
HAL Id: hal-01335507
https://hal.science/hal-01335507v1

Submitted on 22 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dynamical adaptive tensor method for the
Vlasov-Poisson system

Virginie Ehrlacher, Damiano Lombardi

To cite this version:
Virginie Ehrlacher, Damiano Lombardi. A dynamical adaptive tensor method for the Vlasov-Poisson
system. Journal of Computational Physics, 2017, 319, pp.285-306. �10.1016/j.jcp.2017.03.015�. �hal-
01335507�

https://hal.science/hal-01335507v1
https://hal.archives-ouvertes.fr

A dynamical adaptive tensor method for the
Vlasov-Poisson system

Virginie Ehrlacher∗ Damiano Lombardi†

June 22, 2016

Abstract

A numerical method is proposed to solve the full-Eulerian time-dependent
Vlasov-Poisson system in high dimension. The algorithm relies on the construction
of a tensor decomposition of the solution whose rank is adapted at each time step.
This decomposition is obtained through the use of an efficient modified Progressive
Generalized Decomposition (PGD) method, whose convergence is proved. We sug-
gest in addition a symplectic time-discretization splitting scheme that preserves the
Hamiltonian properties of the system. This scheme is naturally obtained by con-
sidering the tensor structure of the approximation. The efficiency of our approach
is illustrated through time-dependent 2D-2D numerical examples.

1 Introduction

The present work investigates a numerical method for the resolution of the time-dependent
Vlasov-Poisson system. The solution is approximated using parsimonious tensor meth-
ods.

In the litterature, equations arising in kinetic theory are solved by three classes of
approaches: particle methods (Particle-In-Cell [22, 4, 8], Particle-In-Cloud [42]), semi-
lagrangian approaches [13, 9, 29, 37, 14] and full-deterministic Eulerian methods [21, 33,
43]. In this work, we focus on the Vlasov-Poisson system as a simple yet challenging

∗Université Paris Est, CERMICS, Projet Matherials, Ecole des Ponts ParisTech - INRIA, 6 & 8
avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France, (ehrlachv@cermics.enpc.fr)
†INRIA Paris, (damiano.lombardi@inria.fr)

1

ar
X

iv
:1

60
6.

06
64

8v
1

 [
m

at
h.

N
A

]
 2

1
Ju

n
20

16

example of kinetic equation. While Eulerian approaches are appealing to describe the
evolution of the unknown quantities of interest, the high dimensionality of the phase
space domain make them often prohibitive in terms of memory and computational cost,
especially when 2D-2D and 3D-3D problems are at hand.

The proposed method is not a particular discretization per se, instead, it gives a
way to build a parsimonius tensor decomposition starting from chosen a priori sepa-
rated discretizations for the space and the velocity variables in a full eulerian approach.
The contribution is twofold: first, we show that the use of a tensorised representa-
tion of the solution induces a natural splitting of the equations which respects the
Hamiltonian nature of the Vlasov-Poisson equations; second, an efficient fixed-point
algorithm is proposed to solve the (non-symmetric) equations using tensorised func-
tions. This step is performed using a modified Proper Generalized Decomposition (PGD)
method [11, 20, 10, 19, 18, 5, 31], and the convergence of the scheme is proved. Let us
mention that close ideas were introduced in the recent work [12] for the evolution of
high-dimensional probability densities. In the contribution [29], a tensor train method
is used to discretize the Vlasov-Poisson equations by separating each component, in a
semi-lagrangian approach.

Here, we do not separate in all the variables in order to deal with generic space (and
possibly velocity) domain geometries [43]. Thus, only second order tensors are used. The
proposed method dynamically adapts through time the rank of the decomposition. This
is an important feature, as was noted in [12, 29], since the number of tensorised terms
needed to approximate with a given tolerance the solution at a certain time is not known
a priori.

The structure of the work is as follows: in Section 2, the Vlasov-Poisson system is
recalled in its classical and Hamiltonian formulation. A discussion on how a tensorised
representation leads to a natural splitting of the evolution is presented in Section 2.3.

A second-order symplectic scheme in time is derived for the tensor representation
update. Then, in Section 3, after a brief review of the PGD method for the resolu-
tion of symmetric coercive problems, a fixed-point scheme is presented, to solve some
non-symmetric linear problems arising in the Vlasov-Poisson context. The proof of con-
vergence of the algorithm is presented in Appendix A. Numerical tests illustrating the
properties of the method are presented in Section 5.

2

2 Hamiltonian formulation and tensor decomposi-

tion

In this section, the Hamiltonian formulation of the Vlasov-Poisson system is recalled. A
particular emphasis is put on the elements that play an important role in the derivation
of the proposed numerical method. The idea is to compute a tensor decomposition of
the solution of the Vlasov-Poisson system and to use a symplectic integrator in time
in order to preserve the hamiltonian structure of the equations. As it will be shown in
Section 2.3, the tensorised expansion induces a natural splitting of the equations.

2.1 The Vlasov-Poisson system

Let d ∈ N∗ denote the spatial dimension of the problem and Ωx,Ωv ⊆ Rd. The Vlasov-
Poisson system for negative electric charges reads:

∂tf + v · ∇xf − E · ∇vf = 0, in (0,+∞)× Ωx × Ωv,

−∆xϕ = 1−
ˆ

Ωv

f dv, in (0,+∞)× Ωx,

E = −∇xϕ, in (0,+∞)× Ωx,

f(0, x, v) = f0(x, v), in Ωx × Ωv, (1)

with appropriate boundary conditions on Ωx × Ωv, where

f :

{
(0,+∞)× Ωx × Ωv → R

(t, x, v) 7→ f(t, x, v)

is the particle distribution function in the phase space, f0 ≥ 0 is the initial particle
distribution function, E(t, x) the electric fied and ϕ(t, x) the electric potential. The
particle density ρ(t, x) is given by ρ(t, x) =

´
Ωv
f(t, x, v) dv, and hence, the equation for

the electric potential reads −∆xϕ = 1− ρ.

The global existence of positive (weak or strong) solutions has been studied in several
works [2, 3, 16, 32, 23, 28, 1].

For instance, in [32], when Ωx = Ωv = R3, the existence of a strong non-negative
solution f ∈ C(R+;L1(R3×R3))∩L∞(R+×R3×R3) is proved provided that the initial
condition f0 ∈ L1 ∩ L∞(R3 × R3) satisfies the additional condition: for some m0 > 3,ˆ

R3×R3

f0(x, v) | v |m0 dx dv < +∞.

3

For numerical purposes, equation (1) has to be solved on a truncated domain Ω =
Ωx × Ωv. One can for instance impose periodic boundary conditions on ∂Ωx or ∂Ωv,
as done in [33]. An alternative formulation would consist of imposing homogeneous
boundary conditions on Ωv, the velocity domain.

Extensive reviews on the theory and numerical methods for this type of kinetic equa-
tions are detailed in [41, 15].

2.2 Hamiltonian formulation

The system (1) may be derived by using an Hamiltonian formalism (see [34]).
The Hamiltonian for the Vlasov-Poisson system reads:

H =

ˆ
Ω

1

2
f | v |2 dx dv −

ˆ
Ωx

1

2
ϕρ dx. (2)

The first term in the Hamiltonian is the kinetic energy of the particles, and the second
term accounts for the electro-static energy. As commented in [34], the Vlasov-Poisson
equations can be derived by introducing a reduced Poisson bracket:

{a, b} := ∇xa · ∇vb−∇va · ∇xb. (3)

The evolution equation for the system can thus be written as:

∂tf = −{f, h} , (4)

where h := 1
2
| v |2 −ϕ is the reduced Hamiltonian. A precise and detailed derivation of

the Hamiltonian structure of the Vlasov-Poisson equations is found in [34, 35].

2.3 Splitting induced by tensor decomposition

For any measurable functions r : Ωx → R and s : Ωv → R, we define the tensor product
function r ⊗ s : Ωx × Ωv → R as

r ⊗ s :

{
Ωx × Ωv → R

(x, v) 7→ r(x)s(v).

In the sequel, such a function is referred to as a pure tensor-product function. A linear
combination of n pure tensor-product functions (for some n ∈ N∗) is called a rank-n
tensor product function.

4

We also introduce here the notion of tensorized operators. Let Hx (respectively Hv)
be a Hilbert space of real-valued functions defined on Ωx (respectively on Ωv) and H a
Hilbert space of functions defined on Ωx × Ωv so that Hx ⊗ Hv ⊆ H. An operator A
acting on functions depending on both x and v variables is a tensorized operator if it can
be written as

A =
L∑
λ=1

Aλx ⊗ Aλv ,

for some L ∈ N∗, where for all 1 ≤ λ ≤ L, Aλx (respectively Aλv) is an operator on Hx

(respectively on Hv). Let us remind the reader that for all operators Ax on Hx, Av on
Hv, and (r, s) ∈ Hx ×Hv,

(Ax ⊗ Av) (r ⊗ s) = (Axr)⊗ (Avs).

