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RECOVERY OF TIME-DEPENDENT COEFFICIENT ON RIEMANIAN

MANIFOLD FOR HYPERBOLIC EQUATIONS

YAVAR KIAN, LAURI OKSANEN

Abstract. Given (M, g), a compact connected Riemannian manifold of dimension d > 2, with

boundary ∂M , we study the inverse boundary value problem of determining a time-dependent

potential q, appearing in the wave equation ∂2
t u−∆gu+q(t, x)u = 0 in M = (0, T )×M with T > 0.

Under suitable geometric assumptions we prove global unique determination of q ∈ L∞(M) given

the Cauchy data set on the whole boundary ∂M , or on certain subsets of ∂M . Our problem can

be seen as an analogue of the Calderón problem on the Lorentzian manifold (M,dt2 − g).

Keywords: Inverse problems, wave equation on manifold, time-dependent potential, uniqueness,

partial data, Carleman estimates.
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1. Introduction

1.1. Formulation of the problem. Let (M, g) be a smooth Riemanian manifold with boundary

and let T > 0. We introduce the Laplace and wave operators

∆gu = |g|−1/2∂xj
(
gjk|g|1/2∂xku

)
, �g = ∂2

t −∆g,(1.1)

where |g| and gjk denote the absolute of value of the determinant and the inverse of g in local

coordinates, and consider the wave equation

(1.2) �gu+ q(t, x)u = 0, (t, x) ∈ (0, T )×M,

with q ∈ L∞((0, T ) ×M). Let ν be the outward unit normal vector to ∂M with respect to the

metric g and let ∂ν be the corresponding normal derivative. Moreover, we define ∂ν = ∂ν on the

lateral surface (0, T ) × ∂M , ∂ν = ∂t on the top surface {T} ×M and ∂ν = −∂t on the bottom

surface {0}×M , and consider the Cauchy data set on the boundary of the cylinder M = (0, T )×M ,

(1.3) Cq = {(u|∂M , ∂νu|∂M ) : u ∈ L2(M), �gu+ qu = 0}.
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In this paper we study the inverse boundary value problem to recover the time-dependent zeroth

order term q appearing in (1.2) from partial knowledge of the set Cq.

There are several previous results on the problem, and we shall review them below, however to

our knowledge, all of them assume either that (M, g) is a domain in Rn with the Euclidean metric

or that q is time-independent.

In the case of time-independent q it is enough to know the following lateral restriction of Cq,

CLat
q = {(u|(0,T )×∂M , ∂νu|(0,T )×∂M ) : u ∈ L2(M), �gu+ qu = 0, u|t=0 = ∂tu|t=0 = 0},

for sufficiently large T > 0, in order to determine q(x) for all x ∈M , see [4, 24, 37, 39]. However, if

q depends on time, due to domain of dependence argument, the data CLat
q contains no information

on the restriction of q on the set

{(t, x) ∈M : dist(x, ∂M) > t or dist(x, ∂M) > T − t}.(1.4)

Here dist(·, ·) is the distance function on (M, g). Facing this obstruction to the uniqueness, all the

results in the present paper assume some information on the top {T} ×M and bottom {0} ×M

surfaces. In particular, under the assumption that (M, g) is a simple manifold, see Definition 1.1

below, we show that the full Cauchy data set Cq determines q uniquely. The precise formulations

of our results, with partial knowledge of the set Cq, are in Section 1.4 below.

1.2. Physical and mathematical motivations. Let us begin with a mathematical motivation:

the problem to determine q given Cq can be seen as a hyperbolic analogy of the Calderón problem

on a cylinder as stated in [15]. Indeed, denoting by dt2 − g the product Lorentzian metric on M ,

the wave operator �g coincides with the Laplace operator on (M,dt2 − g). On the other hand,

denoting by g = dt2 + g the Riemannian product metric on M , and choosing a smooth domain

Ω ⊂ M , we can formulate the the Calderón problem on a cylinder as follows: given the elliptic

Cauchy data set

CEll
q = {(u|∂Ω, ∂νu|∂Ω) : u ∈ L2(Ω), ∆gu+ qu = 0}

determine q (here ν is the outward unit normal vector to ∂Ω). In [15] this problem was solved

under the assumption that (M, g) is a simple manifold.

One reason to study these problems is to gain some understanding of the fundamental problem to

determine, up to an isometry, a smooth Riemannian or Lorentzian manifold (Ω, g) with boundary
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given the set of Cauchy data

C(g) = {(u|∂Ω, ∂νu|∂Ω); u ∈ L2(Ω), ∆gu = 0}.

Excluding results where full or partial real analyticity is assumed, this problem is open in dimensions

three or higher, in both the elliptic and hyperbolic cases. The relation to the present problem to

determine q given Cq is as follows. In the case when (Ω, g) is a subset of the conformal cylinder

M = (0, T )×M, g = c(dt2 + g),(1.5)

where only the strictly positive conformal factor c ∈ C2(M) is assumed to be unknown, the problem

to determine c given C(g) can be reduced to the problem to determine q given CEll
q via a gauge

transformation. Indeed, as explained e.g. in [16], the function v = c(d−1)/4u satisfies ∆gv+ qcv = 0

if the function u satisfies ∆gu = 0, where d is the dimension of M and

qc = c−(d−1)/4∆gc
(d−1)/4.

This allows us to first determine CEll
qc given C(g), then solve the inverse boundary value problem for

qc, and finally determine c given qc. The argument can be adapted also to the hyperbolic case.

From the physical point of view, our inverse problem consists of determining properties such as

the time evolving density of an inhomogeneous medium by probing it with disturbances generated

on some parts of the boundary and at initial time, and by measuring the response on some parts

of the boundary and at the end of the experiment.

Time-dependent zeroth order terms appear often also due to mathematical reductions of non-

linear problems. For example, in [23] Isakov applied results on inverse boundary value problems

with time-dependent coefficients in order to prove unique recovery of a general semilinear term

appearing in a nonlinear parabolic equation from traces of all the solutions to the equation. More

recently, applying their results of stable recovery of time-dependent coefficients from the parabolic

Dirichlet-to-Neumann map, [14] treated the stability issue for this problem. In the same spirit our

inverse problem can be a tool for the problem of determining a semilinear term appearing in a

nonlinear wave equation from observations given by traces of the solutions. We point out that with

this application in mind, it is important to treat non-smooth potentials q.
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1.3. Previous literature. The recovery of coefficients appearing in hyperbolic equations is a topic

that has attracted considerable attention. Several authors have treated the determination of time-

independent coefficients from Cauchy data analogous to CLat
q above. In this case, the Boundary

Control method, originating from [6], gives very general uniqueness results when combined with the

time-sharp unique continuation theorem [47]. We refer to [31, 33] for state-of-the-art results and

to [7, 24] for reviews. However, as shown in [1], unique continuation analogous to [47] may fail in

the presence of time-dependent zeroth order terms, and the Boundary Control method generalizes

only to the case where the dependence on time is real analytic [17].

Another approach, that is constrained in the time-independent case, is the Carleman estimates

based approach originating from [10]. Using this approach it can be shown, under suitable geometric

assumptions, that a single well-chosen element Cq determines q. The approach gives also strong

stability results.

Let us now turn to the approach underpinning most of the results in the time-dependent case,

including the results in the present paper, that is, the use of geometric optics solutions. This

approach is widely applied also to time-independent case, and the data used then is typically

the same as in the case of the Boundary Control method, that is, CLat
q . Although the geometric

optics approach gives less sharp uniqueness results in terms of geometrical assumptions than the

Boundary Control method, the advantage of the former is that it yields stronger stability results

[4, 5, 27, 37, 45, 46] than the latter [2], however, see [36] for a strong low-frequency stability result

using ideas from the Boundary Control method.

Apart from [17], all the above results are concerned with time-independent coefficients. The

geometric optics approach in the time-dependent case was first used by Stefanov. In [43] he de-

termined a time-dependent potential in a wave equation, with constant coefficients in the leading

order, from scattering data via a reduction to the light-ray transform in the Minkowski space. A

similar strategy was used by Ramm and Sjöstrand [40], the difference being that instead of scat-

tering data they used the analogy of the lateral data CLat
q in the infinite cylinder R×M where M

is a domain in Rn. Rakesh and Ramm [38] considered the lateral data CLat
q on a finite cylinder

(0, T )×M and they determined q in a subset of (0, T )×M contained in the complement of (1.4).

In [22, Theorem 4.2], Isakov determined q on the whole domain (0, T )×M from the full data Cq. In

[28, 29], the first author established both uniqueness and stability for the determination of a general

time dependent potential q from (roughly speaking) half of the data in [22]. More recently, [30]
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extended the result of [28, 29] to recovery of time-dependent damping coefficients, and Salazar [41]

generalized the result of [40] to recovery of time-dependent magnetic vector potentials. We mention

also the log-type stability result [9] for the determination of time-dependent potentials from the

data considered by [22] and [38].

The above results [9, 22, 28, 29, 30, 38, 40, 41, 43] all assume that the leading order coefficients

in the wave equation are constant. The main contribution of the present paper is to consider the

recovery of a time-dependent potential in the case of non-constant leading order coefficients.

1.4. Main results. We prove two results on unique determination of the potential q. In the first

result we assume that the Cauchy data set Cq is fully known on the lateral boundary (0, T )× ∂M

and partly restricted on the top and bottom. In the second result we restrict the data also on the

lateral boundary. In both the results we impose geometric conditions on the manifold (M, g), the

conditions being more stringent in the second case. In the first case, we make the typical assumption

that (M, g) is simple in the sense of the following definition.

Definition 1.1. A compact smooth Riemannian manifold with boundary (M, g) is simple if it is

simply connected, the boundary ∂M is strictly convex in the sense of the second fundamental form,

and M has no conjugate points.

We consider the restricted version of Cq,

C(q, 0) = {(u|∂M\({0}×M), ∂νu|∂M ); u ∈ L2(M), �gu+ qu = 0, u|t=0 = 0},

and formulate our first result.

Theorem 1.2. Suppose that (M, g) is a simple. Let T > 0 and let q1, q2 ∈ L∞((0, T )×M). Then

(1.6) C(q1, 0) = C(q2, 0)

implies that q1 = q2.

Let us point out that an analogous result holds with the data restricted on the top {T} ×M

rather than on the bottom {0}×M , and also with the time derivative ∂tu|t=T vanishing instead of

u|t=0. Moreover, we prove also a variation of Theorem 1.2 using the data

C(q, 0, T ) = {(u|∂M\({0}×M), ∂νu|∂M\({T}×M)); u ∈ L
2(M), �gu+ qu = 0, u|t=0 = 0}.
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Theorem 1.3. Let (M, g) be simple. Let T > Diam(M) and let q1, q2 ∈ L∞((0, T )×M). Then

(1.7) C(q1, 0, T ) = C(q2, 0, T )

implies that q1 = q2.

