
HAL Id: hal-01334828
https://hal.science/hal-01334828

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A simple and efficient algorithm for eigenvalues
computation

René Alt

To cite this version:
René Alt. A simple and efficient algorithm for eigenvalues computation. The 6th international confer-
ence on Numerical methods and applications, Aug 2007, Borovets, Bulgaria. pp.271-278, �10.1007/978-
3-540-70942-8_32�. �hal-01334828�

https://hal.science/hal-01334828
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A Simple and Efficient Algorithm for

Eigenvalues Computation

René Alt
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Abstract. A simple algorithm for the computation of eigenvalues of
real or complex square matrices is proposed. This algorithm is based
on an additive decomposition of the matrix. A sufficient condition for
convergence is proved. It is also shown that this method has many prop-
erties of the QR algorithm : it is invariant for the Hessenberg form, shifts
are possible in the case of a null element on the diagonal. Some other
interesting experimental properties are shown. Numerical experiments
are given showing that most of the time the behavior of this method is
not much different from that of the QR method, but sometimes it gives
better results, particularly in the case of a bad conditioned real matrix
having real eigenvalues.
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1 Introduction

In this paper the additive reduction (AR) algorithm for computation of the
eigenvalues of a real or complex matrix is recalled. The main properties of this
algorithm are shown, and numerical experiments allow us to compare it with
the classical QR algorithm. The paper is organized as follows. First, the AR
algorithm is described. Then it is shown that it is invariant for the Hessenberg
form, and a sufficient condition for convergence in terms of this form is proved.
Finally, some numerical experiments are given, showing that the method is very
efficient and often even more than the QR method, particularly in the case
of multiple eigenvalues or for computation of roots of polynomials using the
companion matrix.

2 The Additive Reduction (AR) Algorithm

2.1 Definition of the Algorithm

Let us consider a real or complex square matrix A with dimension n. One wishes
to compute its eigenvalues. The algorithm, formerly proposed in [1] and called
additive reduction algorithm (AR) is the following.
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1. Split the matrix A into a sum of two triangular matrices L and U such that
L is the lower triangular part of A including the diagonal and U is the strict
upper triangular part of A. So A = L + U .

2. Set A0 = A = L0 + U0

3. Suppose that Lk−1 is invertible for k > 0, and compute

Ak = L−1
k−1 Ak−1 Lk−1 = Lk−1 + L−1

k−1 Uk−1 Lk−1. (1)

4. Split Ak = Lk + Uk.
5. Perform iterations until reaching the tolerance prescribed or the maximum

number of iterations specified.

It is clear that the eigenvalues are invariant in all the computed matrices.
Thus, if the method converges to a lower triangular matrix, then the eigenvalues
are found on the main diagonal of the limit matrix.

2.2 Invariance of the Algorithm for the Hessenberg Form

Let us recall that a matrix A = (ai,j) has a lower Hessenberg form if and only
if ai,j = 0 for j ≥ i + 2 . Any matrix is similar to a Hessenberg matrix which
can be obtained in finite time by the algorithms of Givens or Householder. Both
algorithm are close to each other and require O(n3) operations. Classically, the
LR and QR algorithm, being invariant for the Hessenberg form, start with a
transformation of the intial matrix into this form. Let us see now that this is
also possible for the AR algorithm.

Proposition 1. If at iteration k the matrix Ak has a Hessenberg form, then

this property also prevails at iteration k + 1 of the AR algorithm.

Proof. The proof is a simple straightforward calculation. Suppose that a matrix
A has a lower Hessenberg form, that is aij = 0 for j ≥ i + 2, then from the
definition of the AR algorithm, the next iterate is

B = L−1A L = L + L−1U L. (2)

Set V = UL, then vi,j =

n
∑

k=max{i+1,j}

ai,k ak,j . But, since ai,k = 0 for k ≥ i + 2,

we have vi,j = ai,i+1ai+1,j , if j ≤ i+1, and vi,j = 0 for j ≥ i+2. Hence V = UL
has a Hessenberg form. It is easy to check that the product of a lower diagonal
matrix L−1 with a lower Hessenberg matrix V gives a lower Hessenberg matrix.
Thus Z = L−1UL is a lower Hessenberg matrix, and so is B = L + Z. �

3 Convergence of the Additive Reduction Method

Finding a necessary and sufficient condition for the convergence of the AR algo-
rithm is still an open problem. However, a sufficient condition for convergence
in the case of a lower Hessenberg matrix can be easily shown.
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Proposition 2. Let A = (ai,j) be a lower complex Hessenberg matrix. Assume

that the following properties are fulfilled:

1) All the eigenvalues λ1, λ2, ..., λn of A are distinct in moduli.

2) At each iteration k the matrix Ak is such that

|a
(k)
1,1 | > |a

(k)
2,2| > · · · > |a(k)

n,n|,

i.e., the muduli of its diagonal elements form a strictly decreasing sequence.

3) The maximum ratio r = maxn−1
i=1 |a

(k)
i+1,i+1|/|a

(k)
i,i | is bounded by a constant

C < 1, independent of k.

Then the additive reduction method is convergent.

Here the matrix A is supposed to be complex, the operations involve complex
numbers and the notation |x| denotes the modulus of the complex number x.

Proof. Proposition 2 follows from a theorem due to Bauer and Fike [4]. As
a consequence of this theorem, if A is diagonalisable, i.e., A = P−1ΛP with
Λ = diag

(

{λi}
n
i=1

)

, then for each eigenvalue µ of L = A − U there exists an
eigenvalue λ of A such that:

|λ − µ| < ‖P‖.‖P−1‖.‖U‖.

Thus, it suffices to prove that under the three precedent hypotheses the norm
‖Uk‖ of the matrix Uk tends to zero. This will prove that the eigenvalues of L
tend to the eigenvalues of A, as all they are of different muduli.

Using notation and the formulae from Proposition 1, it is clear that Uk is the
strictly triangular superior part of the matrix Z. Thus, for i = 1, ..., n − 1,

u
(k)
i,i+1 = u

(k−1)
i,i+1 a

(k−1)
i+1,i+1/a

(k−1)
i,i

u
(k)
i,j = 0 for j ≥ i + 2.

Here, the superscript (k) denotes the number of the iteration. From assumption
3) we obtain

|u
(k)
i,i+1| ≤ C |u

(k−1)
i,i+1 | with C < 1,

and thus
|u

(k)
i,i+1| ≤ Ck |u

(0)
i,i+1| with C < 1.

Let us now choose the classical norm ‖U‖ = max1≤i≤n

∑n

j=1 |ui,j|. In the present
case ‖Ak‖ is a lower Hessenberg matrix, Uk has only its first over diagonal

different from zero, that is, u
(k)
i,j = 0 for i < j − 1 and for i ≥ j. The same

property is also true for Uk+1. We have

‖Uk‖ = max
1≤i≤n−1

|u
(k)
i,i+1| ≤ C max

1≤i≤n−1
|u

(k−1)
i,i+1 | = ‖Uk−1‖,

and consequently
‖Uk‖ ≤ Ck ‖U0‖ with C < 1. (3)

This proves Proposition 2. �

3



Remark 1. If A is a real matrix with different real eigenvalues, then all the com-
putations are done with real numbers and formula (3) shows that convergence
still occurs as the main over diagonal of the lower Hessenberg iterates tends to
zero. Thus this method cannot, in theory, lead to erroneous complex conjugate
eigenvalues.

Remark 2. In the case of a matrix A with eigenvalues having different moduli,
all the numerical experiments that have been done have shown that in most
cases, even if at the beginning the elements of the main diagonal of A are not
ordered in decreasing order of their moduli, this property becomes true at some
iteration and stays true during all remaining iterations.

Remark 3. As was already mentioned, a necessary and sufficient condition for
convergence is not known, although the numerical experiments have shown that
the method may converge even in the case of multiple eigenvalues.

Remark 4. From the definition of the algorithm, it is clear that its complexity
per iteration is O(n3), as each iteration requires solution of a triangular linear
system. Thus, the complexity of AR is of the same order as the one of QR.