In this section, a formal calculation is presented, which justifies how such a decom-
position induces a natural splitting of the Vlasov-Poisson equations. Let us mention
here the work [7], where a high-order splitting of the hamiltonian formulation for the
Vlasov-Maxwell system was recently proposed.

In the present method, the aim is to approximate the function f , solution of (1), by
a separate variate expansion of the form:

f(x, v, t) ≈
n∑
k=1

rk(x, t)sk(v, t) =
n∑
k=1

rk(·, t)⊗ sk(·, t), (5)

with some measurable functions rk : Ωx×R+ → R, sk : Ωv×R+ → R and n ∈ N∗. When
this expression is inserted into the evolution equation written in a hamiltonian form, it
reads:

∂tf = −{f, h} ≈
n∑
k=1

−{rk, h} sk − r {sk, h} . (6)

The Poisson bracket acting on rk and sk, separately, can be interpreted as the operator
which is inducing a dynamics on the functions rk and sk. Indeed, when considering
∂trk = −{rk, h} and ∂tsk = −{sk, h}, the tensor decomposition implies naturally ∂tf =
−{f, h}. Consider a particular time t = t∗, for which f(x, v, t∗) ≈

∑n
k=1 rk(x, t

∗)sk(v, t
∗).

The action of the Poisson bracket on generic functions r(x) and s(v) depending respec-
tively only upon the space coordinate x ∈ Ωx or the velocity v ∈ Ωv reads:

{r, h} = v · ∇xr(x), (7)

{s, h} = ∇xϕ · ∇vs(v). (8)

5

Two facts are fundamental: first, the evolution operator splits naturally into two parts,
one acting on r and the other on s. Second, the evolution of each part is the action of a
tensorised operator acting on the functions.

2.4 Symplectic integrator in time

Let us define r̃k : (t∗, T)× Ωx × Ωv → R and s̃k : (t∗, T)× Ωx × Ωv → R as solutions to
the dynamical system:

∂tr̃k(x, v, t
∗) = −{r̃k, h},

∂ts̃k(x, v, t
∗) = −{s̃k, h},

r̃k(x, v, t
∗) = rk(x, t

∗), s̃k(x, v, t
∗) = sk(v, t

∗). (9)

At t = t∗, it holds that

∂tr̃k(x, v, t
∗) = −v · ∇xrk(x, t

∗),

∂ts̃k(x, v, t
∗) = −∇xϕ(x, t∗) · ∇vsk(v, t

∗). (10)

In other words, the time derivative of a generic element r̃k computed at time t = t∗ is
given by the advection part of the Vlasov-Poisson system, whereas the time derivative
of the element s̃k is given by the electrostatic force. Remark that initial functions rk at
time t = t∗ depend only upon x, but the time derivative depends of course also on v.
The analogue is true for the sk functions.

A symplectic discretization in time for the system (4) is proposed, based on this
remark. For a comprehensive overview of geometric integrators see [27]. Let ∆t > 0 be
a small time step. The starting point is to consider the system (10) and use a Störmer-
Verlet algorithm (see [26]) to discretize the evolution of the functions r̃k and s̃k between
times t∗ and t∗+∆t. This scheme is obtained by considering r̃k and s̃k as if they were the
coordinates and the momenta of the Hamiltonian system associated to the Vlasov-Poisson
equation. Define s̃

(t∗)
k (x, v) := s̃k(x, v, t

∗) = sk(v, t
∗), r̃

(t∗)
k (x, v) := r̃k(x, v, t

∗) = rk(x, t
∗),

and s̃
(t∗+∆t/2)
k , r̃

(t∗+∆t)
k and s̃

(t∗+∆t)
k as follows:

s̃
(t∗+∆t/2)
k (x, v) = s̃

(t∗)
k (x, v) +

∆t

2
E (t∗)(x) · ∇vs̃

(t∗+∆t/2)
k (x, v), (11)

r̃
(t∗+∆t)
k (x, v) = r̃

(t∗)
k (x, v)− ∆t

2

(
v · ∇xr̃

(t∗)
k (x, v) + v · ∇xs̃

(t∗+∆t/2)
k (x, v)

)
, (12)

s̃
(t∗+∆t)
k (x, v) = s̃

(t∗+∆t/2)
k (x, v) +

∆t

2
E (t∗+2∆t/3)(x) · ∇vs̃

(t∗+∆t/2)
k (x, v), (13)

6

where the definitions of the electric fields are given below. Remember that f(x, v, t∗) =∑n
k=1 rk(x, t)sk(t, v). We define E (t∗) and E (t∗+2∆t/3) by

ρ (t∗)(x) :=

ˆ
Ωv

f(x, v, t∗) dv,

−∆xϕ
(t∗)(x) = 1− ρ (t∗)(x), (14)

E (t∗)(x) = −∇xϕ
(t∗)(x),

and

f (t∗+2∆t/3)(x, v) :=
n∑
k

r̃
(t∗+∆t)
k (x, v)s̃

(t∗+∆t/2)
k (x, v),

ρ (t∗+2∆t/3)(x) :=

ˆ
Ωv

f (t∗+2∆t/3)(x, v) dv =

ˆ
Ωv

n∑
k

r̃
(t∗+∆t)
k s̃

(t∗+∆t/2)
k dv,

−∆xϕ
(t∗+2∆t/3)(x) = 1− ρ (t∗+2∆t/3)(x), (15)

E (t∗+2∆t/3)(x) = −∇xϕ
(t∗+2∆t/3)(x).

Defining

f (t∗)(x, v) :=
n∑
k

r̃
(t∗)
k (x, v)s̃

(t∗)
k (x, v),

f (t∗+∆t/3)(x, v) :=
n∑
k

r̃
(t∗)
k (x, v)s̃

(t∗+∆t/2)
k (x, v),

f (t∗+2∆t/3)(x, v) :=
n∑
k

r̃
(t∗+∆t)
k (x, v)s̃

(t∗+∆t/2)
k (x, v),

f (t∗+∆t)(x, v) :=
n∑
k

r̃
(t∗+∆t)
k (x, v)s̃

(t∗+∆t)
k (x, v),

(16)

the above scheme can be rewritten as(
I − ∆t

2
E (t∗) · ∇v

)
f (t∗+∆t/3) =

(
I − ∆t

2
v · ∇x

)
f (t∗),(

I +
∆t

2
v · ∇x

)
f (t∗+2∆t/3) = f (t∗+∆t/3), (17)

f (t∗+∆t) =

(
I +

∆t

2
E (t∗+2∆t/3) · ∇v

)
f (t∗+2∆t/3).

7

This naturally leads us to define the following time-discretization scheme for the
evolution of f . Set f (0) := f0 and for all m ∈ N, define(

I − ∆t

2
E(m) · ∇v

)
f (m+1/3) =

(
I − ∆t

2
v · ∇x

)
f (m),(

I +
∆t

2
v · ∇x

)
f (m+2/3) = f (m+1/3), (18)

f (m+1) =

(
I +

∆t

2
E(m+2/3) · ∇v

)
f (m+2/3).

The function f (m) then gives an approximation of the solution f to (1) at time
tm := m∆t.

Of course, the starting point of the derivation of this scheme was to postulate that
the function f can be written in a separate variate expansion at some time t∗. In the next
section, we present the algorithm which is used at each substep of the time-discretization
scheme in order to obtain a tensorized approximation of the functions f (m+1/3), f (m+2/3)

and f (m+1) for all m ∈ N, assuming that f (0) is given in a tensorized form.

3 Tensor methods

In this section, let H, Hx and Hv be some arbitrary Hilbert spaces so that Hx⊗Hv ⊆ H.
A tensor-based method is introduced to solve the following problem: find f ∈ H solution
of

(I + ∆tP)f = g, (19)

where

• g is a finite-rank tensor product element of H;

• ∆t ≥ 0 is a small constant;

• I is an operator on H of the form I = Ix ⊗ Iv where Ix (respectively Iv) is a
symmetric continous coercive operator on Hx (respectively Hv);

• P is an arbitrary tensorized operator on H (not necessarily symmetric).

In the Vlasov-Poisson context, each step of the proposed time-discretization scheme (18)
can be written under the form (19). Remark that the methodology presented hereafter

8

can be directly applied to other time-discretization schemes and other contexts provided
that they only require the resolution of elementary subproblems of the form (19).

The approach relies on the so-called Proper Generalised Decomposition (PGD) method [30,
10, 11, 18, 36], and we first review well-known results about this method in Section 3.1.
We stress on the properties of this method on an important particular case in Section 3.2.
The scheme we propose is presented in Section 3.3 along with convergence results whose
proofs are postponed to the appendix.

