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Multi-stage high order semi-Lagrangian schemes
for incompressible flows in Cartesian geometries

Alexandre Cameron, Raphaél Rayngugimmanuel Dormy

SUMMARY

Efficient transport algorithms are essential to the nunaéresolution of incompressible fluid flow problems.
Semi-Lagrangian methods are widely used in grid based rdsttwachieve this aim. The accuracy of the
interpolation strategy then determines the propertieshefscheme. We introduce a simple multi-stage
procedure which can easily be used to increase the ordercofamy of a code based on multi-linear
interpolations. This approach is an extension of a cowedtlgorithm introduced by Dupont & Liu (2003,
2007). This multi-stage procedure can be easily implenteimeexisting parallel codes using a domain
decomposition strategy, as the communications pattemfeistical to that of the multi-linear scheme. We
show how a combination of a forward and backward error cimecan provide a third-order accurate
scheme, thus significantly reducing diffusive effects whétaining a non-dispersive leading error term.
Preprint

1. INTRODUCTION

Semi-Lagrangian methods offer an efficient and widely uspgr@ach to model advection
dominated problems. Initially introduced in atmosphernd aveather model$s 1] 2], these methods
are now widely used in all fields of fluid mechanics [3,[4, 5].eythave found a wide range
of application in computational fluid dynamics. These mdthbave triggered a wide variety
of schemes, including spline interpolation methdds[[6,]7.fi@ite element WENO algorithms
[9,[10,11] or CIP method512, 13]. Considerable developrhasalso been achieved in application
to hyperbolic problems (e.g. compressible hydrodynaniid$, [Vlasov equatiori [15]) and fall out
of the scope of this paper.

Semi-Lagrangian methods involve an advected fieldollowing the characteristics backward
in time. The procedure requires the estimation of field valihrat do not lie on the computational
grid. Semi-Lagrangian methods therefore rely on an infatum of (¢ — At, x — uAt), which in
general is not a known quantity on the discrete grid.

Because of their local nature, low order semi-Lagrangiathods perform remarkably well on
massively parallel computers [16,/17]. Limitations occuttwinigh-order interpolation methods. As
the width of the stencil increases, the locality of the schésmreduced and the resulting schemes
require larger communications stencils. When the intepah strategy is simple, multi-linear in
the case of th&’I R scheme([1B], the scheme is local and the computational sasnhall. If the
interpolation stencil is not localized near the computaiopoint, but near the point where the
interpolated value must be reconstructed, one can showthibanethod is then unconditionally
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stable, in the case of a uniform and steady velocity field.[82ich schemes are however prone to
large inter-process communations, and are not unconditjostable for general flows.

Dupontet al.[20,[21,22] introduced two new corrective algorithms: “ward Error Correction”
(here denoted”EC) and “Backward Error Correction” (here denot&¥’'C). These algorithms
take advantage of the reversibility of the advection equiato improve the order of most semi-
Lagrangian schemes by using multiple calls of an initialeadion scheme. The resulting schemes
yield an enhanced accuracy. In that sense, they are bdilevgimilar spirit to the predictor-corrector
method|[[28] or the MacCormack schernel[24].

Here we introduce a new scheme following this methodologg, thus extend this approach to
third order accuracy.

2. MULTI-STAGE APPROACHES

A possible strategy to increase the order of Semi-Lagrang@zhemes is to use higher order
interpolation formula e.gl [25]. This has the drawback dfirey on a wider stencil, which requires
larger communication patterns on a distributed memory agerpAnother significant issue with
wider stencils is the handling of boundary conditions.

Equation[(1) models the advection of a passive schlay a velocity fieldu,

D=0+ (u-V)]2=0. 1)
The Lagrangian derivative i](1) is usually defined as thétjifollowing the characteristic, of

D,® — lim D(t,x) — D(t — At,x — uAt)
At—0 At

: )

Semi-Lagrangian methods rely on this expression to digeréhe advective operatdp; ® instead
of expanding the sum in a temporal te@n® and an advective ternw - V)®, as in [1). The
semi-Lagrangian discretisation dfl (1) therefore intragki@n interpolation operatdt,, [®"] =
o (x — uAt), whered denotes the interpolated value away from the grid points.

