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ABSTRACT
Feature models are widely used to encode the configurations
of a software product line in terms of mandatory, optional
and exclusive features as well as propositional constraints
over the features. Numerous computationally expensive pro-
cedures have been developed to model check, test, configure,
debug, or compute relevant information of feature models.
In this paper we explore the possible improvement of rely-
ing on the enumeration of all configurations when perform-
ing automated analysis operations. The key idea is to pre-
compile configurations so that reasoning operations (queries
and transformations) can then be performed in polytime.
We tackle the challenge of how to scale the existing enu-
meration techniques. We show that the use of distributed
computing techniques might offer practical solutions to pre-
viously unsolvable problems and opens new perspectives for
the automated analysis of software product lines.

1. INTRODUCTION
Modeling and reasoning about features and their con-

straints is a crucial activity in software product line (SPL)
engineering [2]. Products of an SPL are derived from a com-
bination of features (aka configuration) through the assem-
bly of corresponding and reusable artefacts. In an SPL con-
text, the formalism of feature models is widely used [2, 4].
Feature models encode the variability of an SPL in terms of
mandatory, optional and exclusive features as well as propo-
sitional constraints over the features. Feature models delimit
the scope of a configurable system (i.e., an SPL) and for-
mally document what configurations are supported. Once
specified, feature models can be used for model checking an
SPL [24], for testing SPLs, for automating product configu-
ration [8], or for computing relevant information [4].

The large number of configurations that a feature model
can encode makes the manual analysis an error prone and
costly task. Computer-aided mechanisms appeared as a so-
lution to guide and help practitioners in different software
engineering tasks such as debugging, configuration or test-
ing. This process, known as automated analysis of feature
models [4], is a key concept when reasoning about large and
complex variability-intensive systems.

In this paper we propose the use of enumeration to ease off

the time required to perform repetitive and computationally
hard reasoning operations over a feature model. That is, we
address the problem of enumerating all configurations of a
feature model so that reasoning operations can be efficiently
performed afterwards. Our motivation is three-fold. First, it
is not acceptable for interactive systems (e.g., Web configu-
rators) to provide a response superior to 10 seconds [5,22] to
customers. It is neither acceptable for critical configurable
or re-configurable systems (e.g., dynamic SPLs) in which
the response time is a critical aspect. In such contexts, rea-
soning mechanisms that operate over the configuration set
must provide a fast response (e.g., see [9]). Second, some
reasoning operations over feature models may be inefficient
(e.g., existential quantification for slicing feature models [1],
counting of the number of products) with traditional solv-
ing techniques. The use of a pre-compiled, enumerated set
of configuration makes the promise of realizing operations
in polytime [6]. Third, computing all configurations has an
interest per se since it is then possible to derive all corre-
sponding products for testing, model-checking, debugging,
or measuring performance of them individually.

Unfortunately the enumeration of all configurations has a
significant cost in space and time, precluding their practical
usage. However, nowadays there exist the cloud computing
wich enables the access to huge amounts of computing fa-
cilities. Concretely, we present an innovative solution based
on distributed computing and big data techniques (Hadoop)
that benefits from this availability of computing power.

2. PROBLEM STATEMENT
The automated analysis of feature models [4] is usually as

follows. First, the model is translated into logics and rea-
soners are implemented using BDDs, SAT solvers, etc. Then
users can perform multiple queries with reasoners such as
determining the number of products or detecting dead fea-
tures (i.e., features that are never present in a valid con-
figuration). In general we expect that automated analyses
for software product lines are efficient (e.g., the analysis is
done in less than a second). Yet the theory states that most
of the reasoning operations are computationally hard (e.g.,
NP-complete). The basic reason is that automated meth-
ods resolve satisfiability (SAT) problems. Hence the practi-
cal challenge is to provide efficient techniques for reasoning



about the configuration set.
The more direct path is to enumerate all (valid) configu-

rations of a feature model. The idea is to have an explicit
configuration set in which reasoning operations can be ef-
ficiently performed. For instance, counting the number of
valid configurations then boils down to count the size of the
enumerated set – instead of producing all valid assignments
of a satisfiability problem. The promise is thus to improve or
even guarantee response times for some reasoning operations
heavily employed for configuring, testing, or model-checking
product lines.

