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Mesh requirements for the finite element approximation of
problems with sign-changing coefficients

Anne-Sophie Bonnet-Ben Dhia Camille Carvalho Patrick Ciarlet Jr.

June 21, 2016

Abstract

Transmission problems with sign-changing coefficients occur in electromagnetic theory in the presence
of negative materials surrounded by classical materials. For general geometries, establishing Fredholmness
of these transmission problems is well-understood thanks to the T-coercivity approach. Moreover, for
a plane interface, there exist meshing rules that guarantee an optimal convergence rate for the finite
element approximation. We propose here a new treatment at the corners of the interface which allows
to design meshing rules for an arbitrary polygonal interface and then recover standard error estimates.
This treatment relies on the use of simple geometrical transforms to define the meshes. Numerical results
illustrate the importance of this new design.

Keywords: T-coercivity, transmission problem, sign-changing coefficient, conforming finite element method,
T-conforming mesh.

1 Introduction and setting of the transmission problem with sign-
changing coefficients

Our aim is to solve the problem {
Find u ∈ H1

0 (Ω) such that:
−div(σ∇u) = f in Ω,

(1)

where Ω ⊂ R2 is a bounded domain partitioned into two regions, σ is a scalar, sign-changing coefficient,
and f is some given data. In electromagnetic theory, this problem can be interpreted as a transmission
problem, in a domain composed of a classical dielectric material (σ > 0), and a negative material (σ < 0).
A negative material can be for example a metal at optical frequencies, or a metamaterial (e.g. [22, 1]), for
which some physical parameters become negative (the permittivity for metals, both the permittivity and the
permeability for metamaterials). Due to the sign-changing coefficient σ, well-posedness of problem (1) is not
guaranteed. In particular, classical tools such as Lax-Milgram theorem do not apply since the coercivity on
H1

0 (Ω)×H1
0 (Ω) of the corresponding sesquilinear form

a : (v, w) 7→
ˆ

Ω

σ∇v · ∇w dΩ, (2)

is lost. However, over the past decade, techniques have been developed to establish well-posedness, under
appropriate conditions, via the T-coercivity theory: introduced in [5], it consists in building isomorphisms T
such that the form (v, w) 7→ a(v, Tw) is coercive on H1

0 (Ω)×H1
0 (Ω). For short, we say that a(·, ·) is T-coercive.

What is less clear is the discrete counterpart of this approach.
In this paper, we consider problem (1) with the following hypothesis on σ:{

σ1 := σ|Ω1
is a constant such that σ1 > 0,

σ2 := σ|Ω2
is a constant such that σ2 < 0.

The ratio κσ := σ2/σ1 is called the contrast. Let Ω be a domain of R2, that is a connected bounded open
subset of R2 with a Lipschitz boundary. It is split as Ω = Ω1∪Ω2, where Ω1 and Ω2 are two disjoint domains.
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The interface separating Ω1 and Ω2 is called Σ: we assume that it is a polygonal line made of straight edges
and corners. Given v defined over Ω, we use the notation vi := v|Ωi

, i = 1, 2.
The equivalent variational formulation of (1) reads:

Find u ∈ V such that ∀w ∈ V, a(u,w) = 〈f, w〉, (3)

where V = H1
0 (Ω), a is the form defined in (2), and 〈·, ·〉 denotes the duality pairing between V and its dual

V ′.
Let us first describe a simple configuration for which everything is well understood. It is the symmetric
geometry: Σ is a part of a straight line and Ω2 is the symmetric of Ω1 with respect to Σ. Then one can easily
prove that the problem is well-posed if and only if κσ 6= −1, by considering the following operators T:

T v =

{
v1 in Ω1

−v2 + 2Sv1 in Ω2
, respectively T v =

{
v1 − 2Sv2 in Ω1

−v2 in Ω2
,

where Sv1(x) = v1(Sx), with S denoting the symmetry with respect to Σ. On one hand, one can prove that
a(·, ·) is T-coercive if κσ 6= −1. On the other hand, if κσ = −1, the problem (1) is ill-posed since it has
a kernel (set of solutions with zero right-hand side f) which is infinite dimensional. Thus we say that the
condition κσ 6= −1 is optimal for the well-posedness of the continuous problem.
Suppose now that κσ 6= −1 and that we want to approximate the solution with a conforming finite element
method (for short, a cFE method). This leads to the discrete problems

Find uh ∈ V h such that ∀wh ∈ V h, a(uh, wh) = 〈f, wh〉, (4)

where (V h)h denotes a sequence of finite-dimensional subspaces of V , with h a positive parameter that goes
to 0. If T(V h) ⊂ V h for small h, then T-coercivity can be exploited at the discrete level. In particular, the
discrete problem is well-posed and, by Céa’s lemma, the error is controlled by the best approximation error.
Hence, we just have to ensure the condition T(V h) ⊂ V h, which is achieved in this symmetric geometry
by using a symmetric mesh (for a uniform degree of approximation). When T(V h) ⊂ V h, we say that the
mesh is T-conforming. Let us emphasize that using non-symmetric meshes can deteriorate drastically the
convergence of the cFE method when κσ is close to −1 (cf. [10]).
The general objective of our paper is to generalize this type of result. To do so for an arbitrary geometry,
one has to build an operator T such that: 1) the form a is T-coercive ; 2) it is possible to choose V h
such that T(V h) ⊂ V h. To our knowledge, it has been provided operators T satisfying 1) (see [2]) for any
2D configuration, however condition 2) is not always ensured. The main difficulty lies in the treatment of
the corners’ interface Σ. Indeed, proceeding similarly as presented for the symmetric case, one can build
geometry-based operators realizing 1) near the corners [2]. Unfortunately these operators involve angular
dilations, therefore 2) is never satisfied since the polynomial nature of basis FE functions is not preserved
by such transform. The goal is to propose another construction of operator T, based on isometries [18], such
that for appropriate meshes condition 2) holds. In other words, as 2) boils down to some condition on the
mesh, our aim is to provide meshing rules for an arbitrary geometry, ensuring that the standard convergence
rate is recovered, as soon as κσ is such that the continuous problem (1) with sign-changing coefficients is
well-posed.
The outline of the paper is as follows. In the next section, we provide a review of the techniques proposed so
far to approximate problem (1) with sign-changing coefficients and motivate why and how to satisfy condition
2). Section 3 is dedicated to the construction of new explicit T-coercivity operators for elementary geometries
whose interface has only one corner. Then in section 4 we develop the theory that allows one to study the
well-posedness of problem (1) for an arbitrary polygonal interface, and to derive the optimality condition
on the contrast κσ. Our aim is to provide tools that can be extended to the discrete problems, namely the
approximation of problem (1) by cFE methods. This is the main topic of section 5, where convergence is
derived as soon as the optimality condition on the contrast is fulfilled. Numerical results are presented in
section 6. Finally some concluding remarks are given.

2 Historical background: T-coercivity and T-conforming meshes
Let us review known results concerning the T-coercivity approach. Introduced in [5], the T-coercivity technique
has then been developed in [2]. Similarly to the symmetric case, the idea is to build linear continuous operators
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T on V :
T v =

{
v1 in Ω1

−v2 + 2Rv1 in Ω2
, respectively T′ v =

{
v1 − 2R′v2 in Ω1

−v2 in Ω2
, (5)

where R, R′ are operators (to be precised) such that Rv1|Σ = v1|Σ, R′v2|Σ = v2|Σ. This construction is
attractive because once the operators R, R′ are settled, the operators T, T′ define isomorphisms of V . Let us
present the available constructions of R (note that R′ is obtained by inverting the roles of Ω1 and Ω2):
• the first idea (see [5]) was to consider an operator R(1) that acts from H

1/2
00 (Σ) (the space of traces on Σ of

functions of V ) to V2, where Vi := {vi, v ∈ V }, i = 1, 2. Then it was proven that T-coercivity is realized with
T(1) (defined as (5) with R(1)) under the condition that |κσ| is "small enough" (with no explicit bound) ;
• an alternative was next proposed in [18] with an operator R(2) that acts from V1 to V2. Let us point out the
difference between the two approaches: in T(1), R(1) acts on the trace of v1 on Σ, while in T(2) (defined as (5)
with R(2)), R(2) acts on the whole function v1, defined on Ω1. The case of the symmetry-based operator S fits
into this second category but not in the first one. In that case, T-coercivity is realized under the condition

κσ 6∈ [−‖R′‖2;−1/‖R‖2], (6)

with
‖R‖ = sup

w1∈V1\{0}

‖∇Rw1‖Ω2

‖∇w1‖Ω1

, and ‖R′‖ = sup
w2∈V2\{0}

‖∇R′w2‖Ω1

‖∇w2‖Ω2

; (1) (7)

• the case of an arbitrary geometry was completely clarified in [2]. The main conclusions are twofold. First,
it appears that proving the well-posedness of (3) is too restrictive, and possible only for very simple cases.
A more relevant objective is to ensure that the problem is well-posed in the Fredholm sense (see section 4).
And it has been proved by a localization process that this property depends only on the value of the contrast
κσ and on the geometry of the interface Σ, but not on the global geometry of Ω. To do so, the authors
introduce

T(3)v =

{
v1 on Ω1

−v2 + 2χR(3)v1 on Ω2
, (8)

where, thanks to the introduction of a cutoff function χ (whose support coincides with a neighborhood of
Σ), the operator R(3) needs only to be defined with the help of local geometrical transforms, which map a
part of Ω1 to a part of Ω2. For instance, R(3) is based on the composition of a central symmetry and an
angular dilation near a corner. The main result is that, for a given closed polygonal line Σ (possibly with
curved edges), problem (3) is well-posed in the Fredholm sense if and only if κσ 6∈ [−Iα;− 1/Iα] where α is
the smallest corner angle of the polygonal line and

Iα := max
(2π − α

α
,

α

2π − α

)
. (9)

What are the discrete counterparts of each approach ?
• At the discrete step, the condition T(1)(V h) ⊂ V h was not sought. Instead, the idea was to introduce a
discrete counterpart of the operator T(1): for vh ∈ V h, one defines

T
(1)
h vh =

{
vh1 in Ω1

−vh2 + 2R
(1)
h (vh1 |Σ) in Ω2

,

where R
(1)
h (vh1 |Σ) is defined as the discrete-harmonic element of V h2 (V hi := {vhi , vh ∈ V h}, i = 1, 2), with a

trace on Σ equal to vh1 |Σ. It is furthermore proved in [5] that, for a quasi-uniformly meshed interface, under
a condition on the contrast which is more restrictive than the one for the continuous problem, convergence
of the cFE method is achieved. Obviously, in the symmetric geometry, this result is less satisfactory than
the one obtained for the symmetry-based operator T.
• To avoid the use of quasi-uniform meshes, in [18] is proposed the discrete counterpart, for vh ∈ V h,

T
(2)
h vh =

{
vh1 in Ω1

−vh2 + 2Ih(R(2)vh1 ) in Ω2

1From now on, we denote by ‖ · ‖O the L2-norm over the open set O.
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where Ih is a projection operator, with values in V h2 . Note that in the case of a symmetric domain, one
does not need to introduce an operator Ih if the meshes are symmetric. However, despite the analogy to the
symmetric geometry, this second approach has the same drawback than the first one, at least for a general
geometry: due to the presence of the projection operator Ih, numerical convergence is not guaranteed even
if the continuous problem is T-coercive.
Interestingly, the authors of [18] exhibit a special geometry, different from the symmetric one, where the
operator R can be again built using symmetries. This is the case where Ω is a square, and Ω1 is one quadrant
of this square (right-angle geometry). The definition of R now only involves axial symmetries with respect to
axes Ox1 and Ox2 (if the origin O is located at the center of Ω). For the continuous problem, this allows to
prove the well-posedness if κσ /∈ [−3;− 1/3] (condition that has been proved to be optimal in [2]). Then at
the discrete level, one doesn’t have to introduce an operator Ih. Indeed, if the mesh is symmetric with respect
to Ox1 and Ox2, then the condition T(2)(V h) ⊂ V h is satisfied (T-conforming mesh) and the optimality of the
approximation is obtained: in others words, the convergence is ensured as soon as the continuous problem is
well-posed.