Let us highlight the philosophy of the method: the solution f ∈ H of (19) is approx-
imated as a sum of tensor products

f ≈
n∑
k=1

rk ⊗ sk,

where for all 1 ≤ k ≤ n, rk ∈ Hx and sk ∈ Hv. Each pair (rk, sk) appearing in the
above sum is computed in an iterative way so that the tensor product rk ⊗ sk is the best
possible tensor product at iteration k of the algorithm. The meaning of this sentence will
be made clear in the rest of the section. In the Vlasov-Poisson context, the advantage
of this approach is that it only requires the resolution of linear problems for functions
depending only on x or only on v. Thus, the sizes of the linear problems that are solved
are much smaller than the one of the full linear problems defining the iterations of the
scheme (18). We comment further on this point in Section 3.4.

3.1 PGD for coercive symmetric problems

The PGD method is related to the so-called greedy algorithms [39, 31] in nonlinear
approximation theory. We review here well-known results on PGD algorithms for the
approximation of high-dimensional coercive symmetric problems. We refer the reader
to [19, 5, 20] for more details.

Let a : H × H → R a symmetric coercive continuous bilinear form on H × H and
b : H → R a continuous linear form on H. Let f ∈ H the unique solution of the linear
problem

∀g ∈ H, a(f, g) = b(g). (20)

The existence and uniqueness of a solution f to problem (20) is a consequence of the
Lax-Milgram lemma. Besides, f is equivalently the unique solution of the minimization
problem

f ∈ argmin
g∈H

E(g),

9

were

∀g ∈ H, E(g) :=
1

2
a(g, g)− b(g).

Let us assume that the two Hilbert spaces Hx and Hv satisfy the following assump-
tions:

(H1) Span {r ⊗ s, r ∈ Hx, s ∈ Hv} ⊂ H and the inclusion is dense in H;

(H2) Σ := {r ⊗ s, r ∈ Hx, s ∈ Hv} is weakly closed in H.

Before presenting the PGD algorithm, we give here two simple examples of Hilbert
spaces that satisfy these assumptions and are interesting in the Vlasov-Poisson context.

1. When H = H1
0 (Ωx × Ωv), the spaces Hx = H1

0 (Ωx) and Hv = H1
0 (Ωv) satisfy

assumptions (H1)-(H2) [5].

2. In a discretized setting, when H = RNx×Nv for some Nx, Nv ∈ N∗, the choice
Hx = RNx and Hv = RNv ensures that (H1)-(H2) holds.

Let g0 ∈ H be a given vector (which is usually chosen as g0 = 0). The PGD algorithm
to compute an approximation of f starting from the initial guess g0 reads as follows:

PGD algorithm:

• Initialization: Set n := 0 and f0 := g0.

• Iterate on n ≥ 0: Compute (rn+1, sn+1) ∈ Hx ×Hv as a solution of the
minimization problem

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

En(r ⊗ s), (21)

where for all g ∈ H, En(g) = E(fn + g) = 1
2
a(fn + g, fn + g)− b(fn + g).

Define fn+1 := fn + rn+1 ⊗ sn+1 and set n = n+ 1.

The choice of a stopping criterion is an important issue and we comment it later in
this article. The method used in practice to solve (21) is detailed in Section 3.4.

The following convergence result holds:

10

Proposition 1. Assume that the spaces H,Hx, Hv satisfy assumptions (H1)-(H2). Then,
all the iterations of the PGD algorithm are well-defined in the sense that there exists at
least one solution to problem (21) for all n ∈ N. Besides, the sequence (fn)n∈N strongly
converges in H to f .

We refer the reader to [31, 5, 19, 20] for more details on the method and for the
proof of this result. No further assumption is required at this stage on a or b for the
convergence to hold. We will see in Section 3.4 that the efficiency of a PGD-based
method in practice depends on the tensor decomposition of a and b.

3.2 An important particular case

A remarkable situation occurs when H = Hx ⊗ Hv and a(·, ·) = 〈·, ·〉H . In this case, it
holds that

∀(r, s) ∈ Hx ×Hv, ‖r ⊗ s‖H = ‖r‖Hx‖s‖Hv . (22)

Let ε > 0 be a small positive constant which characterizes the stopping criterion.

PGD-ε algorithm:

• Initialization: Set n = 0 and f0 = g0.

• Iterate on n ≥ 0: Compute (rn+1, sn+1) ∈ Hx ×Hv as a solution of the
minimization problem

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

En(r ⊗ s), (23)

where forall g ∈ H, En(g) = 1
2
‖fn+g‖2

H−b(g). Define fn+1 := fn+rn+1⊗
sn+1.

If ‖rn+1 ⊗ sn+1‖H < ε, then stop and define PGD(b, g0, ε) := fn+1. Oth-
erwise, set n = n+ 1 and iterate again.

Denoting by b the Riesz representative of the linear form b for the scalar product
〈·, ·〉H , it holds that for all n ∈ N∗, (rn+1, sn+1) is equivalently the solution of

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

‖b− fn − r ⊗ s‖2
H . (24)

Using the norm-product property (22), it can be proved [31] that if g0 = 0, the above
algorithm gives an iterative method to compute the Proper Orthogonal Decomposition

11

(POD) of the Riesz representative b of the linear form b for the scalar product 〈·, ·〉H .
A consequence is that an approximate solution fn =

∑n
k=1 rk ⊗ sk computed after n

iterations of the PGD algorithm is a best n-rank approximation of b. In other words,

‖b− fn‖H = min
(r̃k,s̃k)1≤k≤n∈(Hx×Hv)n

∥∥∥∥∥b−
n∑
k=1

r̃k ⊗ s̃k

∥∥∥∥∥
H

.

This optimality property is particularly interesting in the present case. In the rest of the
article, we shall denote by POD(b, ε) = PGD(b, 0, ε).

Another interesting consequence is that the sequence (‖rn ⊗ sn‖H)n∈N∗ of the norms
of the tensor product functions given by the PGD algorithm is non-increasing. Indeed,
this sequence is identical to the set of the singular values of the POD of b in Hx⊗Hv in
non-increasing order [31].

Let us comment here on the use of this particular stopping criterion, which is the
one we use in practice in the Vlasov-Poisson context. It holds from (23) (or equivalently
(24)) that

‖rn+1 ⊗ sn+1‖H = max
(r,s)∈Hx×Hv

〈b− fn, r ⊗ s〉H
‖r ⊗ s‖H

.

For any element g ∈ H, let us define

‖g‖∗ := sup
(r,s)3Hx×Hv

〈g, r ⊗ s〉H
‖r ⊗ s‖H

= max
(r,s)3Hx×Hv

〈g, r ⊗ s〉H
‖r ⊗ s‖H

.

The application g ∈ H 7→ ‖g‖∗ ∈ R+ defines a norm on H which is called the injective
norm [24]. This norm is equal to the maximal singular value of the POD decomposition
of g in Hx ⊗ Hv = H. Of course, we have ‖g‖∗ ≤ ‖g‖H but these two norms are not
equivalent. Thus, ‖rn+1 ⊗ sn+1‖H can be seen as the injective norm of the residual of
the decomposition b− fn. We use the injective norm in practice as a stopping criterion
because the latter quantity is much faster to evaluate than the H-norm.

3.3 Fixed-point PGD algorithm for weakly non-symmetric prob-
lems

Assume now that f is the solution of a problem of the form

∀g ∈ H, 〈f, g〉H + ã(f, g) = b(g), (25)

12

where b is a continuous linear form on H and ã : H ×H → R is a continuous bilinear
form which is not symmetric nor coercive in general. There exists a unique solution of
this problem for instance when ‖ã‖L(H×H;R) < 1.

We still assume that we start from an initial guess for f given by an element g0 ∈ H.
A natural idea to solve (25) when ã is a small perturbation of the identity operator on
H is to consider the following fixed-point PGD algorithm:

Fixed-point PGD algorithm:

• Initialization: Set n = 0 and f0 = g0.

• Iterate on n ≥ 0: Compute (rn+1, sn+1) ∈ Hx ×Hv as a solution of the
minimization problem

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

En(r ⊗ s), (26)

where for all g ∈ H, En(g) = 1
2
〈fn + g, fn + g〉H −b(fn + g)− ã(fn, fn + g).

Define fn+1 := fn + rn+1 ⊗ sn+1 and set n = n+ 1.

This algorithm was already suggested and studied in [6]. Its convergence was then
proved under the condition that the Hilbert spaces Hx and Hv are finite-dimensional
and that ‖ã‖L(H×H) ≤ κ where κ was some constant depending on the dimension of the
spaces which goes to 0 as the dimension of the spaces go to infinity. This theoretical
convergence result was much more pessimistic than the numerical observations. Indeed,
it was already pointed out in [6] that numerical tests indicated that this constant κ
should not depend on the dimension of the spaces.

