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b Laboratory J.A. Dieudonné & EPU Nice Sophia, UMR 7351 Parc Valrose, 28 Avenue Valrose 06108 Nice

Cedex 02, 06000 Nice, France

Abstract

The blood flow model maintains the steady state solutions, in which the flux gradients are

non-zero but exactly balanced by the source term. In this paper, we design high order

finite difference weighted non-oscillatory (WENO) schemes to this model with such well-

balanced property and at the same time keeping genuine high order accuracy. Rigorous

theoretical analysis as well as extensive numerical results all indicate that the resulting

schemes verify high order accuracy, maintain the well-balanced property, and keep good

resolution for smooth and discontinuous solutions.

Keywords: Blood flow model; Finite difference schemes; WENO schemes; Well-balanced

property; High order accuracy; Source term

1. Introduction

In this paper, we are interested in numerical simulation for the blood flow model by high

order finite difference schemes. The numerical simulations with high order accuracy have a

wide applications in medical engineering [1, 2]. As quoted by Xiu and Sherwin [3], the blood

flow in arteries model was written long time ago by Leonhard Euler in 1775. However, the

model is too difficult to solve [4]. Herein, for the sake of simplicity, we neglect the friction
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term and consider the following governing equations







∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(

Q2

A
+ k

3ρ
√
π
A

3
2

)

= kA
ρ
√
π
∂x(

√
A0),

(1)

where A is the cross-sectional area (A = πR2 with R being the radius of the vessel), Q = Au

denotes the discharge, u means the flow velocity, and ρ stands for the blood density. k

represents the stiffness arterial. In addition, A0 is the cross section at rest (i.e., A0 = πR2
0

with R0 being the radius of the vessel, which may be variable in the case of aneurism, stenosis

or taper).

The blood flow model (1) with the source term are also called as balance laws. This

model can admit the following steady state solutions, also called “man at eternal rest” (by

analogy to the “lake at rest” in the shallow water equations)

u = 0, A = A0. (2)

For the steady state solutions (2), the source term is exactly balanced by the non-zero flux

gradient. Thus it is desirable to maintain the balance between the flux gradient and the

source term at the discrete level. But such a balance is usually neither a constant nor

a polynomial function. So standard numerical schemes usually fail to capture the steady

state solutions well and may generally introduce spurious oscillations. The mesh must be

extremely refined to reduce the size of these oscillations, but this strategy is impractical for

multi-dimensional cases due to the high computational costs. Bermúdez and Vázquez [5]

in 1994 proposed the idea of “exact conservation property”, which means that a scheme is

exactly compatible with the steady state solutions. This property is also known as “well-

balanced” property and is crucial for the balance between the flux gradient and the source

term. An efficient scheme should satisfies this well-balanced property. Such schemes are often

regarded as well-balanced schemes after the pioneering works of Greenberg et al. [6, 7]. The

well-balanced schemes can preserve exactly these steady state solutions up to the machine

error free of excessive mesh refinement and save computational cost accordingly. Moreover,

the important advantage of well-balanced schemes over non-well-balanced schemes is that
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they can accurately resolve small perturbations of such steady state solutions with relatively

coarse meshes [8, 9]. More information about well-balanced schemes can be found in the

lecture note [8]. Many researchers have developed well-balanced schemes for the shallow

water equations admitting the still water steady state using different approaches, see, e.g.,

[10–15] and the references therein. It is a challenging to design well-balanced schemes for the

moving water equilibrium of the shallow water equations. Most well-balanced schemes for

the still water steady state cannot preserve the moving water equilibrium automatically. A

few attempts can be found in [16–18]. In addition, the research of the well-balanced schemes

for the Euler equations under gravitational fields is also an active subject [19–24].

In recent years, there have been many interesting attempts proposed in the literature

to derive well-balanced schemes for the blood flow model. For example, Delestre et al.

[25] present a well-balanced finite volume scheme for the blood flow model based on the

conservative governing equations [27–29]. Recently, Müller et al. [30] constructed a well-

balanced high order finite volume for the blood flow in elastic vessels with varying mechanical

properties. More recently, Murillo et al. [31] present an energy-balanced approximate solver

for the blood flow model with upwind discretization for the source term.