Summing up, imposing T(V h) ⊂ V h is essential to guarantee convergence of the cFE method under the same
conditions as the ones to prove well-posedness of the continuous problem, and providing T-conforming meshes
is an attractive method to satisfy this condition.

With the results of [2], since the global geometry of Ω does not matter for the well-posedness (in the Fredholm
sense) of the continuous problem, one can expect that the properties of the mesh "far from the interface" Σ
should not matter either. In other words, can one prove that a local T-conformity of the mesh around Σ is
sufficient to ensure convergence of the cFE method as soon as the continuous problem is well-posed in the
Fredholm sense?
• A partial answer to this question has been given in [10, p. 17], considering T(3) with the discrete version,
for vh ∈ V h,

T
(3)
h vh =

{
vh1 in Ω1

−vh2 + 2χhR
(3)vh1 in Ω2

, (10)

with χh the interpolation of χ on V h. In this framework, the constraint on the meshes boils down to a simple
requirement: namely, that the mesh on Ω2 is locally deduced from the mesh on Ω1 by some geometrical
transforms. This is the so-called local T-conformity of the mesh [10, Definition 10]. In principle, optimality
of the cFE method follows. However, they are two shortcomings. The first one is technical, namely there is a
mistake in the definition (10) of the discrete operator T(3)

h : as a matter of fact, even if R(3)vh1 is locally in V h2 ,
χhR

(3)vh1 does not belong to V h2 in general. The second shortcoming is that, except for special geometries such
as the right-angle geometry described above, no interface with corners was tackled. Again, let us emphasize
that, in the case of an interface with corners, for the operator T(3) defined in [2], the condition T(3)(V h) ⊂ V h
is never satisfied because the angular dilation of a polynomial function is not a polynomial function.

The questions are then: is it possible to find another optimal construction of the operator T such that for
appropriate meshes there holds T(V h) ⊂ V h, as it was the case with the axial symmetries for the right-angle
geometry? This topic is addressed in §3. More generally, for a polygonal interface, can we recover optimality
of the cFE method under a generalized local T-conformity condition of the meshes? This is the subject of §4.

3 New T-coercivity operators and associated T-conforming meshes
around corners

In this section, we consider a domain Ω whose interface Σ separating Ω1 and Ω2 is a polygonal line with only
one interior corner c of angle α measured in Ω1, and two endpoints on the boundary ∂Ω. Moreover, if (ρ, θ)
denote the local polar coordinates centered at c, then Ω1 locally coincides with the cone {(ρ cos θ, ρ sin θ) | 0 <
ρ, 0 < θ < α}. In the particular case of a disk Ω, one considers the operators (5) realizing T-coercivity [2],
with R, R′ such that, for all (v1, v2) ∈ V1 × V2,

Rv1(ρ, θ) = v1(ρ,
α

α− 2π
(θ − 2π)), ∀(ρ, θ) ∈ Ω2, and R′v2(ρ, θ) = v2(ρ,

α− 2π

α
θ + 2π), ∀(ρ, θ) ∈ Ω1.
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It is proved in [2] that a (defined in (2)) is T-coercive if and only if κσ 6∈ [−Iα;− 1/Iα] where Iα is defined in
(9)(2). The goal of this section is to propose an alternative operator Rnew (resp. R′new) such that:
• T-coercivity holds for T(2) with Rnew (resp. T′(2) with R′new) under the same conditions as above;
• one can provide meshing rules such that the condition T(2)(V h) ⊂ V h (resp. T′(2)(V h) ⊂ V h) holds (such
as using a symmetric mesh when one considers a symmetry-based operator).
This alternative method consists in building rotation- and symmetry-based operators, and can be applied to
other geometries than a disk. In fact the key idea is to consider a pattern-based domain Ω (see figure 1).

Σ
α

cΣc
α

Σ
α

c

Figure 1: Examples of pattern-based geometries with a corner c of angle α = 2π/3 measured in Ω1: (left)
sector-based, (middle) triangle-based, and (right) leaf-based geometry.

Let us introduce some notations. Suppose one can identify a pattern P such that Ω is a pattern-based
domain of pattern P (sector, triangle, etc.). Introduce p, q > 0, p 6= q, with p + q even such that Ω1 is
composed of p patterns, and Ω2 is composed of q patterns (in figure 1, one can choose for instance p = 2 and
q = 4 with respectively a sector, a triangle, a leaf as pattern P). Then one rewrites α := 2π p

p+q and due to
the symmetry of the geometry it follows that

Iα := max
(p
q
,
q

p

)
. (11)

Note that the case p = q corresponds to a straight angle (this case is already treated in [2, 10]). Also, the
condition on the parity of p+ q is by no means restrictive. Indeed if p+ q is odd, one simply doubles p and
q without changing the value of α. Introduce also :

• Ωk1 , k = 1, p, the open set corresponding to the k-th pattern of Ω1: Ω1 =
p⋃
k=1

Ωk1 . Respectively define

Ωl2, l = 1, q, the open set corresponding to the l-th pattern of Ω2: Ω2 =
q⋃
l=1

Ωl2. The numbering is

chosen counterclockwise.

• vk1 := v|Ωk
1
, k = 1, p the restriction to Ωk1 . Similarly, vl2 := v|Ωl

2
, l = 1, q.

• en, n = 1, 2, the two edges of Σ such that e1 coincides locally with {(ρ, 0), 0 < ρ}, while e2 coincides
locally with the line {(ρ cosα, ρ sinα), 0 < ρ}.

To define Rnew as a rotation- and symmetry-based operator from V1 to V2, one introduces Sn the axial
symmetry of axis en, n = 1, 2, and Rm the rotation of angle mα/p, m = 1, p + q − 1. Define also their
inverse, Sn (being its own inverse) and R−m the rotation of angle −mα/p. These transforms are such that

• for (ρ, θ) ∈ Ωk1 , for all k ∈ I1 := J1,min(p, q)K, S1(ρ, θ) ∈ Ωq+1−k
2 ,

• for (ρ, θ) ∈ Ωk1 , for all k ∈ I2 := Jp+ 1−min(p, q), pK, S2(ρ, θ) ∈ Ωp+1−k
2 ,

• for (ρ, θ) ∈ Ωk1 , for all k ∈ J1, pK, Rp+l−k(ρ, θ) ∈ Ωl2, for all l ∈ J1, qK.
2In general one has to be careful in the presence of the two exterior corners cext1 , cext2 , that is the endpoints of Σ on the

boundary ∂Ω. Nonetheless, in the case where the angles at the corner cext1 (resp. cext2 ) are the same in Ω1 and Ω2 (as it is
always the case in this paper), (9) holds. If not, then the expression of Iα is modified and it depends on the corners’ angles at
cext1 and cext2 (see [2]).
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Then one defines symmetry-based operators Sn (n = 1, 2) and rotation-based operators Rm (m = 1, p+ q−1)
from V k1 := {vk1 , v ∈ V } to V l2 := {vl2, v ∈ V } by:

• S1vk1 (ρ, θ) = vk1 (S1(ρ, θ)) for (ρ, θ) ∈ Ωq+1−k
2 , for all k ∈ I1,

• S2vk1 (ρ, θ) = vk1 (S2(ρ, θ)) for (ρ, θ) ∈ Ωp+1−k
2 , for all k ∈ I2,

• Rk−(p+l)v
k
1 (ρ, θ) = vk1 (Rk−(p+l)(ρ, θ)) for (ρ, θ) ∈ Ωl2, for all l = 1, q, for all k = 1, p.

Finally one can define global operators R from V1 to V2 composing these rotation-based and symmetry-based
operators. To be an admissible operator, R has to ensure continuity at all interfaces between the patterns.
Roughly speaking, the definition of an admissible operator is based on three steps (the general construction
is given in the Appendix A.1):

1) apply S1 to vk1 for some ad hoc k, for (ρ, θ) ∈ Ωq+1−k
2 ;

2) apply S2 to vk1 for some ad hoc k, for (ρ, θ) ∈ Ωp+1−k
2 ;

3) ensure continuity by applying geometry-based operators to the remaining (vk
′

1 )k′∈I , I being an appro-
priate subset of indices (see Appendix A.1).

Let us give some examples. In the following we consider a triangle-based domain Ω.
First example (α < π): consider for instance α = 2π/3, p = 2 and q = 4. Then one can define two
admissible operators (illustrated in figure 2):

Radm
1 v1 =


S2v2

1 in Ω1
2

R−2v
2
1 in Ω2

2

S1v2
1 in Ω3

2

S1v1
1 in Ω4

2

, and Radm
2 v1 =


S2v2

1 in Ω1
2

S2v1
1 in Ω2

2

R−4v
1
1 in Ω3

2

S1v1
1 in Ω4

2

.

Σc

v1
1

v2
1

S1v1
1

S1v2
1

R−2v
2
1

S2v2
1

Σc

v1
1

v2
1

S1v1
1

R−4v
1
1

S2v1
1

S2v2
1

e1e1

e2 e2

Figure 2: Representation of the two admissible geometry-based operators for the first example.

Second example (α > π): consider for instance α = 4π/3, p = 4 and q = 2 (one simply inverts the roles of
p and q from the first example). In that case one "folds v1 up" such that Rv1 is defined over Ω2. Then one
obtains the two admissible operators described in figure 3:

Radm
1 v1 =

{
S2v4

1 in Ω1
2

S1v1
1 − R−4v

2
1 + S2v3

1 in Ω2
2

, and Radm
2 v1 =

{
S2v4

1 − R−2v
3
1 + S1v2

1 in Ω1
2

S1v1
1 in Ω2

2

.
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v4
1

ΣcΣc

v1
1

v2
1

v3
1

v4
1

v1
1

v2
1

v3
1

S2v4
1

S1v1
1

−R−4v
2
1

+S2v3
1

S1v1
1S2v4

1

−R−2v
3
1

+S1v2
1

e1 e1

e2e2

Figure 3: Representation of the two admissible geometry-based operators for the second example: (left) one
applies an axial symmetry in Ω4

1 to reach Ω1
2 and folds the rest of v1 into Ω2

2 to ensure continuity, (right) one
applies an axial symmetry in Ω1

1 to reach Ω2
2 and folds the rest of v1 into Ω1

2 to ensure continuity.