In this article, we prove that κ does not need to depend on the dimension of the
Hilbert spaces, but on the number of terms appearing in the tensor decomposition of ã.
More precisely, let Ã ∈ L(H;H) be the continuous linear operator on H associated to
ã, i.e. such that

∀g1, g2 ∈ H, ã(g1, g2) = 〈Ãg1, g2〉H .

Then, the following result holds:

Proposition 2. All the iterations of the Fixed-point PGD algorithm are well-defined,
in the sense that for all n ∈ N, there exists at least one solution to (21). Moreover, let

us assume that Ã =
∑M

µ=1 Ã
µ
x ⊗ Ãµv where for all 1 ≤ µ ≤ M , Ãµx ∈ L(Hx;Hx) and

13

Ãµv ∈ L(Hv;Hv). Let κ := max1≤µ≤M

∥∥∥Ãµx ⊗ Ãµv∥∥∥L(H;H)
. Assume that at least one of

these two assumptions is satisfied:

(A1) H = Hx ⊗Hv (thus the norm of H satisfies the norm-product property (22)) and
3Mκ < 1;

(A2) 5Mκ < 1.

Then, there is a unique solution f to (25) and the sequence (fn)n∈N strongly converges
in H to f .

The proof of Proposition 2 is given in the appendix. Let us point out that the
convergence of the proposed algorithm is not covered in the work [25], where the authors
also treat approximation of equations using tensor methods and fixed-point iterations,
but with a different point of view.

In the Vlasov-Poisson context, a similar stopping criterion is used, as the one we
described in Section 3.2. More precisely, for ε > 0, g0 ∈ H, we consider the following
algorithm:

Fixed-point PGD-ε algorithm:

• Initialization: Set n = 0 and f0 = g0.

• Iterate on n ≥ 0: Compute (rn+1, sn+1) ∈ Hx ×Hv as a solution of the
minimization problem

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

En(r ⊗ s), (27)

where for all g ∈ H, En(g) = 1
2
〈fn + g, fn + g〉H −b(fn + g)− ã(fn, fn + g).

Define fn+1 := fn + rn+1 ⊗ sn+1.

If ‖rn+1 ⊗ sn+1‖H < ε, then stop and define PGDFP (Ã, b, g0, ε) := fn+1.
Otherwise, set n = n+ 1 and iterate again.

Let b ∈ H denote the Riesz representative of b in H. For all n ∈ N, (rn+1, sn+1) ∈
Hx ×Hv is a solution to (26) if and only if it is a solution to

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

‖b− (I + Ã)fn − r ⊗ s‖2
H , (28)

14

where I denotes the identity operator on H. The stopping criterion used above is justified
by the fact that, for all n ∈ N, ‖rn+1⊗sn+1‖H is equal to the injective norm of the residual

of the equation Rn := b− (I + Ã)fn. Indeed, (28) implies that

‖rn+1 ⊗ sn+1‖H = max
(r,s)∈Hx×Hv

〈Rn, r ⊗ s〉H
‖r ⊗ s‖H

= ‖Rn‖∗.

3.4 Alternating least squares (ALS) for the practical resolution
of the PGD iterations

We present in this section how minimization problems (21), (23), (26) and (27) are
solved in practice. Let us point out that in all cases, at iteration n ∈ N, (rn+1, sn+1) ∈
Hx ×Hv is defined as a solution to

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

En(r ⊗ s), (29)

where for all g ∈ H, En(g) = 1
2
c(g, g)− l(g), for some continuous linear form l : H → R

and coercive bilinear continuous form c : H ×H → R, wich depend on n.

Problem (29) is solved in practice using the Alternating Least Squares (ALS) [17,
40, 38] algorithm which is standard in tensor-based approximation methods. For a given
error tolerance η > 0, the algorithm reads as follows:

ALS-ε algorithm:

• Initialization: Set m = 0 and choose randomly r0 ∈ Hx and s0 ∈ Hv.

• Iterate on m ≥ 0: Compute rm+1 ∈ Hx as the unique solution of

rm+1 ∈ argmin
r∈Hx

En(r ⊗ sm). (30)

Then, compute sm+1 ∈ Hv as the unique solution of

sm+1 ∈ argmin
(s∈Hv

En(rm+1 ⊗ s). (31)

If ‖rm+1 ⊗ sm+1 − rm ⊗ sm‖H < η, set rn+1 = rm+1 and sn+1 = sm+1.

Otherwise, set m := m+ 1 and iterate again.

15

The convergence properties of this ALS algorithm are analyzed in details in [17] in the
case when Hx and Hv are finite-dimensional, and for more sophisticated tensor formats.
The algorithm can be shown to converge to a solution of the Euler equations associated
to (29). The limit tensor product is not theoretically ensured to be the global minimum
(or even a local minimum) of (r, s) ∈ Hx ×Hv 7→ En(r ⊗ s).

However, in practice, one can observe that it usually converges in a few iterations
to a local minimum of (29). It is very commonly observed that this choice leads to
very satisfactory convergence rates of PGD methods. Hence, we also use it here in the
Vlasov-Poisson context.

In the rest of the article, we shall denote by PGD(b, g0, ε, η) (respectively PGDFP (Ã, b, g0, ε, η))
the functions obtained by the PGD-ε (respectively Fixed-point PGD-ε) method when
minimization problem (24) (respectively (27)) is solved using an ALS-η algorithm. We
also denote by POD(b, ε, η) := PGD(b, 0, ε, η).

We stress here on a crucial point: for the ALS algorithm to be numerically efficient
in a high-dimensional context, it is important that the forms c and l admits a finite-rank
tensor decomposition. Indeed, let us assume that c =

∑C
γ=1 c

γ
x⊗ cγv and l =

∑D
δ=1 l

δ
x⊗ lδy

for some C,D ∈ N∗, such that for all 1 ≤ γ ≤ C, aγx ∈ L(Hx×Hx;R), aγv ∈ L(Hv×Hv;R),
and for all 1 ≤ δ ≤ D, lδx ∈ L(Hx;R), lδv ∈ L(Hv;R).

At each iteration m ∈ N∗ of the ALS-η algorithm, rm+1 ∈ Hx (respectively sm+1 ∈
Hv) is the unique solution to (30) (respectively (31)) if and only if it is the solution of
the first-order Euler equations

∀r ∈ Hx, c(rm+1 ⊗ sm, r ⊗ sm) = l(r ⊗ sm),

∀s ∈ Hv, c(rm+1 ⊗ sm+1, rm+1 ⊗ s) = l(rm+1 ⊗ s).

We clearly see that the computation of rm+1 and sm+1 only requires the resolution of a
linear symmetric coercive system for functions depending only on x, or only on v. The
size of the associated discretized problems are thus much smaller than those that one
would have obtained to solve (25) directly for instance.

Using the tensor decomposition of c and l, these equations can be rewritten as

∀r ∈ Hx,

C∑
γ=1

cγv(s
m, sm)cγx(r

m+1, r) =
D∑
δ=1

lδv(s
m)lδx(r), (32)

∀s ∈ Hv,

C∑
γ=1

cγv(s
m+1, s)cγx(r

m+1, rm+1) =
D∑
δ=1

lδv(s)l
δ
x(r

m+1). (33)

16

The tensorized decomposition of c and l implies that each term appearing in (33) and
(34) can be quickly evaluated, since they only involve forms defined on Hilbert spaces
of functions depending on only one variable. Such tensorized decompositions are always
naturally available in the Vlasov-Poisson context, and this crucial fact is at the heart of
the efficiency of this approach.

4 Final algorithm for the Vlasov-Poisson system

4.1 Space and velocity discretization

Let us highlight that the proposed method can be adapted to various types of space
and velocity discretizations, as well as different time schemes. It can also be adapted
in other contexts than the Vlasov system. Let us assume that a discretization with Nx

(respectively Nv) degrees of freedom in the x variable (respectively the v variable) is
used. Thus, at each time step of the discretization scheme, the approximation of f is
characterized by a matrix f ∈ RNx×Nv which is computed in a separated form as

f =
n∑
k=1

rk ⊗ sk =
n∑
k=1

rks
T
k ,

with some vectors rk ∈ RNx×1 and sk ∈ RNv×1.

In this setting, the Hilbert spaces Hx, Hv and H are chosen to be RNx , RNv and
RNx×Nv . The only requirement for this strategy to be applicable is that each step of
the chosen scheme requires the resolution of problems of the form (19), where P is a
tensorized operator at the discrete level, and g a finite-rank element of H. More precisely,
we assume that at each step of the algorithm P and g can be respectively written as

P =

p∑
k=1

P k
x ⊗ P k

v and g =

q∑
k=1

gkx ⊗ gkv ,

for some matrices P k
x ∈ RNx×Nx , P k

v ∈ RNv×Nv and vectors gkx ∈ RNx , gkv ∈ RNv . Also, the
operator I appearing in equation (19) can be written as I = Ix⊗ Iv for some symmetric
positive matrices Ix ∈ RNx×Nx and Iv ∈ RNv×Nv . The space H is endowed with the scalar
product

∀f, g ∈ H, 〈f, g〉H := Tr
(
fT IxgIv

)
= Tr

(
fT (Ix ⊗ Ivg)

)
.

