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Introduction

The effect of convection on the heat and mass transfer to the cylindrical solids has been much studied [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF][START_REF] Vyver | [END_REF]. The convection can raise significantly the mass-transfer rate to the cylindrical electrode in the metal electrodeposition. However, the convection usually distorts the distribution of the deposit and produces a significant difference between the thickness of the deposit layer at the upstream and downstream parts of a cylinder [START_REF] Vyver | [END_REF]. The nonuniformity of deposit thickness can be decreased by applying a magnetic field, which generates the solution flow [3]. This flow is generated by the Lorentz force, which arises from the interaction between electrolytic current and magnetic field [4]. In [5], the numerical simulations of electrochemical plating of a single cylinder with forced convection for Reynolds number 10 with a longitudinal magnetic field were performed. This case gives not only a good homogenization of the deposit but also a significant improvement of the overall mass transfer rate. The alternating magnetic field appeared to be more effective. It can be concluded that, by using a magnetic field, it is possible to considerably improve this kind of electroplating processes. In [5], the case of electrodeposition from the solution containing an excess of supporting electrolyte was considered. This allowed the authors to ignore the migration transfer of electroactive cations and the variation of electrolyte solution conductivity. In the case of binary electrolyte or a solution with a low concentration of indifferent electrolyte, the above assumptions cannot be used. In addition, along with the forced convection, the natural convection of solution can have an effect on the mass transfer [6,7]. Here, the effects of a magnetic field on the mass transport at a cylindrical electrode are examined under mixed convection of binary electrolyte solution.

Mathematical model

Fig. 1 shows the geometry of domain used for modeling of mass transfer to the cylindrical cathode. The Navier-Stokes equations for incompressible viscous liquid in the Boussinesq approximation with regard for the Lorentz volume force, the transport equations of cations and anions, and the electroneutrality conditions are used as the mathematical model. As a result of eliminating the migration terms from the ionic transport equations and passing to the dimensionless variables, the mathematical model takes the following form:
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where V is the dimensionless electrolyte solution velocity; P is the dimensionless pressure;

C is the dimensionless concentration of electroactive cation;  is the dimensionless potential;  is the dimensionless time;
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z e is the unit vector directed along Z axis; 
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is the effective diffusion coefficient of binary electrolyte;  is the dynamic viscosity of binary electrolyte solution;  is the density of binary electrolyte solution; v 0 is the rate at the inlet boundary (Inlet); g is the gravitational acceleration; B 0 is the applied magnetic field is taken as a unit pressure; a ratio between the cathode diameter and the rate at the inlet boundary (d/v 0 ) is taken as a unit time; R is the gas constant; T is the temperature. The boundary conditions are as follows:
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where U is the dimensionless applied voltage (a potential difference between the inlet boundary and cathode); 0 i and
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are the dimensional and dimensionless exchange current densities, respectively; n is the number of electrons exchanges in electrochemical reaction; α is the transfer coefficient of cations; N is the unit normal vector to cathode surface. Equations ( 2) and (3) prescribe the boundary conditions at the inlet and outlet, respectively; equations (4) correspond to the boundary conditions on the horizontal periodical boundaries; and equations ( 5) are the boundary conditions on the cylindrical cathode. It is assumed that the anode is placed far from the cathode and has no effect on the mass transfer to the cathode.

Method of numerical solution

The set of equations is solved numerically. The solution procedure is based on the finite-element discretization of the transport equations and the continuity equation for an incompressible fluid, resulting in a discrete set of equations for velocity, pressure, concentration and potential. The numerical scheme is based on the pressure correction method where a correction to the pressure field is computed such that the divergence of the velocity field is forced to be zero and the continuity equation can be satisfied. At each time step the nonlinear equations are solved by iteration. The convection velocity and other parameters are evaluated at the previous iteration and a linear equation system is formed for each variable. The linearized difference equation system is solved by an iterative solution method. The dimensionless stream function is calculated by the following equation:

    , , , Y) P(X, Cathode     dX V dY V Y X Y X  (6)
where P(X,Y) is a point inside the computational domain; V X and V Y are the velocity components along X and Y axes, respectively.

