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We review some recent results on properties of tensor product and fusion coefficients under complex conjugation of one of the factors. Some of these results have been proven, some others are conjectures awaiting a proof, one of them involving hitherto unnoticed observations on ordinary representation theory of finite simple groups of Lie type.

1 Notations and Results

Notations

In the following λ, µ, etc label either finite dimensional irreps of a simple Lie algebra g or of the corresponding simply connected compact Lie group G; or (for the sake of comparison) irreps of a finite group Γ; or integrable irreps of an affine algebra g k at a finite integral level k. Following a standard abuse of notations, for the Lie groups and algebras, λ denotes both the highest weight of the representation and the representation itself.

N ν λµ denotes respectively the coefficients of decomposition of the tensor product λ ⊗ µ into inequivalent irreps ν (Littlewood-Richardson coefficients) of G or Γ; or the coefficients of decomposition of the fusion product denoted λ µ into irreps ν of g k .

It is often convenient to regard this set of coefficients as elements of matrices, thus

N ν λµ = (N λ ) ν µ . (1) 
These coefficients satisfy the sum rule

dim λ dim µ = ν N ν λµ dim ν (2) 
where dim α denotes the dimension, resp. the quantum dimension, of the irrep α of G, g or Γ, resp. of g. When λ refers to a representation of complex type, we denote by λ the (equivalence class of its) complex conjugate. Recall that among the simple Lie algebras, only those of type A r , any r; D r , r odd; and E 6 admit complex representations.

For a given pair (λ, µ), consider the moments of the N 's

m r := ν (N ν λµ ) r r ∈ N .
In particular, m 0 counts the number of distinct (i.e., non equivalent) ν's appearing in the decomposition of λ ⊗ µ, resp. λ µ.

For non real λ and µ, we want to compare m r and m r := ν (N ν λμ ) r .

Call P the property that the multisets {N ν λµ } and {N ν λμ } are identical. Since for given λ and µ these multisets are finite, there is an equivalence

m r = m r ∀r ∈ N ⇔ P . (3) 

A list of results and open questions

We start with a fairly obvious statement 1

Proposition 1 [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] For any Lie group, any finite group or any affine Lie algebra, m 2 = m 2 , i.e., ν (N ν λµ ) 2 = ν (N ν λμ ) 2 , see below the (easy) proof in sect. 1.3. Much more surprising is the following Proposition 2 [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF] For any simple Lie algebra, or any affine simple Lie algebra, m 1 = m 1 , i.e., ν N ν λµ = ν N ν λμ . This is not generally true for finite groups Γ. This is not generally true for quantum doubles of finite groups either [START_REF] Coquereaux | Drinfeld Doubles for Finite Subgroups of SU(2) and SU(3) Lie Groups[END_REF].

Problem 1 For a given finite group Γ, find a criterion on (Γ, λ, µ) for Prop. 2 to hold.

Proposition 3 [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] For the Lie group SU(3), m r = m r for all r, i.e., we have property P. Moreover we know a (non-canonical and non-unique) piece-wise linear bijection (ν, α) ↔ (ν , α ), where α is a multiplicity index running over N ν λµ values. This property P is not true in general for higher rank SU(N ) nor for other Lie groups .

Proposition 4 [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] For the affine algebra su(3) at finite level k, m r = m r for all r, i.e., we have property P. This is not true in general for higher rank su(N ) or other affine algebras. This is, however, satisfied by low-level representations. Problem 2 For each g k , find a criterion on (λ, µ, k) for Prop. 4 to hold.

Also missing in su( 3) is a general mapping ν ↔ ν compatible with the level. Although we found one in a few particular cases, a general expression is still missing. Problem 3 For each level in su(3) k , find a piece-wise linear bijection ν ↔ ν .

A weaker property than property P, which follows from it, is that m 0 = m 0 .

Proposition 5 [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] For the affine algebra su(3) at finite level k, m 0 = m 0 . This seems to be also true for su(4), but this is not true in general for higher rank su(N ), N ≥ 5, or other affine algebras. This is, however, satisfied by low-level representations. Problem 4 For each g k , find a criterion on (λ, µ, k) for Prop. 5 to hold.

These results on the equality of various m k and mk are summarized in Table 1. 

SU (3) or su(3) or su(3) SU ( 
m 2 = m2 m 1 = m1 ? X m 0 = m0 ? X X X X mr=mr ∀r ⇔ P X X X X X
Table 1: means that the property is true and proven ; X that it is not true in general and there are counter-examples ; ? that the property has been checked in many cases (see text) but that a general proof is still missing.

