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Algebraic-Closure-Based Moment Method
for Unsteady Eulerian Simulations of Non-Isothermal
Particle-Laden Turbulent Flows at Moderate Stokes
Numbers in Dilute Regime

Enrica Masi · Olivier Simonin

Abstract To model unsteady non-isothermal dilute particle-laden turbulent flows,
an algebraic-closure-based moment method (ACBMM) is developed. ACBMM is
a Eulerian approach for the dispersed phase conceived to be coupled with direct
numerical simulations (DNSs) of the turbulence when an accurate local description
of the turbulent mixture is required. It is based on the combination of a conditional
probability density function (PDF) approach, which provides local instantaneous
Eulerian equations for the low-order moments of the PDF, and appropriate con-
stitutive relations, as algebraic closures, which are necessary to close the set of con-
servation equations. The computed low-order moments are the mesoscopic particle
number density, particle velocity and particle temperature and the unclosed higher-
order moments are the particle random uncorrelated motion (RUM) stress tensor
and the RUM heat flux (RUM-HF) which appear in the particle momentum and
enthalpy equations, respectively. The RUM stress tensor is closed by an additional
transport equation for the trace of the tensor and a polynomial representation for
tensor functions modeling its deviatoric part. The polynomial representation is used
in the framework of an assumption of equilibrium of the RUM anisotropy and leads
to an explicit algebraic stress model (28EASM). Similarly, the RUM-HF is modeled
assuming equilibrium of the scaled heat flux and explicit self-consistent solutions
(28EAHFM) are found by analogy with turbulent heat flux models. As 28EAHFM
entails the computation of the RUM temperature variance, an additional transport
equation is developed for it. By means of an a priori analysis, the algebraic closures
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developed by the present study are assessed against actual particle Eulerian fields
which are extracted from particle Lagrangian simulations coupled with DNS of
a temporal non-isothermal particle-laden turbulent planar jet, for various Stokes
numbers. Results show that both 28EASM and 28EAHFM are successful in repro-
ducing the unclosed moments up to moderate turbulent-macroscale Stokes numbers
allowing the ACBMM to accurately predict the unsteady non-isothermal dispersed
phase.

Keywords Unsteady Eulerian two-fluid model · Particle-laden flows · DNS

1 Introduction

Due to the vast importance that particle-laden turbulent flows have nowadays in
many industrial applications, providing for a modeling which is both accurate and
computationally affordable represents an important challenge. The main constraint
arises from the need to have an accurate local description of the turbulent mixture,
for example in unsteady turbulent flows or complex geometry, which involves very
high computational costs, sometimes prohibitive for real applications. At industrial
scale, a turbulence which needs highly-accurate solutions is modeled by means of
the large-eddy simulation (LES). The LES approach relies on the filtered direct-
numerical-simulation (DNS) equations which are closed by modeling the unresolved
subgrid-scale terms. Then, the evolution of the properties of particles which are
coupled with LES (or DNS) of turbulent flows may be obtained by either a La-
grangian or a Eulerian approach. The former is an uncontroversial accurate method,
in dilute flows, when used for particle smaller than the Kolmogorov lengthscale and
when coupled with DNS of turbulence, however it is unrealistic at industrial scale
where a huge number of particles has to be used. The latter is instead much more
competitive in terms of computational costs and it may represent a valid alternative
to the former provided that the same level of accuracy is ensured. This method is
referred to as Eulerian-Eulerian DNS (or LES) approach. In the Eulerian-Eulerian
approach, the particles are described as a continuum and the two-phase governing
equations are solved separately and coupled through interphase exchange terms. In
this study we will focus on the Eulerian-Eulerian DNS modeling as the baseline of the
Eulerian-Eulerian LES approach [39]. The aim of this work is indeed to provide an
unsteady two-fluid model appropriate for DNS of very dilute particle-laden flows, in
which a local prediction of the particle behavior is mandatory. The proposed model
should not be confused with the two-fluid models available in the literature which
are modeling the fluid turbulence in the frame of the Reynolds-averaged Navier-
Stokes (RANS) approach or dedicated to dense particulate flow regimes [see, e.g.,
1, 6, 13, 46, 54, 69, 70].

1.1 Unsteady Eulerian particle models

In the literature, unsteady Eulerian models for particles have been proposed but they
are limited to small Stokes numbers (StK < 1 based on the Kolmogorov timescale,
St << 1 based on a characteristic large timescale of the turbulence seen by the
particles. Hereafter, we will refer to St as turbulent-macroscale Stokes number).



We recall the fast (or equilibrium) Eulerian method of Maxey [35], Ferry and
Balachandar [14, 15], based on a Taylor expansion of the particle velocity equation,
the multi-fluid approach of Laurent and Massot [27], which assumes a monokinetic
description of the particle velocity, and the two-fluid model of Druzhinin and
Elghobashi [11, 12] which is based on a spatial average of the particle equations.
Successfully assessed for small particle inertia, these approaches fail when the Stokes
number, StK, approaches unity [44, 51]. The main reason must be sought in the
failure of the assumption of the uniqueness of the particle (velocity and temperature)
distributions as the Stokes number increases. Recently, Simonin et al. [56] and
Février et al. [16] have shown that in order to be able to model the dispersed phase
corresponding to large Stokes numbers, a Eulerian approach should account for the
effect of the crossing between particle trajectories. This phenomenon has a great
impact on the thermal characterization of the dispersed phase as well. Indeed, the
occurrence of crossing trajectories entails that particles convey information of their
interactions with very distant and independent turbulent eddies, that is with different
dynamic and thermal turbulent scales. This effect involves many different velocities
and temperatures in the same volume of control, violating the assumption of the
uniqueness of the particle velocity and temperature distributions. An extension of
the statistical approach accounting for non-isothermal conditions may be found in
[33]. Particle velocity and temperature are partitioned in two contributions: i) a
Eulerian particle (velocity and temperature) field, referred to as mesoscopic field,
which is spatially correlated and shared by all the particles and which accounts
for correlations between particles and between particles and fluid; ii) a spatially-
uncorrelated particle (velocity and temperature) contribution, referred to as random
uncorrelated motion (RUM) contribution, associated to each particle and resulting
from the chaotic particles’ behavior. The RUM contribution is characterized in
terms of Eulerian fields of particle velocity and temperature moments; the larger
is the particle inertia the more important is the RUM. The existence of a spatially-
uncorrelated contribution and its connection with singularities and caustic formation
is a timely topic of research [22, 24, 37].