The main objective of this paper is to design a well-balanced finite difference weighted

non-oscillatory (WENO) scheme which maintains the well-balanced property and at the

same time keeps genuinely high order accuracy for the general solutions of the blood flow

model, based on a special splitting of the source term into two parts which are discretized

separately.

This paper is organized as follows: in Section 2, we propose a high order well-balanced

finite difference WENO scheme. Extensive numerical experiments are carried out in Section

3. Conclusions are given in Section 4.

2. Well-balanced WENO schemes

In this section, we present high order well-balanced WENO schemes for the blood flow

model satisfying the steady state solution (2).
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2.1. Notations

For simplicity, we assume that the grid points {xj} are uniformly distributed with cell

size ∆x = xj+1−xj and we denote the cells by Ij =
[

xj−1/2, xj+1/2

]

with xj+1/2 = xj+∆x/2

as the center of the cell Ij .

2.2. A review of finite difference WENO schemes

The first finite difference WENO scheme was designed in 1996 by Jiang and Shu [32] for

hyperbolic conservation laws. More detailed information of WENO schemes can be found

in the lecture note [33]. For the latest advances regarding WENO schemes, we refer to the

review [34]. We begin with the description for the 1D scalar conservation laws

ut + f(u)x = 0. (3)

High order semi-discrete conservative finite difference schemes of (3) can be formulated as

follows

d

dt
uj(t) = − 1

∆x

(

f̂j+1/2 − f̂j−1/2

)

, (4)

where uj(t) is the numerical approximation to the point value u(xj, t), and the numerical

flux f̂j+1/2 is used to approximate hj+1/2 = h
(

xj+1/2

)

with high order accuracy. Here h(x)

is implicitly defined as in [32]

f(u(x)) =
1

∆x

∫ x+∆x/2

x−∆x/2

h(ξ)dξ.

We take upwinding into account to maintain the numerical stability and splitting a

general flux into two parts

f(u) = f+(u) + f−(u),

where
df+(u)

du
≥ 0 and

df−(u)

du
≤ 0. One example is the simple Lax-Friedrichs flux

f±(u) =
1

2
(f(u)± αu), (5)

where α = max
u

∣

∣λ(u)
∣

∣ with λ(u) being the eigenvalues of the Jacobian f ′(u), and the maxi-

mum is taken over the whole region. With respect to f+(u) and f−(u), we can get numerical
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fluxes f̂+
j+1/2 and f̂−

j+1/2 using the WENO reconstruction, respectively. Finally, we get the

numerical fluxes as follows

f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2.

By means of the WENO approximation procedure, f̂+
j+1/2 is expressed as [32]

f̂+
j+1/2 =

r
∑

k=0

ωkq
r
k

(

f+
j+k−r, . . . , f

+
j+k

)

, (6)

where ωk is the nonlinear weight, f+
i = f+(ui), i = j − r, . . . , j + r, and

qrk (g0, . . . , gr) =
r
∑

l=0

ark,lgl (7)

is the low order approximation to f̂+
j+1/2 on the kth stencil Sk = (xj+k−r, . . . , xj+k), k =

0, 1, . . . , r, and ark,l, 0 ≤ k, l ≤ r are constant coefficients, see [33] for more details.

The nonlinear weights ωk in (6) satisfy

r
∑

k=0

ωk = 1,

and are designed to yield (2r + 1)th-order accuracy in smooth regions of the solution. In

[32, 33], the nonlinear weight ωk is formulated as

ωk =
αk
r
∑

l=0

αl

, with αk =
Cr

k

(ε
WENO

+ ISk)
2 , k = 0, 1, . . . , r, (8)

where Cr
k is the linear weight. ISk is a smoothness indicator of f+(u) on stencil Sk, k =