In order to restrict the data also on the lateral part of the boundary, we make the assumption

that (M, g) is contained in a conformal cylinder of the form (1.5), that is, we assume that it satisfies

the geometric assumption introduced in [15] in the context the Calderón problem. Furthermore, we

assume that also the time direction is multiplied by the same conformal factor, which amounts to

assuming, after the gauge transformation discussed in Section 1.2, that the wave equation has two

Euclidean directions, one of them being the time direction.

More precisely, we assume that (M0, g
′) is a simple Riemanian manifold of dimension d− 1 > 2,

M ⊂ R × int(M0) is a compact domain with smooth boundary, and that g = a(e ⊕ g′) where e is

the euclidean metric on R and a ∈ C∞(M) is positive, and consider the wave operator

�a,g = a−1∂2
t −∆g.(1.8)

Let us now describe the restriction of Cq considered in our second result. To every variable x ∈M we

associate the coordinate x1 ∈ R and x′ ∈ Mx1 = {x′ ∈ M0 : (x1, x
′) ∈ M} such that x = (x1, x

′).

We define ϕ(x) = x1,

∂M± = {x ∈ ∂M : ±∂νϕ(x) > 0},

and Σ± = (0, T ) × int(∂M±). We consider U = [0, T ] × U ′ (resp V = (0, T ) × V ′) with U ′ (resp

V ′) a closed neighborhood of ∂M+ (resp ∂M−) in ∂M , and define the following restriction of Cq,

Cq,∗ = {(u|U , ∂tu|t=0, ∂νu|V , u|t=T ) : u ∈ L2(M), (�a,g+q)u = 0, u|t=0 = 0, suppu|(0,T )×∂M ⊂ U}.

Our second result is stated as follows.

Theorem 1.4. Suppose that the leading part of the wave operator is of the form (1.8). Let T > 0

and let q1, q2 ∈ L∞((0, T )×M). Then

(1.9) Cq1,∗ = Cq2,∗

implies that q1 = q2.
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1.5. Remarks about the proofs of the main results. As indicated above, the proofs of The-

orems 1.2 and 1.4 are based on the use of geometric optics solutions. In the case of the former, we

use the oscillating solutions of the form

(1.10) u(t, x) =

k∑
j=1

aj(t, x)eiσψj(t,x) +Rσ(t, x), (t, x) ∈ (0, T )×M,

with σ ∈ R a parameter, Rσ a term that admits a decay with respect to the parameter |σ| and ψj ,

j = 1, .., k, real valued. Inspired by the elliptic result [15], we use these solutions to prove that the

hyperbolic inverse boundary value problem reduces to the problem to invert a weighted geodesic

ray transform on (M, g). The assumption that (M, g) is simple guarantees that this transform is

indeed invertible.

For our purposes it is enough to take k = 2 in (1.10), and in the case of full data Cq already k = 1

is enough. In the case of data sets C(q, 0) and C(q, 0, T ), the second term is needed in order to be

able to restrict the data while avoiding a ”reflection”. Similar construction is likely to work also

on the lateral boundary, and one may hope that this could be used to reduce the amount of lateral

data. In fact, this type of argument was used in the elliptic case in [25]. There it was assumed that

the part of the lateral boundary lacking data, that is, the inaccessible part, satisfies a (conformal)

flatness condition in one direction, and the elliptic inverse boundary value problem was reduced

to the invertibility of a broken geodesic ray transform. The geodesics used in the transform break

via the normal reflection when they hit the inaccessible part of the boundary. However, barring

some special cases, it is not known if such a transform is invertible, and moreover, there are also

counter-examples to invertibility in general. We refer to [21] for a discussion of both positive results

and counter-examples, and do not pursue a lateral reflection type argument in the present paper.

We recall that the result of several authors, that treated our problem for wave equations with

constant leading order coefficients (e.g. [9, 38, 40, 41]), is based on the use of solutions of form

(1.10). There (M, g) is a domain with the Euclidean geometry, and the inverse boundary value

problem is reduced to the problem to invert the light-ray transform in the Minkowski space. An

analogous reduction is possible also in the case of more complicated geometry [48], however, it is

an open question if the light-ray transform is invertible on a Lorentzian manifold of the product

form ((0, T ) ×M,dt2 − g) where (M, g) is simple. We remark that in the case of a real-analytic

Lorentzian manifold satisfying a certain convexity condition, the invertibility is shown in the recent

preprint [44]. We do not pursue this direction in the present paper, as having (restricted) data
7



on the top and bottom allows for a reduction to the well-understood problem to invert a weighted

geodesic ray transform, rather than the light-ray transform.

For Theorem 1.4, inspired by [5, 28, 29, 30], we replace the oscillating solutions (1.10) by expo-

nentially growing or decaying solutions of the form

(1.11) u(t, x) = eσ(βt+ϕ(x))(aσ(t, x) +Rσ(t, x)), (t, x) ∈ (0, T )×M,

with σ ∈ R a parameter, β ∈ (0, 1], Rσ a term that admits a decay with respect to the parameter |σ|

and ϕ a limiting Carleman weight for elliptic equations as defined in [15]. The geometric assumption

in Theorem 1.4 guarantees that the ”phase” function βt+ϕ(x) is characteristic in the sense that its

gradient is in the characteristic set of the wave operator, and this allows us to construct solutions

of the form (1.11). The construction is based on a Carleman estimate with the above characteristic

phase as the Carleman weight. The results [11, 15, 26] can be viewed as elliptic analogies of such

a construction.

Let us also remark that we propose a construction of geometric optics solutions taking into

account both the low regularity of the time-dependent potential and the geometrical constraints.

1.6. Outline. This paper is organized as follows. Section 2 is devoted to the proof Theorem

1.2 whereas Sections 3, 4, 5 and 6 are concerned with Theorem 1.4. In Section 3 we give some

preliminary results on solving the direct problem in L2(M), that is, with smoothness below the

natural energy level. This is needed for certain duality arguments in the proof of Theorem 1.4. In

Section 4 we prove a Carleman estimate with the characteristic weight function, and in Section 5 we

build exponentially growing and decaying geometric optics solutions designed in accordance with

the estimate. Finally combining the results of Sections 4 and 5, we complete the proof of Theorem

1.4 in Section 6.

2. The problem with full data on the lateral boundary

We begin by writing the Cauchy data set Cq as a graph. For the purposes of Theorem 1.2 it is

enough to consider energy class solutions, that is, solutions in

H = C1([0, T ];L2(M)) ∩ C([0, T ];H1(M)).
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From the point of view of uniqueness results such as Theorems 1.2 and 1.4, the restriction of Cq to

the energy class, that is,

C̃q = {(u|∂M , ∂νu|∂M ) : u ∈ H, �gu+ qu = 0},

makes no difference, since it can be shown that C̃q is dense in Cq, say, in the sense of distributions,

and whence C̃q determines Cq.

For T > 0 and q ∈ L∞((0, T )×M) we consider the initial boundary value problem

(2.1)


∂2
t u−∆gu+ qu = 0, in (0, T )×M,

u = f, on (0, T )× ∂M,

u(0, ·) = v0, ∂tu(0, ·) = v1 in M,

with non-homogeneous Dirichlet data f and initial conditions v0, v1, and define the boundary op-

erator

Bq : (f, v0, v1) 7→ (∂νu|(0,T )×∂M , u|t=T , ∂tu|t=T ),

where u solves problem (2.1). It follows from [32] that Bq is continuous from the space of functions

(f, v0, v1) ∈ H1((0, T )× ∂M)×H1(M)× L2(M),

satisfying the compatibility condition f = v0 in {0} × ∂M , to the space

L2((0, T )× ∂M)×H1(M)× L2(M).

The Cauchy data set C̃q is the graph of Bq.

In order to highlight the main ideas of the proof of Theorem 1.2, we consider first the full data

case, that is, we begin by proving the following theorem:

Theorem 2.1. Suppose that (M, g) is a simple. Let T > 0 and let q1, q2 ∈ L∞((0, T )×M). Then

Bq1 = Bq2 implies that q1 = q2.

2.1. Geometric optics solutions. The goal of this subsection is to construct energy class solutions

to the wave equation of the form

(2.2) u(t, x) = a(t, x)eiσ(ψ(x)+t) +Rσ(t, x), |σ| > 1,

with the remainder term Rσ ∈ H satisfying

Rσ = 0 on (0, T )× ∂M, Rσ(s, ·) = ∂tRσ(s, ·) = 0 on M,(2.3)
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lim
|σ|→+∞

‖Rσ‖L2((0,T )×M) = 0,(2.4)

where either s = 0 or s = T .

In order to get the decay (2.4), we choose ψ and a so that they satisfy the following eikonal and

transport equations

(2.5)

d∑
i,j=1

gij(x)∂xiψ∂xjψ = |∇gψ|2g = 1,

(2.6) 2i∂ta− 2i

d∑
i,j=1

gij(x)∂xiψ∂xja− i(∆gψ)a = 0.

As (M, g) is assumed to be simple, the eikonal equation can be solved globally on M . To see this,

first extend the simple manifold (M, g) into a simple manifold (M1, g) in such a way that M is

contained into the interior of M1. Now pick y ∈ ∂M1 and consider the polar normal coordinates

(r, θ) on M1 given by x = expy(rθ) where r > 0 and θ ∈ Sy(M1) := {v ∈ TyM1 : |v|g = 1}.

According to the Gauss lemma (see e.g. [42, Chaper 9, Lemma 15]), in these coordinates the metric

takes the form g(r, θ) = dr2 + g0(r, θ) with g0(r, θ) a metric on SyM1 that depends smoothly on r.

We choose

ψ(x) = dist(y, x), x ∈M,(2.7)

with dist the Riemanian distance function on (M1, g). As ψ is given by r in the polar normal

coordinates, one can easily check that ψ solves (2.5).

Let us now turn to the transport equation. We write a(t, r, θ) = a(t, expy(rθ)) and use this

notation to indicate the representation in the polar normal coordinates also for other functions.

Moreover, we define b(r, θ) = detg0(r, θ), and transform (2.6) into

∂ta− ∂ra−
(
∂rb

4b

)
a = 0.

We see that for any h ∈ C∞(SyM1), χ ∈ C∞(R) and µ > 0 the function

(2.8) a(t, r, θ) = e−
µ(r+t)

2 χ(r + t)h(θ)b(r, θ)−1/4

is a solution of the transport equation.

We are now ready for the construction of the remainder term.
10



Lemma 2.2. Let q ∈ L∞((0, T )×M). Choose ψ and a by (2.7) and (2.8) respectively. Then there

exists a solution u ∈ H of ∂2
t u − ∆gu + qu = 0 of the form (2.2) where the remainder term Rσ

satisfies (2.3)-(2.4) and ∂νRσ ∈ L2((0, T )× ∂M).