1.2 The statistical approach and the question of the closures

The model proposed by Simonin et al. [56] and Février et al. [16], and referred
to as Mesoscopic Eulerian Formalism (MEF), allows to define a conditional one-
particle probability density function (PDF) which, in dilute regime, where particle
interactions may be neglected, provides a complete description of the dispersed
phase. By analogy with the kinetic theory of gases, the conditional-PDF evolutions
follow a Boltzmann-like equation which is closed at the same level than the La-
grangian equations governing the discrete particle variables. From the solution of the
integro-differential PDF kinetic equation, one can obtain the moments of the PDF
which provide a full description of the dispersed phase in a Eulerian framework.
However, a direct solution of the kinetic equation is too expensive because of
the large number of dimensions appearing in the phase space. For this reason, a
moment method relaying on the solution of the differential equations of the PDF
moments is somewhat preferable. Unfortunately, a closed kinetic equation does not
address the closure problem in real space since its evolution in the phase space
creates an infinite set of coupled moment equations in real space. Therefore, any



finite set of moment equations has to be supplemented by closure models of the
unknown moments written in terms of the computed ones. In very dilute regime, in
which the system formed by particles (rather than molecules) may be considered
very far from equilibrium, closures for the particulate phase can be provided by
analogy with the kinetic theory of rarefied gases using a high-order Chapman-Enskog
expansion [5] of the kinetic equation or a Grad’s approach [21]. According to the
Grad’s approximation, the stress tensor and the heat flux are not treated as auxiliary
variables but solved according to their own conservation equations as variables of
state. This approach, which uses an expansion of the PDF in terms of Hermite
polynomials, has the same order in powers of Knudsen number as the Burnett
equation [60] which is derived by a second-order Chapman-Enskog expansion of the
kinetic equation. A third-order approximation of the Grad’s approach, having the
same order as a super-Burnett approximation, was recently proposed by Struchtrup
and Torrilhon [59]. The Grad’s approach turns out very similar to some kinetic-
based-moment methods (KBMMs) recently proposed for the particulate phase [63]
which use an anisotropic Gaussian particle velocity distribution and define a set
of conservation equations where the third-order correlation is closed according to
the Gaussian assumption. On the basis of kinetic and mathematical arguments,
higher-order closures given by high-order-moment transport equations are instead
provided by the quadrature-based-moment methods (QBMMs); the goal of QBMMs
is to model the dispersed phase when the Stokes number considerably increases
and a large number of moments is required [8, 9, 17, 18, 25, 28, 29, 34, 40]. These
high-order-moment methods are based on a presumed particle property distribution
which may be modeled as a sum of Dirac delta functions, in order to account for
the effect of multiple crossing trajectories [67], or by a multi-Gaussian distribution
[3, 62]. The latter has been proposed to overcome the problem of the singularities
which may be generated by unphysical delta shocks when a sum of Dirac delta
functions is used for solving multiple crossing with a limited number of quadrature
points [4]. These approaches using third, fourth and even higher order moments
for modeling the dispersed phase at large/very large Stokes numbers (St >> 1),
even if accurate are in fact too expensive to be used in CFD codes and unrealistic
for simulating industrial configurations. For moderate Stokes numbers (St > 1), a
moment method using constitutive relations for closing the second-order moments
instead of conservation equations may be much more effective. For non-equilibrium
fluids, non-linear second-order constitutive relations for the stress tensor and the
heat flux were developed by Wong et al. [66] using the correlation function theory,
and they correspond to the order of the Burnett approximation in kinetic theory of
gases. Chen et al. [7] (among other authors) provided an analytical expression using a
Chapman-Enskog expansion of the Boltzmann equation. They showed that the first-
order approximation leads to the well-known constitutive relation for Newtonian
fluids, while the second-order approximation leads to a non-Newtonian expression
in which the stresses are related to a memory-effect term, represented by the
Lagrangian derivative of the strain, and to nonlinear tensorial terms. On the basis
of the fact that there exist various orders of approximation based on the choice of
the highest-order moment conservation equation to be retained, and that to any
order of approximation only a part of the exact solution of the kinetic equation is
provided, the question is then whether is possible, by using accurate second-order



approximation closures, to reduce the set of conservation equations to the low-order
moments of the PDF (i.e., particle density, velocity and temperature) and for which
range of Stokes numbers this may apply.

Models for the dispersed phase which are not based on a presumed PDF in the
phase space but which use algebraic closures in physical space are here referred to
as algebraic-closure-based moment methods (ACBMMs). ACBMMs using second-
order moment equations and modeling the third-order correlation by using algebraic
closures based on physical arguments were developed by Simonin [55], He and
Simonin [23], Sakiz and Simonin [49]. Used in the frame of the RANS approach,
they can easily be extended to a DNS/LES framework by using the one-particle
conditional PDF approach for defining the moments of the dispersed-phase at the
mesoscale. An ACBMM solving the low-order moments of the dispersed phase (the
mesoscopic particle number density and velocity) and modeling the second-order
moment appearing in particle momentum equation, namely the RUM particle kinetic
stress tensor (RUM-ST), has been proposed by Simonin et al. [56] and Kaufmann et
al. [26]. The RUM-ST is closed by an additional transport equation for the trace
of the tensor and a viscosity assumption is used for its deviatoric part. In non-
isothermal conditions, Masi et al. [31] introduced an equation for the mesoscopic
particle temperature and suggested to close the second-order moment appearing
in the enthalpy equation (the RUM heat flux (RUM-HF)) by means of an eddy-
diffusivity assumption. Unfortunately, a recent work [30] has shown that these linear
algebraic closures are doomed to fail in unsteady turbulent mean sheared flows as the
Stokes number increases. In isothermal conditions, such a failure was already pointed
out by Riber [47] when performing preliminary Eulerian-Eulerian simulations of
a particle-laden turbulent jet confined in a pipe flow. On the basis of the analogy
with the kinetic theory of rarefied gases, it is clear that higher-order constitutive
relations should be provided in order to hope to capture, with a sufficient level
of accuracy, the particles’ behavior in dilute regime and high particle inertia. By
this work, second-order non-linear closures for the RUM-ST and the RUM-HF are
proposed. They enable the ACBMM approach to accurately predict non-isothermal
unsteady particle-laden turbulent flows in the presence of mean shear at moderate
Stokes number as well. This modeling is a part of a Ph.D. work [30]. Results of
preliminary isothermal and non-isothermal Eulerian-Eulerian DNS using the models
developed in [30] may be found in [10, 52].

The manuscript is organized as follows. In Section 2, the point-particle Lagrangian
method and the unsteady Eulerian statistical approach are presented. The former
is used to perform deterministic simulations of reference and building a Eulerian
database which will be used for assessing, by an a priori analysis, the closures
developed by the present study. The Eulerian statistical approach is used to develop
a set of unclosed conservation equations which are proposed for the modeling
of the non-isothermal dispersed phase in a DNS framework. Closures for such
equations, i.e. for the RUM-ST and the RUM-HF, are developed and described
in Sections 3 and 4, respectively. Such closures are a priori assessed against actual
particle Eulerian fields which are extracted from particle Lagrangian simulations
coupled with DNSs of a temporal non-isothermal particle-laden turbulent planar jet,
for various Stokes numbers. Results of the assessment are presented in Section 5.
Summary and conclusions are given in Section 6.