Knowledge compilation. In fact the problem of choos-
ing the right representation of a feature model for an efficient
reasoning can be seen as a knowledge compilation problem.
Knowledge compilation is a family of approaches for address-
ing the intractability of a number of reasoning problems. A
propositional model (and a feature model) is compiled in
an off-line phase in order to support some queries in poly-
time. Many ways of compiling a propositional model exist
such as conjunctive (resp. disjunctive) normal form a.k.a.
CNF (resp. DNF), and binary decision diagrams (BDDs)
which are also widely used in the field [20]. An enumer-
ated representation of the configuration set can be seen as
an alternative to CNF, DNF, and BDD.

A key aspect of the problem is that different compiled
representations (e.g., CNF, DNF, BDD, enumerated) have
different properties [6]. Two properties are of interest. First,
the queries are supported in polytime. For example, the con-
sistency check can be done in polytime using ordered BDD
or DNF while it is not the case in CNF. Consistency check
is at the heart of numerous operations for feature models,
hence not having polytime operations may be a problem.
Second, some transformations of the representations can be
performed in polytime. For example, the negation cannot
be done in polytime with CNF while it is possible with or-
dered BDD. The negation of a CNF formula is relevant for
some reasoning operations of feature models (e.g., see [25])
and imposes some heuristics to cope with the problem.

Given a feature model, practitioners can use BDDs or SAT
solver [19, 21] for then realizing some reasoning operations.
As an alternate approach we propose to use an enumeration
with the idea of gaining speed when reasoning.

Towards enumerating all configurations. Compiling
an enumerated set of configurations of a feature model is an
alternate and interesting approach for efficiently reasoning
about a feature model. To the best of our knowledge there
is no prior work addressing the problem (see also the related
work section). It has three practical interests:

• gathering all configurations has an interest per se. For
example it is then possible to derive all corresponding
products (e.g., programs) for testing, model-checking,
debugging, or measuring performance of them indi-
vidually. A configuration set can also be used as a
benchmark for approaches seeking to synthesize fea-
ture models from configurations [3, 11, 17, 23]. As a
sound and complete representation of the configura-
tions, the set can act as a ground truth for testing
some automated operations [4], etc.;

• an enumerated configuration set allows some reason-
ing operations to be realized in polytime [6]. It can
improve or guarantee the time response of automated
analyses (e.g., in critical re-configurable systems [9]);

• from the configuration set, other representation (e.g.,
BDDs) can be compiled for efficient queries (e.g., in
polytime). Compilations (or transformations) them-
selves of other representations can be realized in poly-
time [6].

Two important issues remain before an actual adoption
in practice. First, this operation is very costly in time and
space. We address the challenge with a distributed solution
for pre-compiling a comprehensive, enumerated configura-
tion set of a feature model. Second, it is unclear what could
be the speed up benefits when reasoning with an enumerated
set. We perform preliminary experiments on real-world fea-
ture models and show that three reasoning operations can
benefit to our approach (see next section).

3. PAVIA: USING HADOOP TO GENERATE
A KNOWLEDGE-BASE FOR INTERAC-
TIVE CONFIGURATION

MapReduce is a paradigm for the analysis of the so-called
big-data in a scalable manner. Algorithmically, MapRe-
duce is built on top of the divide and conquer concept,
i.e., breaking big-data into smaller chunks and processing
them in parallel to obtain solutions in a distributed environ-
ment. Hadoop1 is an open-source system that implements
the MapReduce programming model for distributed com-
puting.

Deriving all configurations (satisfying the constraints of
a feature model) can be seen as the problem of generating
all permutations taken by n at time where n goes from 1
to k being k the number of features of the feature model.
Figure 1 shows the main steps followed by PAVIA (Paralel
AnAlysis of Variability Intensive systems). A feature model
representing the system is used as input. First, it is trans-
lated into a logic paradigm such as SAT for its later exploita-
tion. Each mapper will load the SAT problem description
for the verification of each configuration validity. Second, a
workflow of Hadoop jobs is executed to generate the set of
feature combinations in an intelligent manner, this is, some
permutations are discarded to avoid futile maps operations.
Finally, this set of configurations is used to perform feature
model analysis such as the detection of dead features.

3.1 Preparing the reasoning engine for the con-
figuration validity verification

A key problem when distributing the computation using
Hadoop is the communication within the different compo-
nents –mappers, reducers, and task managers– existing in
the cloud environment where we execute it. PAVIA de-
scribes the constraints existing in a feature model by us-
ing a SAT description. This enables to store in memory
the minimal set of variables required to perform the validity
checks, thus being compatible with the data isolated exe-
cution model proposed by Hadoop in which, mappers are
oblivious to other mappers. This is, each mapper will load
the problem in memory and process a random chunk of data
to analyze.

