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Abstract

Transmission problems with sign-changing coefficients occur in electromagnetic theory in the presence
of negative materials surrounded by classical materials. For general geometries, establishing Fredholmness
of these transmission problems is well-understood thanks to the T-coercivity approach. Moreover, for
a plane interface, there exist meshing rules that guarantee an optimal convergence rate for the finite
element approximation. We propose here a new treatment at the corners of the interface which allows
to design meshing rules for an arbitrary polygonal interface and then recover standard error estimates.
This treatment relies on the use of simple geometrical transforms to define the meshes. Numerical results
illustrate the importance of this new design.

Keywords: T-coercivity, transmission problem, sign-changing coefficient, conforming finite element method,
T-conforming mesh.

1 Introduction and setting of the transmission problem with sign-
changing coefficients

Our aim is to solve the problem {
Find u ∈ H1

0 (Ω) such that:
−div(σ∇u) = f in Ω,

(1)

where Ω ⊂ R2 is a bounded domain partitioned into two regions, σ is a scalar, real-valued, sign-changing
coefficient, and f is some given data. In electromagnetic theory, this problem can be interpreted as a
transmission problem, in a domain composed of a classical dielectric material (σ > 0), and a negative
material (σ < 0). A negative material can be for example a metal at optical frequencies, or a metamaterial
(e.g. [23, 1]), for which some physical parameters become negative (the permittivity for metals, both the
permittivity and the permeability for metamaterials). Due to the sign-changing coefficient σ, well-posedness
of problem (1) is not guaranteed. In particular, classical tools such as Lax-Milgram theorem do not apply
since the coercivity on H1

0 (Ω)×H1
0 (Ω) of the corresponding sesquilinear form

a : (v, w) 7→
ˆ

Ω

σ∇v · ∇w dΩ, (2)

is lost. However, over the past decade, techniques have been developed to establish well-posedness, under
appropriate conditions, via the T-coercivity theory: introduced in [5], it consists in building isomorphisms T
such that the form (v, w) 7→ a(v, Tw) is coercive on H1

0 (Ω)×H1
0 (Ω). For short, we say in this case that a(·, ·)

is T-coercive. What is less clear is the discrete counterpart of this approach.
In this paper, we consider problem (1) with the following hypothesis on σ:{

σ|Ω1
= σ1 is a constant such that σ1 > 0,

σ|Ω2
= σ2 is a constant such that σ2 < 0.

The ratio κσ := σ2/σ1 is called the contrast. Let Ω be a domain of R2, that is a connected bounded open
subset of R2 with a Lipschitz boundary. It is split as Ω = Ω1∪Ω2, where Ω1 and Ω2 are two disjoint domains.
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The interface separating Ω1 and Ω2 is called Σ: we assume that it is a polygonal line made of straight edges
and corners. Given v defined over Ω, we use the notation vi := v|Ωi

, i = 1, 2.
The equivalent variational formulation of (1) reads:

Find u ∈ V such that ∀w ∈ V, a(u,w) = 〈f, w〉, (3)

where V = H1
0 (Ω), a is the form defined in (2), and 〈·, ·〉 denotes the duality pairing between V and its dual

V ′.
Let us first describe a simple configuration for which everything is well understood. It is the symmetric
geometry: Σ is a part of a straight line and Ω2 is the symmetric of Ω1 with respect to Σ. Then one can easily
prove that the problem is well-posed if and only if κσ 6= −1, by considering the following operators T:

T v =

{
v1 in Ω1

−v2 + 2Sv1 in Ω2
, respectively T v =

{
v1 − 2Sv2 in Ω1

−v2 in Ω2
,

where Sv1(x) = v1(Sx) (resp. Sv2(x) = v2(Sx)), with S denoting the symmetry with respect to Σ. On
one hand, one can prove that a(·, ·) is T-coercive if κσ 6= −1. Then problem (3), which is equivalent to the
problem

Find u ∈ V such that ∀w ∈ V, a(u, Tw) = 〈f, Tw〉,

is well-posed. On the other hand, if κσ = −1, the problem (1) is ill-posed since it has a kernel (set of solutions
with zero right-hand side f) which is infinite dimensional. Thus we say that the condition κσ 6= −1 is optimal
for the well-posedness of the continuous problem.
Suppose now that κσ 6= −1 and that we want to approximate the solution with a conforming finite element
method (for short, a cFE method). This leads to the discrete problems

Find uh ∈ V h such that ∀wh ∈ V h, a(uh, wh) = 〈f, wh〉, (4)

where (V h)h denotes a sequence of finite-dimensional subspaces of V , with h a positive parameter that goes
to 0. If T(V h) ⊂ V h for small h, then T-coercivity can be exploited at the discrete level. In particular, the
discrete problem is well-posed and, by a straightforward adaptation of Céa’s lemma, the error is controlled
by the best approximation error. Hence, we just have to ensure the condition T(V h) ⊂ V h, which is achieved
in this symmetric geometry by using a symmetric mesh (for a uniform degree of approximation). Let us
emphasize that using non-symmetric meshes can deteriorate drastically the convergence of the cFE method
when κσ is close to −1 (cf. [11]).

The objective of our paper is to generalize this type of result to an arbitrary polygonal interface. This is
based on two ingredients:

1) adapting the condition T(V h) ⊂ V h to elementary geometries where Σ includes a single corner ;

2) for every h, relaxing the condition T(V h) ⊂ V h by defining a discrete operator Th ∈ L(Vh) such that
limh→0 ‖Th − T‖L(Vh) = 0.

Finally, our aim is to provide meshing rules for an arbitrary geometry, ensuring that the standard convergence
rate is recovered, as soon as κσ is such that the continuous problem (1) is well-posed. Let us emphasize that
in practice, the discrete problem (4) is implemented as it is, the operators (Th)h being used only to prove
convergence theoretically.

The outline of the paper is as follows. In the next section, we provide a review of the techniques proposed
so far to approximate problem (1) with sign-changing coefficients. Section 3 is dedicated to the construc-
tion of new explicit T-coercivity operators for elementary geometries whose interface has only one corner.
Then in section 4 we develop the theory that allows one to study the well-posedness of problem (1) for an
arbitrary polygonal interface, and as a result we derive the optimal condition on the contrast κσ to ensure
well-posedness. Our aim is to provide tools that can be extended to the discrete problems, namely the ap-
proximation of problem (1) by cFE methods. This is the main topic of section 5, where convergence is derived
as soon as the optimal condition on the contrast is fulfilled. Numerical results are presented in section 6.
Finally some concluding remarks are given.
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2 Historical background: continuous and discrete T-coercivity
Let us review known results concerning the T-coercivity approach. Introduced in [5], the T-coercivity technique
has then been developed in [2]. Similarly to the symmetric case, the idea is to build linear continuous operators
T on V :

T v =

{
v1 in Ω1

−v2 + 2Rv1 in Ω2
, respectively T′ v =

{
v1 − 2R′v2 in Ω1

−v2 in Ω2
, (5)

where R, R′ are operators (to be precised) such that Rv1|Σ = v1|Σ, R′v2|Σ = v2|Σ. This construction is at-
tractive because once the operators R, R′ are settled, the operators T, T′ define isomorphisms of V . Let us
present the available constructions of R (note that R′ is obtained by inverting the roles of Ω1 and Ω2).

The first idea (see [5]) was to consider an operator R(0) that acts from H
1/2
00 (Σ) (the space of traces on Σ

of functions of V ) to V2, where Vi := {vi, v ∈ V }, i = 1, 2. One can choose for instance a harmonic lifting.
Then it was proven that T-coercivity is realized with T(0) (defined as (5) with R(0)) under the condition that
|κσ| is "small enough" (with no explicit bound). At the discrete level, for vh ∈ V h, R(0)

h vh1 was defined as the
discrete-harmonic element of V h2 (V hi := {vhi , vh ∈ V h}, i = 1, 2), with a trace on Σ equal to vh1 |Σ.

A generalization was next proposed in [19, 2] with an operator R that acts from V1 to V2. Let us point
out the difference between the two approaches: in T(0), R(0) acts on the trace of v1 on Σ, while in T (defined
as (5) with R), R acts on the whole function v1, defined on Ω1. The case of the symmetry-based operator
S (see the introduction) fits into this second category but not in the first one. In that case, T-coercivity is
realized under the condition

κσ 6∈ [−‖R′‖2;−1/‖R‖2], (6)

with
‖R‖ = sup

w1∈V1\{0}

‖∇Rw1‖Ω2

‖∇w1‖Ω1

, and ‖R′‖ = sup
w2∈V2\{0}

‖∇R′w2‖Ω1

‖∇w2‖Ω2

; (1) (7)

The authors of [19] exhibit a special geometry, different from the symmetric one, where the operators R, R′
can be again built using only axial symmetries.

Ω1 Ω1

Ω2
Ω2

α

Figure 1: Examples of geometries that have been handled with the T-coercivity: (left) a square where Ω1 is
one quadrant ; (right) a disk where Ω1 is an angular sector of angle α.

This is the case where Ω is a square, and Ω1 is one quadrant of this square (right-angle geometry, see
figure 1-left). One finds ‖R‖2 = ‖R′‖2 = 3. On the other hand, the case where Ω is a disk and Ω1 is an
angular sector of angle α is solved in [2] (see figure 1-right). For this second configuration the operators are
based on the composition of a central symmetry and an angular dilation. In this case, ‖R‖2 = ‖R′‖2 = Iα
where

Iα := max
(2π − α

α
,

α

2π − α

)
. (8)

The result is optimal in the sense that the problem (1)-(3) is ill-posed when κσ ∈ [−Iα;−1/Iα], cf. [2]. Note
that when α = π/2, one has Iα = 3, and we remark that the interval in (6) is identical for both geometries.

1From now on, we denote by ‖ · ‖O the L2-norm over the open set O.
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The case of an arbitrary geometry was completely clarified in [2]. It appears that proving the well-
posedness of (1)-(3) is too restrictive, and possible only for very simple cases. A more relevant objective is
to ensure that the problem is well-posed in the Fredholm sense (see section 4). And it has been proved by a
localization process that this property depends only on the value of the contrast κσ and on the geometry of
the interface Σ, but not on the global geometry of Ω. The localization is realized with the help of suitably
chosen cut-off functions which vanish away from the interface. In particular for a given closed polygonal line
Σ, problem (3) is well-posed in the Fredholm sense if and only if κσ 6∈ [−Iα;− 1/Iα] where α is the smallest
corner angle of Σ and Iα is defined as in (8).

What are the discrete counterparts of these results? The difficulty is that, in general, the imbedding
T(V h) ⊂ V h does not hold, due to the presence of the operators R, R′, or due to the presence of the cut-off
functions. To address this issue, various approaches have been proposed in [5], [19] and [11]. We refer to the
latter for the more complete and detailed numerical analysis. Roughly speaking, in all these previous works,
the numerical analysis hinges on the introduction of an approximated operator Th, defined for instance with
the help of an interpolation operator. In [5] and [19], the drawback is that convergence of the cFE method
is guaranteed under a condition on the contrast which is more restrictive than the one for the continuous
problem. An attempt(2) to remove this limitation has been proposed in [11], but only for interfaces without
corners. In the following we provide results for an arbitrary polygonal interface. We start with the case
where the interface has only one corner.

3 New T-coercivity operators and associated T-conforming meshes
around corners

Going back to the case of the disk (see figure 1-right), if α = π/2 there are at least two alternatives to build
the operators T, T′ to prove well-posedness when κσ 6∈ [−3;−1/3]. The first one relies on axial symmetries
(similarly to [19]), whereas the second one relies on a composition of a symmetry with respect to the center
and an angular dilation [2]. Although these two approaches are equivalent at the continuous level, this is not
the case at the discrete level. Indeed, for the first approach it is clear that T(Vh) ⊂ Vh and T′(Vh) ⊂ Vh if
one uses axially symmetric meshes. On other hand, for the second approach T(Vh) ⊂ Vh is never satisfied
since the polynomial nature of basis FE functions is not preserved by angular dilations. The object of this
section is to generalize the first approach to an arbitrary angle. To do so, first we build new operators Rnew,
R′new as rotation- and symmetry-based operators such that T-coercivity is realized (using T, T′ defined as (5)
with Rnew, R′new) under the same conditions as the case of an angular sector [2]. The key idea is to consider
a pattern-based domain Ω (see figure 2).