2 Lagrangian Versus Eulerian Conditional Statistical Approach

2.1 Lagrangian approach for non-isothermal particulate phase

Using the Lagrangian technique, the behavior of particles interacting with non-
isothermal turbulent flows is investigated by the integration in time of the Newton
equations of the particle position, velocity and temperature. When the mixture
is composed of spherical, rigid, non-rotating and non-interacting heavy particles
with a diameter smaller than the Kolmogorov lengthscale and an infinite internal
conductivity, equations are strongly simplified since many contributions may be
neglected. Assuming neither gravity nor radiative transfer, the equations governing
the motion and the heat exchanges of each particle are [36, 68]

dxp

dt
= vp,

dvp

dt
= − 1

τp

(
vp − u f@p

)
,

dTp

dt
= − 1

τθ

(
Tp − T f@p

)
(1)

where u f@p(t) = u f (xp(t), t) and T f@p(t) = T f (xp(t), t) are the undisturbed fluid
velocity and temperature at the particle center location and τp and τθ are the dynamic
and thermal particle response times, respectively. The general expressions for the
response times accounting for non-linearities of external forces and heat exchanges
reads

τp =
4ρpdp

3ρ f CD||vp − u f@p||
, τθ =

Pr ρpd2

pCpp

6Nu µ f Cpf

(2)

where CD and Nu are the corrected drag coefficient and Nusselt number [45, 50]

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
, Nu = 2 + 0.55Re1/2

p Pr1/3, (3)

formulated in terms of the particle Reynolds number which is defined as Rep =
||vp − u f@p||dp/ν f . In the above equations, Pr is the Prandtl number chosen smaller
than unity in order to ensure well-resolved thermal small scales, µ f and ν f are the
dynamic and kinematic fluid viscosity respectively, ρ f is the density of the fluid,
ρp and dp are the particle density and the particle diameter, and α = Cpp/Cpf is
the particle-to-fluid heat capacity ratio. In the Stokes regime, the two times may be
provided by the simplified expressions

τp =
ρpd2

p

18µ f

, τθ =
Pr ρpd2

pCpp

12 µ f Cpf

= 3

2
Pr α τp. (4)

The system of Eq. 1 is coupled with an evolving turbulent flow which is exactly
resolved by using a DNS approach.

2.2 Eulerian conditional statistical approach for non-isothermal dispersed phase

A detailed description of the conditional statistical approach is given in [16]. Its
extension to non-isothermal conditions is detailed in [33]. The only difference
between [33] and the present study is that here the particle mass is considered as

a constant. The one-particle PDF, f̃p(x, cp, ξp, t;H f ), conditional on a given fluid
flow realization H f , is therefore defined in the phase space as a function of the only



particle translation velocity cp and particle temperature ξp, other than of the position
x and of the time t. The mesoscopic ensemble average of any Lagrangian quantity
gp(t) which can be written as a function of the particle velocity and temperature,
gp(t) = γ (up(t), Tp(t)), is obtained by integration over the particle space and leads
to the mesoscopic field

g̃p(x, t) =
1

ñp(x, t)

∫
γ (cp, ξp) f̃p(x, cp, ξp, t;H f )dcpdξp (5)

where ñp is the mesoscopic particle number density obtained by the integration

of f̃p. Hereinafter, for the sake of synthesis, the contracted notation g̃p(x, t) =
< gp(t)|xp(t) = x; H f > is used. According to the MEF, instantaneous velocity and
temperature of each particle may be decomposed in two contributions, an instanta-
neous Eulerian field and a residual particle component

up,i(t) = ũp,i(xp(t), t) + δup,i(t), Tp(t) = T̃p(xp(t), t) + δTp(t). (6)

The first contribution is a correlated continuous field shared by all the particles
and written in an Eulerian framework, it leads to the first-order moments of
the conditional PDF, namely the mesoscopic particle velocity and the mesoscopic
particle temperature

ũp,i(x, t) = < up,i(t)|xp(t) = x; H f >, T̃p(x, t) = < Tp(t)|xp(t) = x;H f >; (7)

the second contribution is a random spatially-uncorrelated component, associated
with each particle and defined along the particle path. It stems from the chaotic
motion of the particles and it is characterized in terms of Eulerian fields of particle
velocity and temperature higher central moments. Second-order moments of the
conditional PDF are the RUM particle kinetic stress tensor

δRp,ij(x, t) =
〈
δup,i(t)δup, j(t)|xp(t) = x; H f

〉
, (8)

whose trace is twice the RUM particle kinetic energy 2δθp = δRp,ii. The RUM
particle temperature variance

δθθ (x, t) = 1

2

〈
δTp(t)δTp(t)|xp(t) = x;H f

〉
, (9)

and the RUM-HF

Cppδ2p,i(x, t) = Cpp

〈
δvp,i(t)δTp(t)|xp(t) = x;H f

〉
1. (10)

Third-order moments of the RUM are the third-order RUM velocity correlation

δQp,ijk(x, t) =
〈
δup,i(t)δup, j(t)δup,k(t)|xp(t) = x; H f

〉
, (11)

and the third-order RUM velocity with temperature correlations

δ�p,i(x, t) =
〈
δvp,i(t)δTp(t)δTp(t)|xp(t) = x; H f

〉
, (12)

δ1p,ij(x, t) =
〈
δvp,i(t)δvp, j(t)δTp(t)|xp(t) = x; H f

〉
. (13)

1The particle specific heat capacity Cpp was intentionally pulled out of the conditional mean operator
as we assume it is constant. For that reason, it will be withdrawn from the enthalpy equation and
hereinafter, for the sake of simplicity, we will refer to the quantity δ2p,i(x, t) as the RUM heat flux
even if it does not have units of heat flux without accounting for Cpp and the particle density as well.