Remark that we can build admissible operators R′ with the same operators (using the inverse of the rotation-
based and symmetry-based operators), by simply inverting the roles of p and q. One can easily generalize
this method to any p, q > 0 (see the Appendix A.1 for details).
To realize T-coercivity under the same conditions as in [2], one finally has to check that these operators R, R′
are optimal in the sense that ‖R‖2 = ‖R′‖2 = Iα defined in (9) or (11), the operator norms being defined in
(7). For the two previous examples, Iα = 2. Let us check whether ‖Radm

n ‖2 = ‖Radm′

n ‖2 = 2, n = 1, 2. Let us
go back to our first example. Since Sn and R−m (n = 1, 2, m = 1, 5) are isometry-based operators, one finds
easily that

‖∇Radm
1 v1‖2Ω2

= 3‖∇v2
1‖2Ω2

1
+‖∇v1

1‖2Ω1
1
≤ 3‖∇v1‖2Ω1

, and ‖∇Radm
2 v1‖2Ω2

= ‖∇v2
1‖2Ω2

1
+3‖∇v1

1‖2Ω1
1
≤ 3‖∇v1‖2Ω1

,

which is less satisfactory that the expected optimal norm (that is 2). However, considering the average of
these two admissible operators gives us the result. More precisely, define

Rnewv1 :=
1

2
(Radm

1 + Radm
2 )v1 =



S2v2
1 in Ω1

2

1

2
(R−2v

2
1 + S2v1

1) in Ω2
2

1

2
(S1v2

1 + R−4v
1
1) in Ω3

2

S1v1
1 in Ω4

2

,

then one can prove that ‖Rnew‖2 = 2. Indeed, for v1 ∈ V1

‖∇(Rnewv1)‖2Ω2
= ‖∇(S2v2

1)‖2Ω1
2

+ ‖1

2
∇(R−2v

2
1 + S2v1

1)‖2Ω2
2

+ ‖1

2
∇(S1v2

1 + R−4v
1
1)‖2Ω3

2
+ ‖∇(S1v1

1)‖2Ω2
2

and since Sn and R−m (n = 1, 2, m = 1, 5) are isometry-based operators, using the triangle inequality one
finds that

‖∇(Rnewv1)‖2Ω2
≤ ‖∇v2

1‖2Ω2
1

+ (
1

2
‖∇v2

1‖Ω2
1

+
1

2
‖∇v1

1‖Ω1
1
)2 + (

1

2
‖∇v2

1‖Ω2
1

+
1

2
‖∇v1

1‖Ω1
1
)2 + ‖∇v1

1‖2Ω1
1
.

Define the matrix M =


0 1

1/2 1/2
1/2 1/2
1 0

, and
−→
W ∈ R2 such that

−→
W := (‖∇v1

1‖Ω1
1
, ‖∇v2

1‖Ω2
1
)ᵀ. Then one has

M
−→
W = (‖∇v2

1‖Ω2
1
, 1

2‖∇v
1
1‖Ω1

1
+ 1

2‖∇v
2
1‖Ω2

1
, 1

2‖∇v
1
1‖Ω1

1
+ 1

2‖∇v
2
1‖Ω2

1
, ‖∇v1

1‖Ω1
1
)ᵀ and one remarks that

‖∇Rnewv1‖2Ω2
≤ ‖M

−→
W‖22 ≤ (MᵀM

−→
W,
−→
W ) ≤ ‖MᵀM‖2‖∇v1‖2Ω1

,

where ‖ · ‖2 denotes the euclidean norm. Hence ‖Rnew‖2 ≤ ‖MᵀM‖2. Finally a straightforward computation
shows that ‖MᵀM‖2 = 2. One can operate similarly for the second example by considering R′newv1 over Ω2
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as the average of the two operators described in figure 3:

R′newv1 =


1

2
(2S2v4

1 − R−2v
3
1 + S1v2

1) in Ω1
2

1

2
(2S1v1

1 − R−4v
2
1 + S2v3

1) in Ω2
2

.

Then one finds ‖R′new‖2 ≤ ‖M ′ᵀM ′‖2 = 2, with the matrix M ′ =

(
0 1/2 1/2 1
1 1/2 1/2 0

)
= Mᵀ. Remark that it

is expected to find thatM ′ = Mᵀ as the role of p and q are exchanged. Thus, one obtains the same results for
R′new. Finally, we note that equality for the norms, that is ‖Rnew‖2 = ‖MᵀM‖2, resp. ‖R′new‖2 = ‖M ′ᵀM ′‖2,
can be recovered easily(3).
Summing up, for any p, q, one simply defines Rnew, R′new as the average of all admissible geometry-based
operators. The general expression of these operators is given in the Appendix A.1 and propositions 1 and 2
there give us that for any p, q, max(‖Rnew‖2, ‖R′new‖2) = Iα(3).
Let us make some comments regarding this approach:

- this approach is optimal when the corner angle α can be expressed as a rational fraction times 2π, that
is α ∈ 2πQ. Since Q is dense in R, one can theoretically come as close to α as desired.

- in the case of a general polygonal interface Σ, Ω is locally pattern-based in a neighborhood of any interior
corner. Consequently this approach can be adapted using a localization process (see next section).

At this point we have provided new operators that satisfy the first requirement (namely optimality). Is it
possible also to satisfy the second requirement T(V h) ⊂ V h ?
Suppose that Ω is a pattern-based domain, and that the pattern is polygonal (for instance a triangle). Once
this pattern is meshed, the rule to get T-conforming meshes is to duplicate by symmetry this mesh in each
pattern. When one considers a uniform degree of approximation on the whole domain, one has automatically
T(V h) ⊂ V h (resp. T′(V h) ⊂ V h) with the new operators described above. Then, as already mentioned,
classical errors estimates directly follows from Céa’s lemma [10, Corollary 1]. Note that there is no need for
additional symmetry requirements for the meshing of the pattern.
Let us give some numerical results. We consider the geometry described previously in the second example.
In that case Ωhex is a hexagon where Ωhex

1 locally coincides with a cone of angle α = 4π/3. In this case
Ic = [−2;−1/2]. Let us construct an exact solution (of a problem of type (1) with κσ 6∈ Ic, see (12) below):
consider ur ∈ H1(Ωhex) such that in polar coordinates

ur(ρ, θ) =

{
σ−1

1 ρ2 sin(p+q2 (θ−α)) in Ωhex
1 ,

σ−1
2 ρ2 sin(p+q2 (θ−α)) in Ωhex

2 ,

where p (resp. q) still denotes the number of patterns in Ωhex
1 (resp. Ωhex

2 ) and f := −div(σ∇ur) = 1
4 ((p +

q)2 − 16) sin(p+q2 (θ−α)) ∈ L2(Ωhex)(4). By construction, ur is piecewise smooth [16]: ur|Ωhex
i
∈ H3−ε(Ωhex

i ),
∀ε > 0, i = 1, 2. To illustrate the importance of T-conforming meshes around corners, let us add to ur a
singular part, that is some us(ρ, θ) = ρλΦ(θ), with λ := λ(σ) ∈ R, such that div(σ∇us) = 0 in Ωhex. For
example we consider [6, 18]

Φ(θ) =


cosh(λ(θ − α/2))

cosh(λα/2)
0 ≤ θ ≤ α/2

cosh(λ(θ + (2π − α)/2))

cosh(λ(2π − α)/2)
− (2π − α)/2 ≤ θ ≤ 0

,

Φ(θ) = Φ(2π − θ − α/2) − π ≤ θ ≤ −(2π − α) or α/2 ≤ θ ≤ π.
3For instance by choosing v1 such that vk1 ∈ H1

0 (Ωk1), for k = 1, p, with v11 a symmetric function w.r.t. the line θ = π
p+q

, and
vk1 (ρ, θ) = v11(Rk−1(ρ, θ)), for (ρ, θ) ∈ Ωk1 , for k = 2, p.

4With this choice ur(·, θ) = 0 for θ ∈ {n 2π
p+q

, n ∈ Z}, then continuity is easily ensured at the crossing of the interfaces.
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One chooses for λ the smallest possible positive real number. Its value depends on κσ, and one can prove
that since κσ 6∈ Ic, λ 6= 0 [3], so us ∈ H1(Ωhex), with us|Ωhex

i
∈ H1+λ−ε(Ωhex

i ), ∀ε > 0, i = 1, 2. Defining
g := (ur + us)|∂Ωhex , one checks that u = ur + us is the unique solution of the problem

Find u ∈ H1(Ωhex) such that:

− div(σ∇u) = f in Ωhex

u = g on ∂Ωhex

. (12)

With the help of a lifting of the non-zero boundary condition, one easily checks that problem (12) set in this
hexagonal domain is well-posed when κσ 6∈ Ic = [−2;−1/2]. We consider two kinds of meshes (see figure 4),
namely standard meshes (without rotation- or symmetry-based invariance) and T-conforming meshes, and
discretize the problem for several FE orders, for two chosen contrasts: κσ = −3 and κσ = −2.1 (see figure 5).
For this geometry, computations give λ = 0.5 when κσ = −3, and λ = 0.2051664777 when κσ = −2.1. Clas-
sically the regularity of the solution u = ur +us is driven by the singular behavior us. Namely one finds that
ui, i = 1, 2, belongs to H1+λ−ε(Ωhex

i ), ∀ε > 0. Consequently one expects an order of convergence equal to λ
for the relatives errors in H1

0 -norm. With figure 5 one concludes that T-conforming meshes ensure optimal
convergence speed while standard meshes are not stable with respect to the mesh size. Note that in figure 5
one does not improve the order of convergence using higher FE orders, due to the low regularity of the solution.

Figure 4: Left: standard mesh (h = 0.2, 385 nodes), Ωhex
1 corresponds to blue region while Ωhex

2 corresponds
to the green one. Right: T-conforming mesh (h = 0.2, 379 nodes).
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Figure 5: Left: relative error in H1 norm for different mesh sizes h (log-log scale) for κσ = −3. Right:
relative error in H1 norm for different mesh sizes h (log-log scale) for κσ = −2.1.
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In a more general case of a polygonal interface with several interior corners, one has to apply locally this
tilings method in the neighborhood of the corners. This strategy is explained in the next two sections.