0, 1, . . . , r, and ε
WENO

is a small constant used here to avoid the denominator becoming zero,

ε
WENO

= 10−6 is used in all test cases in this paper. We employed the smoothness indicators

proposed in [32, 33], i.e.,

ISk =
r
∑

l=1

∫ xj+1/2

xj−1/2

(∆x)2l−1
(

q
(l)
k

)2

dx,

where q
(l)
k is the lth-derivative of qk(x) which is the reconstruction polynomial of f+(u) on

stencil Sk such that

1

∆x

∫

Ii

qk(x)dx = f+
i , i = j + k − r, . . . , j + k.
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The WENO approximation procedure for f̂−
j+ 1

2

is a mirror symmetry to that of f̂+
j+1/2

with respect to xj+1/2.

Consequently, the numerical flux f̂j+1/2 is then calculated by

f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2.

Ultimately, we obtain the semi-discrete scheme (4).

2.3. Well-balanced WENO schemes for the blood flow model

In order to design well-balanced schemes, we firstly split the source term kA
ρ
√
π
∂x(

√
A0)

into two terms k
ρ
√
π
(A − A0)∂x(

√
A0) +

k
3ρ

√
π
∂x

(

A
3
2

0

)

in a equivalent form. Therefore the

original system (1) becomes







∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(

Q2

A
+ k

3ρ
√
π
A

3
2

)

= k
ρ
√
π
(A− A0)∂x(

√
A0) +

k
3ρ

√
π
∂x

(

A
3
2

0

)

,
(9)

which can be denoted in a compact vector form

Ut + f(U)x = S1 + S2,

where U = (A, Q)T , f(U) =
(

Q, Q2

A
+ k

3ρ
√
π
A

3
2

)

, S1 =
(

0, k
ρ
√
π
(A− A0)∂x(

√
A0)
)T

and

S2 =
(

0, k
3ρ

√
π
∂x

(

A
3
2

0

))T

.

Subsequently, we consider a numerical scheme for solving (9). The scheme may be clas-

sified as a linear scheme, because all of the spatial derivatives are approximated by a linear

finite difference operator D that is defined to satisfy

D(αf + βg) = αD(f) + βD(g) (10)

for any constants α, β and grid functions f and g.

For such a linear scheme, we have

Proposition 1. A linear scheme for the 1D blood flow model satisfying the steady state

solutions (2) can maintain the well-balanced property.
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Proof. For the steady state solutions (2), linear schemes satisfying (10) are exact for the

first equation ∂xQ = 0, since Q = 0 due to u = 0, and the truncation error for the second

equation reduces to

D
(

Q2

A
+ k

3ρ
√
π
A

3
2

)

− k
ρ
√
π
(A−A0)D(

√
A0) +

k
3ρ

√
π
D
(

A
3
2

0

)

= D
(

k
3ρ

√
π
A

3
2 − k

3ρ
√
π
A

3
2

0

)

= 0,

where the first equality thanks to the facts that Q = 0 due to u = 0 and A = A0 as well

as the linearity of the finite difference operator D; the second one is also due to the fact

that A = A0 and the consistency of the finite difference operator D. As a consequence, this

finishes the proof.

However, the WENO schemes are nonlinear. The nonlinearity comes from the nonlinear

weight, which in turn comes from the nonlinearity of the smoothness indicators. In order to

construct a linear scheme which can maintain the well-balanced property even with the pres-

ence of the nonlinearity of the nonlinear weight and does not affect the high-order accuracy,

we must take some modifications.

To present the basic ideas of the modification, we firstly consider the situation when the

WENO scheme is applied without the flux splitting and the local characteristic decomposi-

tion.

Before considering an approximation of the flux gradient f(U)x, we must firstly recon-

struct the numerical flux f̂j+1/2. We consider a WENO scheme with a global Lax-Friedrichs

flux splitting, denoted by the WENO-LF scheme. Now the flux f(U) writes

f(U) = f+(U) + f−(U),

where

f±(U) =
1

2









Q

Q2

A
+ k

3ρ
√
π
A

3
2



± αi





A

Q







 , (11)

with

αi = max
u

|λi(u)| (12)
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for the ith characteristic field, where αi = max
u

|λi(u)| with λi(u) being the ith eigenvalue of

the Jacobian f ′(U). In order to design a linear finite difference operator, we adopt a minor

modification to the flux splitting by replacing ±αi





A

Q



 in (11) with ±αi





A− A0

Q



.