In the framework of the PDF approach, the moment transport equations are ob-
tained by analogy with the kinetic theory of gases [5]. Without gravity, if the particle
diameter is smaller or equal than the Kolmogorov lengthscale and the particle-to-
fluid density ratio is large, only the drag force modifies the PDF. Further, assuming
stationary inter-phase heat transfers and no radiant sources, the equation of the PDF
is written as

∂

∂t
f̃ (1)

p + ∂

∂x j

[
cp, j f̃ (1)

p

]
= + ∂

∂cp, j

[
(cp, j − u f@p, j)

τp

f̃ (1)
p

]

+
∂

∂ξp

[
(ξp − T f@p)

τθ

f̃ (1)
p

]
+

(
∂ f̃ (1)

p

∂t

)

coll

. (14)

The first and the second terms on the right hand side (r.h.s.) account for the effect
of external forces and heat exchanges acting on the particle respectively; they are
closed according to the same assumptions used for closing the Lagrangian particle
equation [see, e.g. 68]. The last term in Eq. 14 accounts for the modification in
the distribution function due to the particle interactions (collisions, coalescence). In
very dilute regimes, the latter may be neglected provided that the typical collision
time is much greater than the particle response time. Nevertheless, the formalism
may theoretically include inter-particle collisions assuming that they do not directly
induce spatial correlations in the particle velocity distribution. Local and instan-
taneous Eulerian equations are then obtained from Eq. 14 by multiplying by any
function γ (cp, ξp) and integrating over the particle velocity-temperature space. At
the first order, neglecting collisions, the local and instantaneous isothermal dispersed
phase is described by the evolution of the mesoscopic particle number density and
velocity [56]

∂ñp

∂t
+

∂ñpũp,i

∂xi

= 0 (15)

∂ñpũp,i

∂t
+

∂ñpũp,iũp, j

∂x j

= −
ñp

τ̃p

(
ũp,i − u f,i

)
−

∂ñpδRp,ij

∂x j

; (16)

in non-isothermal conditions an equation for the mesoscopic temperature should be
accounted for

∂ñpT̃p

∂t
+

∂ñpũp, jT̃p

∂x j

= −
ñp

τ̃θ

(
T̃p − T f

)
−

∂ñpδ2p, j

∂x j

. (17)

In the above Eqs. τ̃p =< 1/τp|H f >−1 and τ̃θ =< 1/τθ |H f >−1 are the mesoscopic
dynamic and thermal response times. The first term on the r.h.s. of Eq. 16 accounts
for the effects of the drag force and the second one is the transport due to the
RUM second-order moment. Into Eq. 17, the first r.h.s. contribution represents the
interphase heat exchanges and the second one is the transport of the mesoscopic



temperature due to the RUM heat flux. At the second order, the statistical modeling
leads to an equation for the particle kinetic RUM-ST [38]

∂ñpδRp,ij

∂t
+

∂ñpδRp,ijũp,k

∂xk

= − 2
ñp

τ̃p

δRp,ij − ñpδRp, jk

∂ũp,i

∂xk

− ñpδRp,ik

∂ũp, j

∂xk

−
∂ñpδQp,ijk

∂xk

. (18)

Similarly, an equation for the RUM-HF may be written as follows

∂ñpδ2p,i

∂t
+

∂ñpũp, jδ2p,i

∂x j

= − ñp

(
1

τ̃p

+
1

τ̃θ

)
δ2p,i − ñpδ2p, j

∂ũp,i

∂x j

− ñpδRp,ij

∂T̃p

∂x j

−
∂ñpδ1p,ij

∂x j

. (19)

The first term on the r.h.s. of Eq. 18 represents the dissipation of the RUM-ST due
to the drag by the fluid. The second and third terms are productions by mesoscopic
velocity gradients; the last term is the transport by the third-order RUM velocity
correlation. Similarly, the first term on the r.h.s. of Eq. 19 accounts for the dissipation
of the RUM-HF due to heat and momentum transfers, second and third terms
are productions by both mesoscopic velocity and temperature gradients and the
last contribution is the transport due to the third-order RUM velocity-temperature
correlation. In the framework of the ACBMM approach proposed in this study,
Eqs. 18 and 19 are not resolved but rather used for the development of the second-
order moment closures. Preliminary two-dimensional Eulerian-Eulerian DNS using
modeled RUM-ST in conjunction with resolved RUM-HF may be found in [10]. With
the purpose of developing the algebraic closures, the equation of the evolution of the
RUM kinetic energy is written [56]

∂ñpδθp

∂t
+

∂ñpδθpũp,i

∂xi

= −ñpδRp,ij

∂ũp,i

∂x j

− 2
ñp

τ̃p

δθp −
1

2

∂ñpδQp,i

∂xi

, (20)

where δQp,i =
〈
δup,i(t)δup, j(t)δup, j(t)|xp(t) = x;H f

〉
, and an equation for the RUM

temperature variance is derived

∂ñpδθθ

∂t
+

∂ñpδθθ ũp,i

∂xi

= −ñpδ2p,i

∂T̃p

∂xi

− 2
ñp

τ̃θ

δθθ − 1

2

∂ñpδ�p,i

∂xi

. (21)

The ACBMM bases its efficiency and accuracy on the algebraic closures provided for
modeling the RUM-ST and the RUM-HF; in this study, this concern is addressed.

3 Modeling the RUM Particle Kinetic Stress Tensor (RUM-ST)

The RUM-ST is composed of spherical and deviatoric contributions

δRp,ij =
1

3
δRp,kkδij + δR∗

p,ij =
2

3
δθpδij + δR∗

p,ij. (22)

The spherical part may be predicted by means of an additional transport equation
[26, 56] while the deviatoric contribution is given by an algebraic closure. In this work
the deviatoric RUM-ST is modeled by using a polynomial representation for tensor



functions. The polynomial representation is used in the framework of an assumption
of equilibrium of the local anisotropy. Indeed, one of the most important finding
of a previous study of the authors [32] was to observe that the RUM-ST is a self-
similar tensor which means that its temporal and spatial evolutions are related to that
of its trace, involving equilibrium of anisotropy. Such a behavior, revealed by using
mathematical arguments, may be physically explained. In very dilute regimes, where
inter-particle collisions are negligible, the dispersed phase submitted to a strong
shear develops anisotropy which achieves and preserves the theoretical asymptotic
maximum value as no redistribution between stresses is possible neglecting collisions.
In contrast, accounting for collisions introduce a new term in the RUM stress
transport equation which accounts for a redistribution effect. In the frame of the
Grad’s theory, this term may be modeled [53] similarly to the return-to-isotropy
Rotta’s model developed for the pressure-strain correlation in turbulent flows [48].
For larger values of the solid volume fraction, the dispersed phase should move away
from the maximum level of anisotropy as the collision frequency increases.