Results

The modeling is performed at the following values of parameters: z 1 =1; z 2 =-1; A=-0.5…05; I 0 =1000; n=1; α=0.5; U=10…100; H=5…20; Re=1…20; Sc=1000; M D =0…10 5 ; Ra=-2.5e6…2.5e6. To provide the independence of simulated results from meshing the computational domain into the finite elements, the test computations are performed; as a result, a grid with 27000 elements was chosen. A fine mesh is used near the cylinder in order to get at least 20 cells in a thin concentration boundary layer (Fig. 1b). The grid step near the cathode surface is taken to be 0.0002. Fig. 2 gives the results of modeling mass transfer in the absence of external magnetic field under the forced (Figs. 2a and2b) and mixed (Figs. 2c -2f) convection of binary electrolyte solution at A=-0.1; U=50; H=5; Re=10. In Fig. 2, the dark areas correspond to the lower concentration of electroactive ion. From the simulated results it follows that the natural convection of electrolyte solution has a pronounced effect on the mass transfer to the cylindrical cathode and, under certain conditions, allows one to enhance the uniformity of current density distribution over the cathode surface. The current density in the upstream point (Fig. 1) only slightly depends on the natural convection of solution. In the downstream point, the current density increases both at the positive and negative Rayleigh numbers. The most uniform distribution of current density over the cathode surface is achieved at negative Ra (Figs. 2e and2f). In this case, a degree of nonuniformity of current density distribution decreases by more than two times.

To develop the method of alternating magnetic field, here, it is assumed that the magnetic field varies in the following manner: (7) where M D,0 is the amplitude of variation of parameter M D ; T is the dimensionless period of variation of magnetic field; and a is the coefficient characterizing the constant component of magnetic field. From the calculated results it is seen that the most uniform distribution of current density over the cathode is achieved when a constant and periodically varying magnetic fields are imposed simultaneously. Fig. 3 gives an example of the variation in the solution flow during a single period. T was taken to be longer than the dimensionless diffusion time scale , the slow adjustment of the diffusion layer cannot provide a considerable increase in the mass-transfer rate and uniformity of current density distribution over the cathode surface. At very long T comparable with the total duration of electrodeposition, a deposit asymmetrical about the horizontal axis forms. At the medium periods of magnetic field variation, the best results can be obtained. As a result of superposition of alternating and constant magnetic fields, the conditions of mass transfer on the downstream part of cathodic surface can be improved and the uniformity of distribution of current density averaged over the period of magnetic field variation can be enhanced. A comparative analysis of metal electrodeposition in different kinetic modes showed that, in the case of electrochemical kinetic mode (the Butler-Volmer equation is used), the effect of external magnetic field on the uniformity of current density distribution is weaker than in the case of diffusion limiting current mode.
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Conclusions

The numerical modeling yielded the dependences of the rate of mass transfer to the horizontal cylindrical cathode and the uniformity of distribution of current density over the electrode surface on the main parameters of the system under the forced and mixed convection of binary electrolyte solution. It is shown that the natural convection of electrolyte solution allows one to enhance the uniformity of current density distribution over the cathode surface. The effect of constant and periodically varying uniform magnetic field on the mass transport is studied. It is found that the most uniform distribution of current density over the cathode is achieved when the constant and periodically varying magnetic fields are imposed simultaneously.
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Fig. 1 :

 1 Fig. 1: (a) Scheme of computational domain and (b) mesh with boundary layer near cathode. When we passed to the dimensionless variables, d is taken as a unit length; v 0 is taken as a unit rate; b c , 1 is taken as a

Fig. 2 :

 2 Fig. 2: (a, c, e) Distributions of dimensionless concentration of electroactive ions and (b, d, f) distributions of dimensionless stream function during electrodeposition on cylindrical cathode: (a, b) Ra=0; (c, d) Ra=2.5e6; (e, f) Ra=-2.5e6.

Fig. 3 :

 3 Fig. 3: Flow structure near cylindrical cathode at M D,0 =10000, T=200; a=0.25; Ra=0: (a) τ=mT; (b) τ=(m+0.25)T; (c) τ=(m+0.5)T; (d) τ=(m+0.75)T.
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