Σ
α

cΣc
α

Σ
α

c

Figure 2: Examples of pattern-based geometries with a corner c of angle α = 2π/3 measured in Ω1: (left)
sector-based ; (middle) triangle-based ; (right) leaf-based geometry.

To define such a domain Ω, let p, q ∈ N \ {0} with p + q even and introduce the angle β := 2π
p+q , the cone

Cβ := {(ρ cos θ, ρ sin θ) | 0 < ρ, 0 < θ < β}. Finally let us introduce the axial symmetries Sj with respect
2It is an attempt only, because there is a mistake in the definition of the discrete operator Th that will be clarified in section 5.
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to the line θ = jβ for j = 0, p + q − 1 (the numbering is chosen counterclockwise). Let P ⊂ Cβ be a
bounded domain that coincides locally with Cβ . A pattern-based domain Ω is the union of p + q patterns,
i.e. Ω =

⋃p+q
j=1 Pj , where P1 = P and Pj+1 = SjPj for j = 1, p+ q − 1. The condition p+ q even ensures

that P1 = S0Pp+q. Then Ω1 is composed of the first p patterns, Ω1 =
⋃p
j=1 Pj , and Ω2 is composed of the

last q patterns, Ω2 =
⋃p+q
j=p+1 Pj . In figure 2, one has p = 2 and q = 4 with respectively a sector, a triangle,

a leaf as pattern P. Then one has α := pβ = 2π p
p+q and it follows that

Iα := max
(p
q
,
q

p

)
. (9)

Note that for the disk, the condition on the parity of p+ q is by no means restrictive. Indeed if p+ q is odd,
one simply doubles p and q without changing the value of α.
For the sake of clarity, we introduce also the following notations:

• Ωk1 = Pk, k = 1, p, the k-th pattern of Ω1.

• Ωl2 = Pp+l, l = 1, q, the l-th pattern of Ω2.

• vk1 := v|Ωk
1
, k = 1, p the restriction to Ωk1 . Similarly, vl2 := v|Ωl

2
, l = 1, q.

• en, n = 1, 2, the two edges of Σ such that e1 coincides locally with {(ρ, 0), 0 < ρ}, while e2 coincides
locally with the line {(ρ cosα, ρ sinα), 0 < ρ}.

To define Rnew as a rotation- and symmetry-based operator from V1 to V2, one introduces Rm the rotation
of angle mβ, m = 0, p+ q − 1. Define also their inverse R−m the rotation of angle −mβ. These geometrical
transforms are such that

• for (ρ, θ) ∈ Ωk1 , for all k ∈ I1 := J1,min(p, q)K, S0(ρ, θ) ∈ Ωq+1−k
2 ,

• for (ρ, θ) ∈ Ωk1 , for all k ∈ I2 := Jp+ 1−min(p, q), pK, Sp(ρ, θ) ∈ Ωp+1−k
2 ,

• for (ρ, θ) ∈ Ωk1 , for all k ∈ J1, pK, Rp+l−k(ρ, θ) ∈ Ωl2, for all l ∈ J1, qK.

Then one defines symmetry-based operators Sn (n = 1, 2) and rotation-based operators Rm (m = 1, p+ q−1)
from V k1 := {vk1 , v ∈ V } to V l2 := {vl2, v ∈ V } by:

• S1vk1 (ρ, θ) = vk1 (S0(ρ, θ)) for (ρ, θ) ∈ Ωq+1−k
2 , for all k ∈ I1,

• S2vk1 (ρ, θ) = vk1 (Sp(ρ, θ)) for (ρ, θ) ∈ Ωp+1−k
2 , for all k ∈ I2,

• Rk−(p+l)v
k
1 (ρ, θ) = vk1 (Rk−(p+l)(ρ, θ)) for (ρ, θ) ∈ Ωl2, for all l = 1, q, for all k = 1, p.

A rotation- and symmetry-based operator is then an ad hoc composition of S1, S2 and Rm. The general
construction of a global, pattern-based, admissible operator R from V1 to V2, ensuring Rv|Σ = v|Σ is given in
the Appendix A.1. We give one illustrative example below with p < q, which is equivalent to α < π: we build
admissible operators R and R′ in this case. We emphasize that the construction of an operator R′ in the case
α < π can be used to build an operator R in the case α > π, and vice versa, cf. (5). We consider α = 2π/3,
with p = 2 and q = 4.
Construction of operators R: one can define two admissible operators (illustrated in figure 3):

Radm
1 v1 =


S2v2

1 in Ω1
2

R−2v
2
1 in Ω2

2

S1v2
1 in Ω3

2

S1v1
1 in Ω4

2

, and Radm
2 v1 =


S2v2

1 in Ω1
2

S2v1
1 in Ω2

2

R−4v
1
1 in Ω3

2

S1v1
1 in Ω4

2

.
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Σc

v1
1

v2
1

S1v1
1

S1v2
1

R−2v
2
1

S2v2
1

Σc

v1
1

v2
1

S1v1
1

R−4v
1
1

S2v1
1

S2v2
1

e1e1

e2 e2

Figure 3: Representation of the two admissible geometry-based operators R.

To realize T-coercivity under the same conditions as in [2], one has to check that these operators R are optimal
in the sense that ‖R‖2 = Iα, where Iα is defined in (8) or (9), while the operator norm is defined in (7). For
the present example, Iα = 2. Since Sn and R−m (n = 1, 2, m = 1, 5) are isometry-based operators, one finds
easily that

‖∇Radm
1 v1‖2Ω2

= 3‖∇v2
1‖2Ω2

1
+‖∇v1

1‖2Ω1
1
≤ 3‖∇v1‖2Ω1

, and ‖∇Radm
2 v1‖2Ω2

= ‖∇v2
1‖2Ω2

1
+3‖∇v1

1‖2Ω1
1
≤ 3‖∇v1‖2Ω1

,

with equality for appropriately chosen v1, for instance v1 such that v2
1 = 0 when evaluating Radm

2 . According
to (6)-(7), this gives ‖Radm

1 ‖2 = ‖Radm
2 ‖2 = 3, which is greater than the expected optimal value of the norm

squared. However, considering the average of these two admissible operators gives us the result. More
precisely, define

Rnewv1 :=
1

2
(Radm

1 + Radm
2 )v1 =



S2v2
1 in Ω1

2

1

2
(R−2v

2
1 + S2v1

1) in Ω2
2

1

2
(S1v2

1 + R−4v
1
1) in Ω3

2

S1v1
1 in Ω4

2

,

then one can prove that ‖Rnew‖2 = 2. Indeed, for v1 ∈ V1

‖∇(Rnewv1)‖2Ω2
= ‖∇(S2v2

1)‖2Ω1
2

+ ‖1

2
∇(R−2v

2
1 + S2v1

1)‖2Ω2
2

+ ‖1

2
∇(S1v2

1 + R−4v
1
1)‖2Ω3

2
+ ‖∇(S1v1

1)‖2Ω4
2

and since Sn and R−m (n = 1, 2, m = 1, 5) are isometry-based operators, using the triangle inequality one
finds that

‖∇(Rnewv1)‖2Ω2
≤ ‖∇v2

1‖2Ω2
1

+ (
1

2
‖∇v2

1‖Ω2
1

+
1

2
‖∇v1

1‖Ω1
1
)2 + (

1

2
‖∇v2

1‖Ω2
1

+
1

2
‖∇v1

1‖Ω1
1
)2 + ‖∇v1

1‖2Ω1
1
.

Define the matrix M =


0 1

1/2 1/2
1/2 1/2
1 0

, and
−→
W ∈ R2 such that

−→
W := (‖∇v1

1‖Ω1
1
, ‖∇v2

1‖Ω2
1
)ᵀ ; by construction,

‖
−→
W‖2 = ‖∇v1‖Ω1

, where ‖ · ‖2 denotes the Euclidean norm. Then one has M
−→
W = (‖∇v2

1‖Ω2
1
, 1

2‖∇v
1
1‖Ω1

1
+

1
2‖∇v

2
1‖Ω2

1
, 1

2‖∇v
1
1‖Ω1

1
+ 1

2‖∇v
2
1‖Ω2

1
, ‖∇v1

1‖Ω1
1
)ᵀ and one remarks that

‖∇(Rnewv1)‖2Ω2
≤ ‖M

−→
W‖22 = (MᵀM

−→
W,
−→
W ) ≤ ‖MᵀM‖2‖∇v1‖2Ω1

.

Hence ‖Rnew‖2 ≤ ‖MᵀM‖2. A straightforward computation shows that ‖MᵀM‖2 = 2. Finally, the equality
‖Rnew‖2 = ‖MᵀM‖2 can be recovered easily(3).

3For instance, equality is obtained for Rnew by choosing v1 such that vk1 ∈ H1
0 (Ωk1), for k = 1, p, with v11 a symmetric

function w.r.t. the line θ = β
2
, and vk1 (ρ, θ) = vk1 (Rk−1(ρ, θ)), for (ρ, θ) ∈ Ωk1 , for k = 2, p. Similarly, equality for R′new is

obtained by choosing v2 such that vl2 ∈ H1
0 (Ωl2), for l = 1, q, with v12 a symmetric function w.r.t. the line θ = (p + 1

2
)β, and

vl2(ρ, θ) = v12(Rl−1(ρ, θ)), for (ρ, θ) ∈ Ωl2, for l = 2, q.
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Construction of operators R′: in that case one "folds v2 up" such that R′v2 is defined over Ω1. Then
one obtains the two admissible operators described in figure 4:

R′
adm
1 v2 =

{
S1v4

2 − R3v
3
2 + S2v2

2 in Ω1
1

S2v1
2 in Ω2

1

, and R′
adm
2 v2 =

{
S1v4

2 in Ω1
1

S2v1
2 − R4v

2
2 + S1v3

2 in Ω2
1

.

Σc

S1v4
2

e1

e2

Σc

S2v1
2

v4
2

v3
2

v2
2

v1
2

v4
2

v3
2

v2
2

v1
2

S1v4
2

−R3v
3
2

+S2v2
2

S1v3
2

−R4v
2
2

+S2v1
2

e1

e2

Figure 4: Representation of the two admissible geometry-based operators R′adm: (left) one applies an axial
symmetry in Ω1

2 to reach Ω2
1 and folds the rest of v2 into Ω1

1 to ensure continuity ; (right) one applies an axial
symmetry in Ω4

2 to reach Ω1
1 and folds the rest of v2 into Ω2

1 to ensure continuity.

One can operate similarly for the second example by considering R′newv2 over Ω1 as the average of the two
operators described in figure 4:

R′newv2 =


1

2
(2S1v4

2 − R3v
3
2 + S2v2

2) in Ω1
1

1

2
(2S2v1

2 − R4v
2
2 + S1v3

2) in Ω2
1

.

Then one finds ‖R′new‖2 ≤ ‖M ′ᵀM ′‖2 = 2, with the matrix M ′ =

(
0 1/2 1/2 1
1 1/2 1/2 0

)
= Mᵀ. Remark that

it is expected to find that M ′ = Mᵀ as the role of p and q are exchanged. Thus, one obtains the same results
for R′new. We note that equality for the norms, that is ‖R′new‖2 = ‖M ′ᵀM ′‖2, can be recovered easily(3).
Hence, R′new is an optimal operator.

Summing up, for any p, q, one simply defines Rnew, R′new as the average of all admissible rotation- and
symmetry-based operators. The general expression of these operators is given in the Appendix A.1 and
propositions 2 and 3 there give us that for any p, q, max(‖Rnew‖2, ‖R′new‖2) = Iα.