Such a self-similarity assumption leads to an algebraic stress model which is an
implicit and nonlinear system of equations. It is obtained defining a local RUM
anisotropy tensor as

b ∗
p,ij =

δRp,ij

2δθp

−
1

3
δij. (23)

Then the equilibrium involves

D

Dt
b ∗

p,ij = 0 with
D

Dt
=

∂

∂t
+ ũp,k

∂

∂xk

, (24)

which using the definition (23) gives the relation

D

Dt
δRp,ij =

δRp,ij

δθp

D

Dt
δθp. (25)

Injecting Eqs. 18 and 20 into Eq. 25, and assuming equality between left hand side
(l.h.s.) and r.h.s. third-order correlations, the equation takes the form

δRp,ij

(
−

δRp,nm

2δθp

∂ũp,n

∂xm

)
= −

1

2
δRp, jk

∂ũp,i

∂xk

−
1

2
δRp,ik

∂ũp, j

∂xk

. (26)

Defining the mesoscopic particle rate-of-strain and vorticity tensors as, respectively,

Sp,ij = 1

2

(
∂ũp,i

∂x j

+
∂ũp, j

∂xi

)
, �p,ij = 1

2

(
∂ũp,i

∂x j

−
∂ũp, j

∂xi

)
, (27)

and using the decomposition of Sp,ij in deviatoric and spherical contributions Sp,ij =
S∗

p,ij + 1

3
Sp,kkδij and the RUM anisotropy definition (23), Eq. 26 may be rearranged

as

b ∗
p,ij

(
−2b ∗

p,nmS∗
p,nm

)
= − 2

3
S∗

p,ij −
(

b ∗
p,ikS∗

p,kj + S∗
p,ikb ∗

p,kj −
2

3
b ∗

p,nmS∗
p,nmδij

)

+
(

b ∗
p,ik�p,kj − �p,ikb ∗

p,kj

)
, (28)

which represents the implicit nonlinear model proposed for closing the RUM-ST.
Explicit solutions are then provided using techniques well known in turbulence



[19, 20, 64]. Hereinafter, bold notation denotes three-dimensional second-rank
tensors, curly brackets {.} represent the tensor trace and the asterisk means traceless
tensor. The matrix multiplication is then defined in a matrix notation as C = AB =
Aik Bkj = Cij and B2 = BB. According to Pope [41], the anisotropy tensor may be
expressed using a polynomial representation for tensor functions b∗ =

∑
ς Gς T(ς)

which represents the linear combination of a set of non-dimensional independent,
symmetric and deviatoric second-order tensors T(ς), using scalar coefficients Gς

which are functions of the invariants of the dimensionless S+ and �+. Using the
Cayley-Hamilton theorem, Pope [41] showed that a set of ten (ς = 10) tensors T(ς) is
needed to form an integrity basis [58] in order to express every symmetric deviatoric
three-dimensional second-order tensor formed by S+ and �+; the problem then
reduces to model the ten coefficients Gς (see, e.g., [19, 64]). However, the integrity
basis and coefficients associated with may be reduced if some approximations
are introduced. Using a two-dimensional flow approximation (three tensor basis)
Girimaji [20] developed a self-consistent solution technique in order to model the
Reynolds stresses in turbulent flows. In this work, we will use the same technique
applied to our model (28). The algebraic, implicit and nonlinear system for the
dispersed phase is rewritten using the Girimaji’s notation as

b∗ (
L0

1
− L1

1
{b∗S+}

)
= L2S+ + L3

(
b∗S+ + S+b∗ − 2

3
{b∗S+}I

)

− L4

(
b∗�+ − �+b ∗) , (29)

where L0

1
= 0, L1

1
= 2, L2 = − 2

3
, L3 = −1 and L4 = −1, S+ and �+ are dimension-

less tensors by the quantity I I
1/2

S = {S∗2}1/2, for example, and I is the identity matrix.
According to Girimaji [20], the general representation of the anisotropy tensor under
the two-dimensional approximation is

b∗ =
3∑

ς=1

GςT(ς) = G1S+ + G2

(
S+�+ − �+S+)

+ G3

(
S+2 − 1

3
{S+2}I

)
, (30)

where the three coefficients are functions of the two invariants η1 = {S+2} and η2 =
{�+2}. Using Eq. 30 and the two-dimensional hypothesis, the contracted product
b ∗

p,ijS
+
p,ij may be written as

b ∗
p,ijS

+
p,ij = G1S+

p,ijS
+
p,ij = G1η1. (31)

Inserting Eqs. 30 and 31 into the system (29) yields an expression from which,
comparing homogeneous l.h.s. and r.h.s. terms, explicit solutions for the unknown
coefficients may be obtained. In our particular case in which L0

1
= 0, the coefficients

G2 and G3 are given by

G2 = L4

η1L1

1

, G3 = − 2L3

η1L1

1

, (32)

and G1 reduces to the solution of a pure quadratic equation

G2

1
= −

1

η1L1

1

[L2 +
1

3
η1L3G3 − 2η2L4G2]. (33)



Equation 33 accounting for the “L” coefficients leads to G1 = ±
√

2η1 + 2η2/2η1,
which admits real solutions only for η1 + η2 ≥ 0. Unfortunately, as η1 and η2 have
positive and negative sign respectively, real solutions are not ensured. In order
to use this model, local negative values of the discriminant are set to zero. The
legitimacy of such an approximation was investigated in [30]; it was observed that
negative values correspond to small magnitudes of both the particle rate-of-strain
and vorticity tensors justifying the approximation G1 = 0. Concerning the sign of
G1, according to Eq. 31 and the definition of the normalized production of the
RUM particle kinetic energy by shear (−{b∗S∗}, from Eq. 20), in the simplest case
it should be taken as negative (which is the most probable sign). Negative sign for G1

is obtained in turbulence, in the domain of applicability of an equilibrium assumption
of anisotropy [20]. However, for the dispersed phase interacting with turbulent flows,
it is usual to have reverse energy exchanges from the RUM to the mesoscopic
contribution [33, 39] corresponding to a reverse sign of the first-order coefficient G1

in a two-dimensional approximation. In order to chose the right solution, a model is
proposed. It stems from the observation (not shown) that the sign of the contracted
product b ∗

p,ijS
+
p,ij, which is the same of G1, is correlated with the sign of the third

invariant of the particle rate-of-strain tensor defined as η3 = {S+3}. According to
this observation, the model becomes G1 = sign(η3)

√
2η1 + 2η2/2η1. This model gives

excellent results when a priori assessed but it should be carefully investigated by
an a posteriori analysis in order to verify its validity in actual Eulerian-Eulerian
simulations. Alternatively, one can assume dilute rather than very dilute regime.
The latter implies that the inter-particle collision time is much larger than the
particle relaxation time, so that collisions may be neglected. If the two timescales
are instead of the same order of magnitude and the volume-fraction rate is small
(αp < 0.01), the regime can still be considered as dilute, i.e. no modulation of the
turbulence by the presence of the particles occurs, but collisions should be taken
into account. In this case the model coefficient L0

1
is no longer zero, as it accounts

for the effects of collisions on anisotropy, and G1 (with the right sign) is found
as the solution of a third-order polynomial admitting always a real solution. This
concern is not addressed by the present study; a third-order polynomial needs a
criterion for the choice of the real solution which requires a further analysis. Injecting
the coefficients G1, G2, G3 into Eq. 30 leads to an explicit solution for the RUM
anisotropy tensor and thus for the RUM-ST. A study about the realizability of the
model (28) and its explicit, two dimensional, solution (30–33) is postponed to a future
work. Hereinafter, this model will be referred to as 28EASM (by analogy with
RANS turbulence models, see, e.g. [57] and references cited in).