4 Case of a Null Element on the Main Diagonal

The detection of the fact that at some iteration Lk is not invertible is here very
easy, as Lk is lower triangular.

In this case, in the same way that it is done in the classical QR or LU
methods, the algorithm can be continued by adding an arbitrary constant to
all the elements of the diagonal of Ak. This shift is then subtracted from the
computed values at the end of the process.

5 Deflations of Columns and Termination of Iterations

As was said above, the eigenvalues are obtained on the main diagonal of a lower
triangular matrix, which is the limit of the process. We already mentioned that,
in most cases, on this diagonal the eigenvalues appear experimentally to be in
decreasing order, i.e., the smallest one is in the last line and last column. Thus
the iterations can be stopped using at least two criteria.

– Criterion 1: The elements of the diagonal of the matrix Ak become stable to
some extent, i.e.,

max
1≤n

|a
(k)
i,i − a

(k−1)
i,i | ≤ ε. (4)

– Criterion 2: The elements of the upper triangular part Uk of Ak are stochastic
zeroes, i.e. only correspond to round-off errors.

Let us recall here that a stochastic zero is a real or a floating point number
which contains an error greater than itself. In other words, it has no significant
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digit. In the theory of stochastic arithmetic ([8], [9], [2], [3], [7]), any stochastic
number is represented as (m, σ), where m is the mean value and σ is the standard
deviation of a Gaussian distribution, i.e., m represents the value and σ is the
error on m. A stochastic zero is such that σ ≥ m. The corresponding notion in the
theory of interval arithmetic is an interval containing zero. Remember also that
the number of significant digits of the result of any floating point computation
and hence detection of a stochastic zero can be obtained using the CESTAC
method ([8], [9]).

The experiments show another feature of the method: in the case of a complex
matrix A and computations using complex numbers or of a real matrix having
real eigenvalues, during the iterations the matrices Uk and hence the matrices
Ak have their columns tending to zero column after column, starting from the
last. This means that column n tends to zero, then column n − 1 and so on to
column 1.

In the case of a given real matrix A and computations done using only real
numbers, there may exist complex conjugate roots. But it also happens that
the columns corresponding to real roots tend to zero in the same order from
the last one as in the complex case and that the columns corresponding to two
complex conjugate roots, say λj and λj+1 tend to zero except the four values
aj,j , aj,j+1, aj+1,j , aj+1,j+1. The characteristic polynomial of this 2 × 2 block
sub-matrix provides the two complex eigenvalues. This property is exactly the
same as in QR or LR algorithms.

This experimental property can be exploited to increase the speed of conver-
gence of the algorithm in the following manner: once the last column (resp, the
last two columns) of the matrix Uk is (are) considered sufficiently small in norm,
or that each of its (resp. their) components is equal to a stochastic zero, then the
corresponding eigenvalue is obtained and it is possible to reduce the size of the
current matrix Ak by suppressing the last (resp. last two) line(s) and column(s).
This process can be re-done each time when a real or two complex conjugate
eigenvalues are obtained until the dimension of the final matrix becomes 1 or 2.
The speed of convergence of the algorithm is thus highly increased. Moreover,
this property also experimentally diminishes the propagation of round-off errors
and increases the accuracy of the results.

6 Numerical Experiments

Several numerical experiments have been done for small size matrices (n ≤ 100).
Many of them are taken from ([6], [5], [10]). Three of them are reported here
to show the efficiency of the AR method. The results are compared with those
provided by the classical QR algorithm [11]. The QR program is taken from [12],
it provides the maximum possible accuracy. Since the original program does not
give the number of necessary iterations to reach the solution, a counter has been
added in order to compare the speed of convergence of the two methods. Only a
very naive programming has been done for the AR method, in particular, there is
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no preconditioning. The termination criterion is on the stability of the diagonal
of the iterates, i.e., criterion 1 with formula (4).