Comments, remarks, examples and counter-examples

• The equality m 2 = m2 is the easiest to interpret and to prove. More explicitly it asserts that

ν (N ν λµ ) 2 = ν (N ν λμ ) 2 . (4) 
Proof. The number of invariants N 0 λµ λμ in λ ⊗ µ ⊗ λ ⊗ μ may be written as

N 0 λµ λμ (i) = ν,ν N ν λµ N ν λμ N 0 νν (ii) = ν,ν N ν λµ N ν λμ δ ν ν (iii) = ν N ν λµ N ν λμ = ν (N ν λµ ) 2 (iv) = N 0 λμ λµ = ν N ν λμ N ν λµ = ν (N ν λμ ) 2 (5) 
where we have made use of (i) associativity of the tensor or fusion product, (ii) N 0 νν = δ ν ν , (iii) invariance under conjugation N ν λμ = N ν λµ , and (iv) commutativity N 0 λµ λμ = N 0 λμ λµ . Graphically, this may be represented as in Fig. 1. In physical terms, and in the context of particle physics, it expresses the fact that the numbers of independent amplitudes in the "s channel" λ ⊗ µ → λ ⊗ µ and in the "crossed u channel" λ ⊗ μ → λ ⊗ μ are the same. • In contrast, the equality m 1 = m1 is neither natural nor general. While it is valid for all simple Lie algebras, either finite dimensional or affine, (see the discussion and elements of proofs in the next section), it is known not to be true for general finite groups. Counterexamples are provided by some finite subgroups of SU(3), see below in sect. 1.5, and also [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF], and the detailed discussion in [START_REF] Coquereaux | Drinfeld Doubles for Finite Subgroups of SU(2) and SU(3) Lie Groups[END_REF].

• Even more elusive and exceptional is the equality m 0 = m0 , which happens to be true in SU [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] or for the affine algebra su(3), as a particular case of the more general property P that they satisfy. Curiously we have found evidence (but no proof yet) that it also holds true for SU(4) and su(4) (this was tested in su(4) k up to level k = 15), but it fails in general for higher rank SU(N ) or su(N ).

• Finally the equality m r = mr for all r, or equivalently property P, is satisfied in SU(3) [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] and in su(3) at all levels [START_REF] Coquereaux | On some properties of SU(3) Fusion Coefficients, to appear in Contribution to Mathematical Foundations of Quantum Field Theory, special issue Memoriam Raymond Stora[END_REF].

Example 1. In SU(3), for the ten-dimensional representations,

(2, 1) ⊗ (2, 1) = 1(4, 2) + 1(5, 0) + 1(2, 3) + 2(3, 1) + 1(0, 4) + 2(1, 2) + 1(2, 0) + 1(0, 1)

(2, 1) ⊗ (1, 2) = 1(3, 3) + 1(4, 1) + 1(1, 4) + 2(2, 2) + 1(3, 0) + 1(0, 3) + 2(1, 1) + 1(0, 0) [START_REF] Yau | Gorenstein Quotient Singularities in Dimension Three[END_REF] on which we do observe all the above properties: m 2 = m 2 = 14, m 1 = m 1 = 10, m 0 = m 0 = 8 and the multisets of multiplicities are both {1, 1, 1, 1, 1, 1, 2, 2}, or in short, {1 6 2 2 } (where we note the number n of occurrences of multiplicity m by m n ).

Example 2. In SU(4), with λ = µ = (1, 2, 2), we find for the multiplicities N ν λµ the multiset {1 17 2 8 3 9 4 8 51 6 3 7 3 } while for those for λ ⊗ μ it is {1 16 2 12 3 6 4 3 Example 6. In E 6 , likewise, we may find pairs of λ, µ which violate Prop. 4 and 5. Take λ = µ = (1, 1, 0, 0, 0; 1); μ = (0, 0, 0, 1, 1; 1) 1 ; we find m 1 = m 1 = 947, m 2 = m 2 = 14163 but m 0 = 119, m 0 = 123. (Incidentally, the reducible representation encoded by λ ⊗ µ in that case has dimension 63631071504 = 252252 2 . )

Related properties of the modular S-matrix

In the case of an affine algebra g k , it is well known that the fusion coefficients are given by Verlinde formula [5]

N ν λµ = κ S λκ S µκ S * νκ S 0κ . (7) 
Proposition 6 [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF] For the affine algebra g k at finite level k, Σ(κ) := ν S κν vanishes if the irrep κ is either of complex or of quaternionic type.