3.2 Deriving the set of valid configurations us-
ing a workflow of Hadoop jobs

1http://hadoop.apache.org/
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Figure 1: The PAVIA approach

PAVIA splits the problem of deriving all valid configura-
tions encoded in a feature model in k subproblems being
k the number of features. This is, in each step, we gen-
erate all combinations of k features, taken m features at
a time. Thus, deriving the configurations (feature combi-
nations) depicted by m features (m < k). Moreover, only
valid configurations (partial or complete) are passed to the
next step. This last verification is done by relying on a logic
paradigm such as SAT, which prevents us to derive non-
valid configurations (and to keep using them for generating
more non-valid configurations). The variables used by each
Hadoop mapper are defined by the tuple:

PAV IA =< F,Confj−1, FC,C >

where:

• F is a set of variables, fi ∈ F , representing the set
of features existing in the variability intensive system
feature model. Also, the value of i is used as key for a
feature across the subproblems.

• Confj−1 is the set of partial configurations coming
from the previous step. Note that each mapper will
only take a split of the input data.

• FC is the set of constraints that define the different
relationships between different features (e.g. if the ith
feature is a mandatory child feature of the jth feature,
then fi <=> fj) according to the mapping presented
in [4].

• C is the set of constrains imposed by the input config-
uration Confj−1. This is, if ci (the feature fi in the
configuration) is present, a constraint is introduced in
the problem forcing fi = 1.

Inside each mapper, we combine the set of previously gen-
erated partial configurations resulting from the previous it-
eration (Confj−1) with the set of features from the model.
Later, we check the validity of those newly generated config-
urations and send the valid ones to the reducers which will
save them for the next step. Also, in the case of not being
a valid partial configuration a resulting configuration, it is
discarded. The Hadoop workflow ends when all new config-
urations are non-valid. Note that in this solution, a reducer
only groups partial key-value pairs, i.e, a reducer does not
compute on grouped key-value pairs.

Figure 2 depicts an example of the process that PAVIA
applies to generate the set of valid partial configurations (ar-
rows) as well as the set of complete configurations (marks)
from a feature model. In our example, we did not include
the root feature for the sake of simplicity. In the first itera-
tion, we generate the set of valid combinations taken one at
time which is an enumeration of the model features. This

is, A; B and; C, detecting that the feature B is valid as both
partial and complete configuration thus, we save it in the
set of final products. All the three features are valid as par-
tial configurations being used as input in the 2nd iteration.
This is, only valid partial configurations are passed through
to the next iteration while valid complete configurations are
saved as result of the process.

Later in the 2nd iteration we combine the valid configu-
rations from the first iteration with all the features which
have a greater value than the last added one (this is done
by using Hadoop keys.) Therefore, we test AB and AC for
the A feature; and BC for the second. In this step, we also
note that we cannot combine C with any other feature with
a greater value so we discard it. This process is repeated
until we detect that the feature combination ABC cannot
be extended.

3.3 Preliminary results
We performed preliminary experimentations to evaluate

the potential benefits of a distributed, enumerative-based so-
lution. We considered 182 feature models from the SPLOT
repository.

First, we generated the set of valid configurations using
PAVIA in a single cluster machine of 20 cores versus a
single-threaded solution such as the provided by the FaMa
tool [26]. For feature models with small number of con-
figuration, PAVIA induces a slight overhead and is inferior
to a non-distributed solution. The single threaded solution
starts experiencing scalability problems for large configura-
tions. Here PAVIA balances the computation between mul-
tiple machines enabling the execution within the time-limit
(30 minutes in our settings). Overall PAVIA was able to
cope with a 32.4% (59 models) more than the FaMa imple-
mentation for the 30 minutes timeout.

As a second experiment, we compared the time required
to execute some feature model operations versus the time of
exploiting the database generated by Hadoop. Specifically,
we measured the time of executing the operation using FaMa
relying on the JavaBDD and Sat4j solvers. For exploiting
the database we used simple Bash scripts for iterating over
the configuration files (e.g. “wc -l” for counting the number
of configurations). We observed that exploiting the enumer-
ation is:

• 8.605 times faster than JavaBDD and 4.333 times faster
than Sat4j for the core features operation.

• 13.880 times faster than JavaBDD and 125182.992 times
faster than Sat4j for the dead features operation.

• 13.769 times faster using JavaBDD and 77060.12 times
faster using Sat4j for the products enumeration ques-
tion.
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Figure 2: Process followed by PAVIA to derive all valid partial and full configurations (each iteration is a Hadoop job).