A strategy introduced by Dupoeet al. [20] to increase the order of a semi-Lagrangian scheme,
without requiring the use of high-order interpolation fara, is based on two consecutive calls
to the interpolation operator, the second call involving teversed flow. This method is known
as the “Forward Error Correction [20]. The advantages @ fhrocedure over the above high
order schemes rely both on the accurate implementationwidery conditions and on the limited
communication stencil. The Forward Error Correction scaésconstructed as

®=L_o[Ly[®"] . 3)
FEC[®"] = L, [®"] + (@" — @) /2. (4)

The FEC corrective algorithm has further been improved/in! [21), 2&g three calls to the
interpolation operator for each time-step. The resultiggiithm is known as the “Backwards Error
Correction” (BEC) algorithm. It is constructed using

BEC [®"] = L, [@" + (" — ®)/2] . (5)

Both theF EC and theBEC algorithms suppress the leading order error term when tegialation
operator is irreversible. Both thE EC' and the BEC schemes are free of numerical diffusion.
However, they introduce numerical dispersive effectsteel@o their truncation errors.

This truncation error can be advantageously used to cats&rischeme free of numerical
dispersion and characterized by a fourth order derivativacation error. This is achieved for
the same computational cost as tB&C scheme. A new “Combined Error CorrectiorC' £C)
algorithm is introduced, using a linear combination of hBC' and BEC algorithms,

CEC [®] = ¢y FEC [®] + ¢ BEC [@)] . (6)
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When theC'TR scheme is used as the interpolation operator, the scheneeaged by the” EC
algorithm is similar, in the Eulerian framework, to the ong@duced in[26]. In this case, the values
of the coefficients:r andcg in (@) can be explicitly determined and the stability of tlesulting
schemes assessed. In one dimension, their expression is

3ep=2—Ax/(JulAt) and cp=1-cp, @)

whereAt denotes the time-step andr the grid-step.

In one dimension of space, ti& R scheme is strictly equivalent to the Eulerian upwind scheme
It is well known [27][28[ 29] that this scheme is stable for @mi-Friedrichs-Lewy (CFL) numbers
smaller than unity and introduces diffusive errors. Therigus diffusive effects are directly related
to the truncation error of the scheme.

The generalization td-dimension must be carried out with care. As described,|#terfields
can be advected one dimension at a time using a splittingnigeé similar to [[26]. In two or
three dimensions, the interpolation can be done by applyiag’ EC scheme on each direction
separately.

3. ONE-DIMENSIONAL ALGORITHMS

In the semi-Lagrangian formalism, the advection equat&mntie discretized using tlie/ R scheme
[18]. In one dimension, the'I R scheme has the same stencil as the Upwind schemel[5,123, 28]

OETE —(1 — U;)®"[i] 4+ U; ®"[i — s3], (8)

where @"[i] = @ denotes the value of the passive scalar at tima®: and positioni Az, s; =
sign(u;) the sign of the velocity and; = |u;|At/Ax the reduced velocity with; the velocity. A
Von Neumann stability analysis shows that the scheme &lgtstable forU < 1. For a constant
velocity, the modified equation takes the form

= (©)

The FEC scheme[(l) is a multi-stage version of thé R scheme. The developed expression
for the FEC scheme requires the first nearest neighbors for the velacitythe second nearest
neighbors for the passive scalar (see Appendix A). For atanhselocity, the expression ¢tEC
is

[atcp + uaxcp} = Dorpd?®+ ... With Dern=(1-U)
IR

FEC[®]; = U1 - U)®"[i + 1]+ (1 — U*)®@"[i] + sU (1 + U)@"[i — 1]. (10)
The stability analysis of {10) provides the following exgg®n for the amplification factor
éppc=1—U?+U?cos(kAx) — iU sin(kAx) . (11)
The FEC scheme is stable fdi < 1. The modified equation associated to this scheme is
[a@ + u&c@} L =-(- U?)“éf2 920 —3(1— U%%@ﬁ@ T (12)

The BEC scheme, presented [d (5), is a modified version ofti& scheme usin@” to correct
the field before the advection step. The developed expresgithe BEC scheme requires the
second nearest neighbors for the velocity and third neamghbors for the passive scalar (see
Appeendix A). To avoid using this long development, the difigal case of a constant velocity will
be studied.