So the flux splitting (11) now becomes

f±(U) =
1

2









Q

Q2

A
+ k

3ρ
√
π
A

3
2



± αi





A−A0

Q







 . (13)

This modification is justified by the fact that A0 is independent of time t.

Provided f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2 based on the WENO approximation procedure using

the modified flux splitting (13), the flux gradient f(U)x may be finally approximated by

f(U)x
∣

∣

x=xj
≈ f̂j+1/2 − f̂j−1/2

∆x
.

Herein, in order to achieve a more accurate solution at the price of more complicated

computations, the WENO approximation is implemented with a local characteristic decom-

position procedure, see [33] for more details.

Subsequently, the WENO-LF schemes can be demonstrated to maintain the steady state

solutions (2), i.e., to satisfy the well-balanced property.

Firstly, f̂+
j+1/2 is given by

f̂+
j+1/2 =

r
∑

k=−r

ckf
+
j+k

=
r
∑

k=−r

ck
1
2
(fj+k + αUj+k)

= 1
2

r
∑

k=−r

ckfj+k +
1
2

r
∑

k=−r

ck (αUj+k) ,

(14)

where f+ = f+(U) is defined in (13) with U = (A−A0, Q)T and f = f(U) =
(

Q, Q2

A
+ k

3ρ
√
π
A

3
2

)T

being the vector grid functions, ck is a 2×2 matrix depending nonlinearly on the smoothness

indicators of f+ on the stencil {xj−r, . . . , xj+r}, and α is a 2 × 2 diagonal matrix involving

αi in (12).
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Similarly, f̂−
j+1/2 can be written as

f̂−
j+1/2 =

r+1
∑

k=−r+1

akf
−
j+k

=
r+1
∑

k=−r+1

ak
1
2
(fj+k − αUj+k)

= 1
2

r+1
∑

k=−r+1

akfj+k − 1
2

r+1
∑

k=−r+1

ak (αUj+k) ,

(15)

where f− = f−(U). As ck in (14), herein ak is also a 2×2 matrix but depending nonlinearly

on the smoothness indicators of f− on the stencil {xj−r+1, . . . , xj+r+1}, and α is a 2 × 2

diagonal matrix involving αi in (12).

Ultimately, we have

f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2.

= 1
2

r
∑

k=−r

ckfj+k +
1
2

r
∑

k=−r

ck (αUj+k) +
1
2

r+1
∑

k=−r+1

akfj+k − 1
2

r+1
∑

k=−r+1

ak (αUj+k) .

(16)

Likewise, f̂+
j−1/2 and f̂−

j−1/2 can be defined. So, we can obtain f̂j−1/2 as follows

f̂j−1/2 = f̂+
j−1/2 + f̂−

j−1/2.

= 1
2

r−1
∑

k=−r−1

ĉkfj+k +
1
2

r−1
∑

k=−r−1

ĉk (αUj+k) +
1
2

r
∑

k=−r

âkfj−k − 1
2

r
∑

k=−r

âk (αUj−k) .

(17)

Herein, ĉk is a 2 × 2 matrix depending nonlinearly on the smoothness indicators of f+ on

the stencil {xj−r−1, . . . , xj+r−1}. âk is also a 2 × 2 matrix depending nonlinearly on the

smoothness indicators of f− on the stencil {xj−r, . . . , xj+r}.
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Subsequently, the approximation to f(U)x can be obtained as follows

f(U)x
∣

∣

x=xj
≈ 1

∆x

(

f̂j+1/2 − f̂j−1/2

)

= 1
∆x

[(

1
2

r
∑

k=−r

ckfj+k +
1
2

r
∑

k=−r

ck (αUj+k) +
1
2

r+1
∑

k=−r+1

akfj+k − 1
2

r+1
∑

k=−r+1

ak (αUj+k)

