
HAL Id: hal-01335847
https://hal.science/hal-01335847

Submitted on 22 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Self-Modeling based Diagnosis of Services over
Programmable Networks

Jose Manuel Sanchez Vilchez, Imen Grida Ben Yahia, Noel Crespi

To cite this version:
Jose Manuel Sanchez Vilchez, Imen Grida Ben Yahia, Noel Crespi. Self-Modeling based Diagnosis of
Services over Programmable Networks. 2nd conference on Network Softwarization (Netsoft2016), Jun
2016, Seoul, South Korea. �hal-01335847�

https://hal.science/hal-01335847
https://hal.archives-ouvertes.fr

Self-Modeling based Diagnosis of Services over
Programmable Networks

José Manuel Sánchez, Imen Grida Ben Yahia

Orange Labs
Paris, France

Noël Crespi

Télécom SudParis, CNRS UMR5157

Evry, France

Abstract— In this paper, we propose a multi-layer self-diagnosis

framework for networking services within SDN and NFV

environments. The framework encompasses three main

contributions: 1) the definition of multi-layered templates to

identify what to supervise while taking into account the physical,

logical, virtual and service layers. These templates are also finer-

granular, extendable and machine-readable; 2) a self-modeling

module that takes as input these templates, instantiates them and

generates on-the-fly the diagnosis model that includes the

physical, logical, and the virtual dependencies of networking

services; 3) a service-aware root-cause analysis module that takes

into account the networking services’ views and their underlying

network resources observations within the aforementioned

layers. We also present extensive simulations to prove the fully

automated, finer granularity and reduced uncertainty of the root

cause of networking services failures and their underlying

network resources.

Keywords— self-modeling; self-diagnosis; Bayesian networks;

SDN; NFV; SDI; fault management; alarm correlation; fault-

isolation; fault-localization

I. INTRODUCTION

The advent of programmable networks, with SDN (Software-
Defined Networking) and NFV (Network Functions
Virtualization) is accelerating faster and faster the
transformation of current network leading to rethink network
and service management and operations.
SDN proposes to transition from network configurability to
network programmability through network abstractions, open
interfaces and the separation of control and data plane.
Meanwhile, NFV proposes to virtualize network functions. It
mainly aims to remove the vendor lock-in barrier and allows
networking services to be flexibly instantiated and scaled
according to network traffic demands at run-time.
SDN and NFV are thought to be “better together” by the IT
and telecommunication industry. Nevertheless, the
introduction of the SDN controller within the NFV is still
under discussion, evidenced by the lack of consensus on the
position of the SDN controller within the NFV framework [1].
Fault management operations particularly, emerge as
cornerstone to provide the SDN and NFV promises: In fact,
the SDN controller whether it is centralized or distributed is a
point of failure and thus its underlying network is impacted.
Moreover, networking services will rely on a dynamic
placement and migration of the virtual network functions as
well as an elastic usage of the compute, storage and

networking resources.
Therefore, in SDN and NFV, the high network dynamicity
provided by SDN becomes even higher when combined with
NFV, since the VNF can be scaled, instantiated, deleted, and
migrated. Thus, service dependencies from the underlying
resources are in a continuous change and need dynamic
management. In response to these challenges, we focus here
on the diagnosis as a key operation among others to ensure the
smooth functioning of networking services relying on SDN
and NFV principles.
The paper contribution is a self-diagnosis framework that is
relying on multi-layered and finer granular templates for
diagnosing the dynamic networking services within an SDN
and NFV environment. The Self-diagnosis framework
encompasses 1) the definition of multi-layered templates to
identify what to supervise while taking into account the
physical, logical, virtual and service layers. These templates
are also finer-granular, extendable and machine-readable; 2) a
self-modeling module that takes as input these templates,
instantiates them and generates on-the-fly the diagnosis model
that includes the physical, logical, and the virtual
dependencies of networking services; 3) a service-aware root-
cause analysis module that takes into account the networking
services’ views and their underlying network resources
observations within the aforementioned layers. The paper is
organized as follows. Section II summarizes the related work.
Section III overviews the self-diagnosis framework of
networking services and its principles modules. Section IV
details the self-modeling module. Section V details the root
cause analysis module. Section VI evaluates the self-diagnosis
framework and its performance. Section VII concludes the
paper and highlights the future work.

II. RELATED WORK

In this section, we first present the related work on model-
based self-diagnosis approaches in general and then we focus
on the related work of fault management defined for SDN and
NFV so far. We finally position our contributions with respect
to them.

A. Model-based self-diagnosis

Model-based self-diagnosis relies on a dependency graph
which indicates how faults propagate through the network and
eventually lead to service failures. In model-based self-
diagnosis approaches, a Root Cause Analysis algorithm
(RCA) exploits this dependency graph to calculate the root 978-1-4673-9486-4/16/$31.00 ©2016 IEEE

cause. However, in the state of the art, much more attention is
paid to the RCA algorithms in use, to the detriment of the
generation of the dependency graph, which in most cases, is
manually built from operational team’s knowledge. This
manual generation is valid for static network topologies and
for statically predefined services, but not for dynamic and
elastic networks such as those expected with SDN and NFV,
where the dependency graph must be continuously updated.
This mechanism is coined by Honkonnou et. al. in [6] as self-

modeling.
We propose to classify the model-based self-diagnosis
approaches into topology-aware and service-aware, which we
define hereafter.