U 1-U)

BEC[®; =— (1~ U)oL, + (3-(1-U)—-2U0?%) o} (13)

2

U n U n
+5 (3-21-U)-U% @}, — 5 (1=U)@,.
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The stability analysis ofi_{13) leads to the following amptifion factor
sec=1—2iUsin(3kAx) {e_%ikA‘”U(l +2[1 — Ulsin®*(3kAz)) + cos($kAz)(1 — U)] . (14)

It can be shown analytically that tHeEC scheme is stable fdr < 1. In fact, theBEC scheme is
still stable for a CFL number smaller thars. The truncation error analysis leads to

[atcp + u&‘x(I)] = (1-U)(1-20)=2 930 (15)

1
BEC 3!

—9(1 - U)2 Azt At gl 4

Simulations with Heaviside, triangle and cosine distiing advected by a constant velocity were
carried out for a CFL numbér > 1. ForU < 1.5, the BEC scheme gives finite results consistent
with the stable results collected for < 1. The other scheme§( R, FEC andCEC) diverge for
U > 1 and theBEC scheme diverges fdr = 1.5. This extension of stability of th& EC' scheme
can be understood in the following way: for > 1, the interpolation is performed with points that
are not the nearest value to the reconstructed point. Thelmation of the second nearest neighbors
in the BEC formula results in an enhanced stability of the scheme.

The FEC and BEC schemes both have modified equations with a third order atirées
truncation error. Th& EC scheme, presented i (6) amd (7) is a linear combinationesfetiiwo
schemes. The weights are computed to cancel the leadingadriencation error (see Appendix A)
and generate a higher order scheme. Using the linearityeo$ttbility analysis, the amplification
factor is

fcpe=1— 2sin(3kAx) [U (3 +2[1 — U?] sin2(%k;Am)) sin(3kAx) (16)
+ (3 +2U[1 - U? sin%%kAa:))icos(%kA:c)] .

TheCEC scheme is stable fdF < 1. To leading order, the modified equation of th&C' scheme
is

[atcbmaxcp} — 1+ U)A-U)2-U) e gig (17)
CEC :

The essential properties of the different schemes are texpan Tab.[l. The computational
cost is evaluated using the number of composed interpalaperators. The complexity of the
interpolation operator varies with the interpolation nzettused. In the case of thiel R scheme,
the complexity iSO(N) whereN is the total number grid of points.

Scheme Formula Error Stability | Nb of calls
CIR CIR[®] =L [®] (1-0)M2ra2e U<l 1
~ —(1— U2 ulAz? 83‘1)
FEC | FEC[®]=Ly[®] + }(® - &) ( )23’2 ’ U<1 2
—3(1 - U?) LA ALl
) (1 - U)(1 - 20) 422”939
BEC | BEC[®]=L4[®+ (¢ — ®)] =ot e U<15 3
2u2Ax?At o4 ~
—9(1 - U)?wAzAtylg
CEC’(I):L{(I) 1,_+Uq>_<i>} ,
CEC [ ) ZU * “{( ) 1+ - -nEEl e | p < 3
+55- (2 — @)

Table I. Comparative table of one dimension schemes.
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4. RESULTS FOR ONE-DIMENSIONAL PROBLEMS

To assess the efficiency of the schemes introduced preyjaisiulations with a constant velocity
were performed. A one-dimensional periodic domain is abergid, and the solution is advected
for 10 or 100 cycles. Fid1]2 ad 3 show the advection of thiessity profiles with different
regularities. Because of the Fourier properties of sinetfons, the first harmonic was studied
thoroughly to check that it matches the properties of theifireablequation.

The first set of tests was performed using an Heaviside p®filet = 0) = sign [sin (27rx/l)] .
This is a demanding test, as this profile is discontinuous@aicross-over position$) @nd0.5). As
time elapses, the high frequencies get damped and the psafiéarly reduced to its first harmonic.
In fig.[l, theC EC scheme is closer to the analytical solution than the otherses by three criteria:
(i) the “flatness” of its profile at the beginning of the simtida, (ii) the distance from the analytic
cross-over position at all time and (iii) the phase driftlod profile at long time. These criteria may
seem independent but they are all linked to the Fourier ptigseof the modified equation.