Proof. Without loss of generality we assume that s = 0 in (2.3) and that σ > 0. By (2.5) and (2.6),

(∂2
t −∆g + q)

(
a(t, x)eiσ(ψ(x)+t)

)
= eiσ(ψ(x)+t)(∂2

t −∆g + q)a.

We define Fσ = eiσψ(x)(∂2
t −∆g + q)a and see that the remainder term must satisfy

(2.9)


∂2
tR−∆gR+ qR = −eiσtFσ, in (0, T )×M,

R = 0, on (0, T )× ∂M,

R(0, ·) = 0, ∂tR(0, ·) = 0 in M.

As Fσ ∈ L2((0, T ) ×M) we deduce from [32, Theorem 2.1] that (2.9) admits a unique solution

Rσ ∈ H satisfying ∂νRσ ∈ L2((0, T )× ∂M) and the energy estimate

‖Rσ‖H + ‖∂νRσ‖L2((0,T )×∂M) 6 C ‖Fσ‖L2((0,T )×M) 6 C

with C a constant independent of σ. In order to complete the proof, we need to verify that Rσ

fulfills (2.4). For this purpose, we define wσ(t, x) =
∫ t

0
Rσ(τ, x)dτ and observe that w = wσ solves

(2.10)


∂2
tw −∆gw = −H, in (0, T )×M,

w = 0, on (0, T )× ∂M,

w(0, ·) = 0, ∂tw(0, ·) = 0 in M,

where H(t, x) =
∫ t

0
eiσsFσ(s, ·)ds+

∫ t
0
q(s, x)Rσ(s, x)ds. As both H and ∂tH are in L2((0, T )×M),

we deduce from [35, Theorem 2.1, Chapter 5] that w ∈ H2((0, T )×M). Multiplying equation (2.10)

by ∂tw and integrating in x ∈M and s ∈ (0, t) we get∫ t

0

∫
M

(
∂tw∂

2
tw − ∂tw∆gw

)
dVgds = −

∫ t

0

∫
M

H∂tw dVgds,

where dVg is the Riemannian volume measure on (M, g). We define

ησ = sup
t∈[0,T ]

∥∥∥∥∫ t

0

eiσsFσ(s, ·)ds
∥∥∥∥
L2(M)

,

and obtain, after integration by parts in x ∈M ,

‖∂tw(t, ·)‖2L2(M) + ‖∇gw(t, ·)‖2L2(M) 6 ησ

∫ t

0

‖∂tw(s, ·)‖L2(M) ds(2.11)
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+ ‖q‖L∞((0,T )×M)

∫ t

0

∫ s

0

‖∂tw(s, ·)‖L2(M) ‖∂tw(τ, ·)‖L2(M) dτds.

Moreover, using the shorthand notation ζ(t) = ‖∂tw(t, ·)‖L2(M),∫ t

0

∫ s

0

ζ(s)ζ(τ)dτds =

∫ t

0

ζ(τ)

∫ t

τ

ζ(s)dsdτ = −1

2

∫ t

0

∂τ

(∫ t

τ

ζ(s)ds

)2

dτ(2.12)

=
1

2

(∫ t

0

ζ(s)ds

)2

.

According to (2.11)-(2.12), there is a constant C > 0 such that

ζ2(t) ≤ ησ
∫ t

0

ζ(s)ds+ C

(∫ t

0

ζ(s)ds

)2

≤ η2
σ + (C + 1)

(∫ t

0

ζ(s)ds

)2

.

Thus, there is a constant C > 0 such that

ζ(t) 6
√

2ησ + C

∫ t

0

ζ(s)ds,

and an application of the Grönwall lemma yields

‖Rσ(t, ·)‖L2(M) = ‖∂tw(t, ·)‖ = ζ(t) 6
√

2ησe
Ct, t ∈ (0, T ).

It remains to show that ησ → 0 as σ → +∞. According to the Riemann-Lebesgue lemma, for

all t ∈ (0, T ) and almost every x ∈M , we have

lim
σ→+∞

∫ t

0

eiσsFσ(s, x)ds = 0.

Moreover, by the definition of Fσ,∣∣∣∣∫ t

0

eiσsFσ(s, x)ds

∣∣∣∣ 6 ∫ t

0

|(∂2
t −∆g + q)a(s, x)|ds, t ∈ [0, T ], x ∈M.

Thus, we deduce from Lebesgue’s dominated convergence theorem that

lim
σ→+∞

∥∥∥∥∫ t

0

eiσsFσ(s, ·)ds
∥∥∥∥
L2(M)

= 0, t ∈ [0, T ].

Combining this with∥∥∥∥∫ t2

0

eiσsFσ(s, ·)ds−
∫ t1

0

eiσsFσ(s, ·)ds
∥∥∥∥
L2(M)

6 (t2 − t1)
∥∥(∂2

t −∆g + q)a
∥∥
L∞(0,T ;L2(M))

, 0 6 t1 < t2 6 T,

we deduce that

(2.13) lim
σ→+∞

ησ = lim
σ→+∞

sup
t∈[0,T ]

∥∥∥∥∫ t

0

eiσsFσ(s, ·)ds
∥∥∥∥
L2(M)

= 0.
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2.2. Proof of Theorem 2.1. Let qj ∈ L∞((0, T )×M), j = 1, 2. Applying Lemma 2.2, for j = 1, 2,

we obtain a solution uj ∈ H of ∂2
t uj −∆guj + qjuj = 0 having the form

u1(t, x) = a1(t, x)eiσ(ψ(x)+t) +R1,σ(t, x), u2(t, x) = a2(t, x)e−iσ(ψ(x)+t) +R2,σ.

Here the amplitudes aj , j = 1, 2, are defined in the polar normal coordinates associated to y ∈ ∂M1

by

(2.14) a1(t, r, θ) = e−
µ(r+t)

2 h(θ)b(r, θ)−1/4, a2(t, r, θ) = e−
µ(r+t)

2 b(r, θ)−1/4,

where h is an arbitrary smooth function on the unit sphere at y. Notice that we have chosen

χ = 1 identically in (2.8), and also that the fact that Rj,σ can be chosen to satisfy vanishing initial

conditions (2.3) is not used in the full data case.

We fix v1 ∈ H to be the solution of
∂2
t v1 −∆gv1 + q1v1 = 0, in (0, T )×M,

v1 = u2, on (0, T )× ∂M,

v1(0, ·) = u2(0, ·), ∂tv1(0, ·) = ∂tu2(0, ·) in M.

(2.15)

The boundary conditions (2.3) for Rσ,2 imply that u2 = a2e
−iσ(ψ(x)+t) on the lateral boundary

(0, T )×∂M . In particular, u2 is smooth there and we deduce from [32] that ∂νv1 ∈ L2((0, T )×∂M).

We have also ∂νuj ∈ L2((0, T ) × ∂M) by Lemma 2.2. These regularity properties justify the

integration by parts below.

The function u = v1 − u2 solves

(2.16)


∂2
t u−∆gu+ q1u = qu2, in (0, T )×M,

u = 0, on (0, T )× ∂M,

u(0, ·) = 0, ∂tu(0, ·) = 0 in M,

where q = q2 − q1. Moreover, Bq1 = Bq2 implies that it satisfies also the boundary conditions

∂νu|(0,T )×∂M) = 0 and u(T, ·) = ∂tu(T, ·) = 0. Thus∫ T

0

∫
M

quu1dVgdt

=

∫ T

0

∫
M

(∂2
t u−∆gu+ q1u)u1 dVgdt−

∫ T

0

∫
M

u(∂2
t u1 −∆gu1 + q1u1) dVgdt

13



vanishes by integration by parts. It follows∫ T

0

∫
M

qa1a2 dVgdt+

∫ T

0

∫
M

Zσ dVgdt = 0

with Zσ = q(a1R2,σe
iσ(ψ(x)+t) + a2R1,σe

−iσ(ψ(x)+t) + R1,σR2,σ). Then in view of (2.4) sending

σ → +∞ we get ∫ T

0

∫
M

qa1a2 dVgdt = 0.(2.17)

It remains to show that (2.17) implies q1 = q2. We extend q by zero to (0,+∞)×M1. Denoting

by τ+(y, θ) the time of existence in M1 of the maximal geodesic γy,θ satisfying γy,θ(0) = y and

γ′y,θ(0) = θ, we obtain in the polar normal coordinates∫ +∞

0

∫
SyM1

∫ τ+(y,θ)

0

q̃(t, r, θ)h(θ)e−µ(r+t) drdθdt = 0,(2.18)

for all h ∈ C∞(SyM1), y ∈ ∂M1 and µ > 0. We used here the fact that dVg is given by b(r, θ)1/2drdθ

in the polar normal coordinates.

The attenuated geodesic ray transform Iµ on the inward pointing boundary of the unit sphere

bundle ∂+SM1 = {(x, θ) ∈ SM1 : x ∈ ∂M1, 〈θ, ν(x)〉g < 0} is defined by

Iµf(x, θ) =

∫ τ+(x,θ)

0

f(γx,θ(r))e
−µrdr, (x, θ) ∈ ∂+SM1, f ∈ C∞(M1).

Here µ > 0 gives constant attenuation. The map Iµ admits a unique continuous extension to the

distributions on M1. We denote by Lµ the Laplace transform with respect to t ∈ (0,+∞), that is,

Lµf =

∫ +∞

0

f(t)e−µtdt, f ∈ L1(0,+∞).

We see that (2.18) is equivalent with IµLµq = 0, µ > 0, in the sense of distributions on ∂+SM1.

We deduce from [18, Proposition 4.1] that Lµq ∈ C∞0 (M1) for all µ > 0. Then [15, Section

7] implies that there is ε > 0 such that Lµq = 0 for µ ∈ (0, ε). Using the fact that z 7→ Lzq is

holomorphic in {z ∈ C : Rez > 0} we see that Lµq = 0 for µ > 0. Thus q = 0.

2.3. Proof of Theorem 1.2. Let qj ∈ L∞((0, T )×M), j = 1, 2 and let us assume the condition

(1.6) be fulfilled. Repeating the arguments of Lemma 2.2, for j = 1, 2, we obtain a solution uj ∈ H

of ∂2
t uj −∆guj + qjuj = 0 having the form

u1(t, x) = a1(t, x)e−iσ(ψ(x)+t) +R1,σ(t, x),

u2(t, x) = a2(t, x)eiσ(ψ(x)+t) − a2(−t, x)eiσ(ψ(x)−t) +R2,σ(t, x).
14



Here the remainder terms Rj,σ, j = 1, 2, are chosen so that

R1,σ(T, ·) = ∂tR1,σ(T, ·) = 0, R2,σ(0, ·) = ∂tR2,σ(0, ·) = 0,

and the amplitudes aj , j = 1, 2, are defined by (2.14). Note that here u2(0, ·) = 0.