Topology-aware approaches: Topology-aware approaches
build the dependency graph from the network topology and
this graph only considers how faults in network resources
could impact other network resources. The impact of faults in
network resources on services or clients is not then
considered. As examples, Steinder and Sethi [3] propose a
self-diagnosis approach for end-to-end services over bridged
networks, based on a self-modeling approach to build the
diagnosis model from the network topology. However, the
authors do not address the impact of the network faults on the
service layer. Bennacer et al. in [4], propose a self-diagnosis
approach for VPN-based services and utilize a self-modeling
approach that computes the dependencies among the physical
symptoms of each network node through statistical tests. They
proposed a hybrid RCA module based on the combination of
Bayesian Networks (BN) with Case-Based reasoning to reduce
the high diagnosis time and increase the low accuracy
provided by the BN algorithm. The impact of faulty nodes on
the VPN service was not addressed. In our previous work [2],
we proposed a self-diagnosis framework that generated on-
the-fly the dependency graph from the network topology and
the logical resources running on top of nodes. The impact of
faulty physical and logical nodes on services was not studied.
As a result, the diagnosis is focused on the entire network
topology and logical resources so the uncertainty on the root
cause is higher when the diagnosed network topology
becomes large.

Service-aware approaches: We define service-aware
approaches as an extension of topology-aware approaches in
order to take into account the impact of faulty network
resources on services as well as the clients using them. The
diagnosis can then focus on faults leading to service failures
and impacting on client experience. As examples, Bahl et. al.
propose a self-diagnosis algorithm for IT infrastructures [5],
based on a self-modeling approach that computes the service
dependencies in a given network topology when clients access
to some database in the IT infrastructure. The diagnosis
focuses on faults impacting the clients of the IT infrastructure.
Hounkonnou et al. propose a self-diagnosis approach for IMS
networks [6] based on a self-modeling approach that utilizes a
multi-layered model based on the four IMS layers. First, the
self-modeling approach builds the dependency graph from the

affected service and its underlying resources over a fixed
network topology, and then extends this graph with those
clients which service observations reduce the uncertainty on
the root cause.

B. Fault manangement in SDN and NFV

The existing fault management solutions for SDN are mostly
OpenFlow-based and only handle faults in the data plane.
Only few solutions focus on the control plane and especially
on the SDN controller in itself [7]. For instance, Fonseca et. al.
in [8] propose an Openflow-based approach to detect failures
on the SDN controller and use replication techniques to
transition to a back-up controller. However, it only considers
when the SDN controller is compromised, leaving out faults in
the rest of components in the network. There is a lack in multi-
layer diagnosis approaches covering control and data planes in
SDN, although some troubleshooting mechanisms exist such
as NICE [9] for testing OpenFlow applications, NDB [10] for
tracing packets, OFRewind [11] for finding invalid controller
actions and packet parsing errors, STS for analyzing software
bugs, or NetSight [12] for detecting forwarding loops.
Turchetti and Duaerte in [13] propose a failure detector for
SDN. However, the authors assume that the SDN controller
does not crash and only focus on faults in the data links.
Gheorghe et. al. [14] propose SDN-RADAR, a multi-agent
distributed network troubleshooting mechanism for SDN that
identifies faulty network links impacting user experience.
However, this approach only focuses on links in the data plane
and does not deal with large and dynamic network topologies.

In NFV, there are some management platforms [15] such as
Cloud4NFV or NetFATE. Miyazawa et. al. in [22] proposed a
fault detection mechanism based on Self-Organized Maps
(SOM) to detect failures in NFV-based services. The authors
propose a failure model to explain degradations in VNFs such
as network congestion and memory leaks. However, SOM
parameters are tuned manually and in advance in accordance
with the type of failure to detect. Another important aspect is
fault isolation, as identified by Esteves et. al. in [16] and
Chowdhury et. al. in [17], as an open research field, where
virtual resources are dynamically mapped over one common
physical infrastructure and faults may propagate among
networking services. With this concern, Schöller et. al. in [21]
propose an information model to ensure a resilient deployment
of VNF composing complex services in NFV where redundant
components are strategically placed to avoid cascade effects.
However, this approach does not ensure resilience in the
operational phase. In addition, none of these approaches for
NFV considers SDN as underlying architecture, so those do
not address the specific fault management and dynamicity
challenges of combined SDN and NFV infrastructures.

C. Positioning of our contributions

Our main contributions are presented and positioned hereafter:
Multi-layer self-diagnosis: We propose a multi-layer self-
diagnosis framework to diagnose networking services over
combined NFV and SDN environments, which to the best of
our knowledge has not been tackled before. In this paper, we

extend our previous work [2], by diagnosing and correlating
more layers i.e. virtual and services layers, while considering
their dynamic dependencies with the underlying logical and
physical resources. Our approach utilizes a probabilistic and
multi-layered dependency graph, like Bahl in [5] and
Hounkonnou in [6]. In our approach, this graph is adapted to
SDN and NFV specificities, and it covers the diagnosis of
physical, logical, virtual resources and the corresponding
networking services. Contrarily to Gheorghe in [14], this
multi-layer approach does not only diagnose faults in the data
plane links, but also the control links, the controller and its
inner components (ports, CPU, applications, VNFs, etc.).
Finer diagnosis granularity: Contrarily to the approaches
from Steinder in [3], Bennacer in [4], Bahl in [5] and
Hounkonnou in [6], which diagnose up to node level, we
propose a self-modeling approach that builds the diagnosis
model from a set of finer-grained templates, inspired by the
diagnosis approach of Kandula et. al. in [18] for enterprise
networks, based on templates. Nevertheless, our templates are
extendable and describe the inner dependencies of a given
network resource with respect to its inner components, which
it has not been done yet in SDN and NFV.
Reduced diagnosis uncertainty: we tackle this problem with
the service-aware approach we defined. This approach
correlates the service view with its underlying network states
in order to reduce the uncertainty in the root cause as it will be
described in section IV.
On-the-fly self-modeling: Contrarily to the approaches of
Bennacer in [4], Bahl in [5], Hounkonnou in [6], and
Gheorghe in [14] that diagnose static network topologies, we
propose a self-modeling approach to diagnose dynamic
network topologies and deployed services. To our knowledge,
this is the first time a self-modeling approach is applied to
SDN and NFV. Our self-modelling approach discovers the
dependencies in a deterministic manner and regenerates the
model on-the-fly with changes, unlike the self-modeling
approaches proposed by Bennacer in [4] and Bahl in [5],
which may have false positives as a result of an inappropriate
‘significance level’ parameter when calculating the
dependencies.