For κ complex, κ = κ, this implies immediately Proposition 2, since, using the fact that

S µκ = S μκ = S * µκ , ν N ν λµ = κ S λκ S µκ ν S * νκ S 0κ = ν,κ=κ S λκ S µκ S * νκ S 0κ = ν,κ=κ S λκ S μκ S * νκ S 0κ = ν N ν λμ . (8) 
But conversely, as shown in [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF] by a fairly simple argument, Prop. 2 implies that Σ(κ) = 0 if κ = κ.

The fact that the sum Σ(κ) also vanishes for κ, a representation of quaternionic type, though of no direct relevance for the present discussion, is also a curious observation and was proved in [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF] as the result of a case by case analysis.

The case of finite groups

Finite groups (admitting complex representations) do not generally satisfy Prop. 2. Consider for example the finite subgroup Γ = Σ(3 × 360) of SU(3) [START_REF] Yau | Gorenstein Quotient Singularities in Dimension Three[END_REF][START_REF] Fairbairn | Finite and Disconnected Sugroups of SU 3 and their Applications to the Elementary-Particle Spectrum[END_REF]. A simple way to show that the equality of m 1 and m 1 is not satisfied is to draw the oriented graph whose vertices are the irreps of Γ and whose adjacency matrix is the matrix N ν f µ , where f denotes one of the 3-dimensional irreducible representations, see Fig. 2. In Fig. 2, pairs of complex conjugate representations are images under a reflection through the horizontal axis. The sum ν N ν f µ counts the number of oriented edges exiting vertex µ. It is clear that the sums relative to µ = the outmost upper and lower vertices are different. Ultimately, we found among subgroups of SU(3) the following counter-examples [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF] to Prop. 2: Σ(3 × 72), Σ(3 × 360), and the subgroups of the type F 3m = Z m Z 3 , where m should be a prime of the type 6p + 1. Discussion. Could the validity of Prop. 2 be related to the modularity of the tensor (or fusion) category, which holds true for Lie groups and affine algebras, but not generally for finite groups?

In [START_REF] Coquereaux | Drinfeld Doubles for Finite Subgroups of SU(2) and SU(3) Lie Groups[END_REF] we explored that possibility by constructing the Drinfeld doubles of subgroups of SU(2) and SU(3). While tensor product in Drinfeld doubles is known to be modular, we found again many counter-examples to Prop. 2, in particular for the double of the same group Σ(3×360). We conclude that the property encapsulated in Prop. 2 is not a modular property but rather seems to be a Lie theory property. See below in sect. 2 a remark on the role of the Weyl group in the proof.

The validity of Prop. 2 is not directly related, either, to the simplicity of the group considered; indeed, the Mathieu groups M 11 , M 12 , M 21 M 22 , M 23 , M 24 are simple finite groups, but Prop. 2 is only valid for M 12 and M 21 (the latter, although simple, does not appear in the list of sporadic simple groups because it is isomorphic with P SL [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF][START_REF] Coquereaux | On some properties of SU(3) Fusion Coefficients, to appear in Contribution to Mathematical Foundations of Quantum Field Theory, special issue Memoriam Raymond Stora[END_REF]).
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 1 Figure 1: Graphical representation of m 2 = m2 . Each λµν vertex carries the multiplicity N ν λµ , and likewise for λμν on the right. Sums over ν, resp. ν are equal.
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 6 3 8 1 }, whence m 2 = m 2 = 538, m 1 = m 1 = 136, m 0 = m 0 = 49 but the multisets are clearly different. Example 3. In SU(5), for λ = (1, 1, 1, 0), µ = (1, 1, 0, 1), we find that the list of N ν λµ reads {1 12 2 6 3 3 4 3 } while that of N ν λμ reads {1 15 2 3 3 4 4 3 }. We check that m 2 = m 2 = 111 and m 1 = m 1 = 45 but m 0 = 24 = m 0 = 25. Example 4. In SO(10) (Lie algebra D 5 ), with λ = µ = (1, 1, 0, 1, 0), the two multisets are respectively {1 17 2 10 3 3 4 8 5 6 6 3 7 2 8 2 12 1 } and {1 15 2 11 3 8 4 7 5 2 6 3 7 1 8 2 9 2 10 1 } from which we check that m 2 = m 2 = 840, m 1 = m 1 = 168, m 0 = m 0 = 52 while the two multisets are manifestly different. Example 5. In SO(10) (Lie algebra D 5 ), with λ = µ = (1, 1, 1, 1, 0), we find m 1 = m 1 = 4456 et m 2 = m 2 = 184216 but m 0 = 240 and m 0 = 243, hence a counter-example to the property of Prop. 5.
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 2 Figure 2: Tensor product graph for the subgroup Σ(3 × 360) of SU(3). Note: the middle vertical edge carries a multiplicity 2.