4 Weak T-coercivity for a general polygonal interface
In this section we recall some theoretical results regarding the T-coercivity approach, and prove well-posedness
of problem (1) for an arbitrary geometry using the new geometry-based operators introduced in section 3.
Consider a Hilbert space E with its dual E′, a bilinear form b defined over E×E and B a (linear continuous
operator) from E to E′ such that 〈Bv,w〉 = b(v, w), for all v, w ∈ E. Then, for some data f ∈ E′, solving

Find u ∈ E such that b(u,w) = 〈f, w〉, ∀w ∈ E, (13)

is equivalent to solving
Find u ∈ E such that Bu = f in E’. (14)

Classically [17, 7], we recall that B is said to be a Fredholm operator when dim(ker(B)) <∞, its range R(B)
is closed and codim(R(B)) <∞ ; in this case its index is equal to dim(ker(B))− codim(R(B)). If in addition
the associated form b is hermitian, the index is automatically equal to 0. When B is a Fredholm operator of
index 0, we say that (13)-(14) is well-posed in the Fredholm sense. On the other hand, (13)-(14) is well-posed
if, and only if, for all f ∈ E′, it has one and only one solution u, with continuous dependence: there exists
C > 0 such that, for all f ∈ E′, the solution u verifies ‖u‖E ≤ C‖f‖E′ . In terms of operators, it means that
B−1 is well-defined as a continuous operator from E′ to E.
To prove well-posedness (in the Fredholm sense) of problem (1), we will apply the theory of T-coercivity [5, 2,
10]. Let us recall some results. Within the Banach-Necas-Babuska framework, one can define a weak stability
condition, also called an inf-sup condition.

Definition 1. Let b(·, ·) be a continuous sesquilinear form on E × E.
It verifies a weak stability condition if

∃C a compact operator, ∃α′ > 0, β′ ∈ R, ∀v ∈ E, sup
w∈E\{0}

|b(v, w)|
‖w‖E

≥ α′‖v‖E − β′‖Cv‖E . (15)

Let us now introduce an a priori intermediate condition (cf. [5]).

Definition 2. Let b(·, ·) be a continuous sesquilinear form on E × E. It is weakly T-coercive if

∃C a compact operator, ∃T a bijective operator, ∃α > 0, β ∈ R, ∀v ∈ E, |b(v, Tv)| ≥ α‖v‖2E−β‖Cv‖2E . (16)

In other words, the form b(·, T·) fulfills a Gärding’s inequality [21].

Remark 1. When β′ ≤ 0 in (15), one recovers the classical stability condition. Respectively, when β ≤ 0 in
(16), one obtains T-coercivity for b(·, ·).

The operator T introduced in (16) realizes the inf-sup condition (15): it is sometimes called an inf-sup
operator. Let us state a simple result.

Lemma 1. Let b(·, ·) be a continuous, sesquilinear hermitian form on E×E. Then the three assertions below
are equivalent:

(i) (13)-(14) is well-posed in the Fredholm sense ;
(ii) the form b satisfies a weak stability condition ;
(iii) the form b is weakly T-coercive.

As seen in the introduction, problem (1) set in the Hilbert space V = H1
0 (Ω) can be expressed in variational

form as (3). Let us introduce the (continuous linear) operator A from V to V ′ such that 〈Av,w〉 = a(v, w)
for all v, w ∈ V , with the form a defined in (2): by construction, A : v 7→ −div(σ∇v). In operator form,
(1)-(3) writes equivalently

Find u ∈ V such that Au = f in V ′. (17)
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We propose below some realizations of the inf-sup operator that can be used for problem (1) for a polygonal
interface Σ. From now on, we suppose for simplicity that Σ is a polygonal line without endpoints, ie. it is a
loop. Let N denote the number of its corners, (cn)n=1,N its corners, (αn)n=1,N the corner angles measured
in Ω1, and (en)n=1,N its edges. We introduce the polar coordinates (ρn, θn) centered at cn such that Ω1

coincides locally with the cone {(ρn cos θn, ρn sin θn) | 0 < ρn, 0 < θn < αn}.
First, we build a partition of unity on Ω. So, let (χn)n=1,2N ∈ (C∞(Ω; [0, 1]))N with supports localized in a
neighborhood of the interface, such that, for n = 1, N , χn = 1 near the corner cn and χn = 0 "far" from cn;
respectively χn+N = 0 on Σ \ en. Plus, one defines (χn)n so that it holds

∑
n=1,2N χn = 1 on Σ. Then we

define χ0 = 1 −
∑
n=1,2N χn, which vanishes in a neighborhood of the interface Σ and, setting P = 2N , we

obtain that (χp)p=0,P ∈ (C∞(Ω; [0, 1]))P is a partition of unity on Ω. Finally we denote by Sp := supp(χp)
the support of the cutoff function χp.
Now, let (Rp)p=1,P be (linear continuous) operators that act from V1 to V2 (resp. (R′p)p=1,P from V2 to V1).
We suppose in addition that these operators are such that, for all p = 1, P ,

∃C,C ′ > 0, ∀w1 ∈ V1, ‖Rpw1‖Ω2
≤ C ‖w1‖Ω1

and ‖χ1/2
p ∇(Rpw1)‖Ω2∩Sp

≤ C ′ ‖χ1/2
p ∇w1‖Ω1∩Sp

,

∃C,C ′ > 0, ∀w2 ∈ V2, ‖R′pw2‖Ω1
≤ C ‖w2‖Ω2

and ‖χ1/2
p ∇(R′pw2)‖Ω1∩Sp

≤ C ′ ‖χ1/2
p ∇w2‖Ω2∩Sp

.
(18)

We introduce

‖R‖ := max
p=1,P

‖Rp‖, ‖R′‖ := max
p=1,P

‖R′p‖, resp. |R| := max
p=1,P

|Rp|, |R′| := max
p=1,P

|R′p|, (19)

where for all p = 1, P ,

‖Rp‖ := sup
w1∈V1, ‖χ1/2

p ∇w1‖Ω1∩Sp=1

‖χ1/2
p ∇Rpw1‖Ω2∩Sp , |Rp| := sup

w1∈L2(Ω1), ‖w1‖Ω1=1

‖Rpw1‖Ω2 ,

‖R′p‖ := sup
w2∈V2, ‖χ1/2

p ∇w2‖Ω2∩Sp=1

‖χ1/2
p ∇R′pw2‖Ω1∩Sp , |R′p| := sup

w2∈L2(Ω2), ‖w2‖Ω2=1

‖R′pw2‖Ω1 .
(20)

Finally, we assume matching conditions on the traces:

∀p, ∀v1 ∈ V1, Rpv1|Σ∩Sp
= v1|Σ∩Sp

, ∀p, ∀v2 ∈ V2, R
′
pv2|Σ∩Sp

= v2|Σ∩Sp
. (21)

Remark 2. Later on at the end of the section, we will show that in practice we can provide χp, Rp, R′p which
fulfill all the conditions above.

Finally we define the two operators

Tv =


v1 on Ω1

− v2 + 2
∑
p=1,P

χpRpv1 on Ω2
, T′v =

 v1 − 2
∑
p=1,P

χpR
′
pv2 on Ω1

− v2 on Ω2

. (22)

Now one can prove the following

Lemma 2. Suppose that χp, Rp, R′p satisfy (18), (19), (20) for all p = 1, P . If the contrast κσ does not
belong to [−‖R′‖2;−1/‖R‖2], then the form a is weakly T-coercive for T defined in (22), and problem (1) is
well-posed in the Fredholm sense.

Remark 3. As for any geometry the case κσ = −1 is always ill-posed [14, 2], necessarily ‖R‖ ≥ 1, ‖R′‖ ≥ 1.

Proof. We assume for instance that κσ ∈ (− 1/‖R‖2; 0). By lemma 1, we just have to show that the form a
is weakly T-coercive, namely

∃C a compact operator, ∃T a bijective operator, ∃α > 0, β ∈ R, ∀v ∈ V, a(v, Tv) ≥ α‖v‖2V − β‖Cv‖2V .

We consider operator T defined in (22)-left to prove the above condition. Due to the matching conditions
(21) satisfied by (Rp)p, Tv ∈ V for all v ∈ V and, in addition one checks easily that T◦T = IV so T is bijective.
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Then:

a(v, Tw) = |σ1|(∇v1,∇w1)Ω1
+ |σ2|(∇v2,∇w2)Ω2

− 2|σ2|
∑
p=1,P

(∇v2,∇(χpRpw1))Ω2∩Sp

= b(v, w) + c(v, w), where the forms b and c are respectively defined by:

b(v, w) = |σ1|(∇v1,∇w1)Ω1 + |σ2|(∇v2,∇w2)Ω2 − 2|σ2|
∑
p=1,P

(∇v2, χp∇(Rpw1))Ω2∩Sp ,

c(v, w) = −2|σ2|
∑
p=1,P

(∇v2, Rpw1∇χp)Ω2∩Sp
.

First we prove that b is coercive. Using Young’s inequality with η > 0 on b(v, v), we get

b(v, v) ≥ |σ1|‖∇v1‖2Ω1
+ |σ2|‖∇v2‖2Ω2

− |σ2|
∑
p=1,P

(
η ‖χ1/2

p ∇v2‖2Ω2∩Sp
+ η−1‖χ1/2

p ∇(Rpv1)‖2Ω2∩Sp

)
.

Then we find a first lower bound:

−|σ2| η
∑
p=1,P

‖χ1/2
p ∇v2‖2Ω2∩Sp

≥ −|σ2| η
∑
p=1,P

‖χ1/2
p ∇v2‖2Ω2

= −|σ2| η
∑
p=1,P

(χp∇v2,∇v2)Ω2

= −|σ2| η ((1− χ0)∇v2,∇v2)Ω2

≥ −|σ2| η ‖∇v2‖2Ω2
, as ‖1− χ0‖L∞(Ω2) = 1.

Next, using the definitions of (‖Rp‖)p=1,P and ‖R‖, we find a second lower bound:

−|σ2| η−1
∑
p=1,P

‖χ1/2
p ∇(Rpv1)‖2Ω2∩Sp

≥ −|σ2| η−1
∑
p=1,P

‖Rp‖2‖χ1/2
p ∇v1‖2Ω1∩Sp

≥ −|σ2| η−1‖R‖2
∑
p=1,P

‖χ1/2
p ∇v1‖2Ω1

= −|σ2| η−1‖R‖2 ((1− χ0)∇v1,∇v1)Ω1

≥ −|σ2| η−1‖R‖2‖∇v1‖2Ω1
, as ‖1− χ0‖L∞(Ω1) = 1.

Hence,
b(v, v) ≥ (|σ1| − |σ2| η−1‖R‖2)‖∇v1‖2Ω1

+ |σ2|(1− η) ‖∇v2‖2Ω2
.

We remark now that we can choose η > 0 such that

(|σ1| − |σ2| η−1‖R‖2) > 0 and |σ2|(1− η) > 0.