Let us make some comments regarding this approach:

- this approach applies when the corner angle α can be expressed as a rational fraction times 2π, that
is α ∈ 2πQ. In the case of an irrational angle α, since Q is dense in R, one can come as close to α as
desired (with an increase of the value of p+ q).

- in the case of a general polygonal interface Σ, Ω is locally pattern-based in a neighborhood of any interior
corner. Consequently this approach can be adapted using a localization process (see next section).

At this point we have provided optimal operators, that is operators with norm-squared equal to Iα.
Finally we explain how it is possible to satisfy T(V h) ⊂ V h and T′(V h) ⊂ V h, with T, T′ defined as (5)
with these optimal operators. Suppose that Ω is a pattern-based domain, and that the pattern is polygonal
(for instance a triangle). Once this pattern is meshed, the requirement to get T-conforming meshes is to
duplicate by symmetry this mesh in each pattern. When one considers a uniform degree of approximation
on the whole domain, one has automatically T(V h) ⊂ V h and T′(V h) ⊂ V h with the new operators de-
scribed above. Then, as already mentioned, classical errors estimates directly follow from Céa’s lemma [11,
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Corollary 1]. Note that there is no need for additional symmetry requirements for the meshing of the pattern.

Numerical illustrations.
We consider the geometry described previously in the second example. In that case Ωhex is a hexagon where
Ωhex

1 locally coincides with a cone of angle α = 4π/3. In this case Iα = 2 and [−Iα;−1/Iα] = [−2;−1/2].
Let us construct an exact solution (of a problem of type (1) with κσ 6∈ [−2;−1/2], see (10) below): consider
ur ∈ H1(Ωhex) such that in polar coordinates(4)

ur(ρ, θ) =

{
σ−1

1 ρ2 sin(p+q2 (θ−α)) in Ωhex
1 ,

σ−1
2 ρ2 sin(p+q2 (θ−α)) in Ωhex

2 ,

where p (resp. q) still denotes the number of patterns in Ωhex
1 (resp. Ωhex

2 ) and f := −div(σ∇ur) = 1
4 ((p +

q)2 − 16) sin(p+q2 (θ−α)) ∈ L2(Ωhex). By construction, ur is piecewise smooth [17]: ur|Ωhex
i
∈ H3−ε(Ωhex

i ),
∀ε > 0, i = 1, 2. To illustrate the importance of T-conforming meshes around corners, let us add to ur a
singular part, that is some us(ρ, θ) = ρλΦ(θ), with λ := λ(σ) ∈ R, such that div(σ∇us) = 0 in Ωhex. For
example we consider [6, 19]

Φ(θ) =


cosh(λ(θ − α/2))

cosh(λα/2)
0 ≤ θ ≤ α/2

cosh(λ(θ + (2π − α)/2))

cosh(λ(2π − α)/2)
− (2π − α)/2 ≤ θ ≤ 0

,

Φ(θ) = Φ(2π − θ − α/2) − π ≤ θ ≤ −(2π − α) or α/2 ≤ θ ≤ π.

One chooses for λ the smallest possible positive real number. Its value depends on κσ, and one can prove
that since κσ 6∈ [−2;−1/2], λ 6= 0 [3], so us ∈ H1(Ωhex), with us|Ωhex

i
∈ H1+λ−ε(Ωhex

i ), ∀ε > 0, i = 1, 2.
Defining g := (ur + us)|∂Ωhex , one checks that u = ur + us is the unique solution of the problem

Find u ∈ H1(Ωhex) such that:

− div(σ∇u) = f in Ωhex

u = g on ∂Ωhex

. (10)

With the help of a lifting of the non-zero boundary condition, one easily checks that problem (10) set in
this hexagonal domain is well-posed when κσ 6∈ [−2;−1/2]. We consider two kinds of meshes (see figure
5), namely standard meshes (without rotation- or symmetry-based invariance) and T-conforming meshes,
and discretize the problem for several FE orders, for two chosen contrasts: κσ = −3 and κσ = −2.1 (see
figure 6). For this geometry, computations give λ = 0.5 when κσ = −3, and λ h 0.205 when κσ = −2.1.
Classically the regularity of the solution u = ur +us is driven by the singular behavior us. Consequently one
expects an order of convergence equal to λ for the relative errors in H1-norm. With figure 6 one concludes
that T-conforming meshes ensure optimal convergence speed while, for standard meshes, convergence is more
erratic with respect to the mesh size. Note that in figure 6 one does not improve the order of convergence
using higher FE orders, due to the low regularity of the solution.

4With this choice ur(·, θ) = 0 for θ ∈ {nβ, n ∈ Z}, then continuity is easily ensured at the crossing of the interfaces.
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Figure 5: (Left) standard mesh (h = 0.2, 385 nodes), Ωhex
1 corresponds to blue region while Ωhex

2 corresponds
to the green one ; (right) T-conforming mesh (h = 0.2, 379 nodes).
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Figure 6: (Left) relative error in H1-norm for different mesh sizes h (log-log scale) for κσ = −3 ; (right)
relative error in H1-norm for different mesh sizes h (log-log scale) for κσ = −2.1.

In a more general case of a polygonal interface with several interior corners, one has to apply locally this
tilings method in the neighborhood of the corners. This strategy is explained in the next two sections.

4 Weak T-coercivity for a general polygonal interface
In this section we recall some theoretical results regarding the T-coercivity approach, and prove well-posedness
of problem (1) for an arbitrary geometry using the new geometry-based operators introduced in section 3.
Consider a Hilbert space E with its dual E′, a bilinear form b defined over E×E and B a (linear continuous
operator) from E to E′ such that 〈Bv,w〉 = b(v, w), for all v, w ∈ E. Then, for some data f ∈ E′, solving

Find u ∈ E such that b(u,w) = 〈f, w〉, ∀w ∈ E, (11)

is equivalent to solving
Find u ∈ E such that Bu = f in E’. (12)

Classically [18, 7], we recall that B is said to be a Fredholm operator when dim(ker(B)) <∞, its range R(B)
is closed and codim(R(B)) <∞ ; in this case its index is equal to dim(ker(B))− codim(R(B)). If in addition
the associated form b is hermitian, the index is automatically equal to 0. When B is a Fredholm operator of
index 0, we say that (11)-(12) is well-posed in the Fredholm sense. On the other hand, (11)-(12) is well-posed
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if, and only if, for all f ∈ E′, it has one and only one solution u, with continuous dependence: there exists
C > 0 such that, for all f ∈ E′, the solution u verifies ‖u‖E ≤ C‖f‖E′ . In terms of operators, it means that
B−1 is well-defined as a continuous operator from E′ to E.
To prove well-posedness (in the Fredholm sense) of problem (1), we will apply the theory of T-coercivity [5, 2,
11]. Let us recall some results. Within the Banach-Necas-Babuska framework, one can define a weak stability
condition, also called an inf-sup condition. Below, L(E) is the set of linear continuous operators defined on
E, and K(E) is the subset of compact operators.

Definition 1. Let b(·, ·) be a continuous sesquilinear form on E × E.
It verifies a weak stability condition if

∃C ∈ K(E), ∃α′ > 0, β′ ∈ R, ∀v ∈ E, sup
w∈E\{0}

|b(v, w)|
‖w‖E

≥ α′‖v‖E − β′‖Cv‖E . (13)

Let us now introduce an a priori intermediate condition (cf. [5]).

Definition 2. Let b(·, ·) be a continuous sesquilinear form on E × E. It is weakly T-coercive if

∃C ∈ K(E), ∃T ∈ L(E) bijective, ∃α > 0, β ∈ R, ∀v ∈ E, |b(v, Tv)| ≥ α‖v‖2E − β‖Cv‖2E . (14)

In other words, the form b(·, T·) fulfills a Gärding’s inequality [22].

Remark 1. When β′ ≤ 0 in (13), one recovers the classical stability condition. Respectively, when β ≤ 0 in
(14), one obtains T-coercivity for b(·, ·).

The operator T introduced in (14) realizes the inf-sup condition (13): it is sometimes called an inf-sup
operator. One can easily prove the following result, see e.g. [8, Chapter 2].

Lemma 1. Let b(·, ·) be a continuous, sesquilinear hermitian form on E×E. Then the three assertions below
are equivalent:

(i) (11)-(12) is well-posed in the Fredholm sense ;
(ii) the form b satisfies a weak stability condition ;
(iii) the form b is weakly T-coercive.

As seen in the introduction, problem (1) set in the Hilbert space V = H1
0 (Ω) can be expressed in variational

form as (3). Let us introduce the linear continuous operator A from V to V ′ such that 〈Av,w〉 = a(v, w) for
all v, w ∈ V , with the form a defined in (2): by construction, A : v 7→ −div(σ∇v). In operator form, (1)-(3)
writes equivalently

Find u ∈ V such that Au = f in V ′. (15)

We propose below some realizations of the inf-sup operator that can be used for problem (1) for a polygonal
interface Σ. From now on, we suppose for simplicity that Σ is a polygonal line without endpoints, ie. it is a
loop. Let N denote the number of its corners, (cn)n=1,N its corners, (αn)n=1,N the corner angles measured
in Ω1, and (en)n=1,N its edges. We introduce the polar coordinates (ρn, θn) centered at cn such that Ω1

coincides locally with the cone Cαn .
First, we build a partition of unity on Ω. So, let (χn)n=1,2N ∈ (C∞(Ω; [0, 1]))N with supports localized in
a neighborhood of the interface, such that, for n = 1, N , χn = 1 near the corner cn and χn = 0 "far" from
cn (in particular, (χn)n=1,N have mutually disjoint supports); respectively χn+N = 0 on Σ \ en. Plus, one
imposes the condition

∑
n=1,2N χn = 1 on Σ. Then we define χ0 = 1 −

∑
n=1,2N χn, which vanishes in a

neighborhood of the interface Σ and, setting P = 2N , we obtain that (χp)p=0,P ∈ (C∞(Ω; [0, 1]))P+1 is a
partition of unity on Ω. Finally we denote by Sp := supp(χp) the support of the cut-off function χp.
Now, let (Rp)p=1,P be linear continuous operators that act from V1 to V2 (resp. (R′p)p=1,P from V2 to V1).
We suppose in addition that these operators are such that, for all p = 1, P ,

∃C,C ′ > 0, ∀w1 ∈ V1, ‖Rpw1‖Ω2
≤ C ‖w1‖Ω1

and ‖χ1/2
p ∇(Rpw1)‖Ω2∩Sp

≤ C ′ ‖χ1/2
p ∇w1‖Ω1∩Sp

,

∃C,C ′ > 0, ∀w2 ∈ V2, ‖R′pw2‖Ω1
≤ C ‖w2‖Ω2

and ‖χ1/2
p ∇(R′pw2)‖Ω1∩Sp

≤ C ′ ‖χ1/2
p ∇w2‖Ω2∩Sp

.
(16)
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We introduce

‖R‖ := max
p=1,P

‖Rp‖, ‖R′‖ := max
p=1,P

‖R′p‖, resp. |R| := max
p=1,P

|Rp|, |R′| := max
p=1,P

|R′p|, (17)

where for all p = 1, P ,

‖Rp‖ := sup
w1∈V1, ‖χ1/2

p ∇w1‖Ω1∩Sp=1

‖χ1/2
p ∇Rpw1‖Ω2∩Sp

, |Rp| := sup
w1∈L2(Ω1), ‖w1‖Ω1

=1

‖Rpw1‖Ω2
,

‖R′p‖ := sup
w2∈V2, ‖χ1/2

p ∇w2‖Ω2∩Sp=1

‖χ1/2
p ∇R′pw2‖Ω1∩Sp

, |R′p| := sup
w2∈L2(Ω2), ‖w2‖Ω2

=1

‖R′pw2‖Ω1
.