The idea is illustrated using a finite element discretization. Let us introduce (φi(x))1≤i≤Nx
and (ψk(v))1≤k≤Nv some finite element discretization bases of functions defined on Ωx and

17

Ωv respectively. Assume that these functions belong respectively to H1(Ωx) and H1(Ωv)
with appropriate boundary conditions.

The following matrices are defined: for all 1 ≤ α ≤ d (recall that d is the dimension
of the problem), and any measurable bounded field E = (Eα)1≤α≤d : Ωx → Rd,

Ix :=
(´

Ωx
φi(x)φj(x) dx

)
1≤i,j≤Nx

,

Fx(Eα) :=
(´

Ωx
φi(x)Eα(x)φj(x) dx

)
1≤i,j≤Nx

,

Dα,x :=
(´

Ωx
φi(x)∂xαφj(x) dx

)
1≤i,j≤Nx

,

Iv :=
(´

Ωv
ψk(v)ψl(v) dv

)
1≤k,l≤Nv

,

Vα,v :=
(´

Ωv
ψk(v)vαψl(v) dv

)
1≤k,l≤Nv

,

Dα,v :=
(´

Ωv
ψk(v)∂vαψl(v) dv

)
1≤k,l≤Nv

.

The time scheme introduced in Section 2.4 is recalled:(
I +

∆t

2
E(m) · ∇v

)
f (m+1/3) =

(
I − ∆t

2
v · ∇x

)
f (m),(

I +
∆t

2
v · ∇x

)
f (m+2/3) = f (m+1/3), (34)

f (m+1) =

(
I − ∆t

2
E(m+2/3) · ∇v

)
f (m+2/3).

The discretized version of this scheme then reads as follows: let f (0) ∈ RNx×Nv . For
all m ∈ N, compute f (m+1/3), f (m+2/3), f (m+1) ∈ RNx×Nv solutions of(

Ix ⊗ Iv +
∆t

2

d∑
α=1

Fx(E
(m)
α)⊗Dα,v

)
f (m+1/3) =

(
Ix ⊗ Iv −

∆t

2
Vα,v ⊗Dα,x

)
f (m),(

Ix ⊗ Iv +
∆t

2

d∑
α=1

Dα,x ⊗ Vα,v

)
f (m+2/3) = f (m+1/3), (35)

f (m+1) =

(
Ix ⊗ Iv −

∆t

2

d∑
α=1

Fx(E
(m+2/3)
α)⊗Dα,v

)
f (m+2/3).

18

4.2 Summary of the algorithm in the discretized setting

The method we propose for the resolution of the Vlasov-Poisson system is summarized
hereafter. Let ε > 0 be a chosen tolerance threshold.

Verlet-PGD-ε algorithm:

• Initialization: Set f (0) = f0.

• Iterate on m ≥ 0:

– Define P (m+1/3) = ∆t
2

∑d
α=1 Fx(E

(m)
α) ⊗ Dα,v and g(m+1/3) =(

Ix ⊗ Iv − ∆t
2
Vα,v ⊗Dα,x

)
f (m). Compute f

(m+1/3)
as

f
(m+1/3)

= PGDFP (P (m+1/3), g(m+1/3), f (m), ε, ε).

Recompress f
(m+1/3)

by computing

f (m+1/3) = POD
(
f

(m+1/3)
, ε, ε

)
.

– Define P (m+2/3) = ∆t
2

∑d
α=1Dα,x ⊗ Vα,v. Compute f

(m+2/3)
as

f
(m+2/3)

= PGDFP (P (m+1/3), f (m+1/3), f (m+1/3), ε, ε).

Recompress f
(m+2/3)

by computing

f (m+2/3) = POD
(
f

(m+2/3)
, ε, ε

)
.

– Define Q(m+1) = −∆t
2

∑d
α=1 Fx(E

(m+2/3)
α)⊗Dα,v. Compute f (m+1) as

f (m+1) = POD((Ix ⊗ Iv +Q(m+1))f (m+2/3), ε, ε).

The condition we obtained in Proposition 2 on the convergence of the Fixed-point
PGD algorithm implies that the time step ∆t > 0 has to be taken sufficiently small
to ensure that the norms of the operators entering in the decomposition of Pm+1/3 and
Pm+2/3 are also small. In practice, we thus observe that our scheme suffers from a type
of CFL condition that has to be respected for the method to converge. Apart from this

19

restriction which does not appear to be too penalizing in practice, the approach proposed
here is very flexible and yields promising numerical results as shown in the next section.

5 Numerical results

In this section some numerical experiments are presented, to assess the properties of the
method. First, two 1D-1D examples are considered, to validate the proposed approach.
The following quantities are monitored: the error in mass, momentum and energy con-
servation, and the error with respect to a reference solution. The L2 averaged in time
relative errors are defined as follows:

εm :=
1

M tf

(ˆ tf

0

(m−m(0))2 dt

)1/2

, (36)

εp :=
1

P tf

(ˆ tf

0

(p− p(0))2 dt

)1/2

, (37)

εh :=
1

H(0) tf

(ˆ tf

0

(h− h(0))2) dt

)1/2

, (38)

εf :=
1

tf

(ˆ tf

0

´
Ω

(fref − f)2 dx dv´
Ω
f 2
ref dx dv

dt

)1/2

, (39)

where tf is the final time of the simulation, M is the normalising mass factor, defined as
the mass of the initial condition M = m(0) =

´
Ω
f0 dx dv, P =

√
2MK is the momentum

reference value, where K =
´

Ω
f0

v2

2
dx dv is the initial kinetic energy, and H(0) is the

Hamiltonian at initial time.
In the last part of this section, a 2D-2D example is shown to illustrate the applicability

of the method in more high-dimensional settings. Simulations on 3D-3D testcases is work
in progress.

5.1 Landau Damping.

The first test proposed is a standard linear Landau damping in a 1D-1D configuration,
as proposed in [33]. The domain size is Ωx = [0, 4π] and Ωv = [−10, 10]. Periodic
(respectively homogeneous Dirichlet) boundary conditions are set on Ωx (respectively

20

Ωv). The initial condition is given in analytical form as:

f(x, v; t = 0) = F (x)G(v), (40)

F (x) = 1 + β cos(kx), (41)

G(v) =
1√
2π

exp

(
−v

2

2

)
, (42)

where k = 0.5 is the wavenumber of the perturbation and the amplitude β = 0.01 set
the problem in a linear Landau damping regime (see [33, 29]). In such a configuration
the analytical decay rate for the electric amplitude is γ ≈ 0.153. For this test a mixed
discretization is set up: for the space, a spectral collocation method is used based on a
Fourier discretization, whereas for the velocity standard centered finite differences are
used.

The numerical experiments are done by varying the space and velocity resolution, the
time step, and the tolerance on the residual. For the space and the velocity discretization,
we take Nx = Nv = (32, 64, 128, 256). The final time is set to tf = 10.0 and the
number of iterations is Nt = (4 · 103, 8 · 103, 16 · 103). The tolerance on the residual is
chosen as ε = (10−10, 10−12, 10−14, 10−16). For the reference simulation Nx = Nv = 512,
Nt = 32 · 103 and ε = 10−18.

The results of the numerical testcases are reported in Table 1. The numerical ex-
periments show that the conservation of mass, momentum and hamiltonian are well
respected for all the discretizations adopted. Concerning the error with respect to the
reference simulation, it has been observed that the error is dominated by the space-time
discretization. In particular, using a residual tolerance (ε) too low with a given dis-
cretization does not allow to improve the results. On the other hand, when refining the
mesh or when using a small ∆t, a high tolerance may result in a non-convergence of the
solution. In Figure 1 the decay in electrostatic energy is shown as a function of time
for Nx = Nv = (32, 64, 128), compared to the theoretical decay. The behavior in terms
of decay and of Langmuir frequency is in agreement with the results presented in the
litterature.