Indeed, the former condition is equivalent to ‖R‖2|κσ| < η. Because κσ ∈ (− 1/‖R‖2;0), we can choose η < 1
such that this condition is fulfilled.
Regarding c(v, v), if we let C : V → V such that (Cv, w)V = c(v, w) for all v, w ∈ V , then by Cauchy-Schwarz
inequality one gets

‖Cv‖2V = c(v, Cv) ≤ ‖∇v‖ΩGP |R|‖Cv‖Ω,
where G := 2|σ2|maxp=1,P (|χp|W 1,∞(Ω2)). By Rellich’s theorem, one concludes that C is compact. Then by
using Young’s inequality with η′ > 0 we find

c(v, v) ≥ −1

2
((η′)−1‖Cv‖2V + η′‖v‖2V ),

which ends the proof for η′ small enough.
On the other hand, if κσ ∈ ( −∞; − ‖R′‖2), one can reverse the roles of Ω1 and Ω2 by using this time the
operator T′ defined in (22)-right. The proof then proceeds as above to prove that there exist α′ > 0, β′, and
a compact operator C′ such that

∀v ∈ V, a(v, T′v) ≥ α′‖v‖2V − β
′‖C′v‖2V ,

which is the condition (16).
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To conclude the study of the well-posedness of problem (1), we let us explicit χp, (Rp)p=1,P , (resp. (R′p)p=1,P ),
and compute the bounds. In the case where Σ is a polygonal line with all angles αn ∈ 2πQ, n = 1, N , one
can explicit these bounds using the results of §3. To do so, let us define (Bp)p=1,P a sequence of connected
open sets so that

⋃
p=1,P Bp is a neighborhood of the interface. For all n = 1, N , define Bn as a triangle-

based neighborhood of cn, and BN+n as a neighborhood of a part of en (excluding its endpoints) which is
symmetric with respect to en (see figure 6). More precisely, for all n = 1, N , Bn is a cyclic polygon centered
at cn composed of pn > 0 triangles in Ω1 and qn > 0 triangles in Ω2: define ρcn the radius and sn the side
length of this polygon. Then for all n = 1, N one defines BN+n as a trapezoid-based open set with one
trapezoid in Ω1 and one in Ω2, each trapezoid being of side lengths sn and sn+1(5). For technical purposes
one chooses pn ≥ 2 so that all part edge neighborhoods BN+n, n = 1, N are disjoint open sets. Note that
a part edge neighborhood intersects with two corners neighborhoods. Namely for n = 1, N − 1, one has
BN+n ∩ Bn 6= ∅, BN+n ∩ Bn+1 6= ∅, and for n = N one has BP ∩ BN 6= ∅, BP ∩ B1 6= ∅. Then one defines
(Rp)p=1,P from V1 to V2 (and also from L2(Ω1) to L2(Ω2)) such that for all w1 ∈ V1 and for all n = 1, N

Rnw1(x) =


0 if x 6∈ Bn

Rnneww1(x) if x ∈ Bn
, (23)

with Rnnew defined as in §3 (the general expression is given in Appendix A.1), and

RN+nw1(x) =


0 if x 6∈ BN+n

w1(xΣ,−yΣ) if x ∈ BN+n

, (24)

where (xΣ, yΣ) denotes the local cartesian coordinates, and the first axis coincides with Σ.
Finally, let us precise some properties the cutoff functions (χp)p. For all p = 1, N , χp(x) = χp(ρp)(6), and
χp = 1 for 0 ≤ ρp ≤ ρmin,p for some ρmin,p > 0 ; respectively χN+p is a symmetric function with respect
to the interface. This can be realized by introducing ψ ∈ C∞(Ω; [0, 1]) equal to 1 in a neighborhood of the
interface, for which we remark that ψ −

∑
p=1,N χp is a (smooth) function that vanishes in a neighborhood

of the corners, and also that "close" to the interface, it is a function which is symmetric with respect to the
interface(7). Then one chooses Sp the support of χp such that Sp ⊂ Bp for the corner case (p = 1, N)(8) and
in the edge case Sp ⊂ Bp ∪ Bp−N ∪ Bp+1−N (p = N + 1, P−1), resp. SP ⊂ BP ∪ BN ∪ B1. One can check
that (21) is satisfied for all Rp, p = 1, P . We can finally state the result on the well-posedness of problem (1).

5B2N is composed of two trapezoids of side lengths s2N and s1.
6Recall that (ρp, θp) denote the polar coordinates centered at cp, p = 1, N .
7The strictly positive, upper limit distance up to which this property applies is a function of minp ρmin,p and of (αp)p=1,N .
8In accordance with the previous notations, one chooses ρmin,p such that ρmin,p < ρcp .
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Figure 6: Notations around two corners c1 and c2: here p1 = 2, q1 = 6, p2 = 11 and q2 = 3. The gray zones
represent the support of χp while the empty-dashed domains represent the support of χN+p, p = 1, N .

Theorem 1. Assume that all the corners’ angles of the interface belong to 2πQ. If κσ 6∈ [−Iα;− 1/Iα], with
Iα := max

n=1,N
max( 2π−αn

αn
, αn

2π−αn
), then the form a is weakly T-coercive and problem (1) is well-posed in the

Fredholm sense.

Proof. With the operators (23)-(24) and using propositions 3 and 4 (cf. Appendix A.1), one finds that
min(‖R‖2, ‖R′‖2) ≥ 1 and max(‖R‖2, ‖R′‖2) ≤ Iα. Consequently [−‖R′‖2;−1/‖R‖2] ⊆ [−Iα;−1/Iα]. Then if
κσ 6∈ [−Iα;− 1/Iα] the result follows from lemma 2.

Note that if κσ ∈ [−Iα; − 1/Iα], then the problem (1) is not well-posed in the Fredhom sense, according to
section 6 of [2]. Hence, we conclude that the condition on the contrast κσ 6∈ [−Iα; − 1/Iα] is optimal for a
2D geometry with a polygonal interface separating the two subdomains.

5 T-conforming meshes for a general polygonal interface and error
estimates

We study the approximation of problem (1) when the contrast κσ does not belong to the critical interval
[−Iα; − 1/Iα]. According to the previous section (see theorem 1), it follows that problem (1) is well-posed
in the Fredholm sense (namely there might be a finite dimensional kernel). From now on, we impose further
that it is well-posed, to ensure the uniqueness of the solution u to be approximated. We study the family
of discrete problems (4), focusing on conforming(9) finite element approximations. Our aim is to prove
that they can be solved in geometries with interfaces that include corners, and to prove optimality of the
approximation, that is the unique solution uh tends towards the exact solution u when h tends to 0 with
optimal convergence rate.
We assume throughout §5 that κσ ∈ (−1/Iα; 0) so that we can use the operator T as defined in (22)-left. The
conforming approximations in V are defined on meshes that match with the interface (all elements are either
subsets of Ω1 or Ω2), with piecewise polynomial approximations. Let us consider (Th)h a regular family of
meshes of Ω, made of triangles ; for all triangles τ , one has either τ ⊂ Ω1 or τ ⊂ Ω2. Define the family of
Lagrange FE spaces (for a degree of approximation d ≥ 1)

V h(d) :=
{
v ∈ V : v|τ ∈ Pd(τ), ∀τ ∈ Th

}
,

9A Discontinuous Galerkin approach has recently been studied in [11].
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where Pd(τ) is the space of polynomials of degree at most d on the triangle τ . Unless otherwise specified, the
index (d) is omitted. The parameter, or meshsize, h is defined as h := maxτ∈Th hτ , where hτ is the diameter
of τ . We recall that V h1 (resp. V h2 ) denotes the FE subspace of V1 (resp. V2) built on the triangulation Th.
Throughout this section, C is used to denote a generic positive constant which is independent of the meshsize,
the triangulation, and the data/unknown of interest.

Definition 3. Given h, let T ph,i := {τ ∈ Th : τ ∩ int(Sp) ∩ Ωi 6= ∅}, for i = 1, 2 and p = 1, P .
The meshes (Th)h are locally T-conform if, for all h . 1, for all p = 1, P , for all τ ∈ T ph,1, the image of τ by
Rp belongs to T ph,2.

Note that if the conditions of the above definition are met, then for all vh ∈ V h, it holds that Rpvh1 is equal
to the restriction of some element of V h2 on Ω2 ∩ Sp. We set Ωh2 := int(

⋃
p=1,P ∪τ∈T p

h,2
τ).

In general, for vh ∈ V h, Tvh 6∈ V h due to the cutoff functions (χp)p=1,P that need to be interpolated. Then
our goal is to prove optimality of the approximation, using some discrete operators (Th)h (precised below).
In [10] it was proposed to replace χp by its interpolation of degree 1 χp,h. In our case, it leads to consider
(10) with an additional summation

∑
p=1,P to fit with the definition of T in (22)-left:

T
(3)
h vh =

{
vh1 in Ω1

−vh2 + 2
∑
p=1,P χp,hRpv

h
1 in Ω2

. (25)

Unfortunately, for all p = 1, P , the degree of χp,hRpvh1 (restricted to a triangle) is too high. For instance, if
one is dealing with Lagrange FE of degree 1 (d = 1), its degree is 2: hence, T(3)

h vh does not belong to V h in
general. This is why we introduce instead the discrete operator:

Th v
h =

{
vh1 in Ω1

−vh2 + 2Ih(
∑
p=1,P χp,hRpv

h
1 ) in Ω2

, (26)

with Ih the interpolation operator on V h(d). Moreover from [15, Corollaries 1.109-1.110] we have for p = 1, P
and for h small enough, the stability and approximation estimates

∃C > 0, ‖χp,h‖W 1,∞(Ω2) ≤ C ‖χp‖W 1,∞(Ω2), (27)

∃C > 0, ‖χp − χp,h‖W 1,∞(Ω2) ≤ C h |χp|W 2,∞(Ω2). (28)

We emphasize that the analysis presented in [10] remains valid if one replaces (the generalization of) T(3)
h by

Th, as we explain below. Our aim is to prove that the form a is uniformly weakly T-coercive, namely

∃α′ > 0, β∈ R, ∀h small enough, ∀vh ∈ V h, |a(vh, Thv
h)| ≥ α′‖vh‖2V − β‖Cvh‖2V , (29)

and from there one can follow the last part of the proof of Proposition 3 in [10] to derive a uniform discrete
inf-sup condition (by contradiction). Classically, this yields an error estimate.
In order to obtain (29), we shall evaluate |a(vh, (T−Th)vh)| for all vh ∈ V h. More precisely we want to prove

∃C0 > 0, ∀h small enough, ∀vh ∈ V h, |a(vh, (T− Th)vh)| ≤ C0 h ‖vh‖2V , (30)

which is a consequence of proving that there exists C > 0 such that, for all h small enough, for all vh ∈ V h,
‖(T− Th)vh‖V ≤ C h ‖vh‖V . This result is the object of lemma 3.

Lemma 3. Assume that the meshes are locally T-conform then there holds

∃C > 0, ∀h small enough, ∀vh ∈ V h, ‖(T− Th)vh‖V ≤ C h ‖vh‖V , (31)

and the form a is uniformly weakly T-coercive.
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Proof. Given vh ∈ V h, let us apply the triangle inequality:

‖(T− Th)vh‖V ≤ ‖(T− T
(3)
h )vh‖V + ‖(T(3)

h − Th)vh‖V .