(18)

Finally, we assume matching conditions on the traces:

∀p, ∀v1 ∈ V1, Rpv1|Σ∩Sp
= v1|Σ∩Sp

, ∀p, ∀v2 ∈ V2, R
′
pv2|Σ∩Sp

= v2|Σ∩Sp
. (19)

Remark 2. At the end of the section, we will show how in practice we can provide χp, Rp, R′p which fulfill
all the conditions above.

Finally we define the two operators

Tv =


v1 on Ω1

− v2 + 2
∑
p=1,P

χpRpv1 on Ω2
, T′v =

 v1 − 2
∑
p=1,P

χpR
′
pv2 on Ω1

− v2 on Ω2

. (20)

Now one can prove the following

Lemma 2. Suppose that χp, Rp, R′p satisfy (16) for all p = 1, P . If the contrast κσ does not belong to
[−‖R′‖2;−1/‖R‖2] where ‖R‖ and ‖R′‖ are defined by (17)-(18), then the form a is weakly T-coercive for T

defined in (20), and problem (1) is well-posed in the Fredholm sense.

Remark 3. According to [15, 2], the case κσ = −1 leads to an ill-posed problem (1) in any geometry.
Consequently, it follows that ‖R‖ ≥ 1, ‖R′‖ ≥ 1.

Proof. We assume for instance that κσ ∈ (− 1/‖R‖2; 0). By lemma 1, we just have to show that the form a
is weakly T-coercive, namely

∃C ∈ K(V ), ∃T ∈ L(V ), ∃α > 0, β ∈ R, ∀v ∈ V, a(v, Tv) ≥ α‖v‖2V − β‖Cv‖2V .

We consider operator T defined in (20)-left to prove the above condition. Due to the matching conditions
(19) satisfied by (Rp)p, Tv ∈ V for all v ∈ V and, in addition one checks easily that T◦T = IV so T is bijective.
Then:

a(v, Tw) = b(v, w) + c(v, w), where the forms b and c are respectively defined by:

b(v, w) = |σ1|(∇v1,∇w1)Ω1
+ |σ2|(∇v2,∇w2)Ω2

− 2|σ2|
∑
p=1,P

(∇v2, χp∇(Rpw1))Ω2∩Sp
,

c(v, w) = −2|σ2|
∑
p=1,P

(∇v2, Rpw1∇χp)Ω2∩Sp .

First we prove that b is coercive. Using Young’s inequality with η > 0 on b(v, v), we get

b(v, v) ≥ |σ1|‖∇v1‖2Ω1
+ |σ2|‖∇v2‖2Ω2

− |σ2|
∑
p=1,P

(
η ‖χ1/2

p ∇v2‖2Ω2∩Sp
+ η−1‖χ1/2

p ∇(Rpv1)‖2Ω2∩Sp

)
.

One has: ∑
p=1,P

‖χ1/2
p ∇v2‖2Ω2∩Sp

≤
∑
p=1,P

‖χ1/2
p ∇v2‖2Ω2

=
∑
p=1,P

(χp∇v2,∇v2)Ω2

= ((1− χ0)∇v2,∇v2)Ω2
≤ ‖∇v2‖2Ω2

, as ‖1− χ0‖L∞(Ω2) = 1.
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Next, using the definitions of (‖Rp‖)p=1,P and ‖R‖, we note that:∑
p=1,P

‖χ1/2
p ∇(Rpv1)‖2Ω2∩Sp

≤
∑
p=1,P

‖Rp‖2‖χ1/2
p ∇v1‖2Ω1∩Sp

≤ ‖R‖2
∑
p=1,P

‖χ1/2
p ∇v1‖2Ω1

= ‖R‖2 ((1− χ0)∇v1,∇v1)Ω1
≤ ‖R‖2‖∇v1‖2Ω1

.

Hence,
b(v, v) ≥ (|σ1| − |σ2| η−1‖R‖2)‖∇v1‖2Ω1

+ |σ2|(1− η) ‖∇v2‖2Ω2
.

Because κσ ∈ (− 1/‖R‖2; 0), we can choose η such that ‖R‖2|κσ| < η < 1, which is equivalent to

|σ1| − |σ2| η−1‖R‖2 > 0 and |σ2|(1− η) > 0.

Regarding c(v, v), if we let C : V → V such that (Cv, w)V = c(v, w) for all v, w ∈ V , then by Cauchy-Schwarz
inequality one gets

‖Cv‖2V = c(v, Cv) ≤ G ‖∇v‖Ω ‖Cv‖Ω,
where G := 2P |R| |σ2|maxp=1,P (|χp|W 1,∞(Ω2)). By Rellich’s theorem, one concludes that C is compact. Then
by using Young’s inequality with η′ > 0 we find

c(v, v) ≥ −1

2
((η′)−1‖Cv‖2V + η′‖v‖2V ),

which ends the proof in the case κσ ∈ (− 1/‖R‖2; 0), by choosing η′ small enough.
On the other hand, if κσ ∈ ( −∞; − ‖R′‖2), one can reverse the roles of Ω1 and Ω2 by using this time the
operator T′ defined in (20)-right. The proof then proceeds as above to prove that there exist α′ > 0, β′, and
a compact operator C′ such that

∀v ∈ V, a(v, T′v) ≥ α′‖v‖2V − β
′‖C′v‖2V ,

which is the condition (14).

To conclude the study of the well-posedness of problem (1), let us explicit χp, (Rp)p=1,P , (resp. (R′p)p=1,P ),
and compute the bounds. In the case where Σ is a polygonal line with all angles αn ∈ 2πQ, n = 1, N ,
one can explicit these bounds using the results of section 3. To do so, let us define (Bp)p=1,P a sequence of
connected open sets so that

⋃
p=1,P Bp is a neighborhood of the interface. For all n = 1, N , define Bn as a

triangle-based neighborhood of cn, and BN+n as a neighborhood of a part of en (excluding its endpoints)
which is symmetric with respect to en (see figure 7). More precisely, for all n = 1, N , Bn is a cyclic polygon
centered at cn composed of pn > 0 triangles in Ω1 and qn > 0 triangles in Ω2, with pn+qn even: define ρcn the
radius and sn the side length of this polygon. Then for all n = 1, N one defines BN+n as a trapezoid-based
open set with one trapezoid in Ω1 and one in Ω2, each trapezoid being of side lengths sn and sn+1(5). For
technical purposes one chooses pn ≥ 2 so that all part edge neighborhoods BN+n, n = 1, N are mutually
disjoint open sets. Note that a part edge neighborhood intersects with two corners neighborhoods. Namely
for n = 1, N − 1, one has BN+n ∩ Bn 6= ∅, BN+n ∩ Bn+1 6= ∅, and for n = N one has BP ∩ BN 6= ∅,
BP ∩B1 6= ∅. Then one defines (Rp)p=1,P from V1 to V2 (and also from L2(Ω1) to L2(Ω2)) such that for all
w1 ∈ V1 and for all n = 1, N

Rnw1(x) =


0 if x 6∈ Bn

Rnneww1(x) if x ∈ Bn
, (21)

with Rnnew defined as in section 3 (the general expression is given in Appendix A.1), and

RN+nw1(x) =


0 if x 6∈ BN+n

w1(xΣ,−yΣ) if x ∈ BN+n

, (22)

5B2N is composed of two trapezoids of side lengths s2N and s1.

12



where (xΣ, yΣ) denotes the local cartesian coordinates, and the first axis coincides with Σ.
Finally, let us precise some properties the cut-off functions (χp)p. Recall that (ρp, θp) denote the polar
coordinates centered at cp, p = 1, N . For all p = 1, N , χp(x) = χp(ρp), and χp = 1 for 0 ≤ ρp ≤ ρmin,p
for some ρmin,p > 0 ; respectively χN+p is a symmetric function with respect to the interface. This can
be realized by introducing ψ ∈ C∞(Ω; [0, 1]) equal to 1 in a neighborhood of the interface, for which we
remark that ψ −

∑
p=1,N χp is a (smooth) function that vanishes in a neighborhood of the corners, and also

that "close" to the interface, it is a function which is symmetric with respect to the interface(6). Then one
chooses Sp the support of χp such that Sp ⊂ Bp for the corner case (p = 1, N)(7) and in the edge case
Sp ⊂ Bp ∪Bp−N ∪Bp+1−N (p = N + 1, P−1), resp. SP ⊂ BP ∪BN ∪B1 (see figure 7). One can check that
(19) is satisfied for all Rp, p = 1, P . We can finally state the result on the well-posedness of problem (1).

Ω1

Ω2

c2

c1

eN

e1

e2

B1

B2

BN+1

BP

BN+2

Figure 7: Notations around two corners c1 and c2: here p1 = 2, q1 = 6, p2 = 11 and q2 = 3. The gray zones
represent the support of χp while the empty-dashed domains represent the support of χN+p, p = 1, N .

Theorem 1. Assume that all the corners’ angles of the interface belong to 2πQ. If κσ 6∈ [−Iα;− 1/Iα], with
Iα := max

n=1,N
max( 2π−αn

αn
, αn

2π−αn
), then the form a is weakly T-coercive and problem (1) is well-posed in the

Fredholm sense.

Proof. With the operators (21)-(22) and using propositions 4 and 5 (cf. Appendix A.1), one finds that
min(‖R‖2, ‖R′‖2) ≥ 1 and max(‖R‖2, ‖R′‖2) ≤ Iα. Consequently [−‖R′‖2;−1/‖R‖2] ⊆ [−Iα;−1/Iα]. Then if
κσ 6∈ [−Iα;− 1/Iα] the result follows from lemma 2.

Note that if κσ ∈ [−Iα; − 1/Iα], then the problem (1) is not well-posed in the Fredhom sense, according to
section 6 of [2]. Hence, we conclude that the condition on the contrast κσ 6∈ [−Iα; − 1/Iα] is optimal for a
2D geometry with a polygonal interface separating the two subdomains. We define then the critical interval
Ic := [−Iα;− 1/Iα].

5 T-conforming meshes for a general polygonal interface and error
estimates

We study the approximation of problem (1) when the contrast κσ does not belong to the critical interval
[−Iα; − 1/Iα]. According to the previous section (see theorem 1), it follows that problem (1) is well-posed
in the Fredholm sense (namely there might be a finite dimensional kernel). From now on, we impose further

6The strictly positive, upper limit distance up to which this property applies is a function of minp ρmin,p and of (αp)p=1,N .
7In accordance with the previous notations, one chooses ρmin,p such that ρmin,p < ρcp .
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that it is well-posed, to ensure the uniqueness of the solution u to be approximated. We study the family of
discrete problems (4), focusing on conforming(8) finite element approximations. Our aim is to prove that they
can be solved in geometries with interfaces that include corners, and to prove optimality of the approximation,
that is the unique solution uh tends towards the exact solution u when h tends to 0 with optimal convergence
rate. The geometry and notations are those of section 4.
To fix ideas, we assume throughout section 5 that κσ ∈ (−1/Iα; 0) so that we can use the operator T as defined
in (20)-left. The conforming approximations in V are defined on meshes that match with the interface (all
elements are subsets of either Ω1 or Ω2), with piecewise polynomial approximations. Let us consider (Th)h a
regular family of meshes of Ω, made of triangles ; for all triangles τ , one has either τ ⊂ Ω1 or τ ⊂ Ω2. Define
the family of Lagrange FE spaces (for a degree of approximation d ≥ 1)

V h(d) :=
{
v ∈ V : v|τ ∈ Pd(τ), ∀τ ∈ Th

}
,

where Pd(τ) is the space of polynomials of degree at most d on the triangle τ . Unless otherwise specified, the
index (d) is omitted. The parameter, or meshsize, h is defined as h := maxτ∈Th hτ , where hτ is the diameter
of τ . We recall that V h1 (resp. V h2 ) denotes the FE subspace of V1 (resp. V2) built on the triangulation Th.
Throughout this section, C is used to denote a generic positive constant which is independent of the meshsize,
the triangulation, and the data/unknown of interest.