We fix v1 ∈ H to be again the solution of (2.15) and set u = v1 − u2. Then u satisfies again

(2.16). Since v1(0, ·) = u2(0, ·) = 0, the condition C(q1, 0) = C(q2, 0) implies that u satisfies also the

boundary conditions ∂νu|(0,T )×∂M) = 0 and u(T, ·) = ∂tu(T, ·) = 0. Thus the same integration by

parts as in the proof of Theorem 1.2 gives∫ T

0

∫
M

qa1a2 dVgdt+

∫ T

0

∫
M

Yσ dVgdt−
∫ T

0

(∫
M

q(t, x)a1(t, x)a2(−t, x)dVg

)
e−2iσtdt = 0

with

Yσ = q
[
R1,σu2 + a1R2,σe

−iσ(ψ(x)+t)
]
.

Applying the Riemann-Lebesgue lemma we get

lim
σ→+∞

∫ T

0

(∫
M

q(t, x)a1(t, x)a2(−t, x)dVg

)
e−2iσtdt = 0

and (2.4) implies

lim
σ→+∞

∫ T

0

∫
M

Yσ dVgdt = 0.

Therefore, we get (2.17) and, by the proof of Theorem 1.2, it follows that q = 0.

2.4. Proof of Theorem 1.3. Now let us show that for T > Diam(M), also (1.7) implies (2.17).

For this purpose, without loss of generality we can assume that M1 is chosen in such a way that

T > Diam(M1) and we consider uj , j = 1, 2, of the form

u1(t, x) = a1(t, x)e−iσ(ψ(x)+t) − a1(2T − t, x)e−iσ(ψ(x)+(2T−t)) +R1,σ,

u2(t, x) = a2(t, x)eiσ(ψ(x)+t) − a2(−t, x)eiσ(ψ(x)−t) +R2,σ,

where the amplitudes aj , j = 1, 2, are now defined in the polar normal coordinates associated to

y ∈ ∂M1 by

a1(t, r, θ) = e−
µ(r+t)

2 χ(r + t)h(θ)b(r, θ)−1/4, a2(t, r, θ) = e−
µ(r+t)

2 χ(r + t)b(r, θ)−1/4.
15



Here, as before, h is an arbitrary smooth function on the unit sphere at y, and χ ∈ C∞(R) satisfies

χ = 1 on a neighborhood of [0,Diam(M1)+T ]. By repeating the above proof once again, we deduce

that (1.7) implies∫ T

0

∫
M

qa1a2dVgdt+

∫ T

0

∫
M

qXσdt+ e−2iσT

∫ T

0

∫
M

qa1(2T − t, x)a2(−t, x)dVgdt = 0

with

Xσ(t, x) = −a1(t, x)a2(−t, x)e−2iσt−a1(2T−t, x)a2(t, x)e−2iσ(T−t) +R2,σ(u1−R1,σ)+R1,σu2(t, x).

It follows that

lim
σ→+∞

∫ T

0

∫
M

qXσdt = 0

and the expression ∫ T

0

∫
M

qXσdt+ e−2iσT

∫ T

0

∫
M

qa1(2T − t, x)a2(−t, x)dVgdt

admits a limit and vanishes as σ → +∞ if and only if∫ T

0

∫
M

qa1(2T − t, x)a2(−t, x)dVgdt = 0.

This condition will be fulfilled if for all (t, x) ∈ (0, T ) ×M we have a1(2T − t, x)a2(−t, x) = 0.

On the other hand, assuming suppχ ⊂ (−ε,Diam(M1) + T + ε) with 2ε < T − Diam(M1), this

last condition will be fulfilled and we will deduce (2.17). Indeed, note first that for r < t − ε

we have χ(r − t) = 0. On the other hand, for r > t − ε, we have r + 2T − t > 2T − ε =

T + Diam(M1) + ε + (T − Diam(M1) − 2ε) > T + Diam(M1) + ε. Thus, for r < t − ε we have

χ(r − t) = 0 and for r > t− ε we have χ(2T − t+ r) = 0. It follows that

χ(r − t)χ(2T − t+ r) = 0, (r, t) ∈ R× R

from which we deduce that

a1(2T − t, x)a2(−t, x) = 0, (t, x) ∈ (0, T )×M,

and that (2.17) holds. The new factor χ does not cause any changes in the remaining steps of the

proof, since χ = 1 on a neighbourhood of [0,Diam(M1) + T ].
16



3. L2-solutions for the direct problem

From now on we consider the partial data result stated in Theorem 1.4 and we assume that

(M, g) satisfies the conditions of this theorem. In order to perform a duality argument, see Lemma

5.5 below, we consider solutions to the wave equation that are only in L2((0, T ) × M). Let us

introduce the space

H�a,g ((0, T )×M) = {u ∈ L2((0, T )×M) : �a,gu ∈ L2((0, T )×M)}.

It follows from [20, Theorems B.2.7 and B.2.9] that the traces

∂jt u|t=s, s = 0, T, j = 0, 1, u ∈ H�a,g ((0, T )×M),

are well-defined as distributions in D′(M). Combining the same argument with a use of boundary

normal coordinates, see e.g. [20, Corollary C.5.3], we see also that the traces

∂jνu|x∈∂M , j = 0, 1, u ∈ H�a,g ((0, T )×M),

are well-defined as distributions in D′((0, T )× ∂M).

We consider the space

S = {u ∈ L2(((0, T )×M) : �a,gu = 0}

topologized as a closed subspace of L2((0, T )×M) and define the map

τ0u = (u|(0,T )×∂M , u|{0}×M , ∂tu|{0}×M ), u ∈ S.

Moreover, we denote by H the range of τ0, that is, H = {τ0u : u ∈ S}. The uniqueness of the

weak solution of �a,gu = 0, satisfying the vanishing initial and lateral boundary conditions τ0u = 0,

implies that the inverse τ−1
0 : H → S exists. We use τ−1

0 to define a norm on H by

‖(f, v0, v1)‖H =
∥∥τ−1

0 (f, v0, v1)
∥∥
L2((0,T )×M)

, (f, v0, v1) ∈H .

Let U ⊂ (0, T ) × ∂M be the set in the definition of the restricted Cauchy data set Cq,∗. We

define the subspace

HU = {(f, v1) : (f, 0, v1) ∈H , supp (f) ⊂ U}.

We are now ready to show that Cq,∗ is a graph.
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Proposition 3.1. Let (f, v1) ∈ HU and q ∈ L∞((0, T ) ×M). Then the initial boundary value

problem

(3.1)


a−1∂2

t u−∆gu+ q(t, x)u = 0, in (0, T )×M,

u = f, on (0, T )× ∂M,

u(0, ·) = 0, ∂tu(0, ·) = v1, in M,

admits a unique weak solution u ∈ L2((0, T )×M) satisfying

(3.2) ‖u‖L2((0,T )×M) 6 C ‖(f, v1)‖HU
.

In particular, Cq,∗ is the graph of the boundary operator Bq,∗(f, v1) = (∂νu|V , u|t=T ).

Proof. Consider the function u = v + τ−1
0 (f, 0, v1) where v solves

(3.3)


a−1∂2

t v −∆gv + qv = −qτ−1
0 (g, 0, v1), (t, x) ∈ (0, T )×M,

v|(0,T )×∂M = 0,

v|t=0 = ∂tv|t=0 = 0.

Since τ−1
0 (f, 0, v1) ∈ L2((0, T ) ×M), the equation (3.3) admits a unique solution v ∈ H, see e.g.

Section 8 of Chapter 3 of [34], satisfying

(3.4) ‖v‖H 6 C
∥∥−qτ−1

0 (g, 0, v1)
∥∥
L2((0,T )×M)

6 C ‖q‖L∞((0,T )×M)

∥∥τ−1
0 (f, v0, v1)

∥∥
L2((0,T )×M)

.

Therefore, u = v + τ−1
0 (f, 0, v1) is the unique solution of (3.1), and (3.4) implies (3.2). �

4. Carleman estimate

Theorem 4.1. Let q ∈ L∞((0, T )×M), β ∈ [1/2, 1] and u ∈ C2([0, T ]×M). We use the following

notation s− = 0, s+ = T , ψ(x, t) = βt + x1, ψ−(x1) = −βT − x1 and ψ+(x1) = x1. If u satisfies

the condition

(4.1) u|(0,T )×∂M = 0, u|t=s± = ∂tu|t=s± = 0,

then there exist constants σ1 > 1 and C > 0 depending only on M , T and ‖q‖L∞((0,T )×M) such

that the estimate

(4.2)

σ
∫
M
e2σψ± |∂tu(s∓, x)|2 dVg(x)

+σ
∫

Σ∓
e±2σψ |∂νu|2 |∂νϕ| dσg(x)dt+ σ2

∫
(0,T )×M e±2σψ |u|2 dVg(x)dt

6 C
(∫

(0,T )×M e±2σψ |(�a,g + q)u|2 dxdt+ σ3
∫
M
e2σψ± |u(s∓, x)|2 dVg(x)

)
+C

(
σ
∫
M
e2σψ± |∇gu(s∓, x)|2g dVg(x) + σ

∫
Σ±

e±2σψ |∂νu|2 |∂νϕ| dσg(x)dt
)
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holds true for σ > σ1.

Let us first remark that

(4.3) (a−1∂2
t −∆g + q)

(
a−

d−2
4 v
)

= a−
d+2
4

(
∂2
t v −∆e⊕g′v + qav

)
,

with qa = aq+a
d+2
4 ∆g

(
a−

d−2
4

)
. Thus by replacing q with qa, we can assume that a = 1. From now

on, throughout this section, we assume that a = 1 and consider the leading order wave operator

�e⊕g′ = �1,e⊕g′ = ∂2
t −∆e⊕g′ .

In order to prove the above Carleman estimate, we fix u ∈ C2(Q) satisfying (4.1) and we set

v = e−σ(βt+x1)u. Then, fixing Ps = e−s(βt+x1)(∂2
t −∆e⊕g′)e

s(βt+x1), s ∈ R, we get

(4.4) e−σ(βt+x1)�gu = Pσv

We begin by proving the following estimate for the conjugated operator Pσ.

Lemma 4.2. Let v ∈ C2([0, T ]×M) and σ > 1. If v satisfies the condition

(4.5) v|(0,T )×∂M = 0, v|t=0 = ∂tv|t=0 = 0

then the estimate

(4.6)

1
2σ
∫
M
|∂tv(T, x)|2 dVg(x) + 2σ

∫
Σ+
|∂νv|2 ∂νϕdσg(x)dt+ cσ2

∫
(0,T )×M |v|

2
dVg(x)dt

6
∫

(0,T )×M |Pσv|
2
dVg(x)dt+ 7σ

∫
M
|∇gv(T, x)|2g dVg(x) + 2σ

∫
Σ−
|∂νv|2 |∂νϕ| dσg(x)dt

+2σ3
∫
M
|v(T, x)|2 dVg(x)

holds true for c > 0 depending only on β and T .