III. SELF-DIAGNOSIS FRAMEWORK FOR NETWORKING

SERVICES

In this section, we propose an overall view of our proposal: a
multi-layer self-diagnosis framework to diagnose faults in
programmable networks. The self-diagnosis framework
ensures a multi-layer diagnosis through a multi-layered model
that includes the supervised resources within the following
layers: 1) physical, 2) logical, virtual and 3) networking
services. Examples of the supervised resources are given in
Table 1.

Table 1. Types of resources considered per layer

Layer Resources

physical links, switches, hosts, controllers, ports, NICs, CPU

logical Flows, controller application, OpenFlow application, VNFIs

virtual virtual links, VNFs

service VPN, NAT, firewall, streaming, etc.

The multi-layer self-diagnosis framework we proposed in Fig.
1 is part of the management and orchestration plane of NFV. It
is important to notice that our diagnosis framework is
independent from the type of SDN controller, southbound
protocol agnostic and it performs diagnosis based on a global
view and multi-layered view of the network.

Fig. 1. Multi-layer Self-diagnosis framework for SDN and NFV

We propose three modules within our framework: a detection
module, a self-modeling module, and a RCA module. Self-
modeling and RCA modules include a methodology and
associated algorithms as well as extensive validation. The
detection module is a set of scripts to feed the other modules
as the observability techniques are out of the scope of this
paper. In Fig. 1 we sketch how those modules are related.

1) The detection module builds a view on the networking

services and their underlying resources at instant t. It receives

the following data:

-The network topology and the logical resources running on

networked nodes (Openflow client applications running on

switches and the instantiated VNF (VNFIs) running on hosts)

-The deployed networking services and their respective VNFs

and Virtual links

-The flows sent by the SDN controller to establish the physical

path to connect the VNFIs.
It also keeps the dependency graph updated, by ordering the
self-modeling module to regenerate the dependency graph to
prevent that the root cause had been calculated based on an
outdated model.

2) The self-modeling module builds the multi-layered

dependency graph. It relies on two algorithms:
Topology-aware self-modeling algorithm: it generates a first
dependency graph from the network topology (physical nodes
and links) and logical applications running on the network
nodes, hereafter named network dependency graph.
Service-aware self-modeling algorithm: it generates a
second dependency graph, hereafter named services

dependency graph, by extending the network dependency

graph with the dependencies of the networking services. The
services dependency graph contains the dependencies between
networking services and virtual resources, and the
dependencies of virtual resources from logical and physical
resources underneath.

Network Observations

Root Cause Analysis

Self-Modeling

Self-Diagnosis

Templates

Bayesian

Networks

services graph

Topology-Aware

Self-Modeling

Services-Aware

Self-Modeling

network graph

virtual resources

and services

Network Topology

VNFI_Locations Flows

network topology

logical resources

Networking Service

path allocation

OSS/BSS

Orchestrator

VNF Manager VIM

instantiation
SDN

Controller

Virtual LinksVNFsVNFsVNFs Virtual LinksVirtual Links

D
et

ec
ti

o
n

3) The RCA module finds the root cause explaining the service
failures by propagating the retrieved network observations
through the services dependency graph given as input.

IV. THE SELF-MODELING MODULE

The self-modeling module is composed of a topology-aware
algorithm, which generates the network dependency graph,
and the service-aware algorithm which generates the services

dependency graph. The services dependency graph includes
the network dependency graph. We formalize the problem to
model as it follows:

• The network topology is composed of P links and Q
nodes.

• There are N networking services deployed over the
network topology

• Each networking servicei ∀	� = �1, �	 is composed of Mi
virtual links connecting Ni VNFs.

• In the VNF forwarding graph, VNFs connect to each
other through virtual links via their CP (connection
points)

• Each virtual link connects two CPs through a physical
path between two hosts

• VNFIs are embedded in hosts and use their corresponding
hosts’ NICs as CP

• The SDN controller allocates each physical pathj ∀	
 =
�1,��	 by installing ni

(j)
 flows on ni

(j)
 intermediate switches

that will connect both CPs and eventually the VNFIs.
Fig. 2 shows a physical pathj composed of the SDN controller,
several switches and links to connect two VNFs embedded in
host1 and host2. All the switches of this path will receive flows
from the SDN controller of the following type:
{"in_port":x,"out_port":y,"src":"CP2","dst":"CP3"}.

Fig. 2. Resources involved in a virtual link connecting two VNFs

Topology-aware self-modeling algorithm

This algorithm generates the network dependency graph from

the current network topology and logical resources running on

physical resources. It builds the network dependency graph by

assembling the instantiated dependency graphs of network

resources which are based on a set of finer-grained templates.

This finer granularity allows diagnosing until inner component

level. The dependency graphs of network resources (Fig. 3)

describe their internal components and their dependencies

among them. Network nodes are composed of physical and

logical components, so their dependency graphs contain a

physical layer with physical components−CPU, NICs,

ports−and a logical layer with logical components−Openflow

client applications or VNFIs−. VNFIs have three states:

instantiated (VNFII), configured (VNFIC), and active (VNFIA),

following the ETSI NFV GS specification [19].

-The K VNFIs embedded in hosts are given by the

VNFI_Locations variable, which is used by the topology-

aware self-modeling algorithm to update the dependency

graph of hosts with their corresponding embedded VNFIs

(Fig. 3).

-Switches run an OpenFlow client application to communicate

with the SDN controller

-The SDN controller runs a SDN controller application such as

OpenDaylight or Floodlight.

The number of VNFIs, ports and NICs of those dependency

graphs are extendable with the VNFIs embedded in each host

and the connections found in the topology.

Fig. 3. Dependency graphs of network resources: (a) host, (b) link, (c)

switch, and (d) SDN controller.