4 Modeling the RUM Particle Heat Flux (RUM-HF)

In a similar way, the RUM-HF is modeled assuming similarity between the evolution
of the RUM-HF and that of the square root correlation between the RUM kinetic
energy (δθp) and the RUM temperature variance (δθθ ), which involves the equilib-
rium of the normalized heat flux. This assumption may be written as

D

Dt

δ2p,i√
δθpδθθ

= 0 (34)



which developed leads to

1√
δθpδθθ

D

Dt
δ2p,i =

1

2

δ2p,i√
δθpδθθ

1

δθp

D

Dt
δθp +

1

2

δ2p,i√
δθpδθθ

1

δθθ

D

Dt
δθθ . (35)

Then injecting Eqs. 19, 20 and 21 into Eq. 35 and assuming equality between l.h.s.
and r.h.s. diffusion terms, the equation takes the form

δ2p,i√
δθpδθθ

(
−

1

2

δ2p,l

δθθ

∂T̃p

∂xl

−
1

2

δRp,kl

δθp

∂ũp,k

∂xl

)
= −

δRp,ij√
δθpδθθ

∂T̃p

∂x j

−
δ2p, j√
δθpδθθ

∂ũp,i

∂x j

,

(36)

which may be rearranged as follows

δHp,i

(
−1

2
δHp,l K̃p,l − b ∗

p,kl S
∗
p,kl

)
= −2

(
b ∗

p,ij +
1

3
δij

)
K̃p, j

−(S∗
p,ij + �p,ij)δHp, j, (37)

by defining the quantities

δHp,i =
δ2p,i√
δθpδθθ

, K̃p,i =

√
δθp

δθθ

∂T̃p

∂xi

. (38)

A fully dimensionless system may be obtained using non-dimensionalized quantities
K̃p,i, S∗

p,ij and �p,ij by the same inverse timescale, then referred to as K̃+
p,i, S+

p,ij

and �+
p,ij. Eq. 37 is an implicit and nonlinear particle algebraic heat flux model.

Explicit self-consistent solutions, referred to as 28EAHFM, are then provided
using a technique suggested for turbulent heat flux by Wikström et al. [65] and by
introducing a regularization procedure for ensuring non-singular solutions during
the process of matrix inversion. Equation 37 was indeed rearranged similarly to the
analogous equation of Wikström et al. [65] in order to straightforwardly apply their
technique to our model. Using the same notation as in [65], we define the scalar
quantity into the parentheses on the l.h.s. of Eq. 37 as

Nθ = −
1

2
δHp,l K̃

+
p,l − b ∗

p,kl S
+
p,kl. (39)

The system (37) may then be solved by inverting the matrix

Ap,ij = Nθδij + S+
p,ij + �+

p,ij, (40)

obtaining the explicit solutions

δHp,i = −2A−1

p,ij

(
b ∗

p, jl + 1

3
δ jl

)
K̃+

p,l. (41)

According to the Cayley-Hamilton theorem, an analytic expression for A−1 may be
written (see, e.g., [42] ) and the operation of matrix inversion is ensured provided that
A admits real non-null eigenvalues so to avoid the occurrence of singularities when
its determinant (denominator of the analytical solution) vanishes. The technique
of Wikström et al. [65] involves injecting the relation of the flux (Eq. 41 in our
case) into the definition of Nθ (Eq. 39 in our case), replacing A−1 by its analytical



expression. For fully three-dimensional flows, this leads to a fourth-order polynomial
in Nθ difficult to handle. An alternative is to resolve a third-order polynomial cor-
responding to a two-dimensional flow approximation and then using the solution for
three-dimensional flows as well [65]. Assuming two-dimensional flows, the analytic
expression for the inverse of the matrix is

A−1 =
NθI − (S+ + �+)

N2

θ − 1

2
(η1 + η2)

. (42)

Injecting Eq. 42 (but using three-dimensional tensors) into Eq. 41 and the latter into
the definition (39) the following third-order polynomial is obtained

2N3

θ + 2{b∗S+}N2

θ − (Q1 + R1)Nθ − {b∗S+}Q1 + R2 = 0, (43)

where Q1 = η1 + η2 and the terms R1 and R2 are, respectively,

R1 = 2

((
b ∗

p,il +
1

3
δil

)
K̃+

p,l K̃
+
p,i

)

R2 = 2

((
S+

p,ij + �+
p,ij

)(
b ∗

p, jl +
1

3
δ jl

)
K̃+

p,l K̃
+
p,i

)
. (44)

A unique real solution is ensured by using the transcendental functions

Nθ = −{b∗S+}
3

+





sign(P1 +
√

P2)|P1 +
√

P2|1/3 + sign(P1 −
√

P2)|P1 −
√

P2|1/3, P2 ≥ 0

2(P2

1
− P2)

1/6cos

(
1

3
arccos

(
P1√

P2

1
−P2

)
+ β

)
, P2 < 0, P1 ≥ 0

2(P2

1
− P2)

1/6cos

(
− 1

3
arccos

(
−P1√
P2

1
−P2

)
+ π

3
+ β

)
, P2 < 0, P1 < 0

(45)

with P1 and P2 defined by the relations

P1 =
(−{b∗S+}3

27
+

1

6
{b∗S+}Q1 −

1

12
{b∗S+}R1 −

1

4
R2

)
,

P2 = P2

1
−

( {b∗S+}2

9
+

1

6
Q1 +

1

6
R1

)3

, (46)

and β = 0 for −{b∗S+} ≥ 0 and β = 2π/3 for −{b∗S+} < 0. Transcendental functions
are chosen in order to ensure the physical real solution when the temperature
gradient vanish and the model must give Nθ = −{b∗S+} even in the case of negative
production (−{b∗S+} < 0), case which rarely occurs in turbulence. The solution for
Nθ is then inserted into the Eq. 42 and A−1 injected into the system (41) which
provides explicit and self-consistent solutions for the RUM-HF. At this point, we
need to address the concern of stable solutions by ensuring the determinant of the
matrix does not vanish and singularities do not occur. From the a priori analysis, we
observed that the determinant is mainly positive and that negative values correspond
to small magnitudes. In order to avoid singular solutions, the determinant should not
change its sign and the following condition, det(A) = N2

θ − 1

2
(η1 + η2) > 0, should be



satisfied while, in general, it is not. Solutions proposed in [65] for turbulent flows
do not apply to the dispersed phase and a regularization procedure is therefore
necessary. The reciprocal of the determinant is re-written as follows

det(A)−1 =
1

N2

θ − 1

2
(η1 + η2)

=
2/(2N2

θ )