Proof. Without loss of generality we assume that v is real valued. We fix v ∈ C2([0, T ] × M)

satisfying (4.5) and consider

Iσ =

∫ T

0

∫
M

∣∣∣e−σ(βt+x1)(∂2
t −∆g)u

∣∣∣2 dVg(x)dt.

For all s ∈ R we decompose Ps into two terms Ps = P1,s+sP2(∂t, ∂x1), with P1,s = �e⊕g′−(1−β2)s2

and P2(∂t, ∂x1
) = 2(β∂t − ∂x1

). We obtain

Iσ =

∫ T

0

∫
M

|Pσv|2dVg(x)dt(4.7)

=

∫ T

0

∫
M

[
|P1,σv|2 + σ2|P2(∂t, ∂x1

)v|2 + 2σ(P2(∂t, ∂x1
)v)(�gv + (β2 − 1)σ2v)

]
dVg(x)dt.
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Note first that

(4.8)

∫ T

0

∫
M

(P2(∂t, ∂x1)v)vdVg(x)dt = β

∫ T

0

∫
M

∂t|v|2dVg(x)dt−
∫ T

0

∫
M

∂x1 |v|2dVg(x)dt

= β

∫ T

0

∫
M

∂t|v|2dVg(x)dt−
∫ T

0

∫
M

divg(|v|2e1)dVg(x)dt

= β

∫
M

|v|2(T, x)dVg(x) > 0.

Therefore, we have

(4.9)

∫ T

0

∫
M

(2σP2(∂t, ∂x1
)v)((β2 − 1)σ2v)dVg(x)dt > −2σ3

∫
M

|v(T, x)|2 dVg(x).

Moreover, we find

2σ

∫ T

0

∫
M

(P2(∂t, ∂x1
)v)�gvdVg(x)dts

= 4βσ

∫ T

0

∫
M

∂tv�gvdVg(x)dt− 4σ

∫ T

0

∫
M

∂x1
v∂2
t vdVg(x)dt+ 4σ

∫ T

0

∫
M

∂x1
v∆gvdVg(x)dt

= I1,σ + I2,σ + I3,σ

Using the fact that v|(0,T )×∂M = 0, ∂tv|t=0 = v|t=0 = 0 and integrating by parts, we obtain

I1,σ = 2βσ

∫
M

(|∂tv(T, x)|2 + |∇gv(T, x)|2g)dVg(x).

In a same way, integrating by parts in t ∈ (0, T ) we get

I2,σ = −4σ

∫
M

∂tv(T, x)∂x1
v(T, x)dVg(x) + 4σ

∫ T

0

∫
M

∂tv∂x1
∂tvdVg(x)dt

= −4σ

∫
M

∂tv(T, x)∂x1
v(T, x)dVg(x) + 2σ

∫ T

0

∫
M

∂x1
|∂tv|2(t, x1, x

′)dVg(x)dt

= −4σ

∫
M

∂tv(T, x)∂x1
v(T, x)dVg(x) + 2σ

∫ T

0

∫
M

divg(|∂tv|2e1)dVg(x)dt

= −4σ

∫
M

∂tv(T, x)∂x1
v(T, x)dVg(x)

> −1

2
σ

∫
M

|∂tv(T, x)|2dVg(x)− 8σ

∫
M

|∇gv(T, x)|2gdVg(x).
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Here we have used the fact that |g| is independent of x1 and ∂tv|(0,T )×∂M = 0. Combining the

result for I1,σ and I2,σ we find

(4.10)

I1,σ + I2,σ > (2β − 1

2
)σ

∫
M

|∂tv(T, x)|2dVg(x) + (2β − 8)σ

∫
M

|∇gv(T, x)|2gdVg(x)

>
1

2
σ

∫
M

|∂tv(T, x)|2dVg(x)− 7σ

∫
M

|∇gv(T, x)|2gdVg(x).

For I3,σ, let us first remark that since g is independent of x1, we have

2∂x1
v∆gv = 2divg(∇gv∂x1

v)− 2 〈∇gv, ∂x1
∇gv〉g

= 2divg(∇gv∂x1
v)− ∂x1

|∇gv|2g

= 2divg(∇gv∂x1
v)− divg(|∇gv|2ge1).

Using this formula we get

I3,σ = 4σ

∫ T

0

∫
M

divg(∇gv∂x1v)dVg(x)dt− 2σ

∫ T

0

∫
M

divg(|∇gv|2ge1)dVg(x)dt

= 4σ

∫ T

0

∫
∂M

∂νv∂x1
vdσg(x)dt− 2σ

∫ T

0

∫
∂M

|∇gv|2g 〈ν, e1〉g dσg(x)dt.

Once again, using the fact that v|(0,T )×∂M = 0, we deduce that ∇gv|(0,T )×∂M = (∂νv)ν. Moreover,

we have

∂x1
v|(0,T )×∂M = 〈∇gv, e1〉g |(0,T )×∂M

= ∂νv 〈ν, e1〉g

and it follows

I3,σ = 2σ

∫ T

0

∫
∂M

|∂νv|2 〈ν, e1〉g dσg(x)dt.

Combining this with (4.7)-(4.10), we get

(4.11)

Iσ >
∫ T

0

∫
M

[
|P1,σv|2 + σ2|P2(∂t, ∂x1)v|2

]
dVg(x)dt+ 2σ

∫ T

0

∫
∂M

|∂νv|2 〈ν, e1〉g dσg(x)dt

+
1

2

∫
M

|∂tv(T, x)|2dVg(x)− 7σ

∫
M

|∇gv(T, x)|2gdVg(x)− 2σ3

∫
M

|v(T, x)|2dVg(x).

In the same way as (4.8), for all τ ∈ (0, T ), we find∫ τ

0

∫
M

(P2(∂t, ∂x1
)v)vdVg(x)dt = β

∫
M

|v|2(τ, x)dVg(x).

Therefore, an application of the Cauchy-Schwarz inequality yields

β

∫
M

|v|2(τ, x)dVg(x) 6 T
∫ T

0

∫
M

|P2(∂t, ∂x1)v|2dVg(x)dt+
1

4T

∫ T

0

∫
M

|v|2dVg(x)dt.
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Integrating this inequality with respect to τ ∈ (0, T ) we get∫ T

0

∫
M

|v|2dVg(x)dt 6
T 2

β − 1
4

∫ T

0

∫
M

|P2(∂t, ∂x1
)v|2dVg(x)dt.

Combining this with (4.11), and observing that g = e⊕ g′ implies ∂νϕ = 〈e1, ν〉g, we get (4.6). �

Proof of Theorem 4.1. Let us first consider the case q = 0. Note that for u satisfying (4.1) with

the minus sign, v = e−σ(βt+x1)u satisfies (4.5). Moreover, (4.1) and (4.4) imply

∂νv|(0,T )×∂M = e−σ(βt+x1)∂νu|(0,T )×∂M .

Finally, using the fact that

∂tu = ∂t(e
σ(βt+x1)v) = βσu+ eσ(βt+x1)∂tv, ∇gv = e−σ(βt+x1)(∇gu− σue1),

we obtain∫
M

e−2σ(βT+x1) |∂tu(T, x)|2 dVg(x) 6 2

∫
M

|∂tv(T, x)|2 dVg(x)+2σ2

∫
M

e−2σ(βT+x1) |u(T, x)|2 dVg(x),

∫
M

|∇gv(T, x)|2 dVg(x) 6 2σ2

∫
M

e−2σ(βT+x1) |u(T, x)|2 dVg(x)+2

∫
M

e−2σ(βT+x1) |∇gu(T, x)|2 dVg(x).

Thus, applying the Carleman estimate (4.6) to v, we deduce (4.2). For q 6= 0, we have

∣∣∂2
t u−∆gu

∣∣2 =
∣∣∂2
t u−∆gu+ qu− qu

∣∣2 6 2
∣∣(∂2

t −∆g + q)u
∣∣2 + 2 ‖q‖2L∞((0,T )×M) |u|

2

and hence if we choose σ1 > 2C ‖q‖2L∞((0,T )×M), replacing C by

C1 =
Cσ2

1

σ2
1 − 2C ‖q‖2L∞((0,T )×M)

,

we deduce (4.2) from the same estimate when q = 0.

The case with plus sign in (4.1) is analogous. Note that in this case we can apply Lemma 4.2

after the time reversal t 7→ T − t. �

Remark 1. Note that, by density, estimate (4.2) can be extended to any function u ∈ H satisfying

(4.5), (a−1∂2
t −∆g)u ∈ L2((0, T )×M) and ∂νu ∈ L2((0, T )× ∂M).
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5. Exponentially decaying and growing geometric optics solutions

This section starts with a construction of exponentially decaying solutions u2 ∈ H1((0, T )×M)

taking the form

(5.1) u1(t, x) = e−σ(βt+ϕ(x))(a1,σ(t, x) +R1(t, x)),

where β ∈ (0, 1], σ > 0. Then we consider exponentially growing solutions u2 ∈ L2((0, T ) ×M)

taking the form

(5.2) u2(t, x) = eσ(βt+ϕ(x))(a2,σ(t, x) +R2(t, x))

and satisfying the additional condition

u2(t, x) = 0, (t, x) ∈ ({0} ×M) ∪ U.

Here Rj , j = 1, 2, denotes the remainder term in the expression of the solution uj with respect to the

parameter σ in such a way that there exists γ ∈ (0, 1) such that ‖Rj‖L2(Q) 6 Cσ
−γ . We give differ-

ent arguments in the two cases. For the exponentially decaying solutions u1 ∈ H1((0, T )×M), we

combine an argument of separation of variables with properties of solutions of PDEs with constant

coefficients. For the exponentially growing solutions u2, inspired by [26], we apply the Carleman

estimate (4.2) and the Hahn-Banach theorem to obtain these solutions by duality. Combining these

two types of solutions we derive Theorem 1.4 in the next section.

5.1. Exponentially decaying solutions without boundary conditions. We extend our mani-

fold M into a cylindrical manifold and we will consider the restriction on (0, T )×M of exponentially

decaying solutions on the extended domain. More precisely, we first fix R > 0, M1 ⊂ int(M0) a

simple manifold such that M ⊂ (−R/2, R/2)×M1 and we extend q by zero to a function lying in

L∞((0, T ) × (−R,R) ×M0). Then, in view of (4.3), we consider qa = aq + a
d+2
4 ∆g

(
a−

d−2
4

)
and

u = a−
d−2
4 v where, for σ > 1, β ∈ [1/2, 1], v is a solution of

(5.3) ∂2
t v −∆e⊕g′v + qa(t, x)v = 0 on (0, T )× (−R,R)×M1

taking the form

(5.4) v(t, x) = e−σ(βt+x1)(k(t, x) + w(t, x)), (t, x) ∈ (0, T )× (−R,R)×M1
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with w ∈ H1((0, T )× (−R,R)×M1) satisfying

‖w‖L2((0,T )×(−R,R)×M1) 6
C

σ
.