Let us mention here that the memory needed to store a rank-n function is n(Nx+Nv),
which has to be compared with NxNv, the total number of degrees of freedom in the
system. The evolution in time of the ranks of the approximation of f computed by the
approach is plotted in Figure 2 for the following discretization parameters: Nx = Nv =
512, ε = 10−16, Nt = 32000, and T = 10. We observe that the maximal rank of the
approximation is obtained at the final time of the simulation and is approximately equal
to n = 50. The worst compression factor NxNv

n(Nx+Nv)
≈ 5 remains reasonable in this 1d

21

Table 1: Errors in the conserved quantities and with respect to a reference simulation
for the 1D-1D Landau Damping testcase (section 5.1)
resolution (Nx – Nt – ε) εm εp εh εf

32 – 4 · 103 – 10−10 9.09 · 10−7 5.18 · 10−6 8.52 · 10−5 1.06 · 10−3

32 – 4 · 103 – 10−12 1.12 · 10−6 6.24 · 10−6 2.43 · 10−5 4.15 · 10−4

32 – 4 · 103 – 10−14 1.02 · 10−7 5.59 · 10−6 1.01 · 10−5 4.14 · 10−4

32 – 4 · 103 – 10−16 7.08 · 10−8 5.60 · 10−6 9.45 · 10−6 4.14 · 10−4

32 – 8 · 103 – 10−10 3.64 · 10−6 6.90 · 10−6 9.31 · 10−4 3.28 · 10−3

32 – 8 · 103 – 10−12 1.11 · 10−6 6.28 · 10−6 2.48 · 10−5 4.05 · 10−4

32 – 8 · 103 – 10−14 4.32 · 10−7 5.60 · 10−6 1.60 · 10−5 4.05 · 10−4

32 – 8 · 103 – 10−16 6.71 · 10−8 5.64 · 10−6 8.75 · 10−6 4.05 · 10−4

32 – 16 · 103 – 10−10 4.38 · 10−6 7.57 · 10−6 1.04 · 10−3 3.40 · 10−3

32 – 16 · 103 – 10−12 1.04 · 10−6 6.31 · 10−6 2.32 · 10−5 4.01 · 10−4

32 – 16 · 103 – 10−14 1.14 · 10−6 6.31 · 10−6 2.46 · 10−5 4.01 · 10−4

32 – 16 · 103 – 10−16 6.01 · 10−8 5.67 · 10−6 8.53 · 10−6 4.00 · 10−4

64 – 4 · 103 – 10−10 6.75 · 10−7 2.61 · 10−6 8.33 · 10−5 9.71 · 10−4

64 – 4 · 103 – 10−12 8.58 · 10−7 3.19 · 10−6 1.98 · 10−5 1.33 · 10−4

64 – 4 · 103 – 10−14 2.11 · 10−7 2.68 · 10−6 1.08 · 10−5 1.28 · 10−4

64 – 4 · 103 – 10−16 1.54 · 10−8 2.68 · 10−6 8.32 · 10−6 1.28 · 10−4

64 – 8 · 103 – 10−10 1.21 · 10−6 2.70 · 10−6 3.29 · 10−4 2.91 · 10−3

64 – 8 · 103 – 10−12 8.70 · 10−7 3.19 · 10−6 1.92 · 10−5 1.30 · 10−4

64 – 8 · 103 – 10−14 8.64 · 10−7 2.61 · 10−6 2.14 · 10−5 1.28 · 10−4

64 – 8 · 103 – 10−16 1.77 · 10−8 2.69 · 10−6 8.38 · 10−6 1.25 · 10−4

64 – 16 · 103 – 10−10 1.42 · 10−6 3.61 · 10−6 2.62 · 10−4 3.30 · 10−3

64 – 16 · 103 – 10−12 9.95 · 10−7 3.19 · 10−6 2.15 · 10−5 1.28 · 10−4

64 – 16 · 103 – 10−14 9.25 · 10−7 3.19 · 10−6 2.03 · 10−5 1.28 · 10−4

64 – 16 · 103 – 10−16 3.10 · 10−8 2.71 · 10−6 8.54 · 10−6 1.23 · 10−4

22

resolution (Nx – Nt – ε) εm εp εh εf
128 – 4 · 103 – 10−10 4.45 · 10−7 1.29 · 10−6 9.31 · 10−5 1.13 · 10−3

128 – 4 · 103 – 10−12 1.07 · 10−6 1.69 · 10−6 1.97 · 10−5 7.60 · 10−5

128 – 4 · 103 – 10−14 2.49 · 10−7 1.34 · 10−6 1.10 · 10−5 6.30 · 10−5

128 – 4 · 103 – 10−16 1.44 · 10−8 1.33 · 10−6 8.45 · 10−6 6.26 · 10−5

128 – 8 · 103 – 10−10 9.93 · 10−7 1.45 · 10−6 1.73 · 10−4 2.87 · 10−3

128 – 8 · 103 – 10−12 1.18 · 10−6 1.71 · 10−6 2.20 · 10−5 6.92 · 10−5

128 – 8 · 103 – 10−14 8.40 · 10−7 1.38 · 10−6 1.96 · 10−5 6.48 · 10−5

128 – 8 · 103 – 10−16 2.31 · 10−8 1.34 · 10−6 8.60 · 10−6 6.07 · 10−5

128 – 16 · 103 – 10−10 8.75 · 10−7 1.71 · 10−6 3.90 · 10−4 3.29 · 10−3

128 – 16 · 103 – 10−12 1.45 · 10−6 1.67 · 10−6 2.56 · 10−5 6.79 · 10−5

128 – 16 · 103 – 10−14 1.10 · 10−6 1.69 · 10−6 2.14 · 10−5 6.79 · 10−5

128 – 16 · 103 – 10−16 4.13 · 10−8 1.35 · 10−6 8.79 · 10−6 5.98 · 10−5

256 – 4 · 103 – 10−10 n.c. n.c. n.c. n.c.
256 – 4 · 103 – 10−12 1.03 · 10−6 7.69 · 10−7 1.99 · 10−5 8.88 · 10−5

256 – 4 · 103 – 10−14 2.54 · 10−7 6.68 · 10−7 1.13 · 10−5 5.73 · 10−5

256 – 4 · 103 – 10−16 2.54 · 10−7 6.68 · 10−7 1.12 · 10−5 5.73 · 10−5

256 – 8 · 103 – 10−10 9.28 · 10−7 6.99 · 10−7 1.61 · 10−4 2.87 · 10−3

256 – 8 · 103 – 10−12 9.77 · 10−7 8.14 · 10−7 1.93 · 10−5 9.01 · 10−5

256 – 8 · 103 – 10−14 8.35 · 10−7 6.99 · 10−7 1.93 · 10−5 5.94 · 10−5

256 – 8 · 103 – 10−16 1.55 · 10−8 6.72 · 10−7 8.52 · 10−6 5.49 · 10−5

256 – 16 · 103 – 10−10 5.02 · 10−7 7.87 · 10−7 6.46 · 10−4 3.32 · 10−3

256 – 16 · 103 – 10−12 1.64 · 10−6 8.14 · 10−7 2.73 · 10−5 6.83 · 10−5

256 – 16 · 103 – 10−14 1.37 · 10−6 7.68 · 10−7 2.35 · 10−5 6.24 · 10−5

256 – 16 · 103 – 10−16 3.04 · 10−8 6.75 · 10−7 8.69 · 10−6 5.41 · 10−5

23

Figure 1: Linear Landau damping testcase (see section 5.1). Electrostatic energy as
function of time for different resolutions in the phase space. Dash line is the analytical
expected decay for the electrostatic energy.

24

Figure 2: Evolution in time of the rank of the approximation of f .

case. We observe numerically an interesting trend: the rank seems to increase linearly
with time and are independent of Nx and Nv.

5.2 Two stream instability.

We present the classical 1D-1D two stream-instability testcase. The domain is Ω =
Ωx × Ωv = [0, 10π/ω]× [−10, 10].

The final time of the evolution is T = 36.0. The initial condition has the following
form:

f(x, v; t = 0) = F (x)G(v), (43)

F (x) = 1 + β cos(kx), (44)

G(v) =
1√
4π

exp

(
−(v − v0)2

2

)
+

1√
4π

exp

(
−(v + v0)2

2

)
, (45)

where v0 = 2.4 and β = 10−3. A mixed discretization is considered, namely a spectral
collocation method for the space and standard centered finite differences in velocity. The
contour plot of the reference solution at final time is shown in Figure 3. The conserva-
tion properties and the errors with respect to a reference simulation are investigated by

25

Figure 3: Two stream instability testcase (section 5.2): a) Contours of the reference
solution (black for the lowest value) at final time and b) Errors with respect to a reference
simulation as function of the phase space discretization, for different time steps.

26

varying the phase space discretization as well as time step and the residual tolerance.
The results are very similar to the ones obtained for the linear Landau damping testcase.
For the sake of brevity, the conservation error properties are not reported. The errors
with respect to a reference simulation (Nx = 256, Nv = 512, Nt = 8 · 103, ε = 10−14)
are computed by varying the discretization of the phase space and the time step. In
particular, Nx ranges in [16, 32, 64, 128], Nv = 2Nx and Nt = [103, 2 · 103, 4 · 103]. The
tolerance on the residual is varied and the errors when considering ε = 10−12 are shown
in Figure 3. A second order convergence rate is retrieved for the space discretization, at
fixed time step. Whereas the error is relatively insensitive to the time step when a coarse
discretization is considered, a definite dependence is seen for the finest grid resolution.
This is due to the fact that, on the coarse grids, the discretization error is dominated by
the space discretization error.