1 − η2/(2N2

θ ) + ξ 2/(2N2

θ )
=

2/(2N2

θ )

1 + ξ 2/(2N2

θ ) − x2

(47)

where η = √
η1, ξ =

√
−η2 and x2 = η2/(2N2

θ ). Then, using the first order Maclaurin
series2 of the function 1/(1 + x2) we write x2 ≈ 1 − 1/(1 + x2) which inserted into
Eq. 47 leads to

det(A)−1 =
2(2N2

θ + η2)

(2N2

θ )
2 + ξ 2(2N2

θ + η2)
. (48)

The stability is thus ensured as the denominator of Eq. 48 never vanishes for Nθ

and ξ 2 or η2 6= 0. An analysis conducted by comparing scatter plots of both the non
regularized solutions and the regularized solutions versus the actual values has shown
that the regularization procedure has an impact mainly on the predictions of the small
magnitude of the RUM-HF and slightly affects the model accuracy. Hereinafter,
explicit regularized solutions for the RUM-HF will be referred to as 28EAHFM.

5 Results

An evaluation of the ACBMM by assessing the proposed algebraic closures is given
by an a priori analysis using particle Eulerian fields which are extracted from several
Lagrangian-Eulerian DNSs of a temporal particle-laden non-isothermal turbulent
planar jet. The particle Eulerian database is obtained from the Lagrangian-Eulerian
DNSs using the projection procedure as detailed in [26, 39]. Mesoscopic Eulerian
fields are then used for assessed the models by means of point-wise functions (as, for
example, PDF) over the local particle Eulerian quantities, or by using mean profiles
of the Eulerian fields, computed by density-weighted averaging the Eulerian fields
over the homogeneity planes of the planar jet.

The numerical simulations correspond to the dispersion of a cold particle-laden jet
into a hot homogeneous isotropic decaying turbulence [2]. The gas is solved by com-
pressible Navier-Stokes and energy equations in dimensionless form using a third
order Runge-Kutta time stepping and a sixth-order compact finite difference scheme
on a Cartesian mesh. The simulation domain is a cube of length size Lbox = 2πLref

and grid 128
3 cells. The initial gas velocity has hyperbolic-tangent profile supple-

mented with statistically homogeneous and isotropic velocity fluctuations [61]. The
initial gas temperature has hyperbolic-tangent mean profile and zero fluctuations.
As we assume very dilute regime, collisions and turbulence modulation are not
accounted for. The advancement in time of the Lagrangian tracking is ensured by
a third order Runge-Kutta scheme. The interpolation of the instantaneous local fluid

2A similar regularization procedure was used by Gatski and Speziale [19] for modeling the Reynolds
stress tensor in the framework of the EASM approach.



velocity and temperature at the particle location is provided at any time stepping
by a third-order Lagrange polynomial algorithm. Periodic boundary conditions are
applied to both the carrier and the dispersed phases. Within the slab, of width
d = 0.25Lbox, 13 millions of solid particles are randomly embedded at the same
mean velocity and temperature as the carrier flow and zero fluctuations. Seven
simulations are conducted corresponding to the macroscale-turbulent Stokes number
St∼ 0.1, 0.5, 1, 2, 3, 5, 7 computed over a characteristic timescale of the turbulence
seen by the particles, τ L

f@p. The timescale τ L
f@p is obtained assuming the Tchen

equilibrium in the spanwise direction of the jet (mean-flow free) [43] for a simulation
of reference (St∼ 1). An estimate of the Stokes numbers is then obtained as the ratio
between the mean particle relaxation times, computed changing uniquely the particle
density, and τ L

f@p. As the particles are very small and heavy, the drag correction has
only a little impact on the computation of the particle relaxation time and the regime
is very close to the Stokes regime. As a consequence, according to Eq. 4 and the
parameters chosen for the numerical simulations, Pr= 0.7 and α = 2, the thermal
particle relaxation times result in about twice the dynamic particle relaxation times.
Assuming equality between the characteristic dynamic and thermal timescales of
the turbulence seen by the particles, then Stθ ∼ 2 St. This implies that the thermal
particle inertia is even larger than the dynamic particle inertia. The initial set of
dimensionless parameters of the numerical simulations is the following: kinematics
viscosity ν f = 1.82e-4urefLref, turbulent kinetic energy q2

f = 3.37e-4u2

ref, dissipation

ǫ f = 3.78e-5u3

ref/Lref, jet mean velocity U f = 0.15uref, jet rms velocity u′
f = 0.015uref,

jet temperature T f = 0.8Tref, particles’ diameter dp/1x = 0.01. For all the numerical
simulations, at the final time, the Reynolds number based on the large lengthscale of
the turbulence, ReL = (q2

f )
2/(ǫν), is ReL ∼ 80 at the center of the jet and almost the

double in the zones of high shear. Hereinafter, quantities are shown dimensionless.
The evaluation of the accuracy of the models is performed at tensor/vector level

by assessing each component of the deviatoric RUM-ST and the RUM-HF against
the actual quantities as provided by the particle Eulerian database (not all shown
for brevity). Moreover, an assessment at scalar level is also given. Illustrated in
Fig. 1 are the mean profiles of δR∗

p,11
, as obtained using 28EASM, and that of the

corresponding actual stresses, for all the Stokes-number simulations. Comparisons
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Fig. 1 Mean profiles of actual (line with symbols) and modeled (solid line) δR∗
p,11

(x10−4), for

simulations corresponding, from left to right, to St ∼ 0.1, 0.5, 1, 2, 3, 5, 7, at t = 6.2τ L
f @p
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Fig. 2 Mean profiles of actual (line with symbols) and modeled (solid line) δR∗
p,12

(x10−5), for

simulations corresponding, from left to right, to St ∼ 0.1, 0.5, 1, 2, 3, 5, 7, at t = 6.2τ L
f @p

show that, except for the smallest Stokes-number simulation where the model slightly
underestimate the mean profile of δR∗

p,11
, mean quantities are excellently reproduced

regardless of the particle inertia. Illustrated in Fig. 2 are the modeled and the
actual mean profiles of the component δR∗

p,12
. Contrary to δR∗

p,11
, the mean profile

of the component δR∗
p,12

is slightly overestimated for the smallest Stokes-number
simulation and like δR∗

p,11
, mean profiles of δR∗

p,12
are excellently reproduced by

the model independent of the simulation. In Fig. 3, 28EASM is assessed at the
scalar level over the deviatoric-RUM contribution of the first r.h.s. term of Eq. 20
which represents the production of the RUM kinetic energy by shear (PRUM−KE).
Results show that the mean amount of PRUM−KE is globally overestimated by the
model. In order to gain insight into the local prediction of the deviatoric RUM-ST
and the PRUM−KE, the joint PDFs of the actual and modeled δR∗

p,11
and the actual

and modeled PRUM−KE are computed and the results (for an intermediate Stokes-
number simulation, St∼ 3) depicted in Fig. 4. Examination of the Fig. 4a shows
that 28EASM reproduces very well the component δR∗

p,11
of the tensor, being the

values equilikely distributed around the 45 degree line which represents the perfect
agreement between the two quantities. Examination of the Fig. 4b shows that also
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Fig. 4 Isocontours of the joint PDF of (a) modeled and actual δR∗
p,11