The network dependency graph (NDG) is generated through a
three-step algorithm:

1) It classifies each network resource in nodes and links and it
instantiates a different dependency graph GN∶= {GS,GC,GH}
for nodes (switches, controllers and hosts) and GL ∶=
{GDL,GCL} for links (data links (DL) and control links (CL)).
The dependency graph of nodes and links (GN and GL) contain
vertices VN and VL modelling their internal components. The
edges EN and EL model the dependencies among those internal
components in the network nodes (in red in Fig. 4).

2) It adds the instantiated dependency graphs GN and GL to the
network dependency graph.

3) It connects those instantiated dependency graphs through
EL edges (in blue in Fig. 4). An EL edge connects two

dependency graphs of nodes (GN):��(�) = (��(�), ��(�)) . A EL

edge represents the impact of faults in links on the interfaces
(ports and NICs) inside nodes. The network dependency graph
is built by assembling the instantiated dependency graphs GN
and GL belonging to the P links and Q nodes of the network
topology.

��� =�	��(�)(��(�), ��(�)) ∪	���(�)(��(�), ��(�))
�

���

�

���
	

Fig. 4 shows a network dependency graph built from a simple
topology connecting two hosts. NDG is composed of Q=3 GN

virtual

layer

logical

layer

physical

layer

Host1

flowni

CP2

VNF1

data link

Host2

CP3

VNF2

OpenFlow

Client

Application

switch1

port port

SDN Controller Application

…SDN

controller
port port

……

OpenFlow

Client

Application

switchni

port port

……

virtual link

VNFI1 VNFI2flow1

control linkcontrol linkdata link

……

Host’s Dependency Graph GH Link’s

Dependency Graph GL

GNi GNj

CPU
NIC1

…
VNF1 VNFK

VLK

(a) (b)

VNFIA

VNFIC

Switch’s Dependency Graph GS Controller’s Dependency Graph GC
(c) (d)

VNFI1 VNFIK

VNFII

EN
ELELEVNF EVNF

CPU

NIC

Link

EL
NICK

EL
GLK

VL1

EVL EVL

port1 …
OFAPP

EN

EL
portn

EL GLn

EVL EVL
VLnVL1

GL1
CPU

port1

SDN
APP

EN

EL
portn

EL

GLn

EVL EVL
VLnVL1

GL1

CPU

…

GL1

…

and P=2 GL dependency graphs. The network dependency
graph includes also the SDN controller and the control links,
not shown here due to space constraints.
Service-aware self-modeling algorithm
This algorithm takes as input the NFV records, which contain
runtime information of the deployed instances of the VNFs,
virtual links and networking services (further detailed in [19]).
It contains also the VNF forwarding graph, which depicts how
the traffic among VNFs is forwarded through the virtual links.

Fig. 4. Example of Network dependency graph (Q=3 nodes and P=2 links)

Virtual resources dependency graph generation algorithm

Input: NSR(Network Service record)
Output: VRG (Virtual Resources Dependency Graph)
nsr NSR[i] ∀i={1,…,N} //retrieval of NSR of that network service
V(VRG) V(VRG) ∪	nsr:id
VL nsr:vlr[j]* ∀j={1,…, Mi} //retrieval of virtual links
V(VRG) V(VRG) ∪	VL //adds virtual link vertex to virtual layer
E(VRG) E (VRG) ∪ ES∶=(orig:[VL:id*],dest:[VL:parent_ns*]) // adds ES
VNFR nsr:vnfr[k]* ∀k={1,…,Ni} //retrieval of VNFs
V(VRG) V(VRG) ∪	VNF //adds VNF vertex to virtual layer
E(VRG) E (VRG) ∪	ES∶=(orig:[VNF:id*],dest:[VNF:parent_ns*])//adds ES

* the access to nsr parameters is given in the NFV record defined by ETSI NFV [19]

The service-aware algorithm generates the services

dependency graph in two steps.
Step 1: This algorithm creates an auxiliary graph, called
virtual resources dependency graph (VRG), containing the
discovered networking services and their virtual resources.

Fig. 5. Virtual Resources Dependency Graph of the i-th networking service

The VRG is composed of a virtual layer and a service layer
(Fig. 5). For each discovered networking service, both layers
are filled as follows:
Service layer: the algorithm adds a networking servicei vertex
to the VRG.
Virtual layer: the algorithm adds Mi virtual links vertices and
Ni VNFs vertices. It then adds Mi+Ni ES edges (in black in
Fig. 5) from those virtual resources vertices to the networking

servicei vertex. ES edges represent the impact of faults in
virtual resources on that networking service. If the SDN
controller is enabled with the SFC module such as in
OpenDaylight, the VRG could be directly generated from the
VNF FG information.

Step 2: It connects the network dependency graph to the VRG

and builds the service dependency graph. For each networking
service, two mappings are done:
-VNF mapping: The VNFI vertices of the hosts in the
network dependency graph are connected to the VNFs vertices
in the VRG through edges EVNF (in dash black in Fig. 6). EVNF
edges represent the impact of faults in the VNFI embedded in
hosts on VNFs composing a networking service.
-Virtual Links mapping: The physical network resources
involved in each virtual link (hosts NICs, switches ports, and
OpenFlow client applications inside switches) are connected
to their respective virtual links vertices through edges EVL (in
dash black in Fig. 6). EVL edges represent the impact of faults
in physical and logical resources on a virtual link. These
network resources are extracted from the flows, defined in
section IV.

Fig. 6 shows an example of services dependency graph sent to
the RCA. This services dependency graph belongs to one
networking service (N=1) composed of one virtual link (Mi=1)
connecting two VNFs (Ni =2) deployed over a physical path.
The services graph includes the network graph shown in Fig.
5.