Definition 3. Given h, let T ph,i := {τ ∈ Th : τ ∩ int(Sp) ∩ Ωi 6= ∅}, for i = 1, 2 and p = 1, P .
The meshes (Th)h are locally T-conform if, for all h . 1, for all p = 1, P , for all τ ∈ T ph,1, the image of τ by
the geometrical transforms underlying Rp belongs to T ph,2.

In practice, the above definition simply imposes that the meshes are locally: invariant by the axial sym-
metry for each part edge ; invariant by the axial symmetries Sj from one pattern, Pj , to the next, Pj+1,
for j = 1, p + q − 1, at each corner. Note that if the conditions of the above definition are met, then for
all vh ∈ V h, it holds that Rpv

h
1 is equal to the restriction of some element of V h2 on Ω2 ∩ Sp. We set

Ωh2 := int(
⋃
p=1,P ∪τ∈T p

h,2
τ).

As mentioned in section 2, in general, for vh ∈ V h, Tvh 6∈ V h due to the cut-off functions (χp)p=1,P that need
to be interpolated. In other words, the condition T(V h) ⊂ V h is false in general. However one can look for
a relaxed condition guaranteeing optimality of the approximation by introducing a discrete counterpart Th
of T such that Th(V h) ⊂ V h and limh→0 ‖Th − T‖L(Vh) = 0. Our goal in this section is to detail these steps,
using some discrete operators (Th)h (precised below).

In [11] it was proposed to replace χp by its interpolation of degree 1 denoted by χp,h. To fit with the definition
of T in (20)-left, it leads to consider:

T0
h v

h =

{
vh1 in Ω1

−vh2 + 2
∑
p=1,P χp,hRpv

h
1 in Ω2

. (23)

Unfortunately, for all p = 1, P , the degree of χp,hRpvh1 (restricted to a triangle) is too high. For instance, if
one is dealing with Lagrange FE of degree 1 (d = 1), its degree is 2: hence, T0

h v
h does not belong to V h in

general. This is why we introduce instead the discrete operator:

Th v
h =

{
vh1 in Ω1

−vh2 + 2Ih(
∑
p=1,P χp,hRpv

h
1 ) in Ω2

, (24)

with Ih the Lagrange-interpolation operator on V h(d). Moreover from [16, Corollaries 1.109-1.110] we have for
p = 1, P , the stability and approximation estimates

∃C > 0, ‖χp,h‖W 1,∞(Ω2) ≤ C ‖χp‖W 1,∞(Ω2), (25)

∃C > 0, ∀h small enough, ‖χp − χp,h‖W 1,∞(Ω2) ≤ C h |χp|W 2,∞(Ω2). (26)
8A Discontinuous Galerkin approach has been studied in [12].
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We emphasize that the analysis presented in [11] remains valid if one replaces T0
h by Th, as we explain below.

Our aim is to prove that the form a is uniformly weakly T-coercive, namely

∃α′ > 0, β∈ R, ∀h small enough, ∀vh ∈ V h, |a(vh, Thv
h)| ≥ α′‖vh‖2V − β‖Cvh‖2V , (27)

and from there one can follow the last part of the proof of Proposition 3 in [11] to derive a uniform discrete
inf-sup condition (by contradiction). Classically, this yields an error estimate.
In order to obtain (27), we shall evaluate |a(vh, (T−Th)vh)| for all vh ∈ V h. More precisely we want to prove

∃C0 > 0, ∀h small enough, ∀vh ∈ V h, |a(vh, (T− Th)vh)| ≤ C0 h ‖vh‖2V , (28)

which is a consequence of proving that there exists C > 0 such that, for all h small enough, for all vh ∈ V h,
‖(T− Th)vh‖V ≤ C h ‖vh‖V . This result is the object of lemma 3.

Lemma 3. Assume that the meshes are locally T-conform then there holds

∃C > 0, ∀h small enough, ∀vh ∈ V h, ‖(T− Th)vh‖V ≤ C h ‖vh‖V , (29)

so the form a is uniformly weakly T-coercive.

Proof. Given vh ∈ V h, let us apply the triangle inequality:

‖(T− Th)vh‖V ≤ ‖(T− T0
h)vh‖V + ‖(T0

h − Th)vh‖V .

Using the continuity of (Rp)p=1,P and (26), one has for the first term of the right-hand side:

‖(T− T0
h)vh‖V ≤ C

∑
p=1,P

‖χp − χp,h‖W 1,∞(Ω2)‖vh‖V ≤ C h ‖vh‖V .

On the other hand, for the last term of the right-hand side setting whp,2 = Rpv
h
1 , p = 1, P , one finds

‖(T0
h − Th)vh‖V ≤ 2

∑
p=1,P

‖∇(χp,hw
h
p,2 − Ih(χp,hw

h
p,2))‖Ωh

2
.

For every p, since the meshes are locally T conform, the discrete function whp,2 is equal to the restriction on
Ωh2 of an element of V h2 . Using lemma 5 in §A.3 and the continuity of the operators (Rp)p=1,P , one finds

‖(T0
h − Th)vh‖V ≤ C h ‖vh‖V ,

which leads to (29), and thus to (28). It now follows that

∃α > 0, β∈ R, ∀h small enough , ∀vh ∈ V h, |a(vh, Thv
h)| ≥ (α− C0h)‖vh‖2V − β‖Cvh‖2V ,

with α and β constants that express the weak T-coercivity of a(·, ·) with the operator T as in (20), see
lemma 2 and theorem 1. Hence, one finds the desired result (27), which at the end yields the error estimate
(cf. [11]).

Theorem 2. Assume that problem (1) is well-posed and that the meshes are locally T-conform. Then for h
small enough there exists one and only one solution uh to (4), with the estimate

‖u− uh‖V ≤ C inf
vh∈V h

‖u− vh‖V . (30)

We conclude that we have optimality of the approximation for problem (1), thanks to the choice of the
discrete T-coercivity operator as in (23), assuming only that the meshes are locally T-conform.
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6 Numerical experiments
We are now in position to present some numerical illustrations. Consider the case of a squared cavity with
a triangular inclusion. Define the square Ω := ( − 4; 4) × ( − 4; 4): Ω2 is an equilateral triangle of height 4
(the center of gravity G of Ω2 is located at (x1, x2) =(0,−1/3)) and Ω1 = Ω \ Ω2. We want to approximate
problem (1) set in Ω with a constant right-hand side f :{

Find u ∈ H1
0 (Ω) such that:

− div(σ∇u) = 1 in Ω
.

Denoting (cn)n=1,3 the corners of Σ, then Ω1 locally coincides near cn, n = 1, 3 with the cone of aperture
α := 5π/3. For this configuration one finds Iα := 5, and with theorem 1 one can prove that if κσ 6∈ [−5;−1/5]
then problem (1) (with the data f = 1) is well-posed in the Fredholm sense. Then in order to define locally
T-conforming meshes, proceeding as in sections 3 and 5, one defines first a neighborhood of the interface Σ
made of three polygonal neighborhoods (one for each corner) where one applies the ad hoc symmetry-and
rotation-based operator (21), and three trapezoid-based neighborhoods (one for each part edge) where one
applies the symmetry-based operator (22). The associated locally T-conforming mesh is deduced by meshing
one pattern of each neighborhood, and duplicating it by symmetry (see figure 8 (right)): in this configuration
we choose p1 = p2 = p3 = 10 and q1 = q2 = q3 = 2.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Figure 8: (Left) example a standard triangulation of Ωh (1430 nodes) ; (right) example of locally T-conforming
mesh (1424 nodes). The dashed lines enclose regions where we built T-conforming meshes near a corner,
respectively a straight line.

In figure 9, we plot the relative errors in L2-norm for several standard meshes (figure 8 (left)) and several
T-conforming meshes (figure 8 (right)), for a contrast κσ = −5.2, and for several orders of approximation
(d = 1, 2, 3). Note that we do not compare the discrete solution with the exact solution. As the optimality
of the approximation (see theorem 2) with T-conforming meshes is satisfied, one can compare with uhmin the
discrete solution obtained on the finest mesh (with the same order of approximation) and one can check in
figure 9 that convergence is ensured with a monotonic behavior of the error. With standard meshes however,
the simulation gives unsatisfying results with a slightly erratic behavior of the error. Numerical results
illustrate the importance of using T-conforming meshes to guarantee convergence of the numerical method.
Due to the symmetry of the geometry (and the right-hand side), one is expecting a symmetric solution

with respect to Ox2. One can check that, even for a refined, but standard mesh, the discrete solution does
not satisfy this symmetry principle (see figure 10). This also explains why the approximation considering
standard meshing does not converge so well.
On the other hand, according to [11, Proposition 2] the regularity of the solution u of problem (1) is such

that, away from the corners, ui, i = 1, 2 is piecewise-H2 whereas near the corners there exists a singularity
exponent s ∈ (0, 1] such that ui is only guaranteed to be piecewise-H1+s due to the presence of a singular
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Figure 9: Relative error in L2-norm of uh − uhmin
for different mesh sizes h (log-log scale) for κσ = −5.2.

Figure 10: Computed solution, same color scale: (left) solution uh obtained with P3 finite elements on
the finer standard mesh (101576 nodes) ; (right) solution uh obtained with P3 finite elements on the finer
T-conforming mesh (101716 nodes).

part here (cf. section 3). Then one has the estimates

‖u− uh‖V ≤ C hs, and ‖u− uh‖Ω ≤ C h2s.

The last estimate is obtained with the so-called Aubin-Nitsche lemma [16]. Note that in absence of the
singular part, one expects that s = 1. For κσ = −5.2 computations yield a singularity exponent s = 0.13.
The results of figure 9 show an average order of convergence equal to 0.9 (that is s = 0.45) while using
T-conforming meshes: this super-convergence phenomenon is classically observed when the reference solution
is also a computed one, and both solutions are very close one to the other. On the other hand, using standard
meshes, the average order of convergence for the last two meshes is s = 0.11, which is almost equal to the
theoretical value.

7 Concluding remarks
In this paper we extended the approximation theory for transmission problems with sign-changing coefficients
with the T-coercivity approach. The novelty lies in the treatment of polygonal interfaces. This construction
can be directly applied to the discrete problem by designing T-conforming meshes, which allows one to
guarantee convergence of conforming finite element methods as soon as the continuous problem is well-posed.
Below, we list some possible applications of our work.
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• One can study the transmission problem in the time-harmonic regime:{
Find u ∈ H1

0 (Ω) such that:
div(σ∇u) + ω2ςu = f in Ω

, (31)

at the frequency ω 6= 0, with ς ∈ L∞(Ω). Indeed, the added term ω2ςu is a compact perturbation,
so one concludes that when κσ 6∈ [−Iα;−1/Iα], problem (31) is well-posed in the Fredholm sense and,
when it is well-posed, one obtains convergence of the cFE method using locally T-conforming meshes.

• One can extend the results on problems (1) and (31) to the transmission problem with sign-changing
coefficients and boundary conditions other than Dirichlet boundary condition (see for instance [10,
Chapter 1, §1.7]).

• The previous proofs can be easily adapted to 2D geometries with a curved boundary or a curved
interface. In particular, the case of the curved interface can be covered with the help of Theorem 3.1-1
of [13]. For an interface without corners, well-posedness in the Fredholm sense is then established as
soon as κσ 6= −1 (see [8]). We refer to [15] for the first relation – and proof with the help of integral
equations – of this result. Results for the optimality of the approximation hold using for instance
isoparametric quadrilateral FE (see [8]).

• One may apply similar techniques to a transmission problem with sign-changing coefficients in 3D
geometries with straight or curved boundary and interface. However the ability of the T-coercivity
approach to deliver the optimal condition on the contrast has yet to be established in the general
case [2].