)

−
(

1
2

r−1
∑

k=−r−1

ĉkfj+k +
1
2

r−1
∑

k=−r−1

ĉk (αUj+k) +
1
2

r
∑

k=−r

âkfj−k − 1
2

r
∑

k=−r

âk (αUj−k)

)]

= 1
2∆x

(

r
∑

k=−r

ckfj+k −
r−1
∑

k=−r−1

ĉkfj+k

)

+ 1
2∆x

(

r+1
∑

k=−r+1

akfj+k −
r
∑

k=−r

âkfj−k

)

+ 1
2∆x

(

r
∑

k=−r

ck(αUj+k)−
r−1
∑

k=−r−1

ĉk(αUj+k)

)

+ 1
2∆x

(

r
∑

k=−r

âk(αUj−k)−
r+1
∑

k=−r+1

ak(αUj+k)

)

.

(18)

It should be noted that with ±αU = ±α (A−A0, Q)T instead of ±α (A, Q)T in the flux

splitting (11), the first two terms on the right hand side of the above expression become

constant vectors for the steady state solutions (2). Denoting Uj+k as U for simplicity, we

have αUj+k = αU as a constant vector. Consequently

1
2∆x

(

r
∑

k=−r

ck (αUj+k)−
r−1
∑

k=−r−1

ĉk (αUj+k)

)

= 1
2∆x

(

r
∑

k=−r

ck(αU)−
r−1
∑

k=−r−1

ĉk(αU)

)

= 1
2∆x

[(

r
∑

k=−r

ck

)

(αU)−
(

r−1
∑

k=−r−1

ĉk

)

(αU)

]

= 1
2∆x

[I · (αU)− I · (αU)]

= 0,

(19)

where I is a 2 × 2 identity matrix, the identities
r
∑

k=−r

ck = I and
r−1
∑

k=−r−1

ĉk = I are due to

the consistency of the WENO approximation. Similarly, we have

1

2∆x

(

r
∑

k=−r

âk (αUj−k)−
r+1
∑

k=−r+1

ak (αUj+k)

)

= 0. (20)
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Finally, the approximation to f(U)x in (18) can be written as

f(U)x
∣

∣

x=xj
≈ 1

∆x

(

f̂j+1/2 − f̂j−1/2

)

= 1
2∆x

(

r
∑

k=−r

ckfj+k −
r−1
∑

k=−r−1

ĉkfj+k

)

+ 1
2∆x

(

r+1
∑

k=−r+1

akfj+k −
r
∑

k=−r

âkfj−k

)

=
r+1
∑

k=−r−1

βkfj+k

≡ Df (f)j,

(21)

where βk is a 2 × 2 matrix depending on the smoothness indicators involving f+ and f−.

Motivated by the research work in [14], the key idea of the current scheme is to apply the

finite difference operator Df , with the smoothness indicators and the coefficient matrix βk

in (21) fixed, to approximate the source terms
(

0,
√
A0

)T

x
and

(

0, A
3
2

0

)T

x
. This leads to the

splitting of the two derivatives as





0
√
A0





x

=
1

2





0
√
A0





x

+
1

2





0
√
A0





x

,





0

A
3
2

0





x

=
1

2





0

A
3
2

0





x

+
1

2





0

A
3
2

0





x

,

(22)

which is handled by applying the similar flux splitting WENO approximation procedure.

The two parts of each source term are approximated by the finite difference operator Df

with coefficients obtained from the computation of f+(U) and f−(U), respectively.