Service dependency graph generation algorithm

Input: NDG, VRG, Flows, VNFI_Locations, NSR(Network Service Record)
Output: SDG (Service Dependency Graph)
SDG NDG ∪	VRG //initialization
nsr NSR[i] ∀i={1,…,N} //retrieval of networking services
VL nsr:vlr[j]* ∀j={1,…, Mi}//retrieval of virtual links
VNF nsr:vnfr[k]* ∀k={1,…,Ni} //retrieval of VNFs
flowsPerVL Flows[VL] // retrieval of flows composing virtual links
flow flowsPerVL[l] ∀l={1,…, ni

(j)}
[switch,ports,OFAPP] ExtractSwitchInfo(flow) //extracts switch storing flow
[hosts,NICs] ExtractHostsInfo(flow) //extracts hosts connected by that flow
VNFID VNFI_Locations[hosts] //finds VNFID of VNFI embedded in host
E (SDG) E(SDG) ∪ EVNF∶=(orig:[VNFID],dest:[VNF:id*]) //adds edge
E(SDG) E(SDG) ∪ EVL∶= (orig:[hosts:NIC],dest:[VL:id*]) //adds edge
E(SDG) E(SDG) ∪ EVL∶= (orig:[switch:ports],dest:[VL:id*]) //adds edge
E(SDG) 	E(SDG)	∪ EVL∶= (orig:[switch:OFAPP],dest:[VL:id*]) //adds edge

* the access to nsr parameters is given in the NFV record defined by ETSI NFV [19]

Fig. 6. Services dependency graph of one networking service

V. THE ROOT CAUSE ANALYSIS MODULE

The RCA is based on BN. A BN is a probabilistic dependency
graph BN(V, E, π) where Vertices V are the variables
modelled, in this case are physical, logical, and virtual
network components characterized by binary random variables
which indicate their state (‘down’ or ‘up’) and the edges
represent the dependencies among network components. π is
the set of CPT (Conditional Probability Tables) to describe the
conditional probability distribution of each random variable
modelled in the BN. We assume that all network components

GS

EN

OFAPP

GDL

EL

Link

EL

GDL

EL

Link

EL

CPU

port port

GH

EN
NIC

CPU

VNFI GH

EN
NIC

CPU

VNFI

virtual

service

……

Network

Servicei

Virtual Link

mapping
VNF mapping

ES

EVL
EVNF

VLMi
VL1

EVL

VNFNi
VNF1

EVNF

Network

Dependency

Graph

Services

Dependency

Graph

EVNFEVNF
EVL

ES ES
ES

d
ia

g
n

o
si

s

GS

EN

OFAPP

GDL

EL

Link

EL

GDL

EL

Link

EL

CPU

port port

GH

EN
NIC

CPU

VNFI

GH

EN
NIC

CPU

VNFI

EVL EVL EVL

Virtual LinkVNF1 VNF2

Network

Servicei

EVL

can always fail by themselves, with a probability of fault p,
despite their parents work as expected. Also, one fault in one
network component immediately propagates to those network
components depending on it. The CPT that describes this
behavior is given in Table 3, and it is justified by the works
led by Hounkonnou et. al. for IMS [6] and our self-diagnosis
framework for SDN [2]. The RCA reasons over the services

dependency graph. In Fig. 6, the RCA starts propagating
evidence on the network service vertex through the graph
based on the CPTs until it reaches the root vertices, yielding a
posteriori probability distribution P. The services dependency

graph modelling allows the RCA to diagnose dynamic
networking services on dynamic network topologies.

Table 2. CPT of a network resource (Y)

CPT(Y) Pr(Y=’down’) Pr (Y=’up’)

at least one parent ’down’ 1 0

if all parents of Y ’up’ p 1- p

P is the probability of root cause for each network component
that explains the network observations given as input. The
uncertainty of this distribution is quantified via the entropy (in
bits) with the following equation:

 (!) = −#$ log($

Entropy depends on the number and quality of the network
observations added. The lower entropy, the lower uncertainty
and the better the BN engine discriminates among different
root causes. However, in our previous work, the finer
granularity of our templates and the consideration of all the
network topology in the diagnosis resulted in a high number of
vertices in the graph, what led to high uncertainty in the root-
cause. Nevertheless, if additional observations Y are added in
the graph, entropy H(X) is reduced by	�()) = (!) − (!	|)).
We propose two RCA strategies to reduce this uncertainty,
which effectiveness is proved in section VI.
Extension of the services dependency graph: we define an
RCA strategy that extends the services dependency graph to
include the dependencies of the healthy networking services
that are sharing resources with the affected service. This RCA
strategy allows discarding those network resources involved in
healthy services.
Reduction of the network dependency graph: we define an
RCA strategy that reduces the network dependency graph to
only consider the dependencies of network resources that are
involved in the identified faulty networking services, thereby
reducing the uncertainty and the diagnosis time.

VI. PROOF OF CONCEPT

In this section, we diagnose several networking services
delivered with two different network topologies (Fig. 7 and 8)
to which we apply our RCA strategies. Each networking
service is composed of two VNFs, whose instances VNFIAi

and VNFIBi, are embedded in different hosts. Both VNFIs are
connected through a virtual link VLAi,Bi, which is established
at run-time by the SDN controller.
First, the self-modeling module generates on-the-fly the
services dependency graph (that includes the network

dependency graph). The services dependency graph is
generated in the following situations:

Changes on the network topology: The network dependency

graph is generated for a tree topology (D=2, F=3), in Fig. 7,
and a linear topology with L	∈ �5,10	, in Fig. 8. Also, the self-
modeling module models changing topologies by discovering
new network resources and regenerating the network

dependency graph, as shown in this video [20]. The network

graph includes the connections from the SDN controller to the
switches, not shown here.

Table 3. Affected networking services and underlying physical paths

Topology Service
Virtual

Link
Host:VNFI Physical path

Tree

D=2, F=3
(Fig.7)

NS1 VLA1,B1
H1:VNFIA1
H9:VNFIB1

DP:[AL1,S2,IL1,S1,
IL3,S4,AL9],

CP:[C0,CL1,CL2,CL3,

CL4,C1]

Linear L=5
(Fig. 8)

NS4 VLA4,B4
H4:VNFIA4
H5:VNFIB4

DP:[AL4,S4,IL4, S5,AL5],

CP:[C0,CL4,CL5,C1]
*S: switch, IL: inter switch link, CL: control link, AL: access link, C: controller, H:host
DP: Data plane (hosts,switches,datalinks), CP: Control plane (controllers,control links)

VNF migrations: In Fig. 7, the host H1 embeds four VNFIs
while the rest of hosts embed one VNFI, but in Fig. 8, VNFI
are differently distributed and the self-modeling algorithm
generates the services dependency graph taking into account
both distributions of VNFIs in both cases. If VNFIs migrate,
the self-modeling regenerates the services dependency graph
with the new distribution of VNFIs.