• Once the well-posedness of problem (31) is established, one can solve the eigenvalue problem{
Find (u, λ) ∈ H1

0 (Ω) \ {0} × C such that:
−div(σ∇u) = λu in Ω

, (32)

and derive classical error estimates for the eigenvalues’ approximation (see [8, 9]).

• Let us mention that a posteriori error estimates for diffusion problems with sign-changing coefficients
have been carried out in [14] and lead to similar meshing requirements near the interfaces.

• On the other hand, the study of problem (1) when κσ belongs to the critical interval cannot be handled
as previously, due to the appearance of singularities [21, 6] that do not belong to H1(Ω). This problem
has been investigated in [4] for particular geometries: it requires a new functional framework explicitly
taking into account the singularities. For a general polygonal interface, a new numerical approximation
method is proposed in [3], which relies on the use of Perfectly Matched Layers at the corners.
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A Appendix

A.1 General construction of R around corners
In this section we generalize the tilings method presented in section 3 to any corner of angle α ∈ 2πQ.
Recall that we define α = 2π p

p+q in Ω1, with p, q > 0, p 6= q and p + q even. Proceeding as in section
3, one builds admissible rotation- and symmetry-based operators Radm, and then take the average of these
admissible operators to obtain the desired result (that is operators R and R′ with the same minimal norm as
in [2]). We propose min(p, q) admissible operators below based on a simple algorithm.
Consider for instance that p < q. One constructs p admissible operators (Radm

i )i=1,p from V1 to V2, the i-th
operator being obtained by (see figure 11 for an illustration):
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1) in Ωq+1−k
2 , k = 1, i: apply S1 to vk1 ;

2) in Ωp+1−k
2 , k = i, p: apply S2 to vk1 ;

3) in Ωl2, l ∈ I := Jp+2− i, q− iK: from l = p+2− i to l = q− i, apply Ri−(p+l) to vi1, then S2 ◦Rp+1−i−(l+1)

to vi1, update l→ l+ 2 and so on. In other words, alternatively apply a rotation-based operator and a
rotation+symmetry-based operator to vi1.

At step 3), |I| = q − p − 1 is odd since q + p is even, so one always finishes by R2i−(p+q) in Ωq+1−i
2 , which

ensures continuity of Radm
i v1 on ∂Ωq+1−i

2 ∩ ∂Ωq−i2 .

Ωi1

Ω1
1

Ω2
1

Ωq2

v1
1

v2
1

e1

e2

S1v1
1

vi1vp1

S1v2
1

S1vi1

S2vp1

S2vp−1
1

S2vi1

Step 2

Step 1

Step 3

R2(i−(p+1))v
i
1

S2 ◦ R−2v
i
1

R2i−(p+q)v
i
1

Ωp+1−i
2

Ωq+1−i
2

Ω2
2

Ω1
2

Figure 11: Scheme representing steps 1)-2)-3) for building Radm
i .

One constructs p admissible operators (Radm′

i )i=1,p from V2 to V1 similarly, the i-th operator being obtained
by:

4) in Ωk1 , k = 1,min(i, p− 1): apply S1 to vq+1−k
2 ;

5) in Ωk1 , k = min(i+ 1, p), p: apply S2 to vp+1−k
2 ;

6) in Ωi1, if i < p, add up the remaining contributions (vl2)l∈I′ , with I ′ := Jp+ 1− i, q− iK: for l = p+ 1− i
to l = q − i, start by S2 ◦ Rl−(p+1−i) then apply −R(l+1)+p−i, update l → l + 2 and so on. If i = p one
adds up (vl2)l∈I′ , where I ′ = J2, q − p + 1K: for l = 2 to l = q − p + 1 start with −Rl then apply the
rotation+symmetry-based operator S1 ◦ R(q−p+1)−(l+1), update l→ l + 2 and so on.

At step 6), in both cases, |I ′| = q−p is even since q+p is even, so one applies successively pairs of operators.
Note also that at step 6), one adds contributions in the i-th pattern of Ω1, already considered at step 4) or
5), and remark that when the index is zero, R0 = I so that the rotation+symmetry-based operator simply
becomes a symmetry-based operator.

Since p+ q is even, one can check that continuity is ensured at all interfaces of the patterns. The algorithm
produces p operators from V1 to V2, respectively from V2 to V1. Let us give an example: for p = 4, q = 6
(that is α = 4π/5).
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Then one finds 4 admissible operators from V1 to V2 (each one corresponds to a column):

Radm
1 v1 Radm

2 v1 Radm
3 v1 Radm

4 v1

q q q q
S2v4

1 , S2v4
1 , S2v4

1 , S2v4
1 , in Ω1

2

S2v3
1 , S2v3

1 , S2v3
1 , R−2v

4
1 , in Ω2

2

S2v2
1 , S2v2

1 , R−4v
3
1 , S1v4

1 , in Ω3
2

S2v1
1 , R−6v

2
1 , S1v3

1 , S1v3
1 , in Ω4

2

R−8v
1
1 , S1v2

1 , S1v2
1 , S1v2

1 , in Ω5
2

S1v1
1 , S1v1

1 , S1v1
1 , S1v1

1 , in Ω6
2

In this example, |I| = 1 so one applies only one rotation-based operator (following step 3)).
Conversely, one finds 4 admissible operators from V2 to V1:

Radm′

1 v2 Radm′

2 v2 Radm′

3 v2 Radm′

4 v2

q q q q
S1v6

2 − R8v
5
2 + S2v4

2 , S1v6
2 , S1v6

2 , S1v6
2 , in Ω1

1

S2v3
2 , S1v5

2 − R6v
4
2 + S2v3

2 , S1v5
2 , S1v5

2 , in Ω2
1

S2v2
2 , S2v2

2 , S1v4
2 − R4v

3
2 + S2v2

2 , S1v4
2 , in Ω3

1

S2v1
2 , S2v1

2 , S2v1
2 , S2v1

2 − R2v
2
2 + S1v3

2 , in Ω4
1

Here |I ′| = 2 so one applies two additional operators to vl2, l ∈ I ′ (following step 6)).
With these guidelines one can write all operators (Radm

i )i=1,p, (Radm′

i )i=1,p for any p, q such that p < q and
p+ q even. Note that by exchanging p with q (and Ω1 with Ω2), one addresses similarly the case q < p.
In the following, we set p < q. As mentioned in section 3, the problem is that, taken individually, no
admissible operator Radm

i (resp. Radm′

i ), i = 1, p, satisfies ‖Radm
i ‖2 = Iα (resp. ‖Radm′

i ‖2 = Iα), with Iα
defined in (9). Indeed, for all v1 ∈ V1, v2 ∈ V2, for i = 1, p, Radm

i built from 1)-2)-3) and Radm′

i built from
4)-5)-6), one gets the bounds

‖∇(Radm
i v1)‖2Ω2

≤
∑
k=1,p

‖∇vk1‖2Ωk
1

+ (|I|+ 1) ‖∇vi1‖2Ωi
1
≤ (q − p+ 1) ‖∇v1‖2Ω1

,

‖∇(Radm′

i v2)‖2Ω1
≤

∑
l∈J1,qK\I′

‖∇vl2‖2Ωl
2

+ (|I ′|+ 1)
∑
l∈I′
‖∇vl2‖2Ωl

2
≤ (q − p+ 1) ‖∇v2‖2Ω2

.

The bounds are sharp since:

• in the first case, one may choose v1 6= 0 such that vk1 = 0 for k 6= i: then ‖∇(Radm
i v1)‖2Ω2

= (q − p +
1) ‖∇v1‖2Ω1

;

• in the second case, given l ∈ I ′(6= ∅), one may choose v2 6= 0 such that vk2 = 0 for k 6= l: then
‖∇(Radm′

i v2)‖2Ω1
= (q − p+ 1) ‖∇v2‖2Ω2

.

One can check that Iα < q − p+ 1 for all 1 < p < q: Iα − (q − p+ 1) = (p− q)(p− 1)/p < 0(9).
To get optimal operators (that is of norm equal to Iα), one defines R, R′ as the average of the admissible
operators:

R =
1

p

∑
i=1,p

Radm
i , and R′ =

1

p

∑
i=1,p

Radm′

i . (33)

9Equality is obtained for p = q (corresponding to a plane interface) for which ‖Radmi ‖2 = ‖Radm′
i ‖2 = 1, and in addition

p = 1: in that case there is only one admissible operator.
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Going back to our example with p = 4 and q = 6, one defines R and R′ such that for all v1 ∈ V1, v2 ∈ V2

Rv1 =



S2v4
1 in Ω1

2

3

4
S2v3

1 +
1

4
R−2v

4
1 in Ω2

2

2

4
S2v2

1 +
1

4
R−4v

3
1 +

1

4
S1v4

1 in Ω3
2

1

4
S2v1

1 +
1

4
R−6v

2
1 +

2

4
S1v3

1 in Ω4
2

1

4
R−8v

1
1 +

3

4
S1v2

1 in Ω5
2

S1v1
1 in Ω6

2

, R′v2 =



1

4
S2v4

2 −
1

4
R8v

5
2 + S1v6

2 in Ω1
1

2

4
S2v3

2 −
1

4
R6v

4
2 +

3

4
S1v5

2 in Ω2
1

3

4
S2v2

2 −
1

4
R4v

3
2 +

2

4
S1v4

2 in Ω3
1

S2v1
2 −

1

4
R2v

2
2 +

1

4
S1v3

2 in Ω4
1

.

These operators are optimal in the sense that ‖R‖2 = ‖R′‖2 = Iα. Proceeding as in section 3, using the
triangle inequality one finds that, for all v1 ∈ V1,

‖∇(Rv1)‖2Ω2
≤ ‖∇v4

1‖2Ω4
1

+ (
3

4
‖∇v3

1‖Ω3
1

+
1

4
‖∇v4

1‖Ω4
1
)2 + (

2

4
‖∇v2

1‖Ω2
1

+
1

4
‖∇v3

1‖Ω3
1

+
1

4
‖∇v4

1‖Ω4
1
)2

+ (
1

4
‖∇v1

1‖Ω1
1

+
1

4
‖∇v2

1‖Ω2
1

+
2

4
‖∇v3

1‖Ω3
1
)2 + (

1

4
‖∇v1

1‖Ω1
1

+
3

4
‖∇v2

1‖Ω2
1
)2 + ‖∇v1

1‖2Ω1
1
.

By defining the matrix M =


0 0 0 1
0 0 3/4 1/4
0 2/4 1/4 1/4

1/4 1/4 2/4 0
1/4 3/4 0 0
1 0 0 0

, and
−→
W := (‖∇v1

1‖Ω1
1
, ‖∇v2

1‖Ω2
1
, ‖∇v3

1‖Ω3
1
, ‖∇v4

1‖Ω4
1
)ᵀ,

one can check that ‖∇(Rv1)‖2Ω2
≤ ‖M

−→
W‖22 ≤ ‖MᵀM‖2‖∇v1‖2Ω1

, leading to ‖R‖2 ≤ ‖MᵀM‖2. Similarly, by
defining M ′ = Mᵀ, one can check that ‖R′‖2 ≤ ‖M ′ᵀM ′‖2.

Let us remark that the entries Mlk, l = 1, 6, k = 1, 4, are such that Mlk = sup
w1∈V1

‖∇(Rw1)‖Ωl
2

‖∇wk1‖Ωk
1

. For example

for l = 4, one has for all v1 ∈ V1,

‖∇(Rw1)‖2Ω4
2
≤ (

1

4
‖∇v1

1‖Ω1
1

+
1

4
‖∇v2

1‖Ω2
1

+
2

4
‖∇v3

1‖Ω3
1
)2.