Using the continuity of (Rp)p=1,P and (28), one has for the first term of the right-hand side:

‖(T− T
(3)
h )vh‖V ≤ C

∑
p=1,P

‖χp − χp,h‖W 1,∞(Ω2)‖vh‖V ≤ C h ‖vh‖V .

On the other hand, for the last term of the right-hand side setting whp,2 = Rpv
h
1 , p = 1, P , one finds

‖(T(3)
h − Th)vh‖V ≤ 2

∑
p=1,P

‖∇(χp,hw
h
p,2 − Ih(χp,hw

h
p,2))‖Ωh

2
.

The last term is technical to bound due to the presence of χp,h (see details in the Appendix A.3). Since the
meshes are locally T conform, one has wh2 ∈ V h, then using lemma 5 in §A.3 and finally the continuity of the
operators (Rp)p=1,P , one finds

‖(T(3)
h − Th)vh‖V ≤ C h ‖vh‖V ,

which leads to (31), and thus to (30). It now follows that

∃α > 0, β∈ R, ∀h . 1, ∀vh ∈ V h, |a(vh, Thv
h)| ≥ (α− C0h)‖vh‖2V − β‖Cvh‖2V ,

with α and β constants that express the weak T-coercivity of a(·, ·) with the operator T as in (22), see lemma 2
and theorem 1. Hence, one finds the desired result (29), which in turns yields the error estimate (cf. [10]).

Theorem 2. Assume that problem (1) is well-posed and that the meshes are locally T-conform. Then for h
small enough there exists one and only one solution uh to (4), with the estimate

‖u− uh‖V ≤ C inf
vh∈V h

‖u− vh‖V . (32)

We conclude that we have optimality of the approximation for problem (1), thanks to the choice of the
discrete T-coercivity operator as in (25), assuming only that the meshes are locally T-conform.

6 Numerical experiments
We are now in position to present some numerical illustrations. Consider the case of a squared cavity with
a triangular inclusion. Define the square Ω := ( − 4; 4) × ( − 4; 4): Ω2 is an equilateral triangle of height 4
(the center of gravity G of Ω2 is located at (x1, x2) =(0,−1/3)) and Ω1 = Ω \ Ω2. We want to approximate
problem (1) set in Ω with a constant right-hand side f :{

Find u ∈ H1
0 (Ω) such that:

− div(σ∇u) = 1 in Ω
.

Denoting (cn)n=1,3 the corners of Σ, then Ω1 locally coincides near cn, n = 1, 3 with the cone of aperture
α := 5π/3. For this configuration one finds Iα := 5, and with theorem 1 one can prove that if κσ 6∈ [−5;−1/5]
then problem (1) (with the data f = 1) is well-posed in the Fredholm sense. Then in order to define locally
T-conforming meshes, proceeding as in sections 3 and 5, one defines first a neighborhood of the interface Σ
made of three polygonal neighborhoods (one for each corner) where one applies the ad hoc symmetry-and
rotation-based operator (23), and three trapezoid-based neighborhoods (one for each edge) where one applies
the symmetry-based operator (24). The associated locally T-conforming mesh is deduced by meshing one
pattern of each neighborhood, and duplicating it by symmetry (see figure 7 (right)): in this configuration we
choose p1 = p2 = p3 = 10 and q1 = q2 = q3 = 2(10).

10As explained in section 4, we choose q, p ≥ 2 to avoid the neighborhoods of the straight parts of Σ to overlap.
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Figure 7: Left: example a standard triangulation of Ωh (1430 nodes). Right: example of locally T-conforming
mesh (1424 nodes). The dashed lines enclose regions where we built T-conforming meshes near a corner,
respectively a straight line.

In figure 8 are represented the relative errors in L2-norm for several standard meshes (figure 7 (left)) and
several T-conforming meshes (figure 7 (right)), for a contrast κσ = −5.2, and for several orders of approx-
imation (d = 1, 2, 3). Note that we do not compare the discrete solution with the exact solution. As the
optimality of the approximation (see theorem 2) with T-conforming meshes is satisfied, one can compare with
the discrete solution obtained on the finest mesh and one can check in figure 8 that convergence is ensured
with a monotonic behavior of the error. On the other hand, with standard meshes the simulation gives
unsatisfying results with a slightly erratic behavior of the error. Numerical results illustrate the importance
of using T-conforming meshes to guarantee convergence of the numerical method.
Due to the symmetry of the geometry (and the right-hand side), one is expecting a symmetric solution with
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Figure 8: Relative error in L2-norm for different mesh sizes h (log-log scale) for κσ = −5.2.

respect to Ox2. One can check that, even for a refined, but standard mesh, the discrete solution does not
satisfy this symmetry principle (see figure 9). This also explains why the approximation considering standard
meshing does not converge so well.
Let us make some remarks regarding the convergence’s orders. First let us mention that problem (1) with
f = 1 might have a non trivial kernel as we only proved Fredholmness. Nonetheless numerical computations
did not present non trivial solutions of the homogeneous problem. With [10, Proposition 2] the regularity of
the solution u of problem (1) is such that, away from the corners, ui, i = 1, 2 is piecewise-H2 whereas near
the corners there exists a singularity exponent s ∈ (0, 1] such that ui is only guaranteed to be piecewise-H1+s
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Figure 9: Left: solution uh obtained with P3 finite elements on the finer standard mesh (101576 nodes).
Right: solution uh obtained with P3 finite elements on the finer T-conforming mesh (101716 nodes).

due to the presence of a singular part here (cf. §3). Then one has the estimates

‖u− uh‖V ≤ C hs, and ‖u− uh‖Ω ≤ C h2s.

The last estimate is obtained with the so-called Aubin-Nitsche lemma [15]. Note that in absence of the
singular part, one expects that s = 1.
For κσ = −5.2 computations yield a singularity exponent s = 0.13, whereas the results of figure 8 show an
average convergence’s order of 0.9 (that is s = 0.45). This higher convergence order is due to the fact that
we did not compare the discrete solution with the exact solution.

7 Concluding remarks
In this paper we extended the approximation theory for transmission problems with sign-changing coefficients
with the T-coercivity approach. The novelty lies in the treatment of polygonal interfaces. This construction
can be directly applied to the discrete problem by designing T-conforming meshes, which allows one to
guarantee convergence of conforming finite element methods as soon as the continuous problem is well-posed
in the Fredholm sense. Below, we list some possible applications of our work.

• One can study the transmission problem in the time-harmonic regime:{
Find u ∈ H1

0 (Ω) such that:
div(σ∇u) + ω2ςu = f in Ω

, (33)

at the frequency ω 6= 0, with ς ∈ R. Indeed, the added term ω2ςu is a compact perturbation, so
one concludes that when κσ 6∈ Ic, problem (33) is well-posed in the Fredholm sense and, when it is
well-posed, one obtains convergence of the cFE method using locally T-conforming meshes.

• One can extend the results on problems (1) and (33) to the transmission problem with (one or two)
sign-changing coefficients and boundary conditions other than Dirichlet boundary condition (see for
instance [9, Chap.1 §1.7] for changes).

• The previous proofs can be easily adapted to 2D geometries with a curved boundary or a curved
interface. In particular, the case of the curved interface can be covered with the help of Theorem 3.1-1
of [12]. For an interface without corners, well-posedness in the Fredholm sense is established as soon as
κσ 6= −1 (see [8]). We refer to [14] for the first relation – and proof with the help of integral equations
– of this result. Results for the optimality of the approximation holds using for instance isoparametric
quadrilateral FE (see [8]).
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• One may apply similar techniques to a transmission problem with sign-changing coefficients in 3D
geometries with straight or curved boundary and interface. However the optimality of the T-oercivity
approach has yet to be established in the general case [2].

• Once the well-posedness of problem (33) is established, one can easily solve the associated eigenvalue
problem {

Find (u, λ) ∈ H1
0 (Ω) \ {0} × C such that:

−div(σ∇u) = λu in Ω
, (34)

and derive classical error estimates for the eigenvalues’ approximation by following [19] (see [8]).

• Let us mention that a posteriori error estimates for diffusion problems with sign-changing coefficients
have been carried out in [13] and lead to similar meshing requirements near the interfaces.

• On the other hand, the study of problem (1) when κσ belongs to the critical interval cannot be handled
as previously, due to the appearance of singularities [20, 6] that do not belong to H1(Ω). This problem
has been investigated in [4] for particular geometries: it requires a new functional framework explicitly
taking into account the singularities. For a general polygonal interface, it is proposed in [3] a new
numerical approximation method which relies on the use of Perfectly Matched Layers at the corners.
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A Appendix

A.1 General construction of R around corners
In this section we generalize the tilings method presented in section 3 to any corner of angle α ∈ 2πQ. Recall
that we define α = 2π p

p+q in Ω1, with p, q > 0, p 6= q and p+ q even. Proceeding as in section 3, one builds
several admissible rotation- and symmetry-based operators Radm, and then take the average of all admissible
operators to obtain the desired result (that is operators R and R′ with the same minimal norm as in [2]). We
propose min(p, q) admissible operators below based on a simple algorithm.
Consider for instance that p < q. One constructs p admissible operators (Radm

i )i=1,p from V1 to V2, the i-th
operator being obtained by (see figure 10 for an illustration):

1) in Ωq+1−k
2 , k = 1, i: apply S1 to vk1 ;

2) in Ωp+1−k
2 , k = i, p: apply S2 to vk1 ;

3) in Ωl2, l ∈ I := Jp+2− i, q− iK: from l = p+2− i to l = q− i, apply Ri−(p+l) to vi1, then S2 ◦Rp+1−i−(l+1)

to vi1, update l→ l+ 2 and so on. In other words, alternatively apply a rotation-based operator and a
rotation+symmetry-based operator to vi1.

At step 3), since q + p is even (|I| = q − p − 1 is odd), one always finishes by R2i−(p+q) (which ensures
continuity of Radm

i v1 on ∂Ωq+1−i
2 ∩ ∂Ωq−i2 ).
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Figure 10: Scheme representing steps 1)-2)-3) for building Radm
i .

One constructs p admissible operators (Radm′

i )i=1,p from V2 to V1 similarly, the i-th operator being obtained
by:

4) in Ωk1 , k = 1,min(i, p− 1): apply S1 to vq+1−k
2 ;

5) in Ωk1 , k = min(i+ 1, p), p: apply S2 to vp+1−k
2 ;

6) in Ωi1, if i < p, add up the remaining contributions (vl2)l∈I′ , with I ′ := Jp+1−i, q−iK: for l = p+1−i to
l = q− i, start by S2 ◦ Rl−(p+1−i) then apply −R(l+1)+p−i, update l→ l+ 2 and so on. If i = p one adds
up (vl2)l∈I′=J2,q−p+1K: for l = 2 to l = q−p+1 start with −Rl then apply the rotation+symmetry-based
operator S1 ◦ R(q−p+1)−(l+1), update l→ l + 2 and so on.