Changes on the virtual links: VNF migrations and
topological changes lead to changes on the virtual links
connecting them. Table 4 presents the underlying physical
resources involved in the networking services that will be
diagnosed hereafter. In both topologies, networking services
share some physical network resources such as physical links,
switches and part of the control plane. The shared network
resources are depicted in bold. This information will be
exploited by the RCA to reduce the uncertainty.

In the next part we show how the RCA can adapt and exploit
the services dependency graph and the network dependency

graph to efficiently diagnose networking services failures in
two different cases. The diagnosis is automated by the on-the-
fly generation of both dependency graphs. The RCA calculates
the root cause. i.e. the RCA identifies physical, logical and
virtual network resources presumed to be the root cause of a
given networking service failure. We consider that all the
network resources and their internal components have the
same probability of fault (p=0.1) in the conducted
experiments. Hereafter, we evaluate the two RCA uncertainty
reduction strategies:

Case 1: Extension of the services dependency graph

We consider the tree topology (Fig. 7), where the services are
deployed sequentially i.e. at ti=t0 + (i-1)T, i=1…N. A failure is
injected in service NS1 and the self-modeling algorithm is
launched at t1 = t0, generating the services dependency graph

from the affected service NS1 and the RCA gives a posteriori
distribution probability (Fig. 7 dark blue bar on the bottom) so
spread over all the network resources that no root cause can be
clearly identified (entropy: 4.1 bits). The uncertainty can be
reduced by adding the healthy services sharing resources with
the affected service. Indeed, if the graph is regenerated at
t2=t0+T, when a healthy service NS2 is deployed (N=2), the
root cause becomes less uncertain (entropy: 3.6 bits). Adding
the new healthy service NS2 allows the RCA to discard those
shared resources between the affected service NS1 and NS2
(S2, AL1 and the control plane resources). The RCA module
extends the services dependency graph to reduce the entropy
four times more by including the healthy services as those
appear: NS3 at t3=t0+2T, NS4 at t4=t0+3T, NS5, at t5= t0+4T, and

NS6 at t6=t0+5T. Fig. 7 shows how the entropy is reduced from
4.1 (dark blue bar on the bottom), with the only affected
service added, to 0.9 bits (brown bar on top), with the affected
service and 5 healthy services added.

Fig. 7. Case 1: RCA strategy on extending the services dependency graph

In the brown bar probability distribution (Fig. 7 on the
bottom), the root cause list consists of the hosts H1 (33%) and
H9 (67%). The rest of hosts are discarded, as those are not
involved in the affected service. Our finer granular templates
enable a deeper analysis. Not only links and switches are
shared among services, but also the CPU and NIC inside
hosts. Host H1 embeds four VNFIs, as a result, those VNFIs
share NIC and CPU. Nevertheless, NIC and CPU are
immediately discarded when at least one of these VNFIs is

involved in a healthy service as it means that NIC and CPU is
working fine. Indeed, we see that the most probable
explanations (Table 4, Case 1) are that VNFIA1 and VNFIB1 are
not initiated, configured, or activated (adding up all VNFI
states: VNFIA1 (33%) and VNFIB1 (51%)), which is coherent
with the injected failure in NS1, composed of those VNFs.
Also, the RCA can discard those VNFIs embedded in H1

(VNFIA2, VNFIA3, and VNFIA4), because they are not involved
in the affected service NS1.

Case 2: Reduction of the network dependency graph

We first inject a failure in service NS4 and generate the

network dependency graph from the network topology of the
blue region in Fig. 8 and we incrementally reduce the
diagnosis region until the optimal one (brown region in Fig. 8)
that gives the lowest uncertainty.
Blue region: the network dependency graph is built from a
linear topology L=10 and it includes the following services to
build the services dependency graph:

• (i) the affected service NS1: the a posteriori distribution
probability has as entropy 4.7 bits.

• (ii) the affected service and the healthy services NS2, NS3,
and NS4: the a posteriori distribution probability (Fig. 8,
dark blue bar on the bottom) has lower entropy (3.9 bits),
because the added networking services help discard those
network resources involved in them.

Fig. 8. Case 2: RCA strategy on reducing the network dependency graph

Table 4. Zoom on the root cause inside host in cases 1 and 2

Host CPU NIC
VNFI Not

Instantiated

VNFI Not

Configured

VNFI

Not

Active

Case 1

H1 0 0

VNFIA1 6 11 16

VNFIA2 0 0 0

VNFIA3 0 0 0

VNFIB5

VNFIB3

VNFIB5

VNFIA4

VNFIB6

VNFIB1

VLA6,B6

NS1

NS2

NS3

NS4

NS6

VNFIB2

VNFIB6

NS5

VLA1,B1

VLA5,B5

Legend:

IL (Interswitch Link)

AL (Acces Link)

H (Host)

S (Switch)