One obtains equality by taking, for every k = 1, 4, v1 such that vi1 = 0 for i 6= k, which yields M41 = 1
4 ,

M42 = 1
4 , M43 = 2

4 , M44 = 0.
More generally, one obtains for instance for v1 ∈ V1

‖∇(Rv1)‖2Ω2
=
∑
l=1,q

‖∇(Rv1)‖2Ωl
2
≤
∑
l=1,q

∑
k=1,p

Mlk ‖∇vk1‖Ωk
1

2

, with Mlk = sup
w1∈V1

‖∇(Rw1)‖Ωl
2

‖∇wk1‖Ωk
1

. (34)

Above, a sum over k appears due to the fact that for l = 1, q, the (Radm
i v1)|Ωl

2
is a linear combination of

isometry-based operators applied to some vk1 . Introducing M ∈ Mq,p(R) with entries (Mlk)l=1,q,k=1,p, one
has (see footnote 3 p. 6)

‖R‖2 = ‖MᵀM‖2.
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Let us give the general expression of the matrix M for any p, q, and evaluate ‖MᵀM‖2 to conclude. For
n ∈ J1, pK, define Mp−n+1, M̃p−n+1 ∈Mp−n+1,p(R) such that

Mp−n+1 M̃p−n+1

q q

0 . . . . . . . . . . . . . . . . . . 0 p
p

... . .
. p−1

p
1
p

... {0} . .
.

. .
.

. .
. ...

... . .
. j

p
. .
. {

1
p

} ...

... . .
.

. .
.

. .
. ...

0 . . . 0 n
p

1
p . . . . . . . . . 1

p


,



1
p . . . . . . . . . 1

p
n
p 0 . . . 0

... . .
.

. .
.

. .
. ...

...
{

1
p

}
. .
. p−j+1

p
. .
. ...

... . .
.

. .
.

. .
.

{0}
...

1
p

p−1
p

. .
. ...

p
p 0 . . . . . . . . . . . . . . . . . . 0


,

where j denotes the column index. In the specific case where n = 1, the matrix Mp (resp. M̃p) is a square
matrix for which the first column (resp. last column) has non zero entries. All entries are equal to 0 or 1

p ,
except on one diagonal where they range from n

p to p
p = 1. Then the shape of M depends on whether p ≤ q

2
or not:

• if p ≤ q/2 : let m ∈ N such that q = 2p + m. Then the matrix M is written M =

Mp

M ′m
M̃p

 with

Mp, M̃p ∈ Mp(R) (defined above for n = 1) and respectively M ′m ∈ Mm,p(R) whose entries are all
equal to 1/p, with the convention that if m = 0, M ′m is empty. The example treated in section 3
corresponds to that case with m = 0.

• if p > q/2 : let m ∈ N∗ such that q = 2p−m. If m > 2 then the matrixM is writtenM =

Mp−m+1

M ′′m−2

M̃p−m+1

,

with Mp−m+1, M̃p−m+1 ∈ Mp−m+1,p(R) (defined above for n = m) and resp. M ′′m−2 ∈ Mm−2,p(R)
such that (below i denotes the row index)

M ′′m−2 =


0 . . . . . . 0 m−1

p

p−m− 1︷ ︸︸ ︷
1
p . . . . . . . . . 1

p
2
p 0

... {0} . .
.

. .
.

. .
. {

1
p

}
. .
.

. .
.

. .
. ...

... . .
. m−i

p
. .
. {

1
p

}
. .
. 1+i

p
. .
.
{0}

...

0 2
p ︸ ︷︷ ︸

p−m−1

1
p . . . . . . . . . 1

p
m−1
p 0 . . . . . . 0

 .

It is convenient to defineM ′′m−2 according to some d ∈ Z, defined such that p = 2(m−2)+d. For d > 1,
one can obtain some "central" columns with only 1

p entries, whereas for d ≤ 1, one gets central columns
of the form (0, . . . , 0, m−jp , 1

p , . . . ,
1
p ,

1+i
p , 0, . . . , 0)ᵀ and (0, . . . , 0, 1+j

p , 1
p , . . . ,

1
p ,

m−i
p , 0, . . . , 0)ᵀ for some

ad hoc i, j that dictate the number of 0 entries. For example for d = 0 the two central columns
are given by (m−1

p , 1
p , . . . ,

1
p ,

m−2
p , 0)ᵀ, (0, m−2

p , 1
p , . . . ,

1
p ,

m−1
p )ᵀ and for d = 1 the central column is

(m−1
p , 1

p , . . . ,
1
p ,

m−1
p )ᵀ. The key is to start with the first and the last rows, then complete the rest

accordingly.

The matrix M simplifies to the matrix M =

Mp−1
1
p . . .

1
p

M̃p−1

 when q = 2p − 1, and to the matrix M =

(
Mp−1

M̃p−1

)
when q = 2p− 2. The previous example with p = 4, q = 6 corresponds to that last case.
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Note that the cases p > q are obtained by taking the transposed matrix presented above.
Let us give two examples to illustrate the cases p ≤ q/2 and p > q/2.
Case p = 2, q = 6: in that case q = 2p + m with m = 2. Following 1)-2)-3) and using (33)-(34), one can
check that for v1 ∈ V1,

Rv1 =



S2v2
1 in Ω1

2

1

2
S2v1

1 +
1

2
R−2v

2
1 in Ω2

2

1

2
R2
−4v

1
1 +

1

2
S2 ◦ R−2v

2
1 in Ω3

2

1

2
S2 ◦ R−4v

1
1 +

1

2
R−4v

2
1 in Ω4

2

1

2
R−6v

1
1 +

1

2
S1v2

1 in Ω5
2

S1v1
1 in Ω6

2

, and M =


0 1

1/2 1/2
1/2 1/2
1/2 1/2
1/2 1/2
1 0

 =

M2

M ′2
M̃2

 .

Case p = 6, q = 8: in that case q = 2p−m with m = 4. One can check that for v1 ∈ V1,

Rv1 =



S2v6
1 in Ω1

2

5

6
S2v5

1 +
1

6
R−2v

6
1 in Ω2

2

4

6
S2v4

1 +
1

6
R2
−4v

5
1 +

1

6
S2v6

1 in Ω3
2

3

6
S2v3

1 +
1

6
R2
−6v

4
1 +

2

6
S2v5

1 in Ω4
2

2

6
S2v2

1 +
1

6
R2
−8v

3
1 +

3

6
S2v4

1 in Ω5
2

1

6
S2v1

1 +
1

6
R2
−10v

2
1 +

4

6
S2v3

1 in Ω6
2

1

6
R−12v

1
1 +

5

6
S2v2

1 in Ω7
2

S1v1
1 in Ω8

2

, and M =



0 0 0 0 0 1
0 0 0 0 5/6 1/6
0 0 0 4/6 1/6 1/6
0 0 3/6 1/6 2/6 0
0 2/6 1/6 3/6 0 0

1/6 1/6 4/6 0 0 0
1/6 5/6 0 0 0 0
1 0 0 0 0 0


=

M3

M ′′2
M̃3

 .

Moreover, one checks easily by direct inspection the next result.

Proposition 1. The matricesMp−n+1 ∈Mp−n+1,p(R), M̃p−n+1 ∈Mp−n+1,p(R),M ′m ∈Mm,p(R),M ′′m−2 ∈
Mm−2,p(R) satisfy the following properties:

1)
p−n+1∑
l=1

(Mp−n+1)lk =


0 if k < n

2k−n
p if k ≥ n

; ∀l = 1, p− n+ 1,
p∑
k=1

(Mp−n+1)lk = 1;

2)
p−n+1∑
l=1

(M̃p−n+1)lk =


2(p+1−k)−n

p if k ≤ p− n+ 1

0 if k > p− n+ 1

; ∀l = 1, p− n+ 1,
p∑
k=1

(M̃p−n+1)lk = 1;

3) ∀k = 1, p,
m∑
l=1

(M ′m)lk = m
p ; ∀l = 1,m,

p∑
k=1

(M ′m)lk = 1;

4)
m−2∑
l=1

(M ′′m−2)lk =



2(k−1)
p if k < min(m,m− 2 + d)

m−2
p if m ≤ k ≤ p−m+ 1 for d > 1

q
p if m− 2 + d ≤ k ≤ p−m+ 3− d for d ≤ 1

2(p−k)
p if max(p−m+ 1, p−m+ 3− d) < k

;
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∀l = 1,m− 2,
p∑
k=1

(M ′′m−2)lk = 1.

Proposition 2. The matrix M ∈Mq,p(R) satisfies the following properties:

[1]


∀l = 1, q, ∀k = 1, p, Mlk ≥ 0

∃l0, k0 s.t. Ml0k0
= 1

; [2] ∀l,



p∑
k=1

Mlk = 1 if p ≤ q

p∑
k=1

Mlk = p
q if p ≥ q

; [3] ∀k,



q∑
l=1

Mlk = q
p if p ≤ q

q∑
l=1

Mlk = 1 if p ≥ q

.

Proof. Using proposition 1 one can deduce all the above results. Let us simply detail how to obtain the first
result of [3]. In other words, q ≥ p. First consider the case where q = 2p + m, m ∈ J1, pK. Then for all
k = 1, p one has

q∑
l=1

Mlk =

p∑
l=1

(Mp)lk +

m∑
l=1

(M ′m)lk +

p∑
l=1

(M̃p)lk =
2k − 1 +m+ 2p+ 2− 2k − 1

p
=

2p+m

p
=
q

p
.

Now let us consider the case q = 2p−m, m ∈ J3, p− 1K and suppose that d > 1: then min(m,m− 2 +d) = m
and max(p−m+ 1, p−m+ 3− d) = p−m+ 1. Then for all k = 1, p

q∑
l=1

Mlk =

p−m+1∑
l=1

(Mp−m+1)lk +

m−2∑
l=1

(M ′′m−2)lk +

p−m+1∑
l=1

(M̃p−m+1)lk

=



2(k − 1) + 2(p+ 1− k)−m
p

=
2p−m
p

=
q

p
if k < m

2k −m+m− 2 + 2(p+ 1− k)−m
p

=
2p−m
p

=
q

p
if m ≤ k ≤ p−m+ 1

2k −m+ 2(p− k)

p
=

2p−m
p

=
q

p
if k > p−m+ 1

.

One reaches the same result in the specific cases d ≤ 1 by noticing that for l = 1, p−m+ 1, (Mp−m+1)lk =

(M̃p−m+1)lk = 0 for k = m− 2 + d,m− 1.

It follows that

Proposition 3. For all p, q > 0 let M ∈Mq,p(R) be a matrix which satisfies the properties of proposition 2.
Then

‖MᵀM‖2 = max

(
q

p
,
p

q

)
.

Proof. Define A := MᵀM , it holds ‖A‖2 = λmax = max
λ∈σ(A)

λ(A)> 0, where σ(A) is the set of eigenvalues of

A. Using Gershgorin circle theorem, one bounds the spectrum of A as follows:

∀λ ∈ σ(A), ∀k = 1, p, |λ−Akk| ≤
∑
l 6=k

Akl,

then

λmax ≤ max
k=1,p

(Akk +
∑
l 6=k

Akl) = max
k=1,p

(
∑
l=1,p

Akl) ≤ max
k=1,p

(

p∑
l=1

q∑
h=1

(Mᵀ)khMhl) = max
k=1,p

(

p∑
l=1

q∑
h=1

MhkMhl)

≤ max
k=1,p

(

q∑
h=1

(

p∑
l=1

Mhl)Mhk).
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Due to the second and the third properties in proposition 2 satisfied by M , one finds

λmax ≤ max
k=1,p

(
max

(
1,
p

q

) q∑
h=1

Mhk

)
≤ max

(
1,
p

q

)
max

(
1,
q

p

)
= max

(
p

q
,
q

p

)
.