At step 6), in both cases, q + p is even (|I ′| = q − p is even) so one applies successively pairs of operators.
Note also that at step 6), one adds contributions in the i-th pattern of Ω1, already considered at step 4) or
5), and remark that when the index is zero, R0 = I so that the rotation+symmetry-based operator simply
becomes a symmetry-based operator.

Since p+q is even(11), one can check that continuity is ensured at all interfaces of the patterns. The algorithm
produces p operators from V1 to V2, respectively from V2 to V1. Let us give an example: for p = 4, q = 6
(that is α = 4π/5). Then one finds 4 admissible operators from V1 to V2 (each one corresponds to a column):

Radm
1 v1 Radm

2 v1 Radm
3 v1 Radm

4 v1

q q q q
S2v4

1 , S2v4
1 , S2v4

1 , S2v4
1 , in Ω1

2

S2v3
1 , S2v3

1 , S2v3
1 , R−2v

4
1 , in Ω2

2

S2v2
1 , S2v2

1 , R−4v
3
1 , S1v4

1 , in Ω3
2

S2v1
1 , R−6v

2
1 , S1v3

1 , S1v3
1 , in Ω4

2

R−8v
1
1 , S1v2

1 , S1v2
1 , S1v2

1 , in Ω5
2

S1v1
1 , S1v1

1 , S1v1
1 , S1v1

1 , in Ω6
2

11Whereas if p+ q were odd, continuity would not be not ensured at all interfaces: e.g. for 1)-2)-3), at the interface between
Ωp−i2 and Ωp−i+1

2 .
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In this example, |I| = 1 so one applies only one rotation-based operator (following step 3)). Conversely, one
finds 4 admissible operators from V2 to V1:

Radm′

1 v1 Radm′

2 v1 Radm′

3 v1 Radm′

4 v1

q q q q
S1v6

2 − R8v
5
2 + S2v4

2 , S1v6
2 , S1v6

2 , S1v6
2 , in Ω1

1

S2v3
2 , S1v5

2 − R6v
4
2 + S2v3

2 , S1v5
2 , S1v5

2 , in Ω2
1

S2v2
2 , S2v2

2 , S1v4
2 − R4v

3
2 + S2v2

2 , S1v4
2 , in Ω3

1

S2v1
2 , S2v1

2 , S2v1
2 , S2v1

2 − R2v
2
2 + S1v3

2 , in Ω4
1

Here |I ′| = 2 so one applies two additional operators to vl2, l ∈ I ′ (following step 6)).
With these guidelines one can write all operators (Radm

i )i=1,p, (Radm′

i )i=1,p for any p, q such that 0 < p < q
and p+ q even. Note that by exchanging p with q (and Ω1 with Ω2), one addresses similarly the case q < p.
In the following, we set p < q. As mentioned in section 3, the problem is that, taken individually, each
admissible operator Radm

i (resp. Radm′

i ), i = 1, p, does not satisfy ‖Radm
i ‖2 = Iα (resp. ‖Radm′

i ‖2 = Iα), with
Iα defined in (11). Indeed, for all v1 ∈ V1, v2 ∈ V2, for i = 1, p, Radm

i built from 1)-2)-3) and Radm′

i built from
4)-5)-6), one gets the bounds

‖∇(Radm
i v1)‖2Ω2

≤
∑
k=1,p

‖∇vk1‖2Ωk
1

+ (|I|+ 1) ‖∇vi1‖2Ωi
1
≤ (q − p+ 1) ‖∇v1‖2Ω1

,

‖∇(Radm′

i v2)‖2Ω1
≤

∑
l∈J1,qK\I′

‖∇vl2‖2Ωl
2

+ (|I ′|+ 1)
∑
l∈I′
‖∇vl2‖2Ωl

2
≤ (q − p+ 1) ‖∇v2‖2Ω2

.

The bounds are sharp since:

• in the first case, one may choose v1 such that vk1 = 0 for k 6= i: then ‖∇(Radm
i v1)‖2Ω2

= (q − p +
1) ‖∇v1‖2Ω1

;

• in the second case, given l ∈ I ′(6= ∅), one may choose v2 such that vk2 = 0 for k 6= l: then
‖∇(Radm′

i v2)‖2Ω1
= (q − p+ 1) ‖∇v2‖2Ω2

.

One can check that Iα < q − p+ 1 for all 1 < p < q: Iα − (q − p+ 1) = (p− q)(p− 1)/p < 0(12).
To get optimal operators (that is of norm equal to Iα), one defines R, R′ as the average of all admissible
operators:

R =
1

p

∑
i=1,p

Radm
i , and R′ =

1

p

∑
i=1,p

Radm′

i . (35)

Then one obtains for instance for v1 ∈ V1

‖∇(Rv1)‖2Ω2
=
∑
l=1,q

‖∇(Rv1)‖2Ωl
2
≤
∑
l=1,q

∑
k=1,p

Mlk ‖∇vk1‖Ωk
1

2

, with Mlk = sup
w1∈V1

‖∇(Rw1)‖Ωl
2

‖∇wk1‖Ωk
1

. (36)

Above, a sum over k appears due to the fact that for l = 1, q, the (Radm
i v1)|Ωl

2
is a linear combination of

isometry-based operators applied to some vk1 . To evaluate ‖R‖, ‖R′‖, it is convenient to introduce the matrix
M ∈Mq,p(R) of coefficients (Mlk)l=1,q,k=1,p. Then from above one has(3)

‖R‖2 = ‖MᵀM‖2.
12Equality is obtained for p = q (corresponding to a plane interface) for which ‖Radmi ‖2 = ‖Radm′

i ‖2 = 1, and in addition
p = 1: in that case there is only one admissible operator.
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Let us give the general expression of the matrix M for any p, q, and evaluate ‖MᵀM‖2 to conclude. For
n ∈ J1, pK, define Mp−n+1, M̃p−n+1 ∈Mp−n+1,p(R) such that

Mp−n+1 M̃p−n+1

q q

0 . . . . . . . . . . . . . . . . . . 0 p
p

... . .
. p−1

p
1
p

... {0} . .
.

. .
.

. .
. ...

... . .
. j

p
. .
. {

1
p

} ...

... . .
.

. .
.

. .
. ...

0 . . . 0 n
p

1
p . . . . . . . . . 1

p


,



1
p . . . . . . . . . 1

p
n
p 0 . . . 0

... . .
.

. .
.

. .
. ...

...
{

1
p

}
. .
. p−j+1

p
. .
. ...

... . .
.

. .
.

. .
.

{0}
...

1
p

p−1
p

. .
. ...

p
p 0 . . . . . . . . . . . . . . . . . . 0


,

where j denotes the column index. All entries are equal to 0 or 1
p , except on one diagonal where they range

from n
p to p

p = 1. Then the shape of M depends on whether p ≤ q
2 or not:

• if p ≤ q/2 : let m ∈ N such that q = 2p + m. Then the matrix M is written M =

Mp

M ′m
M̃p

 with

Mp, M̃p ∈ Mp(R) (defined above for n = 1) and M ′m ∈ Mm,p(R) whose entries are all equal to 1/p,
with the convention that if m = 0, M ′m is empty.

• if p > q/2 : let m ∈ N∗ such that q = 2p−m. If m > 2 then the matrixM is writtenM =

Mp−m+1

M ′′m−2

M̃p−m+1

,

with Mp−m+1, M̃p−m+1 ∈ Mp−m+1,p(R) (defined above for n = m) and M ′′m−2 ∈ Mm−2,p(R) such
that (below i denotes the row index)

M ′′m−2 =



0 . . . . . . . . . 0 m−1
p

1
p . . . 1

p
2
p 0

... . .
.

. .
.

. .
.

. .
.

. .
.

. .
. ...

... {0} . .
. m−i

p
. .
. {

1
p

}
. .
. 1+i

p
. .
.
{0}

...

... . .
.

. .
.

. .
.

. .
.

. .
.

. .
. ...

0 2
p ︸ ︷︷ ︸

p−m−1

1
p . . . 1

p
m−1
p 0 . . . . . . . . . 0


.

One simply finds the matrix M =

Mp−1
1
p . . .

1
p

M̃p−1

 when q = 2p − 1, and the matrix M =

(
Mp−1

M̃p−1

)
when

q = 2p− 2.

Note that the cases p > q are obtained by taking the transposed matrix presented above. Moreover, one
checks easily by direct inspection the next result.

Proposition 1. The matrix M ∈Mq,p(R) satisfies the following properties:

[1]


∀l = 1, q, ∀k = 1, p, Mlk ≥ 0

∃l0, k0 s.t. Ml0k0
= 1

; [2] ∀l,



p∑
k=1

Mlk = 1 if p ≤ q

p∑
k=1

Mlk ≤ p
q if p ≥ q

; [3] ∀k,



q∑
l=1

Mlk ≤ q
p if p ≤ q

q∑
l=1

Mlk = 1 if p ≥ q

.

It follows that
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Proposition 2. For all p, q > 0 let M ∈Mq,p(R) be a matrix which satisfies the properties of proposition
1. Then

‖MᵀM‖2 ≤ max

(
q

p
,
p

q

)
.

Proof. Define A := MᵀM , it holds ‖A‖2 = λmax = max
λ∈σ(A)

λ(A)> 0, where σ(A) is the set of eigenvalues of

A. Using Gershgorin circle theorem, one bounds the spectrum of A as follows:

∀λ ∈ σ(A), ∀k = 1, p, |λ−Akk| ≤
∑
l 6=k

Akl,

then

λmax ≤ max
k=1,p

(Akk +
∑
l 6=k

Akl) = max
k=1,p

(
∑
l=1,p

Akl) ≤ max
k=1,p

(

p∑
l=1

q∑
h=1

(Mᵀ)khMhl) = max
k=1,p

(

p∑
l=1

q∑
h=1

MhkMhl)

≤ max
k=1,p

(

q∑
h=1

(

p∑
l=1

Mhl)Mhk).

Due to the second and the third properties in proposition 1 satisfied by M , one finds

λmax ≤ max
k=1,p

(
max

(
1,
p

q

) q∑
h=1

Mhk

)
≤ max

(
1,
p

q

)
max

(
1,
q

p

)
= max

(
p

q
,
q

p

)
.

Consequently, the proposed operator R in (35) is of optimal norm. One proceeds similarly for R′ by considering
Mᵀ instead of M as the roles of p and q are exchanged:

‖R‖2 = ‖MᵀM‖2 ≤ max

(
p

q
,
q

p

)
, and ‖R′‖2 = ‖MMᵀ‖2 ≤ max

(
p

q
,
q

p

)
.

Remark 4. There is always a unit entry in M according to proposition 1 (denoted by Mk0l0), one readily
checks that if w0

1 ∈ V1 with supp(w0
1) ⊂ Ωk0

1 , then it follows ‖∇(Rw0
1)‖2Ω2

≥ ‖∇w0
1‖2Ω1

. Hence ‖R‖2 ≥ 1.
Similarly, ‖R′‖2 ≥ 1.