H6H2 H5H3 H7

VNFIA1

VNFIA2

VNFIA3

VLA4,B4

VLA3,B3

VLA2,B2

failure

VNFIB4

IL3

IL2

IL1

AL3AL2 AL4 AL6AL5 AL7 AL9AL8

H1 H8H4 H9

S1

S3 S4S2

AL1

Diagnosed NS: NS
1
, Entropy = 4.1

Diagnosed NS: NS
1
,NS

2
, Entropy = 3.6

Diagnosed NS: NS
1
,NS

2
,NS

3
, Entropy = 3

Diagnosed NS: NS
1
,NS

2
,NS

3
,NS

4
, Entropy = 2.5

Diagnosed NS: NS
1
,NS

2
,NS

3
,NS

4
,NS

5
, Entropy = 1.9

Diagnosed NS: NS
1
,NS

2
,NS

3
,NS

4
,NS

5
,NS

6
, Entropy = 0.9

CL1 CL2 CL3 CL4C0 IL1 IL2 IL3AL9 H1 H2 H3 H4 H5 H6 H7 H8 H9AL8AL7AL6AL5
AL4AL3S1 S2 S3 S4 AL2AL1

A
L

2

A
L

1

A
L

3

A
L

4

A
L

5

A
L

1
0

VNFIB1

VNFIA2

VNFIA3

VNFIA4 VNFIB4

IL4IL3IL2IL1

NS1

NS2

NS3

NS4

VLA3,B3

VLA2,B2

VLA1,B1

VLA4,B4

region

reduction

…

H10H4 H5H3

VNFIA1

VNFIB2

VNFIB3

S10S5S4S3S2S1

VLA3,B3

VLA2,B2

VLA1,B1

VLA4,B4

failure

H1 H2

Legend:

IL (Interswitch Link)

AL (Acces Link)

H (Host)

S (Switch)

H4 H5 H6 H7 H8 H9 H10IL5 IL6 IL7 IL8 IL9AL9AL8AL7AL6AL5
AL10S5 S6 S7 S8 S9 S10

5 10 15 20

Diagnosed Subset: Linear L=10, Entropy = 3.9

Diagnosed Subset: Linear L=9, Entropy = 3.6

Diagnosed Subset: Linear L=8, Entropy = 3.3

Diagnosed Subset: Linear L=7, Entropy = 3

Diagnosed Subset: Linear L=6, Entropy = 2.4

Diagnosed Subset: Linear L=5, Entropy = 1.6

VNFIA4 0 0 0

H9 6 11 VNFIB1 11 16 24

Case 2

H4 0 0
VNFIB3 0 0 0

VNFIA4 3 5 7

H5 3 7 VNFIB4 5 7 13

In both situations (i) and (ii), the a posteriori distribution is so
spread over the existing network resources that no root cause
can be identified.
Brown region: the network dependency graph is built from a
linear topology L=5 and it includes the following services to
build the services dependency graph:

• (i) the affected service NS1: the a posterior distribution
probability has as entropy 2.2 bits.

• (ii) the affected service and the healthy services NS2, NS3,
and NS4: the a posteriori distribution probability (brown
bar on top) has lower entropy (1.6 bits) because the added
services help discard those network resources involved in
them.

Fig. 8 shows that the uncertainty on the root cause is reduced
when the diagnosis region gets closer to the brown diagnosis
region: In situation (i) there is a reduction from 4.7 to 2.2 bits
with one service added. In situation (ii) there is a reduction
from 3.9 to 1.6 bits with 4 services added (Fig. 8 on the
bottom). We focus on the situation (ii), where a clear subset of

the network−S5 (48%), AL5 (3%), H4 (15%), and H5 (35%)−is
presumed to be the root cause. This result is coherent with the
injected failure in NS4 as its underlying virtual resources, the
VNFI embedded in hosts H4 (VNFIA4) and H5 (VNFB4), are
pinpointed as possible root causes. Analogously as in previous
section, we can zoom on hosts H4 and H5 (Table 4, Case 2) to
obtain the probability of fault in the VNFIs running inside
those hosts. The most probable explanation is that those
VNFIs embedded on H4 and H5 are not initiated, configured, or
active (adding up all VNF states: VNFIA4 (17%), and VNFIB4
(25%)). Contrarily, the hosts embedding VNFIs which are not
involved in the affected service (i.e. H1, H2, and H3) are
discarded. Furthermore, other VNFIs (e.g. VNFIB3) embedded
in the hosts presumed to be the root cause (H4) but not
involved in the affected service are discarded. In all regions,
those network resources not involved in the affected service
NS4 are discarded (e.g. S1, S2, S3, H1, H2, H3 among others).
We evaluate the performance of both RCA strategies that
reduce the uncertainty on the diagnosis of networking
services, measured in terms of generated vertices and edges in
the dependency graph and diagnosis time.

Case 1, extension of the services dependency graph: The
RCA strategy that extends the services dependency graph in
Fig. 7, adds a lower number of vertices per service added
compared to the number of edges added, as seen in Table 5.
This difference is due to the high number of dependencies
(EVL edges) of each virtual link from the physical resources
(NICs, switches ports, and OpenFlow client applications
inside switches). For instance, Fig. 6 shows 7 edges (5 EVL and
2 EVNF) and 4 vertices added. These added edges and vertices
increase the diagnosis time tD= tSM+tRCA, where tSM is the self-

modeling time and tRCA is the RCA time, both averaged 20
times. tSM represents at least 51% of the diagnosis time tD.
When six services are added to the graph, tSM is increased a
57% of tD with respect to one service added, whilst the tRCA is
increased by 72% of tD, proving that the BN engine inside the
RCA scales worse than the self-modeling algorithm in itself.

Table 5. Cost of extending the services dependency graph

Services added #Vertices #Edges tRCA tSM

NS1 108 306 1.1 1.4

NS1, NS2 115 334 1.2 1.6

NS1, NS2, NS3 122 372 1.6 1.7

NS1, NS2, NS3, NS4 129 410 1.7 2

NS1, NS2, NS3, NS4, NS5 133 440 1.7 2.1

NS1, NS2, NS3, NS4, NS5, NS6 137 470 1.9 2.2

Case 2, reduction of the network dependency graph: The
RCA strategy that reduces the diagnosis region reduces also
the diagnosis time, as the diagnosed network topology is
smaller. As example of this reduction, we compare the size of
the services dependency graph when it is generated from the
blue region in Fig. 8 (linear topology L=10) to the services

dependency graph generated from the brown region in Fig. 8
(linear topology L=5) resulting from reducing the diagnosis
region. The graph includes the 4 networking services (NS1 …
NS4). The number of vertices is reduced from 196 to 111
vertices while the number of edges is reduced from 592 to 350
edges, and the diagnosis time is almost divided in half,
transitioning from 4 to 2.1 seconds (averaged 20 times).