, (b) modeled and actual

PRUM−KE, computed into the slab, −0.7 < y∗ < 0.7, for the simulation corresponding to St∼ 3, at
the time t = 6.2τ L

f @p

the joint-PDF values of the actual and modeled productions are mainly equilikely
distributed around a line, the slope of which is however larger than 45 degree,
which means that the magnitudes of the modeled PRUM−KE are overestimated. Since
positive values dominate negative values, the averages over planes have positive sign
(see Fig. 3) and an overestimate of the magnitudes corresponds to an overestimate
of the mean profiles as well. In order to give a more quantitative evidence of such a
behavior, the PDF of PRUM−KE is investigated and the result corresponding to the
simulation St∼ 3 is displayed in Fig. 5. Examination of the Fig. 5 shows that the
predicted PRUM−KE is larger in magnitude than the reference; nevertheless, the shape
of the PDF is perfectly reproduced. As a perspective for future work, the model could
be improved using a three-dimensional form (ten tensor basis), but then the question
of non-singular solutions should be addressed. Also, the model may be improved
assuming dilute rather then very dilute regime (as pointed out in Section 3).

As the aim of this work is to provide a comprehensive model for predicting
non-isothermal particle-laden turbulent flows in a Eulerian fashion, the assessment

Fig. 5 PDF of actual (line with
symbols) and modeled (solid
line) PRUM−KE, computed into
the slab, −0.7 < y∗ < 0.7, for
the simulation corresponding
to St ∼ 3, at t = 6.2τ L
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of the RUM-HF closure is performed by using, as an input, the RUM-ST as
modeled by 28EASM. Results of the predictions using 28EAHFM for the stream-
wise and the normal components of the RUM-HF are depicted in Figs. 6 and 7.
Moreover, in order to give an assessment of the model at the scalar level, the
scalar quantity corresponding to the first term in the r.h.s. of Eq. 21, namely the
production of the RUM temperature variance (PRUM−TV) is investigated. Mean-
profile results show that the model tends to underestimate the flux components
while it better reproduces the mean production amount (Fig. 8). A local (not-
averaged) representation of the model predictions for the PRUM−TV is given by the
PDF and the joint PDF in Figs. 9 and 10a, respectively. Examination of the Fig. 9
shows that the slight overestimation of the modeled PRUM−TV, as observed by the
mean profiles, is likely due to an underestimation of the negative contribution of
PRUM−TV corresponding to small values of it; nevertheless the shape of the PDF is
very well reproduced. Good agreement between modeled and actual productions is
also observed by the examination of the Fig. 10a. In order to gain insight into the
point-wise predictions of the RUM-HF components, the joint PDF of the actual
and modeled δ2p,1 is computed and displayed in Fig. 10b. Examination of the
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magnitudes while worse predictions are found close to the small values of the RUM-
HF. It is conjectured that small values correspond to the zones of weak tempera-
ture/velocity gradients where a two-dimensional approximation is more question-
able. The model could be improved by using a full three-dimensional writing together
with a new regularization procedure for the matrix inversion. Globally the two clo-
sures give satisfactory results. Correlation coefficients between modeled and actual
PRUM−KE and PRUM−TV respectively, computed according to the relation C(A, B) =
(< AB >−< A >< B >)/(

√
(< A2 >−< A >2)(< B2 >−< B >2)), are depicted

in Fig. 11; they show the high-fidelity representation by the models of the actual
quantities.

6 Conclusions

An algebraic-closure-based moment method has been developed for unsteady non-
isothermal Eulerian particle simulations coupled with DNS of carrier fluid turbulent
flows in very dilute regime and at moderate turbulent-macroscale Stokes numbers.
This method relies on a conditional statistical approach which provides a local
characterization of the dispersed phase as it accounts for the effect of the crossing
between particle trajectories which occurs in the presence of inertial particles. The
ACBMM approach proposed by this work entails the numerical integration of a set
of closed conservation equations describing the evolution of the low-order moments
of the conditional PDF, namely the mesoscopic particle number density, velocity and
temperature. Closures for the second-order moments, the RUM-ST and the RUM-
HF, appearing in the particle momentum and enthalpy equations are then provided
by means of additional transport equations for the trace of the RUM stress tensor
and for the RUM temperature variance together with algebraic closures derived for
modeling the deviatoric part of the RUM tensor and the RUM heat flux. The devi-
atoric RUM-ST is closed by a polynomial representation for tensor functions used
in the frame of an assumption of equilibrium of the RUM anisotropy. The RUM-
HF is modeled assuming equilibrium of the scaled heat flux. Explicit self-consistent
solutions of the novel implicit models are then provided by using techniques well-



known in turbulence. An a priori analysis conducted by this study has shown that
these models compare very well with the actual particle Eulerian quantities extracted
from Lagrangian-Eulerian DNSs, and this for all the Stokes-number simulations. At
the tensor/vector level, they provide an excellent representation of the RUM-ST and
a satisfactory representation of the RUM-HF, almost independent of the particle
inertia. At the scalar level, the analysis based on the local scalar quantities (the
RUM kinetic energy and the RUM temperature variance productions) also showed
satisfactory results. However, a detailed analysis conducted on the solely fluctuating
velocity/temperature contribution of these two terms (not shown) has pointed out as
the accuracy of the predictions of the RUM productions by gradients of fluctuating
velocity/temperature, degenerates at large Stokes numbers in high shear zones of
the jet. These terms, responsible for the energy exchange between mescoscopic and
RUM contributions, at large inertia and in high shear zones of the jet, tend toward
zero-mean values despite their high local magnitudes (this concern makes the object
of a following publication). A kinetic-energy transfer rate which is badly predicted
may dramatically affect the numerical simulations. This point seems to represent
the limit of a first-order modeling using second-order constitutive relations. For
this reason, the model we propose is expected to be effective for dilute particle-
laden turbulent flows at moderate turbulent-macroscale Stokes numbers (St < 10).
For dilute particle-laden flows at large/very large Stokes numbers, a ACBMM ap-
proach involving higher-order-moment conservation equations or QBMM/KBMM
approaches should be preferred. The a priori analysis conducted by the present study
should be completed by an a posteriori assessment through actual Eulerian-Eulerian
DNSs in order to give a comprehensive evaluation of the modeling and its range of
applicability.
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