-8 Ref . 561 Ref
GOcr o® m Gocr
mo o <X FEC 1.0f S & < FEC[§
i
%

-+ BEC[] ° I+ BEC
o o CEC ° o © o CEC

0.5f

Intensity
Intensity

Position Position

(a) 10 periods (b) 100 periods
Figure 1. One dimension advection of a Heaviside with a tggwi of N = 30 atCF'L = 0.75.

The second set of tests was performed using a triangulategm®fiz, t = 0) = |/l — 0.5|. This
profile is non differentiable at two cross-over positiorando.5). In fig.[2, the observations reported
in the previous paragraph still hold for the triangular geofAs expected, th€ EC scheme is closer
to the analytic results in the case of a continuous but neivatde profile.

6 Ref
GO CR
3.0 << FEC[]
I+ BEC

~
o

N
o

Intensity
Intensity

-
n

H
=)

o
n

ol
=)

Position Position

(a) 10 periods (b) 100 periods
Figure 2. One dimension advection of a triangle with a regmiuof N = 30 at CFL = 0.75.

The last tests were performed using the first harmonic cogirdile, ®(x,t =0) =
—cos (2rz /1) . The properties of the profile will be studied in more detaildig.[@ andID. In
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fig. @, theCIR scheme is so diffusive that a “correctéd R” (green diamond lin§)is plotted.
Even though th€'T R scheme is near zero in flg. 3, the norm of its difference to thedydic profile
is smaller than thé" EC scheme which drifted to such an extent that it is nearly ojppads the
reference profile.

As noted above, provided the interpolation strategy ineslmon-neighboring points, semi-
Lagragian methods can us&'L number larger than one. Using a non-local interpolationate
we can reproduce the advection test offfig. 3 usidgral number of3.75, see fig[h.

The time-step being larger in this last case, fewer timpsstge needed for the same integration
time (here respectively0 and 100 periods), the effects of numerical dispersion and diffnsaoe
thus weakened compared to fig. 3

This is achieved with a simple modification of relatiops @ tbmpute the weights. andcg, in

the form

1
SCFZQ_W and c¢p=1-cp, (18)

(where%1 denotes the remainder of the division by unity), the acquafche C EC scheme is
preserved for large CFL numbers.

Intensity
Intensity

0.0 02 04 06 0.8 10 00 02 0 06 08 1.0
Position Position

(a) 10 periods, i.e1200 time-steps (b) 100 periods, i.e12000 time-steps

Figure 3. One dimension advection of the cosine functioh witesolution ofV = 30 atCFL = 0.75.

Intensity
Intensity

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Position Position

(a) 10 periods, i.e80 time-steps (b) 100 periods, i.e800 time-steps

Figure 4. One dimension advection of the cosine functioh witesolution ofV = 30 atCFL = 3.75.

*The corrected”T R values are equal to those 6f R multiplied by exp(Dcrrk?t) Where D ris defined in[(D).
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5. MULTI-DIMENSIONAL PROBLEMS

The extension of the above procedures to multi-dimensipnathlems requires some care. For
instance in two dimensions, tli¢l R scheme is

CIR[®];; =(1 = UZ)(1 = U/)®7; + (1 = U)UL @ (19)
+ UL A= Uiy 5+ ULUL R v -

0,50 75,5

The semi-Lagrangiad'/ R scheme uses one more valugfi(— s7 ][j — s{ ;]) than the Eulerian
Upwind scheme. However, thiel R scheme is very similar to the directionally split Upwind eoie

o7 =(1-US)®7; + U@ i — 57,111 (20)

i,j
O =(1 - UY)®F; + UL i)l — 7] (21)

In the general case in multi-dimension, there is no expoesir thec, andc coefficients of the
CEC scheme. It can be extended to any dimension if the schemeeistidnnally split as done in
(20) and [[211). However, if a simple splitting method is uskeé, approximation is reduced to first
order. Special splitting methods, such as Strang splifB0} are required to increase the order of
the total scheme.

Differential Rotation Velocity Profile

(a) Initial patch distribution  (b) Velocity profilew (0, y) or v(z, 0) (c) Pure Lagrangian advection

Figure 5. Initial condition, velocity profile and final digiution for the two-dimensional advection test case.