While results show a potential improvement, a more ex-
haustive experimentation is still required to determine when
the overhead introduced by Hadoop pays off.

4. RELATED WORK
Parallel analysis of feature models. There are other

researchers coping with the problematic of scaling over when
analyzing feature models. Lopez-Herrejon et al. [16] com-
pared a PPGS, Parallel Prioritized product line Genetic
Solver, algorithm for prioritized software testing with the
greedy algorithm pICPL, prioritized-ICPL, and shows stat-
ical analysis and results on feature models from different
sources - SPL conqueror [13], and SPLOT website, to con-
clude while PPGS permits obtaining shorter covering arrays,
pICPL is faster. In our research we tackle a different prob-
lem but also having in mind that distributing analysis tasks
helps in terms of time to perform the analysis; even though,
since PAVIA is a MapReduce application on feature mod-
els, we step out the distributed and parallel computing is-
sues. Guo et al. [8] addressed the problem of multi-objective
combinatorial optimization. They developed parallelization
algorithms and show substantial gains in three case studies.

The use of SAT solvers or BDD has been widely consid-
ered and provide good practical results [15,19,21]. Our pre-
liminary experiments suggest that an enumerative strategy
can improve more traditional techniques. As future work
we plan to investigate for which reasoning operations (e.g.,
T-wise configurations) an enumerative approach brings ben-
efits (if any).

Divide and conquer. There have been proposals to
introduce divider and conquer strategies when coping with
feature models. Basically this effort has been focusing on de-
termining diagnoses and redundancies; FastDiag and FM-
Core. FastDiag [7] is a divide-and-conquer algorithm that
supports the efficient determination of minimal diagnoses
without the need of having conflict sets available. FM-
Core is an algorithm which focuses on the determination
of minimal cores, i.e., redundancy-free subsets of a con-
straint set. In this paper we propose to go further in the
pre-computation of relevant structures for reasoning.

Enumeration of solutions. The problem of enumerat-
ing all configurations of a FM can be seen as an instance
of All-SAT or model enumeration [12,14,18,27]. The prob-
lem is considered as important in the SAT community, with
numerous applications (e.g., computation of backbones, un-
bounded model checking, knowledge compilation). A first
contribution of this paper is to show that the problem is
also worth studying in the context of software product lines.
A second contribution is to investigate the potential of dis-
tributed computations (here Hadoop) in practical settings

for scaling up.

5. CONCLUSION AND FUTURE WORK
In this paper we considered the problem of exploiting the

result of enumerating all configurations of a feature model.
We motivated the practical importance of the problem and
identified connection with the knowledge compilation prob-
lem [6]. An enumeration can be seen as an efficient represen-
tation of feature model configurations supporting polytime
reasoning operations (queries and transformations). We then
addressed the problem of compiling in an off-line phase the
enumerated set.

Perspectives. The use of distributed, big data tech-
niques looks promising. It offers scalable solutions to pre-
viously unpractical problems. This opens new perspectives
for the automated analysis of feature models since polytimes
queries might be now be considered.

An interesting direction is to determine when the pre-
compilation (in an offline phase) pays off, that is, for which
automated analyses and hardnesses of feature models our
approach is worth using. There might be also cases in which
our approach has drawbacks and no improvement can be ob-
served. More generally an open research question can be for-
mulated: given a reasoning operation and a feature model,
is an enumeration-based approach more efficient than the
traditional use of solvers? This question is particularly rel-
evant in scenarios involving costly and repetitive reasoning
operations – for instance, the re-configuration of a dynamic
software product line [10] based on several objectives.

We are also aware an enumeration-based approach is sim-
ply not possible for variability models with very large config-
uration space. A general perspective is thus to understand
the practical limits of an enumeration, i.e., for which classes
of feature models we are unable to enumerate using large
amounts of computing capabilities. Furthermore it should
be noted that our approach can be of interest even for rather
small feature models since the underlying reasoning opera-
tions are simply very costly (e.g., multi-objective optimiza-
tion in time pressure settings). Future work will involve
identifying the boundaries and barriers of an enumeration-
based approach. In cases a comprehensive enumeration is
simply not possible, an interesting direction is to partially
enumerate configurations.

We also believe the work is of interest for the SAT com-
munity. The problem can be seen as an instance of All-SAT
or model enumeration [12,14,18,27]. In the context of soft-
ware product lines the problem exhibits specific properties
(in terms of motivation and hardnesses of the instances) and
is worth studying.
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