5.3 2D-2D simulations

In this section, we present a 2D-2D Landau damping test case. The simulation domains
are Ωx = (0, 4π)2 and Ωv = (−10, 10)2. We impose as before periodic boundary con-
ditions on Ωx and homogeneous Dirichlet boundary conditions on Ωv. Uniform tensor
discretizations are used for Ωx and Ωv, and two different simulations are obtained for
the following numbers of degrees of freedom: (Nx, Nv) = [(162, 322), (322, 642)]. The
error tolerance criterion of the algorithm is set to be ε = 10−15. Time step is equal to
∆t = 2.10−4.

The initial condition is defined as

f0(x, v) =
1
√

2π
3 [1− β sin(ωx1)− β sin(ωx2)] exp(−1

2
(v2

1 + v2
2)),

where β = 0.01 and ω = 0.5.

The evolution of the electric energy as a function of time is shown in Figure 4 for
the two different discretizations mentioned above. It can be seen that these are in agree-
ment with the predicted analytical decay. Conservation properties of mass, momentum
and total energy behave similarly to 1D-1D cases. Ranks of the approximated solution
obtained by the algorithm also seem to increase linearly with time.

We mention here that encouraging preliminary results have been obtained on 3D-3D
test cases. Parallelisation of the method, which is needed to reduce the computational
cost, is work in progress, and should enable to obtain results in more realistic settings.

27

Figure 4: Evolution of the electric energy as a function of time in the 2D Landau damping
test case.

6 Conclusion

In this work a dynamical adaptive tensor method has been proposed to build parsimo-
nious discretizations for the Vlasov-Poisson system. It allows to treat generic geometries
and can be applied to generic heterogeneous discretizations in space and velocity, making
it a flexible tool for the simulation of kinetic equation within an Eulerian framework. The
method is dynamical in time and the time advancing is design to preserve the Hamil-
tonian character of the system, with a second order accuracy. Several testcases were
proposed to validate the method and assess its properties.

Several perspectives arise, concerning the parallelisation of the method (which is
mandatory to deal with more realistic 3D-3D settings) and its extension to other kinetic
equations, involving collision operators. These will be the object of a further investiga-
tion.

28

Appendix A: Proof of Proposition 2

Proof of Proposition 2. Let us denote by b ∈ H the Riesz representative of b in H. The
element f solution of (25) is then the unique solution to

(I + Ã)f = b,

where I denotes the identity operator on H. By assumption, ‖Ã‖L(H;H) ≤ Mκ, thus
both (A1) or (A2) imply that ‖ã‖L(H×H;R) < 1. For all n ∈ N, let us denote by Rn :=

b− (I+ Ã)fn the residual of the equation in H after n iterations of the Fixed-point PGD
algorithm. Since (rn+1, sn+1) ∈ Hx×Hv is solution to the minimization problem (26), it
satisfies

(rn+1, sn+1) ∈ argmin
(r,s)∈Hx×Hv

‖Rn − r ⊗ s‖2
H . (46)

Thus, we have the following properties on the tensor product function rn+1 ⊗ sn+1

(rn+1, sn+1) ∈ argmax(r,s)∈Hx×Hv
〈Rn,r⊗s〉H
‖r⊗s‖H

, (47)

‖rn+1 ⊗ sn+1‖H = max(r,s)∈Hx×Hv
〈Rn,r⊗s〉H
‖r⊗s‖H

, (48)

〈Rn − rn+1 ⊗ sn+1, rn+1 ⊗ sn+1〉H = 0.

We refer the reader to [31, 5, 18, 19, 20] for a proof of the properties (47), (48) and
(49), which are consequences of (46). Let us already point out here that if H = Hx⊗Hv

(which is the case when assumption (A1) is satisfied), we have in addition

max
(r,s)∈Hx×Hv

〈Rn − rn+1 ⊗ sn+1, r ⊗ s〉H
‖r ⊗ s‖H

≤ ‖rn+1 ⊗ sn+1‖H . (49)

29

Thus, since fn+1 = fn + rn+1 ⊗ sn+1,

‖Rn‖2
H − ‖Rn+1‖2

H = ‖Rn‖2
H − ‖Rn − rn+1 ⊗ sn+1 − Ãrn+1 ⊗ sn+1‖2

H ,

= ‖Rn‖2
H − ‖Rn − rn+1 ⊗ sn+1‖2 − ‖Ãrn+1 ⊗ sn+1‖2

H

+2〈Rn − rn+1 ⊗ sn+1, Ãrn+1 ⊗ sn+1〉H ,
= ‖Rn‖2

H − ‖Rn‖2
H + ‖rn+1 ⊗ sn+1‖2

H − ‖Ãrn+1 ⊗ sn+1‖2
H

+2〈Rn − rn+1 ⊗ sn+1, Ãrn+1 ⊗ sn+1〉H , (using (49))

= +‖rn+1 ⊗ sn+1‖2
H − ‖Ãrn+1 ⊗ sn+1‖2

H

+2
M∑
µ=1

〈Rn − rn+1 ⊗ sn+1, (A
µ
xrn+1)⊗ (Aµvsn+1)〉H ,

≥ (1− κM)‖rn+1 ⊗ sn+1‖2
H + 2

M∑
µ=1

〈Rn − rn+1 ⊗ sn+1, (A
µ
xrn+1)⊗ (Aµvsn+1)〉H .

At this point, we treat the two cases separately. Let us first assume that (A1) holds.
Then,

‖Rn‖2
H − ‖Rn+1‖2

H ≥ (1− κM)‖rn+1 ⊗ sn+1‖2
H

−2
M∑
µ=1

‖rn+1 ⊗ sn+1‖H‖(Aµxrn+1)⊗ (Aµvsn+1)‖H , (using (49))

= (1− κM)‖rn+1 ⊗ sn+1‖2
H

−2
M∑
µ=1

‖rn+1 ⊗ sn+1‖H‖(Aµx ⊗ Aµv)(rn+1 ⊗ sn+1)‖H ,

≥ (1− κM)‖rn+1 ⊗ sn+1‖2
H − 2

M∑
µ=1

κ‖rn+1 ⊗ sn+1‖2
H ,

≥ (1− 3κM)‖rn+1 ⊗ sn+1‖2
H .

30

Assume now that (A2) holds. Then,

‖Rn‖2
H − ‖Rn+1‖2

H ≥ (1− κM)‖rn+1 ⊗ sn+1‖2
H

−4
M∑
µ=1

‖rn+1 ⊗ sn+1‖H‖(Aµxrn+1)⊗ (Aµvsn+1)‖H , (using (48))

= (1− κM)‖rn+1 ⊗ sn+1‖2
H − 4

M∑
µ=1

‖rn+1 ⊗ sn+1‖H‖(Aµx ⊗ Aµv)(rn+1 ⊗ sn+1)‖H ,

≥ (1− κM)‖rn+1 ⊗ sn+1‖2
H − 4

M∑
µ=1

κ‖rn+1 ⊗ sn+1‖2
H ,

≥ (1− 5κM)‖rn+1 ⊗ sn+1‖2
H .

In both cases, there exists a constant η > 0 such that

‖Rn‖2
H − ‖Rn+1‖2

H ≥ η‖rn+1 ⊗ sn+1‖2
H .

Thus, the sequence (‖Rn‖2
H)n∈N is non-increasing and converges. Since ‖Ã‖L(H;H) < 1,

and Rn = b− (Ã+ I)fn, this implies that (fn)n∈N is a bounded sequence in H. Besides,
the series

∑
n∈N∗ ‖rn⊗sn‖2

H is convergent, and ‖rn⊗sn‖H −→
n→+∞

0. Up to the extraction of

a subsequence (still denoted (fn)n∈N for the sake of simplicity), (fn)n∈N weakly converges
in H to some g ∈ H. Property (48) implies that

∀(r, s) ∈ Hx×Hv, | 〈Rn, r⊗s〉H |=| 〈b− (I+ Ã)fn, r⊗s〉H |≤ ‖rn+1⊗sn+1‖H‖r⊗s‖H .

Since b − (I + Ã)fn ⇀
n→+∞

b − (I + Ã)g, we obtain that g is necessarily equal to f , the

unique solution of (25). The sequence (fn)n∈N thus entirely converges (weakly) to f in
H. The strong convergence can be obtained using the same arguments as in [5], which
yields the desired result.

References

[1] Luigi Ambrosio, Maria Colombo, and Alessio Figalli. On the lagrangian structure of
transport equations: the Vlasov-Poisson system. arXiv preprint arXiv:1412.3608,
2014.

31

[2] Aleksei Alekseevich Arsenev. Existence in the large of a weak solution to the Vlasov
system of equations. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki,
15:136–147, 1975.

[3] Claude Bardos and Pierre Degond. Global existence for the Vlasov-Poisson equation
in 3 space variables with small initial data. In Annales de l’IHP Analyse non linéaire,
volume 2, pages 101–118, 1985.