VII. CONCLUSIONS AND FUTURE WORK

This paper specifies, implements, and evaluates a multi-layer
self-diagnosis framework capable of diagnosing faults in
programmable networks with SDN and NFV, while taking
into account the networking service, virtual, logical, and
physical layers. In this regard, this paper extends our previous
work, a topology-aware self-diagnosis approach, by
diagnosing and correlating two additional layer, virtual and
services layer, while considering their dynamic dependencies
with the underlying logical and physical resources. The core
of the self-diagnosis framework is a self-modeling module that
relies on two algorithms to generate on-the-fly and update the
diagnosis model from the network topology, logical resources
and networking services with a set of adaptable templates.
Service-aware diagnosis reduces uncertainty by automatically
extending or reducing the dependency graph according to the
faulty networking service. In addition, the finer granularity of
the proposed templates details the states of the components
inside the networked nodes and details the state of the VNFIs
embedded in the hosts. This framework could operate in
preventive and reactive modes, i.e. respectively triggered by
notifications indicating thresholds crossings or by alarms
indicating failures or faults. As future work, we will build a
detection module to evaluate the impact of degradations in
network resources such as CPU load and throughput on the
VNFs and networking services to predict future failures.

ACKNOWLEDGMENTS

This work is partly funded by the French ANR under the
ANR-14-CE28-0019 REFLEXION project

REFERENCES

[1] ETSI NFV Group Specification Draft: “Network Functions
Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV
Architectural Framework”, Sept. 2015.

[2] J. Sanchez, I. Grida Ben Yahia, N. Crespi, “Self-Modeling Based
Diagnosis of Software-Defined Networks,” Workshop MISSION 2015
at 1st IEEE Conference on Network Softwarization, London, 13-17
April 2015.

[3] M. Steinder and A. S. Sethi. “End-to-end Service Failure Diagnosis
Using Belief Networks”. In Network Operations and Management
Symposium, NOMS 2002, pages 375-390, 2002

[4] L. Bennacer, L. Ciavaglia, et.al., “Optimization of fault diagnosis based
on the combination of Bayesian Networks and Case-Based Reasoning,”
in NOMS, 2012 IEEE , vol., no., pp.619,622, 16-20 April 2012.

[5] P. Bahl, R. Chandra, et. al., “Towards highly reliable enterprise
networking services via inference of multi-level dependencies,” in
SIGCOMM, 2007.

[6] C. Hounkonnou, “Active Self-Diagnosis in Telecommunication
Networks”. PhD thesis. Université de Rennes 1. July 2013.

[7] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, S. Uhlig, "Software-Defined Networking: A
Comprehensive Survey," Proceedings of the IEEE , vol.103, no.1,
pp.14,76, Jan. 2015.

[8] P. Fonseca, R. Bennesby, E. Mota and A. Passito, "A replication
component for resilient OpenFlow-based networking," Network
Operations and Management Symposium (NOMS), 2012 IEEE , vol.,
no., pp.933,939, 16-20 April 2012

[9] M. Canini, D. Venzano, et. al., “A NICE way to test OpenFlow
applications,” in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, ser. NSDI’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 10–10.

[10] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N.
McKeown,“Where is the debugger for my software-defined network?”
in Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY, USA: ACM,
2012, pp. 55–60.

[11] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling Record and Replay Troubleshooting for Networks,” in Proc.
2011 USENIX Conference on USENIX Annual Technical Conference,
ser. USENIXATC’11. USENIX Association, 2011, pp. 29–29.

[12] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown,“I
know what your packet did last hop: Using packet histories to
troubleshoot networks,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 71–85.

[13] R.C. Turchetti, E. P. Duarte, "Implementation of Failure Detector Based
on Network Function Virtualization," in Dependable Systems and
Networks Workshops (DSN-W), 2015 IEEE International Conference
on , vol., no., pp.19-25, 22-25 June 2015.

[14] G. Georghe; T. Avanesov, M.-R. Palattella, T. Engel, Popoviciu, C.,
"SDN-RADAR: Network troubleshooting combining user experience
and SDN capabilities," in Network Softwarization (NetSoft), 2015 1st
IEEE Conference on, vol., no., pp.1-5, 13-17 April 2015.

[15] R. Mijumbi, et.al., "Network Function Virtualization: State-of-the-art
and Research Challenges," in Communications Surveys & Tutorials,
IEEE , vol.PP, no.99, pp.1-1.

[16] R.P. Esteves, L.Z. Granville, R. Boutaba, "On the management of virtual
networks," in Communications Magazine, IEEE , vol.51, no.7, pp.80,88,
July 2013.

[17] N.M.M.K. Chowdhury, R. Boutaba, "Network virtualization: state of the
art and research challenges," in Communications Magazine, IEEE,
vol.47, no.7, pp.20-26, July 2009.

[18] S. Kandula, R. Mahajan, et. al, “Detailed diagnosis in enterprise
networks,” in SIGCOMM, 2010.

[19] ETSI NFV Group Specification: “Network Functions Virtualisation
(NFV); Management And Orchestration”, Dec. 2014

[20] Topology-Aware Self-Diagnosis framework, presented in Orange Labs
Research exhibition 2015, Paris, France. Video available at:
https://www.youtube.com/watch?v=xNudu48quRM

[21] M. Scholler et. al., "Resilient deployment of virtual network functions,"
in UltraModern Telecommunications and Control Systems and
Workshops (ICUMT), 2013 5th International Congress on , vol., no.,
pp.208-214, 10-13 Sept. 2013

[22] M. Miyazawa et.al., "vNMF: Distributed fault detection using clustering
approach for network function virtualization," in Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium on , vol.,
no., pp.640-645, 11-15 May 2015