To illustrate applications of our strategy to higher dimens, let us consider an advection
problem in two dimensions of space. A squared patch is cersidfor the initial distribution of
the passive scalar: one inside the square and zero outsigeesented in fig. 5(a). The order of
the schemes for regularly varying velocities should be #mesas the one for constant velocities.
Quantitative results being difficult, only qualitative @pgations will be made. The following
velocity field was used to test the schemes

u(z,y) = % (1 - %) @ - %) [cos (%%(1 - %)) + 1} /(272), (22)
v(x,y) = —% (1 - %) (% - %) [cos (277%(1 - %)) + 1] /(27%), (23)

wherel is the length of the box in both directions. In fig- §(b), théoeity cancels out on the edges of
the box and is divergence free. With the profiles used, thehgatot transported through the walls
of the box even though the simulation has periodic boundamnglitions. The patch never intersects
itself which makes it easier to track. To compare the regsaltslly Lagrangian method was used as
a reference. The time-step of this method was twenty timeslsnto have more accurate results.
The solution is represented in fig. §(c).

Preprint Preprint (2016)



(a) CIR advection (b) FEC advection (c) BEC advection (d) CEC advection

Figure 6. Two-dimensional patch advection using the diffiéischemes.

In fig.[d andY, the analysis of the gap between a scheme aneféremce solution should not
only be guided by the intensity of the difference but alsohwy area impacted. ThéI R scheme
clearly introduces the largest computational error.

(a) CIR error. (b) FEC error. (c) BEC error. (d) CEC error.

Figure 7. Error, as measured by the difference of the numlesmutions to the reference solution obtained
with pure Lagrangian advection.

The perturbation of the distribution can also give an imuitof the leading error term in the
modified equation. The quick oscillations at the tail of tkegh in fig[7(b) an@ 7(t) can be related
to the dispersive residuals of tileEC and BEC schemes. In fid. 7(H), th€ EC solution is the
closest to the reference solution obtained by the pure Inggga method. The error is of small
amplitude and only impacts the edges of the patch.
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6. APPLICATION TO THERMAL CONVECTION

(a) CIR scheme (b) FEC scheme

L
0.3
0.2
0.1
0.0

(c) BEC scheme (d) CEC scheme

Figure 8. Rayleigh-Bénard evolution of a localized therpeaturbation. The numerical resolution = 50
is intentionally modest, in order to highlight numericalces.

In this section, the comparison between the different atitveschemes is extended to a physically
more relevant case: thermal convection in a layer of fluidéwiom below. This canonical example
is also known as the Rayleigh-Bénard setup. The schemésatibnly be used on passive scalars
that do not influence the velocity, but on the velocity itsaifd the temperature, which, in the
Rayleigh-Bénard instability, modifies the velocity aetiy

The system of equations describing the evolution of theaila, and the temperaturg of the
fluid is solved on a two-dimensional Cartesian domain of etspiox = L./L, = 0.5, bounded
by solid and impermeable walls. The bottom and top platesrai@tained at fixed temperatures
Ty, andTy — AT, respectively, whereas the vertical walls are assumed tosodating (no heat flux
through the vertical boundaries). Gravity is assumed torti@um and verticaly = —ge; .

To retain the essential physics with a minimum complexitg, Boussinesqg approximation is used
to describe the fluid within the cell and assume that vaniatiof all physical properties other than
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density can be ignored. Variations in density are also mégdk“except in so far as they modify
the action of gravity”[[3]l]. The density is assumed to be constant everywhere in the governing
equations except in the buoyancy force where it is assumearp linearly with temperature,
p(T)=po (1l —a(T —1T)) ,wherea is the thermal expansion coefficient of the fluid.

The system admits the stationary diffusive solutieh:= 0, T* = Ty — 2z AT/L,, andVP* =
—gp (T*) e;. Subtracting the stationary solution, choosibhg L?/x, and AT as units of length,
time, and temperature, respectively, and using the terhperperturbatiod = 7' — T*, the system
can be written[32] as

ou+ (u-V)u=—VII+ RaPrfe; + PrVu, (24)
00+ (u-V)0=w+ V340, (25)
V-u=0, (26)

with w = u - e; the vertical velocity. The non-dimensional control pargane are the Rayleigh
number, defined byRa = agATL?/(kv) and which measures the convective driving, and the
Prandtl number, defined as the ratio of viscous to thermilgldn,Pr = v/, with v the kinematic
viscosity,x the thermal diffusivity.