A key observation is that the finite difference operatorDf in (21), with the fixed coefficient

matrix βk, is a linear finite difference operator on any grid function as in (10). In addition,

the finite difference operator Df is a high order accurate linear approximation to the first

derivative of a grid function. Therefore based on the Proposition 1, it may be proved that

the WENO scheme with the modified flux splitting (13) and with the special handling of the

source terms described in (22) maintains the well-balanced property. This leads to

Proposition 2. The WENO-LF scheme for the blood flow model satisfying the steady state

solutions (2) can maintain the well-balanced property without adverse effect on its original

high order accuracy.
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For the temporal discretization, high order total variation diminishing (TVD) Runge-

Kutta methods [35] can be used. In the numerical section of this paper, we apply the third

order Runge-Kutta methods:

U (1) = Un +∆tF(Un),

U (2) =
3

4
Un +

1

4

(

U (1) +∆tF(U (1))
)

,

Un+1 =
1

3
Un +

2

3

(

U (2) +∆tF(U (2))
)

,

(23)

with F(U) being the spatial operator.

3. Numerical results

In this section, we carry out extensive numerical experiments inspired by Delestre et al.

[25] to demonstrate the performances of a fifth-order (r = 2) finite difference WENO scheme.

The CFL number is taken as 0.6, except for the accuracy tests where smaller time step is

taken to ensure that spatial errors dominate.

3.1. The ideal tourniquet

This example is similar to the Stoke’s dam break problem in shallow water equations

[26]. Herein, we consider the analogous problem in blood flow model: a tourniquet is applied

and we remove it instantaneously. And we consider the following initial conditions

A(x, 0) =







πR2
L

if x ≤ 0,

πR2
R

otherwise,
and Q(x, 0) = 0,

on a computational domain [−0.04, 0.04] based on the following parameters: k = 1. ×

107 Pa/m, ρ = 1060 kg/m3, R
L
= 5× 10−3m, R

R
= 4× 10−3m.

We solve this example on the mesh with 200 cells up to t = 0.005 s and present the

numerical solutions against the exact ones in Fig. 1. It is clear that the numerical results

fit well with the exact ones and keep steep shock transitions.
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Fig. 1: The numerical solutions of the ideal tourniquet problem in Section 3.1 with 200 cells at t = 0.005 s.

Radius (left) and discharge (right).

3.2. Wave equation

Then, the following quasi-stationary test case was proposed by Delestre et al. [25]. It

is chosen to demonstrate the capability of the proposed scheme for computations on the

perturbation of a steady state solutions. The initial conditions are given by

A(x, 0) =







πR2
0 if x ∈

[

0, 40L
100

]

∪
[

60L
100

, L
]

,

πR2
0

[

1 + ǫ sin
(

π x−40L/100
20L/100

)]2

if x ∈
[

40L
100

, 60L
100

]

,
and Q(x, 0) = 0,

on the computational domain [0, 0.16]. The following parameters have been used for the

example: ǫ = 5× 10−3, k = 108 Pa/m, ρ = 1060 kg/m3, R0 = 4× 10−3m andL = 0.16m.

With the above initial conditions, we obtain the following exact solutions:






R(x, t) = R0 +
ǫ
2
[Φ(x− c0t) + Φ(x+ c0t)] ,

u(x, t) = − ǫ
2

c0
R0

[−Φ(x − c0t) + Φ(x+ c0t)] .

We show the numerical solutions on a mesh with 200 cells at t = 0.002 s, 0.004 s, and 0.006 s,

respectively in Fig. 2. The figure strongly suggests that the numerical solutions agree with

the exact ones well. Moreover, we also test the orders of the resulting scheme by plotting

the numerical errors at t = 0.004 s and show the L1 errors as well as order of accuracy for A

and Q in Table 1. It is evident that the expected fifth order accuracy has been achieved.
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Fig. 2: The numerical solutions of the wave equation problem in Section 3.2 with 200 cells. Radius at

time t = 0 s (upper left), t = 0.002 s (upper right), t = 0.004 s (lower left), and t = 0.006 s (lower right),

respectively.
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Table 1: L1 errors and numerical orders of accuracy for the wave equation example of Section 3.2.

A Q
N

L1 error Order L1 error Order

25 1.7566E-02 1.0990E-01

50 2.2028E-03 3.00 1.9714E-02 2.48

100 3.3138E-04 2.73 2.8273E-03 2.80

200 2.3271E-05 3.83 2.0103E-04 3.81

400 9.3899E-07 4.63 8.7320E-06 4.52

800 3.1516E-08 4.90 3.7319E-07 4.55

1600 9.1264E-10 5.11 1.1501E-08 5.02

3.3. The man at eternal rest

The purpose of this example is to verify that the scheme indeed maintains the well-

balanced property.