[4] JU Brackbill. On energy and momentum conservation in particle-in-cell plasma
simulation. Journal of Computational Physics, 317:405–427, 2016.

[5] Eric Cances, Virginie Ehrlacher, and Tony Lelievre. Convergence of a greedy algo-
rithm for high-dimensional convex nonlinear problems. Mathematical Models and
Methods in Applied Sciences, 21(12):2433–2467, 2011.

[6] Eric Cances, Virginie Ehrlacher, and Tony Lelievre. Greedy algorithms for high-
dimensional non-symmetric linear problems. In ESAIM: Proceedings, volume 41,
pages 95–131. EDP Sciences, 2013.

[7] Fernando Casas, Nicolas Crouseilles, Erwan Faou, and Michel Mehrenberger.
High-order hamiltonian splitting for Vlasov-Poisson equations. arXiv preprint
arXiv:1510.01841, 2015.

[8] Paul Cazeaux and Jan S Hesthaven. Multiscale time-integration for particle-in-cell
methods. Technical report, Elsevier, 2014.

[9] Frédérique Charles, Bruno Després, and Michel Mehrenberger. Enhanced conver-
gence estimates for semi-lagrangian schemes application to the Vlasov–Poisson equa-
tion. SIAM Journal on Numerical Analysis, 51(2):840–863, 2013.

[10] Francisco Chinesta, Amine Ammar, and Eĺıas Cueto. Recent advances and new
challenges in the use of the proper generalized decomposition for solving multidimen-
sional models. Archives of Computational methods in Engineering, 17(4):327–350,
2010.

[11] Francisco Chinesta, Pierre Ladeveze, and Eĺıas Cueto. A short review on model order
reduction based on proper generalized decomposition. Archives of Computational
Methods in Engineering, 18(4):395–404, 2011.

[12] H Cho, D Venturi, and GE Karniadakis. Numerical methods for high-dimensional
probability density function equations. Journal of Computational Physics, 305:817–
837, 2016.

32

[13] Nicolas Crouseilles, Guillaume Latu, and Eric Sonnendrücker. A parallel Vlasov
solver based on local cubic spline interpolation on patches. Journal of Computational
Physics, 228(5):1429–1446, 2009.

[14] Nicolas Crouseilles, Michel Mehrenberger, and Eric Sonnendrücker. Conservative
semi-lagrangian schemes for Vlasov equations. Journal of Computational Physics,
229(6):1927–1953, 2010.

[15] Pierre Degond, Lorenzo Pareschi, and Giovanni Russo. Modeling and computational
methods for kinetic equations. Springer Science & Business Media, 2004.

[16] Laurent Desvillettes and Jean Dolbeault. On long time asymptotics of the
VlasovPoissonBoltzmann equation. Communications in partial differential equa-
tions, 16(2-3):451–489, 1991.

[17] Mike Espig and Aram Khachatryan. Convergence of alternating least squares
optimisation for rank-one approximation to high order tensors. arXiv preprint
arXiv:1503.05431, 2015.

[18] Antonio Falco and Anthony Nouy. A proper generalized decomposition for the
solution of elliptic problems in abstract form by using a functional eckart–young ap-
proach. Journal of Mathematical Analysis and Applications, 376(2):469–480, 2011.

[19] Antonio Falcó and Anthony Nouy. Proper generalized decomposition for nonlinear
convex problems in tensor banach spaces. Numerische Mathematik, 121(3):503–530,
2012.

[20] Leonardo E Figueroa and Endre Süli. Greedy approximation of high-dimensional
Ornstein–Uhlenbeck operators. Foundations of Computational Mathematics,
12(5):573–623, 2012.

[21] Francis Filbet and Eric Sonnendrücker. Comparison of eulerian vlasov solvers. Com-
puter Physics Communications, 150(3):247–266, 2003.

[22] Kai Germaschewski, William Fox, Stephen Abbott, Narges Ahmadi, Kristofor May-
nard, Liang Wang, Hartmut Ruhl, and Amitava Bhattacharjee. The plasma simula-
tion code: A modern particle-in-cell code with patch-based load-balancing. Journal
of Computational Physics, 318:305–326, 2016.

[23] Robert T Glassey. The Cauchy problem in kinetic theory. SIAM, 1996.

33

[24] Alexandre Grothendieck. Résumé de la théorie métrique des produits tensoriels
topologiques. Resenhas do Instituto de Matemática e Estat́ıstica da Universidade
de São Paulo, 2(4):401–481, 1996.

[25] Wolfgang Hackbusch, Boris N Khoromskij, and Eugene E Tyrtyshnikov. Approx-
imate iterations for structured matrices. Numerische Mathematik, 109(3):365–383,
2008.

[26] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical in-
tegration illustrated by the Störmer–Verlet method. Acta numerica, 12:399–450,
2003.

[27] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integra-
tion: structure-preserving algorithms for ordinary differential equations, volume 31.
Springer Science & Business Media, 2006.

[28] Hyung Ju Hwang. Regularity for the Vlasov–Poisson system in a convex domain.
SIAM journal on mathematical analysis, 36(1):121–171, 2004.

[29] Katharina Kormann. A semi-lagrangian Vlasov solver in tensor train format. SIAM
Journal on Scientific Computing, 37(4):B613–B632, 2015.

[30] Pierre Ladeveze, J-C Passieux, and David Néron. The latin multiscale computa-
tional method and the proper generalized decomposition. Computer Methods in
Applied Mechanics and Engineering, 199(21):1287–1296, 2010.

[31] Claude Le Bris, Tony Lelievre, and Yvon Maday. Results and questions on a nonlin-
ear approximation approach for solving high-dimensional partial differential equa-
tions. Constructive Approximation, 30(3):621–651, 2009.

[32] PIERRE-LOUIS Lions and BENOIT Perthame. Propagation of moments and reg-
ularity for the 3-dimensional Vlasov-Poisson system. Inventiones mathematicae,
105(1):415–430, 1991.

[33] Éric Madaule, Marco Restelli, and Eric Sonnendrücker. Energy conserving discon-
tinuous Galerkin spectral element method for the Vlasov–Poisson system. Journal
of Computational Physics, 279:261–288, 2014.

[34] Jerrold E. Marsden and Alan Weinstein. The hamiltonian structure of the Maxwell-
Vlasov equations. Physica D: Nonlinear Phenomena, 4(3):394 – 406, 1982.

34

[35] PJ Morrison. Hamiltonian and action principle formulations of plasma physicsa).
Physics of Plasmas (1994-present), 12(5):058102, 2005.

[36] Anthony Nouy. A priori model reduction through proper generalized decomposi-
tion for solving time-dependent partial differential equations. Computer Methods in
Applied Mechanics and Engineering, 199(23):1603–1626, 2010.

[37] Martin Campos Pinto and Michel Mehrenberger. Convergence of an adaptive
semi-lagrangian scheme for the Vlasov-Poisson system. Numerische Mathematik,
108(3):407–444, 2008.

[38] Thorsten Rohwedder and André Uschmajew. On local convergence of alternating
schemes for optimization of convex problems in the tensor train format. SIAM
Journal on Numerical Analysis, 51(2):1134–1162, 2013.

[39] Vladimir N Temlyakov. Greedy approximation. Acta Numerica, 17:235–409, 2008.

[40] André Uschmajew. Local convergence of the alternating least squares algorithm for
canonical tensor approximation. SIAM Journal on Matrix Analysis and Applica-
tions, 33(2):639–652, 2012.

[41] Victor Vedenyapin, Alexander Sinitsyn, and Eugene Dulov. Kinetic Boltzmann,
Vlasov and Related Equations. Elsevier, 2011.

[42] Xingyu Wang, Roman Samulyak, Xiangmin Jiao, and Kwangmin Yu. AP-Cloud:
Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equa-
tion. Journal of Computational Physics, 316:682–699, 2016.

[43] Jin Xu, Peter N Ostroumov, Brahim Mustapha, and Jerry Nolen. Scalable direct
vlasov solver with discontinuous galerkin method on unstructured mesh. SIAM
Journal on Scientific Computing, 32(6):3476–3494, 2010.

35

	1 Introduction
	2 Hamiltonian formulation and tensor decomposition
	2.1 The Vlasov-Poisson system
	2.2 Hamiltonian formulation
	2.3 Splitting induced by tensor decomposition
	2.4 Symplectic integrator in time

	3 Tensor methods
	3.1 PGD for coercive symmetric problems
	3.2 An important particular case
	3.3 Fixed-point PGD algorithm for weakly non-symmetric problems
	3.4 Alternating least squares (ALS) for the practical resolution of the PGD iterations

	4 Final algorithm for the Vlasov-Poisson system
	4.1 Space and velocity discretization
	4.2 Summary of the algorithm in the discretized setting

	5 Numerical results
	5.1 Landau Damping.
	5.2 Two stream instability.
	5.3 2D-2D simulations

	6 Conclusion