Example 1: The Fibonacci matrix

A1 =

⎛

⎜

⎜

⎜

⎜

⎝

3 5 8 13 21
5 8 13 21 34
8 13 21 34 55
13 21 34 55 89
21 34 55 89 144

⎞

⎟

⎟

⎟

⎟

⎠

The obtained results are given in Table 1. These results show that the two algo-
rithms are equivalent concerning the number of iterations, but the AR algorithm
produces only real eigenvalues, which is closer to the real situation, as the initial
matrix is symmetric.

Table 1. Eigenvalues of the Fibonacci matrix

index AR ε = 10−5 Nb.iter = 5 QR Nb.iter = 4

1 0.2311038 103 0.2311038 103

2 −0.1038494 100
−0.1038494 100

3 −0.2687906 10−14
−0.3158887 10−14

4 −0.5342609 10−16
−0.1528318 10−28 + i 0.1209090 10−21

5 −0.16677753 10−28
−0.1528318 10−28

− i 0.1209090 10−21

Example 2. ([10])

A2 =

⎛

⎜

⎜

⎝

10 1 4 0
1 10 5 −1
4 5 10 7
0 −1 7 9

⎞

⎟

⎟

⎠

The computed eigenvalues are shown in Table 2.

Table 2. Eigenvalues of matrix A2 computed with AR and QR methods

index AR ε = 10−5, Nb. iter = 56 QR Nb. iter = 3

1 0.1912248 102 0.1912248 102

2 0.1088245 102 0.5342609 10−3

3 0.8994541 101 0.1088282 102

4 0.5342609 10−3 0.8994170 101

One can see that the results obtained with the two methods AR and QR
are very close to each other, except that the first one provides the eigenvalues
in decreasing order. For the AR algorithm with termination criterion 1 and
ε = 10−5, the convergence speed is noticeably slower compared to that of QR.
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Example 3. A matrix with double eigenvalues (Rutishauser [10])

A3 =

⎛

⎜

⎜

⎝

6 4 4 1
1 6 4 4
4 1 6 4
1 4 4 4

⎞

⎟

⎟

⎠

The exact eigenvalues are 15, 5, 2, 2. Both methods give the exact values.
Again, the eigenvalues provided by the QR algorithm are obtained in the order
5, 2, 15, 2, whereas with the AR algorithm they are obtained in decreasing
order. For the AR algorithm the iterations are stopped with criterion 1 and
ε = 10−7. The number of iterations is 20. For QR the number of iterations is 4,
so QR is faster again.

Example 4. A real matrix with real opposite eigenvalues.

A4 =

⎛

⎜

⎜

⎝

1.5 1 −2 1
1 0.5 −3 −2

−2 −3 −0.5 −1
1 −2 −1 −1.5

⎞

⎟

⎟

⎠

The eigenvalues of A4 are −1.5, +1.5, −4.5, +4.5. They are exactly computed
by both AR and QR algorithms, with 19 iterations for AR and 4 iterations
for QR. As in the preceding examples, AR performs slightly slower than QR.
However, it must be reminded that the program for AR is a very simple and
naive one, particularly concerning the termination criterion, while the program
for QR is rather sophisticated.

7 Conclusion

In this paper we have shown that the eigenvalues of a real or complex square
matrix can be computed with a method called additive reduction method, which
is different from the classical methods. A sufficient condition for convergence has
been proved, and it has been also proved that is has the same properties as the
QR or LU algorithms. In particular, it is invariant for the Hessenberg form and
has the same order of complexity per iteration as QR. Some other experimental
properties is also given: the eigenvalues are obtained in decreasing order on
the main diagonal of a lower triangular matrix, and consequently the algorithm
provides them the last one (i.e. the smallest) first. Many numerical experiments
have shown that the method is often as good as the classical general methods
for eigenvalues, and in some cases even better, particularly for a real matrix
with real eigenvalues. Some of these experiments are reported here. It is clear
that, in many cases, this method is not really competitive with QR, but it shows
that the eigenvalue problem can be also solved by a different approach from the
classical one. Many questions are still open, for example, find a necessary and
sufficient condition for convergence, explain why in most cases the eigenvalues
are obtained the smallest first.
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