A.2 Weighted estimates for operators R

In §A.1 we provided bounds for the norms of the geometry-based operators R. Here we provide bounds for
the operator norm when we use a localization process (see section 4), that is when the operator R is locally
applied in the neighborhood of the interface thanks to a cut-off function ξ (defined as in section 4) whose
support is localized either near a corner (proposition 3) or a straight line (proposition 4) of the interface Σ.
We use the same notations as in §A.1.

Proposition 3. Let ξ be a smooth positive function with support S, that depends only on the distance to the
corner of angle α = 2π p

p+q . Then

∀w1 ∈ V1, ‖ξ1/2∇(Rw1)‖2Ω2∩S ≤ Iα‖ξ
1/2∇w1‖2Ω1∩S ,

where Iα = max

(
p

q
,
q

p

)
, and R is a rotation- and symmetry-based operator from V1 to V2 defined as in (23).

Proof. Let w1 ∈ V1.

‖ξ1/2∇(Rw1)‖2Ω2∩S =

ˆ
Ω2∩S

ξ(ρ)

(∣∣∣∣∂(Rw1)

∂ρ

∣∣∣∣2 +
1

ρ2

∣∣∣∣∂(Rw1)

∂θ

∣∣∣∣2
)
ρdρdθ

=

q∑
l=1

ˆ
Ωl

2∩S
ξ(ρ)

(∣∣∣∣∂(Rw1)

∂ρ

∣∣∣∣2 +
1

ρ2

∣∣∣∣∂(Rw1)

∂θ

∣∣∣∣2
)
ρdρdθ.
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Then similar to (36) with the change of variables (ρ, θ) 7→ (rk, ϕk) for k = 1, p that maps Ωl2 to Ωk1 (note that
ξ(rk) = ξ(ρ)) one finds

‖ξ1/2∇(Rw1)‖2Ω2∩S ≤
q∑
l=1

 p∑
k=1

Mlk

(ˆ
Ωk

1∩S
ξ(rk)

(∣∣∣∣∂wk1 (rk, ϕk)

∂rk

∣∣∣∣2 +
1

r2
k

∣∣∣∣∂wk1 (rk, ϕk)

∂ϕk

∣∣∣∣2
)
rkdrkdϕk

)1/2
2

.

≤
q∑
l=1

(
p∑
k=1

Mlk‖ξ1/2∇wk1‖Ωk
1∩S

)2

Introducing
−→
W ξ = (‖ξ1/2∇w1

1‖Ω1
1∩S , . . . , ‖ξ

1/2∇wp1‖Ωp
1∩S)ᵀ, then one has M

−→
W ξ =

p∑
k=1

Mlk‖ξ1/2∇wk1‖Ωk
1∩S ,

using proposition 2 one finally gets

‖ξ1/2∇(Rw1)‖2Ω2∩S ≤ (MᵀM
−→
W ξ,
−→
W ξ) ≤ Iα‖ξ1/2∇w1‖2Ω1∩S .

Remark 5. Following remark 4, one can find w0
1 ∈ V1 such that ‖ξ1/2∇(Rw0

1)‖2Ω2∩S ≥ ‖ξ
1/2∇w0

1‖2Ω1∩S .

Proposition 4. Let ξ be a smooth positive function with support S that is symmetric with respect to the
interface. Then for all w1 ∈ V1

‖ξ1/2∇(Rw1)‖2Ω2∩S=‖ξ1/2∇w1‖2Ω1∩S ,

where R is the symmetry-based operator (24).

Proof. This inequality is obtained using the change of variables (xΣ, yΣ) → (xΣ,−yΣ) in Ω2 ∩ S. For all
w1 ∈ V1

‖ξ1/2∇(Rw1)‖2Ω2∩S =

ˆ
Ω2∩S

ξ(xΣ, yΣ)

(∣∣∣∣∂(Rw1)

∂xΣ

∣∣∣∣2 +

∣∣∣∣∂(Rw1)

∂yΣ

∣∣∣∣2
)
dxΣdyΣ

=

ˆ
Ω1∩S

ξ(xΣ, yΣ)

(∣∣∣∣∂w1

∂xΣ

∣∣∣∣2 +

∣∣∣∣∂w1

∂yΣ

∣∣∣∣2
)
dxΣdyΣ = ‖ξ1/2∇w1‖2Ω1∩S .

A.3 Local and global interpolation estimates
Let τ̂ be the reference triangle, with corners (1, 0), (0, 1) and (0, 0), and let Îd be the Lagrange interpolation
operator over Pd(τ̂). Given (Th)h a regular family of triangulations of a domain Ω we call Idτ the Lagrange
interpolation operator over Pd(τ), for all h and all τ ∈ Th.

Lemma 4. On the reference triangle τ̂ , one has the estimate

∃Ĉ > 0, ∀χ̂ ∈ P1(τ̂), ∀v̂ ∈ Pd(τ̂), ‖∇̂
(
χ̂v̂ − Îd(χ̂v̂)

)
‖τ̂ ≤ Ĉ |χ̂|W 1,∞(τ̂) ‖∇̂v̂‖τ̂ . (37)

As a consequence, one has the uniform local estimate

∃C > 0, ∀h, ∀τ ∈ Th, ∀χ ∈ P1(τ), ∀v ∈ Pd(τ), ‖∇
(
χv − Idτ (χv)

)
‖τ ≤ C hτ |χ|W 1,∞(τ) ‖∇v‖τ . (38)

Proof. Write χ̂(x̂, ŷ) = α + χ̂1(x̂, ŷ), resp. v̂(x̂, ŷ) = v̂−(x̂, ŷ) + v̂d(x̂, ŷ) where χ̂1(x̂, ŷ) = βx̂ + γŷ, resp.
v̂d(x̂, ŷ) =

∑
i=0,d aix̂

iŷd−i and deg(v̂−) < d. For i = 0, d, define êi(x̂, ŷ) = x̂i+1ŷd−i − Îd(x̂i+1ŷd−i), resp.
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f̂i(x̂, ŷ) = x̂iŷd+1−i − Îd(x̂iŷd+1−i). Note that |χ̂|W 1,∞(τ̂) = max(|β|, |γ|).
Since there holds χ̂v̂ − Îd(χ̂v̂) = χ̂1v̂d − Îd(χ̂1v̂d) = β

∑
i=0,d aiêi(x̂, ŷ) + γ

∑
i=0,d aif̂i(x̂, ŷ), one finds∣∣∣∇̂(χ̂v̂ − Îd(χ̂v̂)

)
(x̂, ŷ)

∣∣∣ ≤ |β|
∑
i=0,d

|ai| |∇̂êi(x̂, ŷ)|+ |γ|
∑
i=0,d

|ai| |∇̂f̂i(x̂, ŷ)|

≤ |χ̂|W 1,∞(τ̂)

∑
i=0,d

|ai|
(
|∇̂êi(x̂, ŷ)|+ |∇̂f̂i(x̂, ŷ)|

)

≤ |χ̂|W 1,∞(τ̂)

∑
i=0,d

|ai|2
1/2∑

i=0,d

(
|∇̂êi(x̂, ŷ)|+ |∇̂f̂i(x̂, ŷ)|

)2

1/2

≤ |χ̂|W 1,∞(τ̂)

∑
i=0,d

|ai|2
1/22

∑
i=0,d

(
|∇̂êi(x̂, ŷ)|2 + |∇̂f̂i(x̂, ŷ)|2

)1/2

.

It follows that ‖∇̂(χ̂v̂−Îd(χ̂v̂))‖τ̂ ≤ Ĉd |χ̂|W 1,∞(τ̂)(
∑
i=0,d |ai|2)1/2, with Ĉd =

√
2[
∑
i=0,d(‖∇̂êi‖2τ̂+‖∇̂f̂i‖2τ̂ )]1/2.

Then, we remark that the `2-norm of the coefficients is a norm over Pd(τ̂), hence it is also a norm over its
vector subspace Pzmvd (τ̂) made of zero-mean value polynomials on τ̂ . Now, over Pzmvd (τ̂), the semi-norm
‖∇̂ · ‖τ̂ is also a norm and because Pzmvd (τ̂) is a finite dimensional vector space, both norms are equivalent.
Noting finally that, starting from v̂, one has only to modify the degree-0 coefficient to obtain a zero-mean
value polynomial, we finally get that there exists Ĉ ′ independent of v̂ such that (

∑
i=0,d |ai|2)1/2 ≤ Ĉ ′‖∇̂v̂‖τ̂ .

Taking Ĉ = Ĉd Ĉ
′ leads to (37).

We recall that provided the family of triangulations (Th)h is regular, there exists s > 0 such that, for all h
and for all τ ∈ Th, there holds hτ ≤ s ρτ , where ρτ us the diameter of the largest ball that can be inscribed
in τ . One can then derive (38) from (37) by using the affine mapping from the reference triangle τ̂ to the
triangle τ ∈ Th. We refer for instance to [15]. We report here the computations for the sake of completeness
(C0, C1, · · · are constants that are independent of h and τ):

‖∇
(
χv − Idτ (χv)

)
‖τ ≤ C0 s ‖∇̂

(
χ̂v̂ − Îd(χ̂v̂)

)
‖τ̂ cf. Lemmas 1.100-1.101 of [15]

≤ C1 |χ̂|W 1,∞(τ̂) ‖∇̂v̂‖τ̂ cf. (37)
≤ C2 hτ |χ|W 1,∞(τ) × C3 s ‖∇v‖τ cf. Lemmas 1.100-1.101 of [15],

that is (38) with C = C2 C3 s.

Let us prove the estimate over Ωh. Recall that V := H1
0 (Ω), V h(d) := {v ∈ V : v|τ ∈ Pd(τ), ∀τ ∈ Th}, and

Ih is the interpolation operator on V h(d). Consider a cutoff function χ whose support is included in Ω, and
denote by χh its interpolation of degree 1.

Lemma 5. For all vh ∈ V h(d),

∃C > 0, ‖∇(χhv
h − Ih(χhv

h))‖Ωh ≤ C h ‖χ‖W 1,∞(Ω)‖∇vh‖Ω. (39)

Proof. To obtain (39), we evaluate the L2-norm of ∇(χhv
h− Ih(χhv

h)) on Ωh by splitting Ωh into triangles,
and then going back to the reference triangle to use the uniform estimate (38):

‖∇(χhv
h − Ih(χhv

h))‖2Ωh =
∑
τ⊂Ωh

ˆ
τ

|∇(χh|τv
h
|τ − Idτ (χh|τv

h
|τ ))|2 ≤ C

∑
τ⊂Ωh

h2
τ |χh|τ |2W 1,∞(τ)‖∇v

h
|τ‖2τ .

Using the definition of the meshsize h yields

‖∇(χhv
h − Idh(χhv

h))‖Ωh ≤ C h ( sup
τ⊂Ωh

|χh|τ |W 1,∞(τ))(
∑
τ⊂Ωh

‖∇vh|τ‖2τ )1/2 ≤ C h ‖χh‖W 1,∞(Ω)‖∇vh‖Ω.

One concludes using the stability estimate (27).
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