We extend (M0, g
′) to a slightly larger simple manifold (D, g′), and define k(t, x) in polar normal

coordinate associated to y ∈ ∂D in the following way: we fix h ∈ H2(Sy(D)) and we consider

k(t, x1, r, θ) = k(t, x1, expy(rθ)) defined on (0, T )× (−R,R)× exp−1
y M0 by

(5.5) k(t, x1, r, θ) = eiσ(
√

1−β2)re−iµ(t+βx1)b(r, θ)−1/4h(θ),

where µ ∈ R is arbitrary fixed. It is clear that v solves (5.3) if and only if w solves

(5.6) P−σw = −qaw − eσ(βt+x1)(�e⊕g′ + qa)e−σ(βt+x1)k(t, x)

with Ps, s ∈ R, the conjugated operator introduced in Section 4. To find a suitable solution of this

equation we consider first equations of the form

(5.7) P−σy = F, (t, x) ∈ (0, T )× (−R,R)×M1.

Consider the selfadjoint operator A = −∆g′ defined as an unbounded operator on L2(M0) with

domain D(A) = H2(M0) ∩H1
0 (M0). It is well known that the spectrum of A consist of a non de-

creasing sequence of positive eigenvalues (λn)n>1 associated to an Hilbertian basis of eigenfunctions

(ϕn)n>1. Extending F to (0, T )× (−R,R)×M0, fixing n > 1 and projecting equation (5.7) on the

space spanned by ϕn, we obtain

(5.8) Pn,−σy = Fn

with Fn(t, x1) = 〈F (t, x1, ·), ϕn〉L2(M0) and

Pn,−σ = ∂2
t − ∂2

x1
− 2σ(β∂t − ∂x1

)− (1− β2)σ2 + λn.

We set also pn,−σ(µ, η) = −µ2 + η2 − 2iσ(βµ− η)− (1− β2)σ2 + λn, µ ∈ R, η ∈ R, such that, for

Dt = −i∂t, Dx1
= −i∂x1

, we have pn,−σ(Dt, Dx1
) = Pn,−σ. Applying some results of [13, 19, 28, 29]

about solutions of PDEs with constant coefficients we obtain the following.

Lemma 5.1. For every σ > 1 and n > 1 there exists a bounded operator

En,σ : L2((0, T )× (−R,R))→ L2((0, T )× (−R,R))
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such that:

(5.9) Pn,−σEn,σF = F, F ∈ L2((0, T )× (−R,R)),

(5.10) ‖En,σ‖B(L2((0,T )×(−R,R))) 6 Cσ
−1,

(5.11) En,σ ∈ B(L2((0, T )× (−R,R));H1((0, T )× (−R,R)))

and

(5.12) ‖En,σ‖B(L2((0,T )×(−R,R));H1((0,T )×(−R,R))) +
∥∥∥√λnEn,σ∥∥∥

B(L2((0,T )×(−R,R))
6 C

with C > depending only on T and R.

Proof. In light of [13, Thoerem 2.3] (see also [19, Theorem 10.3.7]), there exists a bounded operator

En,σ ∈ B(L2((0, T ) × (−R,R))), defined from a fundamental solutions associated to Pn,−σ (see

Section 10.3 of [19]), such that (5.9) is fulfilled. In addition, fixing

p̃n,−σ(µ, η) :=

(∑
k∈N

∑
α∈N
|∂kµ∂αη pn,−σ(µ, η)|2

) 1
2

, µ ∈ R, η ∈ R,

for all differential operatorQ(Dt, Dx1
) with Q(µ,η)

p̃n,−σ(µ,η) a bounded function, we haveQ(Dt, Dx1
)En,σ ∈

B(L2((0, T )× (−R,R))) and there exists a constant C depending only on R, T such that

(5.13) ‖Q(Dt, Dx)Eσ‖B(L2((0,T )×(−R,R))) 6 C sup
(µ,η)∈R2

|Q(µ, η)|
p̃n,−σ(µ, η)

.

Note that p̃n,−σ(µ, η) > |I∂ηpn,−σ(µ, η)| = 2σ. Therefore, (5.13) implies

‖Eσ‖B(L2((0,T )×(−R,R))) 6 C sup
(µ,η)∈R2

1

p̃n,−σ(µ, η)
6 Cσ−1

and (5.10) is fulfilled. In a same way, we have p̃−σ(µ, η) > |R∂µp−σ(µ, η)| = 2|µ| and p̃n,−σ(µ, η) >

|R∂ηpn,−σ(µ, η)| = 2|η|. Therefore, in view of [13, Theorem 2.3], we have (5.11) with

‖En,−σ‖B(L2((0,T )×(−R,R));H1((0,T )×(−R,R))) 6 C sup
(µ,η)∈R2

|µ|+ |η|
p̃n,−σ(µ, η)

+ Cσ−1 6 3C

and the first inequality of (5.12) is proved. For the last inequality of (5.12), let us consider the two

cases λn > 2(|µ|+ σ)2 and λn < 2(|µ|+ σ)2. For λn > 2(|µ|+ σ)2, we have

(5.14) p̃n,−σ(µ, η) > |Rpn,−σ(µ, η)| > −µ2 − (1− β2)σ2 + λn > λn − (|µ|+ σ)2 =
λn
2
> c
√
λn
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with c > 0 independent of n. For λn < 2(|µ|+ σ)2, we have |µ| >
√
λn√
2
− σ and we get

(5.15) p̃n,−σ(µ, η) >
(|R∂µpn,−σ(µ, η)|+ |I∂ηpn,−σ(µ, η)|)

2
> |µ|+ σ >

√
λn√
2
.

Combining (5.13)-(5.15), we deduce the second inequality of (5.12). �

Applying this lemma, we can now consider solutions of (5.7) given by the following result.

Lemma 5.2. For every σ > 1 and n > 1 there exists a bounded operator

Eσ : L2((0, T )× (−R,R))×M0)→ L2((0, T )× (−R,R)×M0)

such that:

(5.16) P−σEσF = F, F ∈ L2((0, T )× (−R,R)×M0),

(5.17) ‖Eσ‖B(L2((0,T )×(−R,R)×M0)) 6 Cσ
−1,

(5.18) Eσ ∈ B(L2((0, T )× (−R,R)×M0);H1((0, T )× (−R,R)×M0))

and

(5.19) ‖Eσ‖B(L2((0,T )×(−R,R)×M0);H1((0,T )×(−R,R)×M0)) 6 C

with C > depending only on T , R and M0.

Proof. According to Lemma 5.1, we can define Eσ on L2((0, T )× (−R,R)×M0) by

EσF :=

∞∑
n=1

(En,σFn)ϕn, Fn(t, x1) = 〈F (t, x1, ·), ϕn〉L2(M0) , (t, x1) ∈ ×(0, T )× (−R,R).

It is clear that (5.9) implies (5.16). Moreover, we have

‖EσF‖2L2((0,T )×(−R,R)×M0) =

∞∑
n=1

‖En,σFn‖2L2((0,T )×(−R,R))

and from (5.10) we get

‖EσF‖2L2((0,T )×(−R,R)×M0) 6 C
2σ−2

∞∑
n=1

‖Fn‖2L2((0,T )×(−R,R)) = C2σ−2 ‖F‖2L2((0,T )×(−R,R)×M0) .
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From this estimate we deduce (5.17). In view of (5.11)-(5.12), we have Eσ ∈ B(L2((0, T )×(−R,R)×

M0);H1((0, T )× (−R,R);L2(M0))) and, for all F ∈ L2((0, T )× (−R,R)×M0), we have

(5.20)

‖EσF‖2H1((0,T )×(−R,R);L2(M0)) =

∞∑
n=1

‖En,σFn‖2H1((0,T )×(−R,R)

6 C2
∞∑
n=1

‖Fn‖2L2((0,T )×(−R,R)) = C2 ‖F‖2L2((0,T )×(−R,R)×M0) .

In the same way according to (5.12), for all F ∈ L2((0, T )× (−R,R)×M0), we have

∞∑
n=1

λn

∥∥∥〈EσF,ϕn〉L2(M0)

∥∥∥2

L2((0,T )×(−R,R))
6 C2

∞∑
n=1

‖Fn‖2L2((0,T )×(−R,R)) = C2 ‖F‖2L2((0,T )×(−R,R)×M0) .

Therefore, we have EσF ∈ L2((0, T )× (−R,R);D(A1/2)) = L2((0, T )× (−R,R);H1
0 (M0)) and we

get

‖EσF‖2L2((0,T )×(−R,R);H1(M0)) 6 C
′
∞∑
n=1

λn ‖En,σFn‖2L2((0,T )×(−R,R))

6 C ′C2
∞∑
n=1

‖Fn‖2L2((0,T )×(−R,R))

6 C ′C2 ‖F‖2L2((0,T )×(−R,R)×M0) .

Combining this estimate with (5.20) we deduce (5.18)-(5.19). �

Applying this result, we can build geometric optics solutions of the form (5.4).

Proposition 5.3. Let q ∈ L∞((0, T ) × (−R,R) ×M0). Then, there exists σ0 > 1 such that for

σ > σ0 the equation �a,gu+ qu = 0 admits a solution u ∈ H1((0, T )× (−R,R)×M0) of the form

(5.4) with

(5.21) ‖w‖Hk((0,T )×(−R,R)×M0) 6 Cσ
k−1, k = 0, 1,

where C and σ0 depend on M0, T , ‖q‖L∞((0,T )×(−R,R)×M0).

Proof. We start by recalling that, in view of (5.5), in the polar normal coordinate x′ = exp(rθ) the

function �g(e−σ(βt+x1)k) will be given by

�g(e−σ(βt+x1)k)(t, x1, expy(rθ)) = σ2(β2 − 1 + 1− β2)e−σ(βt+x1)k

+2σe−σ(βt+x1−i(1−β2)
1
2 r)(−β∂t + ∂x1

− i
√

1− β2∂r − i
√

1− β2 ∂rb
4b )e−iµ(t+βx1)b(r, θ)−1/4h(θ)

+e−σ(βt+x1−i(1−β2)
1
2 r)�e⊕g̃′e

−iµ(t+βx1)b(r, θ)−1/4h(θ).
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Using the definition of k in polar normal coordinate we deduce that

(−β∂t + ∂x1
− i
√

1− β2∂r − i
√

1− β2
∂rb

4b
)e−iµ(t+βx1)b(r, θ)−1/4h(θ) = 0

and

eσ(βt+x1)�g(e
−σ(βt+x1)k)(t, x1, expy(rθ)) = eiσ(

√
1−β2)r�e⊕g̃′e

−iµ(t+βx1)b(r, θ)−1/4h(θ).

