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Introduction

Since quasiconformal mappings were first studied nearly a century ago, many diverse characterizations have been discovered. These have led to a wide variety of applications in many fields including Teichmüller theory, elliptic PDE's, hyperbolic geometry and complex dynamics. For an overview of these applications and the theory of quasiconformal mappings see [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], [START_REF] Astala | Elliptic partial differential equations and quasiconformal mappings in the plane[END_REF], and [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF]. In this paper we will use the metric definition of quasiconformality to obtain a new formulation for the definition of planar quasiconformal mappings. Note that f (T ) is also a topological triangle so the expression skew(f (T )) is defined. Then f : U → V is quasiconformal provided that there exists an increasing homeomorphism h : [0, ∞) → [0, ∞) such that skew(f (T )) ≤ h(skew(T ))

for all closed Euclidean triangles T ⊂ U . In fact, Hubbard showed that it is sufficient to only consider triangles with skew bounded above by 7/3. He then asked the question of whether it suffices to only consider equilateral triangles. Progress was made on this problem in a previous paper by Javier Aramayona and Peter Haïssinsky [START_REF] Aramayona | A characterisation of plane quasiconformal maps using triangles[END_REF] in which they showed that there exists a constant 0 > 0 such that if ∈ [0, 0 ) and skew(f (T )) ≤ 1 + Date: May 29, 2018. C.A. was supported in part by a gift to the Mathematics Department at the University of Illinois from Gene H. Golub. P.H. is partially supported by the ANR projects "GDSous/GSG" no. 12-BS01-0003-01 and "Lambda" no. 13-BS01-0002.

for all equilateral triangles T ⊂ U , then f is quasiconformal.

Theorem 1 of this paper answers Hubbard's question in the affirmative.

Theorem 1. Let U and V be two domains in the complex plane C, and let f : U → V be an orientationpreserving homeomorphism. For each σ ≥ 1 there exists H(σ) ≥ 1 with the following property. If skew(f (T )) ≤ σ for all equilateral triangles T ⊂ U , then, for every z ∈ U and every r < dist(z, C \ U ), the inequality M (z, r) ≤ Hm(z, r) holds where H = H(σ). In particular, the map f is quasiconformal.

Our next result, Theorem 2, serves two purposes. On the one hand, the value H from Theorem 1 gives an upper bound for the dilatation of f . However, this estimate is far from optimal. We may use the fact that quasiconformal mappings are differentiable almost everywhere to obtain a sharp bound on the dilatation in terms of σ. On the other hand, quasiconformality is a local property and demanding, as in Theorem 1, a uniform bound on every equilateral triangle is unnecessarily strong.

To show that f is quasiconformal in U , it suffices to show that f satisfies two conditions. First we must show that each z ∈ U has a neighborhood W such that skew(f (T )) is bounded for all equilateral triangles T ⊂ W . If the resulting upper bounds vary, this is not enough to get the result that f is quasiconformal in U . However, by formulating a new concept of skew that needs to be satisfied only almost everywhere and must be bounded uniformly in U , and combining it with the assumption that the skew as defined previously is bounded, not necessarily uniformly, in some neighborhood of each point of U , we obtain both quasiconformality and a better upper bound for the maximal dilatation of f . The details of how to define this new notion of skew are given below.

First note that quasiconformal maps are differentiable almost everywhere by Mori's theorem [START_REF] Mori | On quasi-conformality and pseudo-analyticity[END_REF]. Let Skew(f ) denote the supremum of skew(f (T )) over all equilateral triangles T contained in U . Next, for z ∈ U and r > 0, let skew(f, z, r) denote the least upper bound of skew(f (T )) over all equilateral triangles T ⊂ {w ∈ U : |z -w| < r}. Set skew(f, z) = lim inf r→0 skew(f, z, r) and skew(f ) = ||skew(f, z)|| ∞ . Below, the assumption that Skew(f |W ) is finite means that there is some upper bound for skew(f (T )) over all equilateral triangles T contained in the appropriate domain W .

Theorem 2. Let U be a domain in the complex plane C, and let f : U → f (U ) be an orientation-preserving homeomorphism. Suppose that each z ∈ U has a neighborhood W such that Skew(f |W ) is finite.