Equations[(24) an@(25) are discretized on a uniform gridgiinite volume formula of order two
in space and order one in time, with all the terms being tceaxplicitly. To enforce the solenoidal
constraint[(Zb), the pressure-correction schéme[33,s34$ed. This splitting method is composed
of two steps. In the first step, a preliminary velocity fiedtlis computed by neglecting the pressure
term in Navier-Stokes equation. Since this preliminaryoedy field is generally not divergence-
free, it is then corrected in a second step by a projectiorherspace of solenoidal vector fields.
Given the temperature and velocity distributions at tirrep s, the velocityu™t! is computed by
solving

D = Lu™ u"], 27)
u® = u® 4 At (RaPro"e, + [V2u]") , (28)
V% = V.ou® (29)
= WO v (30)

In (29), the algorithm requires to solve at each time-stemiag®n equation for the pressure.
The necessary impermeability conditions for the figldare found by multiplying[{(30) by the
normal vectorn. Together with the velocity boundary condition, they leacht- V¢ = 0. The
boundary conditions for the velocity field are no-slip, ke= 0, while the temperature satisfies
0(z=0) =0(z =1) = 0 on the horizontal boundaries, aadé = 0 on the vertical boundaries.
Boundary conditions are imposed on the intermediate vigldieild «* by introducing ghost points
outside of the domain. In consequence, the tangential coemg®f the actual velocity field will
not exactly satisfy the boundary conditions (the error g&iontrolled by the time-step).

In order to develop the instability (the Rayleigh numbemigesufficiently large and the Prandtl
number set to unity), the simulations were always started wi= 0 and with a small temperature
perturbation. This temperature perturbation consisted bbt spot § = 0.1) next to a cold spot
(¢ = —0.1). This perturbation, localized close to the lower left ;arngenerates a rising and a
sinking plume. The different simulations were compared mwitte rising plume has reached the
top boundary (after roughly a thousand iterations).

Avery low resolution N = 502, was deliberately chosen in order to highlight the numéenars
associated to the different schemes. Snapshots of thee¢atpkraturd” = T* + 6 associated with
the thermal plume are compared on figlite 8. In[fig.]8(b) [and &toyng ripples appear in the
wake of the plumes. They are not physically relevant and laaeacteristics of dispersive schemes.
The comparison of the plumes in f[g. §(a) and [fig. B(d) cleait)lghts that theC' EC scheme is
less diffusive than th€' IR scheme for practical physical applications. TH&C scheme offers
an improved scheme, with significantly reduced diffusiie&s, and free of the strong dispersion
characterizing thé'EC and BEC' schemes.
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7. CONCLUSION

Using the simplest semi-Lagrangiaid R scheme introduced by Courant-lIsaacson-Rees, it has been
demonstrated that a simple multi-stage approach can isetba order of the scheme from first to
third order. The resulting scheme is, at leading order, dispersive. This procedure was shown to
yield significant improvement on a thermal convection peafl It can easily be used to increase
the order of existing codes on parallel computers, as thenaamication stencil is unaltered by the
multi-stage approach. The communications among parafelgsses are then restricted to the strict
miminum (one layer of cell at each domain boundary).

The CEC algorithm, introduced here, only requires a modest inerédashe computational cost
and can easily be implement in existing codes. Moreovamipéementation is not limited to regular
Cartesian finite differences schemes. It can be generatizetther geometries and scheme types by
following two simple steps: (i) deriving the modified adviect equation for the® EC and BEC'
schemes and (i) combining both schemes to cancel out #esilirig order error.
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A. DEVELOPED EXPRESSIONS OF THE CORRECTIVE SCHEMES

The expressions relevant {6 {10) apd|(13) can be developed as

2FEC®]; = — U;(1 — U,)®, ,, + (2 — U;U;)®7 (31)
— U1U2+Slq)n[l —+ S; — S (Z + 81)] + Uz(]- —+ Uifsi)q)?_si 5