Thus, there exists C > 0 independent of σ such that

(5.22)
∥∥∥eσ(βt+x1)�g(e

−σ(βt+x1)k)
∥∥∥
L2((0,T )×(−R,R)×M0)

6 C.

According to Lemma 5.2, we can rewrite equation (5.6) as

w = −Eσ
(
eσ(βt+x1)�g(e

−σ(βt+x1)k) + qw
)
, w ∈ L2((0, T )× (−R,R)×M0)

with Eσ ∈ B(L2((0, T ) × (−R,R) ×M0)) given by Lemma 5.2. For this purpose, we will use a

standard fixed point argument associated to the map

G : L2((0, T )× (−R,R)×M0)→ L2((0, T )× (−R,R)×M0),

F 7→ −Eσ
[
eσ(βt+x1)�g(e

−σ(βt+x1)k) + qF
]
.

Indeed, in view of (5.17), fixing R1 > 0 , there exists σ0 > 1 such that for σ > σ0 the map G

admits a unique fixed point w in {u ∈ L2((0, T )× (−R,R)×M0) : ‖u‖L2((0,T )×(−R,R)×M0) 6 R1}.

In addition, condition (5.17)-(5.19) imply that w ∈ H1((0, T )× (−R,R)×M0) fulfills (5.21). This

completes the proof. �

5.2. Exponentially growing solutions vanishing on parts of the boundary. Let us first

remark that repeating the arguments of the previous section we can build solutions

(5.23) u(t, x) = eσ(βt+x1)
(
a−

d−2
4 l(x) + z(t, x)

)
, (t, x) ∈ (0, T )×M

of the equation a−1∂2
t u−∆gu+ qu = 0 in (0, T )×M . On the other hand, since the construction of

the previous section consists of extending the domain and considering restriction of the solutions of

our wave equation on the extended domain, we will have no control on the traces of the solutions

on ∂M (with M = [0, T ]×M). On the other hand, according to [26, 28, 29], one can use Carleman

estimates to construct by duality such solutions vanishing on some parts of ∂M . Following this

idea, in this section we will construct solutions of the form (5.23) satisfying

u(t, x) = 0, (t, x) ∈ ({0} ×M) ∪ U.
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From now on, for all δ > 0, we set

∂M+,δ,± = {x ∈ ∂M : ±∂νϕ(x) > δ}, ∂M−,δ,± = {x ∈ ∂M : ±∂νϕ(x) 6 δ}

and Σ±,δ,± = (0, T ) × ∂M±,δ,±. Without loss of generality we assume that there exists 0 < ε < 1

such that ∂M−,ε,− ⊂ U ′. The goal of this section is to use the Carleman estimate (4.2) in order to

build solutions u ∈ H�a,g ((0, T )×M) of the form (5.23) to

(5.24)


(a−1∂2

t −∆g + q(t, x))u = 0 in (0, T )×M,

u|t=0 = 0,

u = 0, on (0, T )× ∂M+,ε/2,−.

Here l ∈ C∞([−R,R]×M0) is defined in polar normal coordinate associated to y ∈ ∂D by

(5.25) l(x1, expy(rθ)) = e−iσ(
√

1−β2)rb(r, θ)−1/4.

Moreover z ∈ e−σ(βt+x1)H�a,g ((0, T )×M) fulfills: z(0, x) = −a− d−2
4 l(x) , x ∈M , z = −a− d−2

4 l on

(0, T )× ∂M+,ε/2,− and

(5.26) ‖z‖L2((0,T )×M) 6 Cσ
− 1

2

with C depending on U ′, M , T and any M > ‖q‖L∞((0,T )×M). Since (0, T ) × ∂M \ U ⊂ (0, T ) ×

∂M \ Σ−,ε,− = Σ+,ε,− and since Σ+,ε/2,− is a neighborhood of Σ+,ε,− in (0, T ) × ∂M , it is clear

that condition (5.24) implies (u|(0,T )×∂M , ∂tu|t=0) ∈HU .

The main result of this section can be stated as follows.

Theorem 5.4. Let q ∈ L∞((0, T ) ×M). For all σ > σ1, with σ1 the constant of Theorem 4.1,

there exists a solution u ∈ H�a,g ((0, T )×M) of (5.24) of the form (5.23) with z satisfying (5.26).

In order to prove existence of such solutions of (5.24) we need some weighted spaces. We set

s ∈ R and we introduce the spaces Ls((0, T ) ×M), Ls(M), and for all non negative measurable

function h on ∂M the spaces Ls,h,± defined respectively by

Ls((0, T )×M) = e−s(βt+ϕ(x))L2((0, T )×M), Ls(M) = e−sϕ(x)L2(M),

Ls,h,± = {f : es(βt+x1)h
1
2 (x)f ∈ L2(Σ±)},

with the associated norms

‖u‖s =

(∫ T

0

∫
M

e2s(βt+x1) |u|2 dVg(x)dt

) 1
2

, u ∈ Ls(Q),
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‖u‖s,0 =

(∫
M

e2sx1 |u|2 dx
) 1

2

, u ∈ Ls(M),

‖u‖s,h,± =

(∫
Σ±

e2s(βt+x1)h(x) |u|2 dσg(x)dt

) 1
2

, u ∈ Ls,h,±.

Combining the Carleman estimate (4.2) with the arguments used in [28, Lemma 3], we obtain

the following

Lemma 5.5. Given σ > σ1, with σ1 the constant of Theorem 4.1, and

v ∈ L−σ((0, T )×M), v− ∈ L−σ,∂νϕ−1,−, v0 ∈ L−σ(M),

there exists u ∈ L−σ((0, T )×M) such that:

1) (a−1∂2
t −∆g + q)u = v in (0, T )×M ,

2) u|Σ− = v−, u|t=0 = v0,

3) ‖u‖−σ 6 C
(
σ−1 ‖v‖−σ + σ−

1
2 ‖v−‖−σ,∂νϕ−1,− + σ−

1
2 ‖v0‖−σ,0

)
with C depending on T ,

M > ‖q‖L∞((0,T )×M).

Armed with this lemma we are now in position to prove Theorem 5.4.

Proof of Theorem 5.4. Recall that in the polar normal coordinate x′ = expy(rθ) the function

�e⊕g′(eσ(βt+x1)l) will be given by

�e⊕g′(eσ(βt+x1)l)(t, x1, expy(rθ)) = σ2(β2 − 1 + 1− β2)eσ(βt+x1)l

+2σeσ(βt+x1−i(1−β2)
1
2 r)(β∂t − ∂x1

+ i
√

1− β2∂r + i
√

1− β2 ∂rb
4b )b(r, θ)−1/4

+eσ(βt+x1−i(1−β2)
1
2 r)�e⊕g̃′b(r, θ)

−1/4.

Using the definition of l in polar normal coordinate we deduce that

(b∂t − ∂x1
+ i
√

1− β2∂r + i
√

1− β2
∂rb

4b
)b(r, θ)−1/4 = 0

and

e−σ(βt+x1)�e⊕g′(e
σ(βt+x1)l)(t, x1, expy(rθ)) = e−iσ(

√
1−β2)r�e⊕g̃′b(r, θ)

−1/4.

Therefore, we have ∥∥∥�e⊕g′(eσ(βt+x1)l)
∥∥∥
−σ
6 C

with C > 0 independent of σ. Combining this estimate with (4.3), we deduce that

(5.27)
∥∥∥�a,g(eσ(βt+x1)a−

d−2
4 l)

∥∥∥
−σ
6 C.
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Note that z must satisfy

(5.28)



z ∈ L2((0, T )×M),

(a−1∂2
t −∆g + q)(eσ(βt+x1)z) = −(�a,g + q)(eσ(βt+x1)a−

d−2
4 l) in (0, T )×M,

z(0, x) = −a− d−2
4 l(x), x ∈M,

z(t, x) = −a− d−2
4 l(x) (t, x) ∈ Σ+,ε/2,−.

Let χ ∈ C∞0 (M0) be such that suppχ ∩ ∂M ⊂ {x ∈ ∂M : ∂νϕ(x) < −ε/3} and χ = 1 on

{x ∈ ∂M : ∂νϕ(x) < −ε/2} = ∂M+,ε/2,−. Choose v−(t, x) = −eσ(βt+x1)a−
d−2
4 (x)l(x)χ(x),

(t, x) ∈ Σ−. Since v−(t, x) = 0 for t ∈ (0, T ), x ∈ {x ∈ ∂M : ∂νϕ(x) > −ε/3} we have

v− ∈ L−σ,∂νϕ−1,−. Fix also v = −(�a,g + q)(eσ(βt+x1)a−
d−2
4 l) and v0(x) = −a− d−2

4 l(x)eσx1 ,

(t, x) ∈ Q. From Lemma 5.5, we deduce that there exists w ∈ H�a,g ((0, T )×M) such that
(a−1∂2

t −∆g + q)w = v = −(�a,g + q)(eσ(βt+x1)a−
d−2
4 l) in (0, T )×M,

w(0, x) = v0(x) = −l(x)a−
d−2
4 (x)eσx1 , x ∈M,

w(t, x) = v−(t, x) = −eσ(βt+x1)a−
d−2
4 (x)l(x)χ(x), (t, x) ∈ Σ−.

Then, for z = e−σ(βt+x1)w condition (5.28) will be fulfilled. Moreover, condition 3) of Lemma 5.5

and (5.27) imply

‖z‖L2((0,T )×M) = ‖w‖−σ 6 C
(
σ−1 ‖v‖−σ + σ−

1
2 ‖v−‖−σ,∂νϕ−1,− + σ−

1
2 ‖v0‖−σ,0

)
6 C

(
σ−1(1 + ‖q‖L2((0,T )×M)) + σ−

1
2

∥∥∥a− d−2
4 χl∂νϕ

−1/2
∥∥∥
L2(Σ−)

+ σ−
1
2

∥∥∥a− d−2
4 l
∥∥∥
L2(M)

)
6 Cσ−

1
2

with C depending only on β, U , M , T and ‖q‖L∞((0,T )×M). Therefore, estimate (5.26) holds. Using

the fact that eσ(βt+x1)z = w ∈ H�a,g ((0, T ) ×M), we deduce that u defined by (5.23) is lying in

H�a,g ((0, T )×M) and is a solution of (5.24). This completes the proof of Theorem 5.4. �

6. Proof of Theorem 1.4

From now on we set q = q2−q1 on (0, T )×M and we assume that q = 0 on R2×D\((0, T )×M).