Herein, we consider a configuration with no flow and with a change of radius R0(x), this

is the case for a dead man with an aneurism. Thus, for the initial conditions, the section of

the artery is not constant with the following form

R(x, 0) = R0(x) =



































R̃ if x ∈ [0, x1] ∪ [x4, L],

R̃ + ∆R
2

[

sin
(

x−x1

x2−x1
π − π

2

)

+ 1
]

if x ∈ [x1, x2],

R̃ +∆R if x ∈ [x2, x3],

R̃ + ∆R
2

[

cos
(

x−x3

x4−x3
π
)

+ 1
]

if x ∈ [x3, x4],

on the computational domain [0, L] with R̃ = 4.×10−3m,∆R = 10−3m, k = 108 Pa/m, ρ =

1060 kg/m3, L = 0.14m, x1 = 10−2m, x2 = 3.05 × 10−2m, x3 = 4.95 × 10−2m and x4 =

7.× 10−2m. In addition, the initial velocity is zero. We compute this example up to t = 5 s.

In order to show that the well-balanced property is maintained up to machine round off

error, tests are run using single, double and quadruple precisions, respectively. The L1 and

L∞ errors calculated for A and Q are presented in Table 2. It can be clearly seen that the

L1 and L∞ errors are all at the level of round off error associated with different precisions,
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Table 2: L1 and L∞ errors for different precisions for the man at eternal rest.

L1 error L∞ error
Precision

A Q A Q

Single 3.47e-07 3.13e-07 3.54e-07 3.25e-07

Double 2.72e-16 4.34e-16 2.11e-15 3.14e-16

Quadruple 2.31e-33 4.34e-32 1.28e-33 2.44e-31

which verify that the current scheme maintains the well-balanced property as expected.

In Fig. 3, we present the radius at t = 5 s on a mesh with 200 cells against a reference

solution obtained with a much refined 2000 cells. In addition, we run the same numerical

test using the non-well-balanced WENO schemes, with a straightforward integration of the

source term, and show their results in Fig. 3 for comparison. It is obvious that the results

of the well-balanced WENO scheme are in good agreement with the reference solutions for

the case, while the non-well-balanced WENO scheme fails to capture the small perturbation

with 200 cells.

3.4. Propagation of a pulse to an expansion

Firstly, we test the case of a pulse in a section R
R
passing through an expansion: AL >

AR, taking the following parameters: k = 1.0×108 Pa/m, L = 0.16m, ρ = 1060 kg/m3, R
L
=

5 × 10−3m, R
R
= 4 × 10−3m, ∆R = 1.0× 10−3m. We take a decreasing shape on a rather

small scale:

R0(x) =























R
R
+∆R if x ∈ [0, x1],

R
R
+ ∆R

2

[

1 + cos
(

x−x1

x2−x1
π
)]

if x ∈ [x1, x2],

R
R

else,

with x1 = 19L
40

, x2 = L
2
. As initial conditions, we consider a fluid at rest Q(x, 0) = 0m3/s

and the following perturbation of radius:

R(x, 0) =







R0(x)
[

1 + ǫ sin
(

100
20L

π(x− 65L
100

)
)]

if x ∈
[

65L
100

, 85L
100

]

,

R0(x) else,

with ǫ = 5.0× 10−3.
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Fig. 3: The man at eternal rest problem in Section 3.3 with 200 cells at t = 5 s. The result of the well-

balanced scheme with 200 and 2000 cells, and that of the non-well-balanced (denoted by non-WB) scheme

with 200 cells.

In Fig. 4, we present the numerical results against the reference solutions at t = 0.002 s

and t = 0.006 s. The numerical solutions are in good agreement with the reference ones and

are comparable with those in [25].