Let us prove that λmax = max
(
p
q ,

q
p

)
. Consider the vector ~W ∈ Rp such that ~W = (1, . . . , 1)ᵀ. Suppose

for instance that p ≤ q, then using again the second and the third properties in proposition 2, we get for all
j = 1, p (

(MᵀM) ~W
)
j

=

p∑
k=1

(MᵀM)jkWk =

p∑
k=1

q∑
h=1

MhkMhj =

q∑
h=1

(
p∑
k=1

Mhk

)
Mhj

= max

(
1,
p

q

)( q∑
h=1

Mhj

)
= max

(
p

q
,
q

p

)
= max

(
p

q
,
q

p

)
Wj ,

namely (MᵀM) ~W = max
(
p
q ,

q
p

)
~W .

Consequently, the proposed operator R in (33) is of optimal norm. One proceeds similarly for R′ by considering
Mᵀ instead of M as the roles of p and q are exchanged:

‖R‖2 = ‖MᵀM‖2 = max

(
p

q
,
q

p

)
, and ‖R′‖2 = ‖MMᵀ‖2 = max

(
p

q
,
q

p

)
.

Remark 4. There is always a unit entry in M according to proposition 2 (denoted by Mk0l0), one readily
checks that if w0

1 ∈ V1 with supp(w0
1) ⊂ Ωk0

1 , then it follows ‖∇(Rw0
1)‖2Ω2

≥ ‖∇w0
1‖2Ω1

. Hence ‖R‖2 ≥ 1.
Similarly, ‖R′‖2 ≥ 1.

A.2 Weighted estimates for operators R

In §A.1 we provided bounds for the norms of the geometry-based operators R. Here we provide bounds for
the operator norm when we use a localization process (see section 4), that is when the operator R is locally
applied in the neighborhood of the interface thanks to a cut-off function ξ (defined as in section 4) whose
support is localized either near a corner (proposition 4) or a straight line (proposition 5) of the interface Σ.
We use the same notations as in §A.1.

Proposition 4. Let ξ be a smooth positive function with support S, that depends only on the distance to the
corner of angle α = 2π p

p+q . Then

∀w1 ∈ V1, ‖ξ1/2∇(Rw1)‖2Ω2∩S ≤ Iα‖ξ
1/2∇w1‖2Ω1∩S ,

where Iα = max

(
p

q
,
q

p

)
, and R is a rotation- and symmetry-based operator from V1 to V2 defined as in (21).

Proof. Let w1 ∈ V1.

‖ξ1/2∇(Rw1)‖2Ω2∩S =

ˆ
Ω2∩S

ξ(ρ)

(∣∣∣∣∂(Rw1)

∂ρ

∣∣∣∣2 +
1

ρ2

∣∣∣∣∂(Rw1)

∂θ

∣∣∣∣2
)
ρdρdθ

=

q∑
l=1

ˆ
Ωl

2∩S
ξ(ρ)

(∣∣∣∣∂(Rw1)

∂ρ

∣∣∣∣2 +
1

ρ2

∣∣∣∣∂(Rw1)

∂θ

∣∣∣∣2
)
ρdρdθ.

Then similar to (34) with the change of variables (ρ, θ) 7→ (rk, ϕk) for k = 1, p that maps Ωl2 to Ωk1 (note that
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ξ(rk) = ξ(ρ)) one finds

‖ξ1/2∇(Rw1)‖2Ω2∩S ≤
q∑
l=1

 p∑
k=1

Mlk

(ˆ
Ωk

1∩S
ξ(rk)

(∣∣∣∣∂wk1 (rk, ϕk)

∂rk

∣∣∣∣2 +
1

r2
k

∣∣∣∣∂wk1 (rk, ϕk)

∂ϕk

∣∣∣∣2
)
rkdrkdϕk

)1/2
2

≤
q∑
l=1

(
p∑
k=1

Mlk‖ξ1/2∇wk1‖Ωk
1∩S

)2

.

Introducing
−→
W ξ = (‖ξ1/2∇w1

1‖Ω1
1∩S , . . . , ‖ξ

1/2∇wp1‖Ωp
1∩S)ᵀ, then one has M

−→
W ξ =

p∑
k=1

Mlk‖ξ1/2∇wk1‖Ωk
1∩S ,

using proposition 3 one finally gets

‖ξ1/2∇(Rw1)‖2Ω2∩S ≤ (MᵀM
−→
W ξ,
−→
W ξ) ≤ Iα‖ξ1/2∇w1‖2Ω1∩S .

Remark 5. Following remark 4, one can find w0
1 ∈ V1 such that ‖ξ1/2∇(Rw0

1)‖2Ω2∩S ≥ ‖ξ
1/2∇w0

1‖2Ω1∩S .

Proposition 5. Let ξ be a smooth positive function with support S that is symmetric with respect to the
interface. Then for all w1 ∈ V1

‖ξ1/2∇(Rw1)‖2Ω2∩S=‖ξ1/2∇w1‖2Ω1∩S ,

where R is the symmetry-based operator (22).

Proof. This inequality is obtained using the change of variables (xΣ, yΣ) → (xΣ,−yΣ) in Ω2 ∩ S. For all
w1 ∈ V1

‖ξ1/2∇(Rw1)‖2Ω2∩S =

ˆ
Ω2∩S

ξ(xΣ, yΣ)

(∣∣∣∣∂(Rw1)

∂xΣ

∣∣∣∣2 +

∣∣∣∣∂(Rw1)

∂yΣ

∣∣∣∣2
)
dxΣdyΣ

=

ˆ
Ω1∩S

ξ(xΣ, yΣ)

(∣∣∣∣∂w1

∂xΣ

∣∣∣∣2 +

∣∣∣∣∂w1

∂yΣ

∣∣∣∣2
)
dxΣdyΣ = ‖ξ1/2∇w1‖2Ω1∩S .

A.3 Local and global interpolation estimates
Let τ̂ be the reference triangle, with corners (1, 0), (0, 1) and (0, 0), and let Îd be the Lagrange interpolation
operator over Pd(τ̂). Given (Th)h a regular family of triangulations of a domain Ω we call Idτ the Lagrange
interpolation operator over Pd(τ), for all h and all τ ∈ Th.

Lemma 4. On the reference triangle τ̂ , one has the estimate

∃Ĉ > 0, ∀χ̂ ∈ P1(τ̂), ∀v̂ ∈ Pd(τ̂), ‖∇̂
(
χ̂v̂ − Îd(χ̂v̂)

)
‖τ̂ ≤ Ĉ |χ̂|W 1,∞(τ̂) ‖∇̂v̂‖τ̂ . (35)

As a consequence, one has the uniform local estimate

∃C > 0, ∀h, ∀τ ∈ Th, ∀χ ∈ P1(τ), ∀v ∈ Pd(τ), ‖∇
(
χv − Idτ (χv)

)
‖τ ≤ C hτ |χ|W 1,∞(τ) ‖∇v‖τ . (36)

Proof. Write χ̂(x̂, ŷ) = α + χ̂1(x̂, ŷ), resp. v̂(x̂, ŷ) = v̂−(x̂, ŷ) + v̂d(x̂, ŷ) where χ̂1(x̂, ŷ) = βx̂ + γŷ, resp.
v̂d(x̂, ŷ) =

∑
i=0,d aix̂

iŷd−i and deg(v̂−) < d. For i = 0, d, define êi(x̂, ŷ) = x̂i+1ŷd−i − Îd(x̂i+1ŷd−i), resp.
f̂i(x̂, ŷ) = x̂iŷd+1−i − Îd(x̂iŷd+1−i). Note that |χ̂|W 1,∞(τ̂) = max(|β|, |γ|).
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Since there holds χ̂v̂ − Îd(χ̂v̂) = χ̂1v̂d − Îd(χ̂1v̂d) = β
∑
i=0,d aiêi(x̂, ŷ) + γ

∑
i=0,d aif̂i(x̂, ŷ), one finds∣∣∣∇̂(χ̂v̂ − Îd(χ̂v̂)

)
(x̂, ŷ)

∣∣∣ ≤ |β|
∑
i=0,d

|ai| |∇̂êi(x̂, ŷ)|+ |γ|
∑
i=0,d

|ai| |∇̂f̂i(x̂, ŷ)|

≤ |χ̂|W 1,∞(τ̂)

∑
i=0,d

|ai|
(
|∇̂êi(x̂, ŷ)|+ |∇̂f̂i(x̂, ŷ)|

)

≤ |χ̂|W 1,∞(τ̂)

∑
i=0,d

|ai|2
1/2∑

i=0,d

(
|∇̂êi(x̂, ŷ)|+ |∇̂f̂i(x̂, ŷ)|

)2

1/2

.

It follows that ‖∇̂(χ̂v̂−Îd(χ̂v̂))‖τ̂ ≤ Ĉd |χ̂|W 1,∞(τ̂)(
∑
i=0,d |ai|2)1/2, with Ĉd =

√
2[
∑
i=0,d(‖∇̂êi‖2τ̂+‖∇̂f̂i‖2τ̂ )]1/2.

Then, we remark that the `2-norm of the coefficients is a norm over Pd(τ̂), hence it is also a norm over its
vector subspace Pzmvd (τ̂) made of zero-mean value polynomials on τ̂ . Now, over Pzmvd (τ̂), the semi-norm
‖∇̂ · ‖τ̂ is also a norm and because Pzmvd (τ̂) is a finite dimensional vector space, both norms are equivalent.
Noting finally that, starting from v̂, one has only to modify the degree-0 coefficient to obtain a zero-mean
value polynomial, we finally get that there exists Ĉ ′ independent of v̂ such that (

∑
i=0,d |ai|2)1/2 ≤ Ĉ ′‖∇̂v̂‖τ̂ .

Taking Ĉ = Ĉd Ĉ
′ leads to (35).

We recall that provided the family of triangulations (Th)h is regular, there exists s > 0 such that, for all h
and for all τ ∈ Th, there holds hτ ≤ s ρτ , where ρτ is the diameter of the largest ball that can be inscribed
in τ . One can then derive (36) from (35) by using the affine mapping from the reference triangle τ̂ to the
triangle τ ∈ Th. We refer for instance to [16]. We report here the computations for the sake of completeness
(C0, C1, · · · are constants that are independent of h and τ):

‖∇
(
χv − Idτ (χv)

)
‖τ ≤ C0 s ‖∇̂

(
χ̂v̂ − Îd(χ̂v̂)

)
‖τ̂ cf. Lemmas 1.100-1.101 of [16]

≤ C1 |χ̂|W 1,∞(τ̂) ‖∇̂v̂‖τ̂ cf. (35)
≤ C2 hτ |χ|W 1,∞(τ) × C3 s ‖∇v‖τ cf. Lemmas 1.100-1.101 of [16],

that is (36) with C = C2 C3 s.

Let us prove the estimate over Ωh2 = int(
⋃
p=1,P ∪τ∈T p

h,2
τ). Recall that V := H1

0 (Ω), V h(d) := {v ∈ V : v|τ ∈
Pd(τ), ∀τ ∈ Th}, and Ih is the interpolation operator on V h(d).

Lemma 5. Consider a cut-off function χ, and denote by χh its interpolation of degree 1. For all vh ∈ V h(d),

∃C > 0, ‖∇(χhv
h − Ih(χhv

h))‖Ωh
2
≤ C h ‖χ‖W 1,∞(Ω2)‖∇vh‖Ω2

. (37)

Proof. To obtain (37), we evaluate the L2-norm of ∇(χhv
h− Ih(χhv

h)) on Ωh2 by splitting Ωh2 into triangles,
and then going back to the reference triangle to use the uniform estimate (36):

‖∇(χhv
h − Ih(χhv

h))‖2Ωh
2

=
∑
τ⊂Ωh

2

ˆ
τ

|∇(χh|τv
h
|τ − Idτ (χh|τv

h
|τ ))|2 ≤ C

∑
τ⊂Ωh

2

h2
τ |χh|τ |2W 1,∞(τ)‖∇v

h
|τ‖2τ .

Using the definition of the meshsize h yields

‖∇(χhv
h − Idh(χhv

h))‖Ωh
2
≤ C h ‖χh‖W 1,∞(Ω2)‖∇vh‖Ω2

.

One concludes using the stability estimate (25).
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