We use the common convention that the component of the vertex located on the short branch of the Dynkin diagram is written at the end

We also considered those Chevalley groups that admit complex representations -otherwise Prop. 2 would be trivially verified. For small values of n ≥ 1 and q (a power of a prime) we looked at examples from the families A n (q) = SL(n + 1, q), B n (q) = O(2n + 1, q), C n (q) = Sp(2n, q), D n (q) = Ω + (2n, q), G 2 (q), and also from the families called 2A n (q) = SU (n + 1, q), 2B n (q) = Sz(q) (Suzuki), 2D n (q) = Ω -(2n, q), 2G 2 (q) (Ree), 3D 4 (q), with the notations used in MAGMA [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]. We could not explicitly study examples from the families F 4 (q), E 6 (q), E 7 (q), E 8 (q), or 2F 4 (q) (Ree), 2E 6 (q), because of the size of their character table. The largest simple group of Lie type that we considered (and obeying Prop. 2) was G 2 (5), with 5859000000 elements, 44 conjugacy classes (or irreps), and only four complex irreps. All together we tested about 70 Chevalley groups, 33 of them being simple, and 37 had complex irreps, so that testing the sum rule (Prop. 2) for them was meaningful. Among those 37 groups with complex irreps, 21 were simple and the sum rule was obeyed by all of them; among the 37 -21 = 16 non-simple groups with complex irreps, we found 4 cases for which the sum rule fails. In all cases where this sum rule failed for a non-simple Chevalley group, it turned out to hold for the corresponding projective group (a simple quotient of the latter): for instance the rule fails for the non-simple group A 2 (7) = SL(3, 7) but it holds for the simple group P SL(3, 7) (and also holds for the non-isomorphic simple group 2A 2 (7) = SU (3, 7) = P SU (3, 7)). Although the obtained results may not be statistically significant they seem to indicate that Prop. 2 is valid for simple groups of Lie type. We did not try to prove this property but if it happens to be true, one may expect, for finite groups of Lie type, that the Weyl group could play a role in the proof, like in the case of simple Lie groups (see below).

A sketch of proofs

The proof of Prop. 1 has been given above. We shall content ourselves with sketches of proofs for the other propositions.

The proof of Prop. 2 may be split in two steps. Lemma 1. Prop. 2 holds for λ = ω p , a fundamental weight. Lemma 2. Prop. 2 holds for any product of the fundamental representations.

Proof. The first lemma was established for the A r , D r odd , E 6 simple Lie algebras (the others do not have complex irreps) making use of the Racah-Speiser formula, or of its affine extension. The latter expresses the tensor coefficient N ν λµ as a weighted sum over suitable elements of the (classical or affine) Weyl group, see [START_REF] Coquereaux | On sums of tensor and fusion multiplicities[END_REF] for details. Restricting λ to be a fundamental weight makes the discussion amenable to a fairly simple analysis of a finite number of cases.

The second lemma follows simply from the associativity and commutativity of the tensor or fusion product, using the outcome of Lemma 1:

This, together with the commutativity of the N matrices, entails that for any monomial

This completes the proof of the two lemmas. As any N λ is a polynomial in the commuting

The salient feature of this approach is the crucial role played by the (classical or affine) Weyl group.

Prop. 3 and 4, which deal with the explicit case of the classical or affine su(3) algebra, have been established through a detailed and laborious analysis which will not be repeated here. We only mention that a variety of graphical representations of the determination of the N ν λµ coefficients has been used. We refer the reader to [START_REF] Coquereaux | Conjugation properties of tensor product multiplicities[END_REF] and [START_REF] Coquereaux | On some properties of SU(3) Fusion Coefficients, to appear in Contribution to Mathematical Foundations of Quantum Field Theory, special issue Memoriam Raymond Stora[END_REF] for details.

Conclusion

In this letter, we have reviewed some recent results on conjugation properties of tensor product (or fusion) multiplicities. Although quite simple to state, it appears that these results were not previously known, and that some are fairly difficult to prove. In particular we feel that our proofs of Propositions 2, 3 and 4 lack elegance and may miss some essential concept. Hopefully some inspired reader will come with new insight in these matters.