3.5. Propagation of a pulse from an expansion

Then, we consider a pulse propagating from an expansion. So, the parameters are the

same as in the Section 3.4, only the initial radius is changed:

R(x, 0) =







R0(x)
[

1 + ǫ sin
(

100
20L

π
(

x− 15L
100

))]

if x ∈
[

15L
100

, 35L
100

]

,

R0(x) else,

with ǫ = 5.0× 10−3.

In Fig. 5, we demonstrate the numerical results against the reference solutions at t =

0.002 s and t = 0.006 s. Similar, the numerical solutions fit well with the reference ones and

are comparable with those in [25].
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Fig. 4: The numerical solutions of the propagation of a pulse to an expansion in Section 3.4 with 200 cells.

The errors R−R0 at t = 0 s (upper), t = 0.002 s (lower left) and t = 0.006 s (lower right).
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Fig. 5: The numerical solutions of the propagation of a pulse from an expansion in Section 3.5 with 200 cells.

The errors R−R0 at t = 0 s (upper), t = 0.002 s (lower left) and t = 0.006 s (lower right).
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3.6. Wave damping

In this last test case, we look at the viscous damping term in the linearized momentum

equation. This is the analogue of the Womersley [36] problem, we consider a periodic signal

at the inflow with a constant section at rest. We consider the following model coupled with

the linear friction term






∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(

Q2

A
+ k

3ρ
√
π
A

3
2

)

= kA
ρ
√
π
∂x(

√
A0)− Cf

Q
A
,

(24)

where Cf = 8πν with ν being the blood viscosity. We consider this example on the compu-

tational domain [0, 3] subject to the given initial conditions






A(x, 0) = πR2
0,

Q(x, 0) = 0,

companied by the following parameters: k = 1 × 108 Pa/m, ρ = 1060 kg/m3, R0 = 4 ×

10−3m. We solve this example up to t = 25 s.

Subsequently, we obtain a damping wave in the domain [25]

Q(t, x) =







0 if krx > ωt,

Q
amp

sin(ωt− krx)e
kix if krx ≤ ωt,

(25)

with

kr =

[

ω4

c40
+
(

ωCf

πR2
0c

2
0

)2
]

1
4

cos
(

1
2
arctan

(

− Cf

πR2
0ω

))

,

ki =

[

ω4

c40
+
(

ωCf

πR2
0c

2
0

)2
]

1
4

sin
(

1
2
arctan

(

− Cf

πR2
0ω

))

,

ω = 2π/T
pulse

= 2π/0.5 s,

c0 =
√

k
√
A0

2ρ
√
π
=
√

kR0

2ρ
.

For the boundary conditions, we impose the incoming discharge

Qb(t) = Q
amp

sin(ωt)m3/s,

at x = 0m with Q
amp

= 3.45 × 10−7m3/s3 being the amplitude of the inflow discharge. As

the flow is subcritical, the discharge is imposed at the outflow boundary, thanks to (25) at

the right boundary x = 3m.
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In Fig. 6, we present the numerical results against the exact solutions at t = 25 s with

different Cf . It is obvious that the numerical solutions are in good agreement with the exact

solutions and are comparable with those in [25].
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Fig. 6: The numerical solutions of the propagation of a pulse to and from an expansion in Section 3.6 with

200 cells at t = 25 s. The damping of a discharge wave with Cf = 0 (upper left), Cf = 0.000022 (upper

right), Cf = 0.000202 (lower left) and Cf = 0.005053 (lower right).
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4. Conclusions

In this paper, we have presented a well-balanced finite difference WENO scheme to

solve the blood flow model. A special splitting of the source term allows us to design

specific approximations such that the resulting WENO scheme maintains the well-balanced

property for steady state solutions, and at the same time keeps theirs original high order

accuracy and essentially non-oscillatory property for general solutions. Extensive numerical

examples are given to demonstrate the well-balanced property, high order accuracy, and

steep shock transitions of the proposed numerical scheme. The approach is quite general

and can be adapted to high order finite volume schemes and discontinuous Galerkin finite

element methods, which constitutes an ongoing work.
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