network topology into a

machine-readable format containing the classified network

elements

Step 2: On-the-fly construction and continuous update of the

fault propagation model from the machine-readable format

and running applications. This model contains the network

nodes, their internal logical and physical components such as

ports or running applications to ensure a fine-granular

diagnosis.

Step 3: Root cause analysis with Bayesian networks to

calculate the probability of faulty networked elements with

component-level granularity by exploiting this generated fault

propagation model. The eventual recovery is based on the root

cause analysis.

Implementation Environment: The self-diagnosis

framework integrates different open source software packages.

The SDN controller is based on Floodlight [3] and the SDN

infrastructure is emulated with Mininet [4]. The Bayesian

Network algorithm is based on the Kevin Murphy’s Bayesian

Networks Toolbox [5], running in MATLAB [6]. We

implemented the Graphical User Interface (GUI) in Python

with the Qt software library [7]. The fault propagation model

is visualized in 3-D with UbiGraph [8], which allows for

visualizing the dynamic and interactive dependency graph

encompassing the interactions among SDN resources and their

components.

Demo scenario: The scenario of the demonstration is shown

in Figure 2. A new client demands the video content to the

streaming server (1), which starts sending it. However, for this

content to reach the client, the SDN controller must install the

necessary flows on the switches (2). The GUI monitors the

current network topology provided by the SDN controller in a

periodic basis and it classifies the network elements (3) into

different nodes (hosts, switches, and controllers) and links.

The self-modeling algorithm takes as input this list of

classified network elements, instantiates their templates, and

assembles them to generate the fault propagation model (4).

This model remains stable unless there are topological

changes, in which case the self-modeling block regenerates the

fault propagation model by incorporating the new elements.

Once a malfunction occurs, the root cause analysis block is

triggered to correlate the alarm of a faulty streaming service

with the state of the elements in the software-defined

infrastructure and updates the fault propagation model with

the root cause(s)(5), pinpointing the most probable root causes

i.e. a network node and its internal component (CPU, port,

card, application, etc.). Once the root cause is identified, the

GUI suggests a recovery action (6) based on the root cause

that will be validated by a human administrator (7) once is

proved this action re-establishes the streaming service.

Demonstrated use cases: We demonstrate the three

aforementioned steps with three use cases:

Case 1: Diagnosis and recovery of faults affecting several

streaming clients as consequence of a faulty SDN controller

application.

Case 2: diagnosis and recovery of faults affecting one

streaming client such as consequence of a single faulty data

link.

Case 3: update of the fault propagation model with new

network nodes.

Root Cause
Analysis

Self-Modeling
SDN

controller
Network
Topology

alarms/thresholds

Generation & update of fault
propagation model

Suggestion of
recovery
actions

Network
topology
Transformation

Network

Video Streaming services

Detection

Root-cause identification

Southbound
Interface

Northbound
Interface

clients
server

Validation
of Recovery

actions

Execution of
validated
recovery
actions

Graphical User
Interface

Root Cause Identification
(node and component)

Self-diagnosis

(1)

(2)

(3)

(4) (5)

(6)

(7)

Fault Propagation Model
Root-cause identification

Figure 2. Demo Scenario of the THESARD platform

A preview of THESARD platform is available in [10], where

the fault propagation is generated for different network

topologies and several faults are generated and recovered by

the self-healing system with a set of predefined recovery

actions. This demo was exhibited at Orange Labs Research

exhibition 2015, and it aroused the interested of many

different actors such as third-parties, network operators, or

vendors, as an enabler to ensure automated and intelligent

resilience in SDN.

REFERENCES

[1] J. Sanchez, I. Grida Ben Yahia, N. Crespi, “Self-Modeling Based
Diagnosis of Software-Defined Networks,” Workshop MISSION 2015 at 1st
IEEE Conference on Network Softwarization, London, 13-17 April 2015.

[2] J. Sanchez, I. Grida Ben Yahia, N. Crespi, “Self-Modeling based
Diagnosis of Services over Programmable Net-works,” 2nd IEEE Conference
on Network Softwarization, Seoul, Korea, 6-10 June 2016.

[3] “Floodlight OpenFlow Controller.” [Online]. Available:
http://www.projectfloodlight.org/floodlight/

[4] “Mininet: An Instant Virtual Network on your Laptop (or other PC)”
[Online]. Available: http://mininet.org

[5] Kevin Murphy’s Bayesian Networks Toolbox, MIT AI lab,200
Technology Square,Cambridge. Available: http://www.ai.mit.edu/˜
murphyk/Software/BNT/bnt.html
[6] MATLAB Release 2013A, The MathWorks, Inc., Natick, Massachusetts,
United States.

[7] “Qt software package for Python.” [Online]. Available:
http://www.qt.io/download/

[8] “UbiGraph 3-D graph representation tool.” [Online]. Available:
http://www.ubietylab.net/ubigraph/

[9] “VLC Media Player.” [Online]. Available: http://www.videolan.org/vlc/

[10] THESARD plaftorm. Available:
https://www.youtube.com/watch?v=xNudu48quRM

http://www.projectfloodlight.org/floodlight/
http://mininet.org/
http://www.ai.mit.edu/˜%20murphyk/Software/BNT/bnt.html
http://www.ai.mit.edu/˜%20murphyk/Software/BNT/bnt.html
http://www.qt.io/download/
http://www.ubietylab.net/ubigraph/
http://www.videolan.org/vlc/
https://www.youtube.com/watch?v=xNudu48quRM