2BEC[®]; = (f®") [i + s ()] + (f@") [i] + (f@") [i — s (i) + s (i — s (4))]+ (32)
(FO™)[i + 5 (i) — s (i + 5 (§))]+
(@) [ = s ()] + (FO") i =5 (1) 5 (i (1) = s (6 = s (3) + 5 (0 = 5 ()] +
(f@")[i — s (i) — s (i —s(i))],
where
flits(@)] = =1 =U)Ui(1 = Uirs(s)) (33)
flil=01-U)[3-01-U:)?%], (34)
Jli—s(i) +5(i—s()] = —UiUi—gi) (1 = Ui—s(i)4-s(i—s(i))) » (35)
flits(@) —s(i+s(i)] = (1 = U)UilUiyss) » (36)
fli—s@)] =Ui[3 = (1=Uisw)’] = A =U) (1= U)T) (37)
f[’L — S (Z) + s (’L + s (2)) — S (Z — S (’L) + s (Z — 8 (2)))] = _UiUifs(i)Uifs(i)Jrs(ifs(i)) R (38)
fli—s() —s(i—s(@)] = -Ui(l = Ui—s@i))Ui-s(i) - (39)

B. ANALYSIS OF THE MODIFIED ADVECTION EQUATION

The modified equation steming from the discretization of #uvection equation has in one
dimension the general form

0P+ u0,® = Coadi®, (40)
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where theC', prefactors come from the truncation error in the case of miosehemes. If the CFL
stability condition is met, i.eAt o< v~ ! Az, with Az o« N~!, we have

C, x N+l (41)

Going into Fourier space for spacial dimensions and Foluagtace space for time,
®(x,t) = / dk Ptk gk Q(k))  where Q(k) = —o(k) + iw(k). (42)
Thus, the dispersion relation is
Qk) = (ik)yu+ Y (—ik)*Ca. (43)
Using the decomposition introduced [n{42), the decay ratethe phase drift can be expressed as

o(k) = Z (k2)2p+2 (C4p+2_ (k?2)2p C4p) ; (44)

P

wik) = k(=3 () F Capir = (k)% Cipys) ) (45)

P

The equation has strictly stable solutions if and onby(#) > 0. Because of their dependence on the
resolution, the sequence 6%, is often equivalent to its first term different from zero. Tdtability
reduces to the criterio@, > 0 if « = 4p + 2 andC,, < 0 if a = 4p. Using the equation o, the
phase drift can be extracted

$(k) = w(k) — ku =~k Y ((k*)*Cupr1 — () Cupys) - (46)

p

It is important to note that the procedure introduced in FW8C scheme cannot be repeted
recursively. In order to highlight this point let us note ttfiar pure advection, reversing time is
equivalent to reversing the velocity

0124+ ud,®=0 < 0P+ (—u)0,P=0 < (P+ud_,P=0. 47)

Going into Fourier space for the spacial dimension
(z,t) = / dke " d(k,t), (48)
the modified advection equation can be written as

0; (In®) (k,t) = u(ik) + Y _ Cal—ik)™. (49)

Reversing the sign of the coordinaie;» —x, is equivalent to reverse the wave vector; —k (c.c.
for a real field). In order to ensure time reversibility, todwing relation should be satisfied

O (In®) (k,t) =9 (In®) (—k,—t) = =0, (In®) (—k,1). (50)

This last relation shows that only terms of odd derivative r@versible. The error o highlights
this observation. It can be evaluated using

(m ci) (k,t) = (@) (k1) + 208 > Cop(ik)™. (51)
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Only terms of even order derivative modify the field and camétcted with this procedure. This
property should also be true for tli¢, coefficients when the velocity is reversed. In the case of
the CIR scheme, the coefficients depend on the sign of the velodaitthé case of the non-ideal
advection equatiof (40), reverting time leads to

0D + (—u) 0, ® = Z(OQPH(—u)aiP“q) - cgp(—u)agw) . (52)
p

Once more, only terms of odd order derivative are reversible

The decay rate (fid.]9) and the phase drift (fig. 10) were medsiar different resolutions. The
results are plotted as a function of the resolution on a itag scale (Ib). fig[ 9(&) and 10{a)
represent the decay rate and the phase drift, respectielghown in [[4]), the prefactors of the
derivative terms of the error are proportional to an intggewer of the resolution;, oc N—+1,
The values ofa are in good agreement with the error term of the modified eguatJsing

the theoretical value of() anda(?), the values are rescaled 9., = ¢x N®' =1 and o,es =

ox N =1 _fig.[0(6)] and TO(@) show that the rescaled values are neanigtant as predicted by
the theory.
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