Without loss of generality we assume that we have ∂M−,ε,+ ⊂ V ′ with ε > 0 introduced in the

beginning of the previous section and we fix σ > max(σ1, σ0). According to Proposition 5.3, we

can introduce

u1(t, x) = e−σ(βt+x1)a−
d−2
4 (x) (k(t, x) + w(t, x)) , (t, x) ∈ (0, T )×M,
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where u1 ∈ H1((0, T ) ×M) satisfies a−1∂2
t u1 −∆gu1 + q1u1 = 0, k given by (5.5) and w satisfies

(5.21). Moreover, in view of Theorem 5.4, we consider u2 ∈ H�a,g ((0, T )×M) a solution of (5.24)

with q = q2 of the form

u2(t, x) = eσ(βt+x1)
(
a−

d−2
4 l(x) + z(t, x)

)
, (t, x) ∈ (0, T )×M

with l given by (5.25), z satisfying (5.26), such that supp(u2|(0,T )×∂M ) ⊂ U and u2|t=0 = 0. In view

of Proposition 3.1, there exists a unique solution w1 ∈ H�a,g ((0, T )×M) of

(6.1)

 a−1∂2
tw1 −∆gw1 + q1w1 = 0 in (0, T )×M,

τ0w1 = τ0u2.

Then, u = w1 − u2 solves

(6.2)


a−1∂2

t u−∆gu+ q1u = (q2 − q1)u2 in (0, T )×M,

u(0, x) = ∂tu(0, x) = 0 on M,

u = 0 on (0, T )× ∂M

and since (q2 − q1)u2 ∈ L2((0, T ) ×M), in view of [32, Theorem 2.1] and the formula (4.3), we

deduce that u ∈ H and ∂νu ∈ L2((0, T ) × ∂M). We use again the notation M = [0, T ] ×M and

g = dt2 + g. Since u, u1 ∈ H1((0, T ) ×M) and a−1∂2
t u − ∆gu ∈ L2((0, T ) ×M), one can check

that (a−1∂tu,−∇gu) ∈ Hdiv = {F ∈ L2(M ;TM) : divgF ∈ L2(M)}. Therefore, by density one

can check that∫
M

(a−1∂2
t u−∆gu)u1dVg(x)dt

= −
∫
M

〈
(a−1∂tu,−∇gu),∇gu1

〉
g
dVg(x)dt+

〈〈
(a−1∂tu,−∇gu), ν

〉
g
, u1

〉
H−

1
2 (∂M),H

1
2 (∂M)

with ν the outward unit normal vector to M . From this formula we deduce that∫ T
0

∫
M

(a−1∂2
t u−∆gu)u1dVg(x)dt

= −
∫ T

0

∫
M

(a−1∂tu∂tu1 − 〈∇gu,∇gu1〉g)dVg(x)dt+
〈〈

(a−1∂tu,−∇gu), ν
〉
g
, u1

〉
H−

1
2 (∂M),H

1
2 (∂M)

.

In the same way, we find∫ T
0

∫
M

(a−1∂2
t u1 −∆gu1)udVg(x)dt

= −
∫ T

0

∫
M

(a−1∂tu∂tu1 − 〈∇gu,∇gu1〉g)dVg(x)dt+
〈〈

(a−1∂tu1,−∇gu1), ν
〉
g
, u
〉
H−

1
2 (∂M),H

1
2 (∂M)

.
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Combining these two formulas, we get∫ T
0

∫
M

(q2 − q1)u2dVg(x)dt

=
∫ T

0

∫
M

(a−1∂2
t u−∆gu+ q1u)u1dVg(x)dt−

∫ T
0

∫
M

(a−1∂2
t u1 −∆gu1 + q1u1)udVg(x)dt

=
〈〈

(a−1∂tu,−∇gu), ν
〉
g
, u1

〉
H−

1
2 (∂M),H

1
2 (∂M)

−
〈〈

(a−1∂tu1,−∇gu1), ν
〉
g
, u
〉
H−

1
2 (∂M),H

1
2 (∂M)

On the other hand, condition (1.9) implies that u|t=T = ∂νu|V = 0 and we obtain

(6.3)

∫ T

0

∫
M

qu2u1dVg(x)dt = −
∫

(0,T )×∂M\V
∂νuu1dσg(x)dt+

∫
M

a−1∂tu(T, x)u1(T, x)dVg(x).

Applying the Cauchy-Schwarz inequality to the first expression on the right hand side of this

formula, we get∣∣∣∣∣
∫

(0,T )×∂M\G
∂νuu1dσg(x)dt

∣∣∣∣∣ 6
∫

Σ+,ε,+

∣∣∣∂νue−σ(βt+x1)(k(t, x) + w)
∣∣∣ dσg(x)dt

6 C

(∫
Σ+,ε,+

∣∣∣e−σ(βt+1x)∂νu
∣∣∣2 dσg(x)dt

) 1
2

for some C independent of σ. Here we have used both (5.21), the fact that |k| is independent of σ

and the fact that ((0, T )× ∂M \ V ) ⊂ Σ+,ε,+. In the same way, we have∣∣∣∣∫
M

a−1∂tu(T, x)u1(T, x)dVg(x)

∣∣∣∣ 6 ∥∥a−1
∥∥
L∞(M)

∫
M

∣∣∣∂tu(T, x)e−σ(βt+x1) (k(T, x) + w(T, x))
∣∣∣ dVg(x)

6 C

(∫
M

∣∣∣e−σ(βt+x1)∂tu(T, x)
∣∣∣2 dVg(x)

) 1
2

.

Combining these estimates with the Carleman estimate (4.2) and the facts that u|t=T = ∂νu|Σ− = 0

and ∂M+,ε,+ ⊂ ∂M+, we find∣∣∣∣∣
∫ T

0

∫
M

(q2 − q1)u2u1dVg(x)dt

∣∣∣∣∣
2

6 2C

(∫
Σ+,ε,+

∣∣∣e−σ(βt+x1)∂νu
∣∣∣2 dσg(x)dt+

∫
M

∣∣∣e−σ(βt+x1)∂tu(T, x)
∣∣∣2 dVg(x)

)

6 2ε−1C

(∫
Σ+

∣∣∣e−σ(βt+x1)∂νu
∣∣∣2 ∂νϕ(x)dσg(x)dt+

∫
M

∣∣∣e−σ(βT+x1)∂tu(T, x)
∣∣∣2 dVg(x)

)

6
ε−1C

σ

(∫ T

0

∫
M

∣∣∣e−σ(βt+x1)(a−1∂2
t −∆x + q1)u

∣∣∣2 dVg(x)dt

)
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6
ε−1C

σ

(∫ T

0

∫
M

∣∣∣e−σ(βt+x1)qu2

∣∣∣2 dVg(x)dt

)
=
ε−1C

σ

(∫ T

0

∫
M

|q|2 (1 + |z|)2dVg(x)dt

)
.(6.4)

Here C > 0 stands for some generic constant independent of σ. It follows that

(6.5) lim
σ→+∞

∫
Q

qu2u1dtdx = 0.

On the other hand, using the fact that q = 0 on R2 ×M0 \ ((0, T )×M) we have∫ T

0

∫
M

qu1u2dVg(x)dt

=

∫
R

∫
R

∫
M0

q(t, x1, x
′)k(t, x1, x

′)a−
d−2
2 l(x1, x

′)dVg′(x
′)dx1dt+

∫ T

0

∫
M

Z(t, x)dVg(x)dt

with Z(t, x) = q(t, x)(a−
d−2
4 z(t, x)k(t, x) + a−

d−2
2 w(t, x)l(x) + a−

d−2
4 z(t, x)w(t, x)). Then, in view

of (5.21) and (5.26), an application of the Cauchy-Schwarz inequality yields∣∣∣∣∣
∫ T

0

∫
M

Z(t, x)dVg(x)dt

∣∣∣∣∣ 6 Cσ− 1
2

with C independent of σ. Combining this with (6.5), we deduce that∫
R

∫
R

∫
M0

a−
d−2
2 (x1, x

′)q(t, x1, x
′)k(t, x1, x

′)l(x1, x
′)dVg′(x

′)dx1dt = 0.

Fixing y ∈ ∂D, τ+(y, θ) the time of existence in D of the maximal geodesic γy,θ satisfying γy,θ(0) = y

and γ′y,θ(0) = θ, we obtain in polar normal coordinate∫
R

∫
R

∫
SyM1

∫ τ+(y,θ)

0

a−
d−2
2 (x1, r, θ)q(t, x1, r, θ)k(t, x1, r, θ)l(x1, r, θ)dVg̃(r, θ)dx1dt = 0

with dVg̃ the Riemanian volume form in polar normal coordinate given by b(r, θ)1/2drdθ. It follows

from (5.5) and (5.25), that for any h ∈ H2(SyM1), µ ∈ R and β ∈ [1/2, 1], we have∫
SyM1

(∫
R

∫
R

∫ τ+(y,θ)

0

a−
d−2
2 (x1, r, θ)q(t, x1, r, θ)e

−iµ(t+βx1)drdx1dt

)
h(θ)dθ = 0

which implies that

(6.6)

∫
R

∫
R

∫ τ+(y,θ)

0

a−
d−2
2 (x1, r, θ)q(t, x1, r, θ)e

−iµ(t+βx1)drdx1dt = 0, θ ∈ SyM1.

We recall that the geodesic ray transform I on ∂+SD := {(x, ξ) ∈ SD : x ∈ ∂D, 〈ξ, ν(x)〉g′ < 0}

is defined by

If(t, x1, x
′, θ) =

∫ τ+(x,θ)

0

f(γx′,θ(t))dt, (x′, θ) ∈ ∂+SD, f ∈ L1(R× R×D).
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Fixing Ft,x1
a−

d−2
2 q the partial Fourier transform of a−

d−2
2 q with respect to t ∈ R and x1 ∈ R given

by

Ft,x1
a−

d−2
2 q(ξ1, ξ2, x

′) = (2π)−1

∫
R

∫
R
a−

d−2
2 (x1, x

′)q(t, x1, x
′)e−i(ξ1t+ξ2x1)dx1dt, ξ = (ξ1, ξ2) ∈ R2

we obtain from (6.6) that for any µ ∈ R and all β ∈ [ 1
2 , 1]

(6.7)

Ft,x1
[I(a−

d−2
2 q)(·, ·, y, θ)](µ, bµ) =

∫
R

∫
R

∫ τ+(y,θ)

0

a−
d−2
2 (x1, r, θ)q(t, x1, r, θ)e

−iµ(t+βx1)drdx1dt = 0

holds true. Since for all θ ∈ Sy(D), such that (y, θ) ∈ ∂+SD, the function Q : (t, x1) 7→

I(a−
d−2
2 q)(t, x1, y, θ) ∈ L∞(R2) is supported on [0, T ]×[−R,R], its Fourier transform is analytic and

(6.7) implies that Q = 0. Therefore, for almost every (t, x1) ∈ R2 we have I(a−
d−2
2 q)(t, x1, y, θ) = 0.

Using the injectivity of the geodesic ray transform (e.g. [15, Proposition 7.2]) , by varying y ∈ ∂D,

we deduce that q = 0. This completes the proof of Theorem 1.4.
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