Suppose that σ ≥ 1. If skew(f ) ≤ σ then f is K(σ)-quasiconformal where K(σ) = σ 2 -1 + √ σ 4 + σ 2 + 1 √ 3σ .
In particular, if skew(f ) = 1 then f is a conformal mapping. The upper bound K(σ) for the maximal dilatation of f is the best possible and is attained at least for certain affine mappings.

Proof of the Main Theorem

Throughout the rest of the paper we will use the following notation and conventions:

(1) We define D(z, r) = {w ∈ C : |z -w| ≤ r} and let C(z, r) be the boundary of D(z, r).

(2) By a curve we mean the image of a not necessarily one-to-one continuous function from a closed interval into C.

(3) All triangles (without the qualifier "topological") will be closed Euclidean triangles.

(4) Let F σ denote the set of orientation-preserving homeomorphisms of any domain U ⊂ C into any domain V ⊂ C such that skew(f (T )) ≤ σ for all closed equilateral triangles T ⊂ U .

Our strategy for the proof of Theorem 1 is to show first that the image of every equilateral triangle, T , contains a disk with radius proportional to L(f (T )). To do this, we naturally need the assumption of Theorem 1 for all equilateral triangles (at least in a suitable set containing this T ) and not only for this particular T . Once it is known that the images of equilateral triangles are "thick" in this sense, it is easier to obtain the quantitative estimates that are required to prove that f is quasiconformal, whether using the metric (Definition 1) or the analytic (Definition 2 in Section 6 below) definition of quasiconformality.

The most difficult part of the proof that the image f (T ) is thick is to construct another equilateral triangle with suitable additional properties, to which the assumption of Theorem 1 can then be applied. This will be done in the proof of Proposition 2 below. That proof requires delicate geometric considerations. After these strategic comments, let us now move to the proof.

The proof of Theorem 1 relies on the following proposition.

Proposition 1. Let U be a domain containing D(0, 1), let f : U → C belong to F σ , and let T be the triangle with vertices 0, 1, and ω = 1/2 + ( √ 3/2)i. Then there exists a disk D contained in f (T ) such that

(1) D is centered at f (p) where p = 1/2 + (85

√ 3 • 2 -9
)i ≈ 0.5 + 0.29i, and (2) there exists a constant α = α(σ) such that the radius of D is at least αL(f (T )).

We note that if f is to be quasiconformal, then, certainly, the image f (T ) has to contain a disk of a definite size centered at the image of the centroid of the triangle, i.e., the point ξ = 1/2 + ( √ 3/6)i. Unfortunately, its arithmetic properties make it difficult to relate this point ξ to the vertices of T using equilateral triangles.

The point p was chosen, because it is both close to the centroid (|ξ

-p| = √ 3/(2 9 • 3)),
and it is a vertex of a tiling of the plane by equilateral triangles whose vertices include the vertices of T . Indeed, we have

p = 1/2 -85 • 2 -9 + 85 • 2 -8 ω, cf. Lemma 1.
We finally observe that p is closer to the horizontal side of T than ξ.

We first derive the proof of Theorem 1 from Proposition 1. We will then focus on the proof of the latter.

Proof of Theorem 1. Fix z ∈ U and r > 0. If D(z, r) ⊂ U , let M (z, r) = max{|f (z) -f (w)| : w ∈ C(z, r)} and m(z, r) = min{|f (z) -f (w)| : w ∈ C(z, r)}. Denote by z M a point in C(z, r) such that |f (z M ) -f (z)| = M (z, r).
Since F σ is invariant under pre-and post-composition by affine maps of the form z → az +b where a, b ∈ C and a = 0, we assume that z = 0, r = 1, and z M = 1. Thus |f (0) -f (1)| = M (0, 1). Let T 1 be the equilateral triangle with vertices 0, 1, and ω. Since 0 and 1 are vertices of T 1 , we have |f (0

) -f (1)| ≤ L(f (T 1 )). Hence M (0, 1) ≤ L(f (T 1 )).
By Proposition 1, the image of T 1 must contain a disk D centered at f (p) and of radius at least αL(f (T 1 )). 1). The triangle T 2 is contained in the unit disk, and A maps p to 0 and 1 to p. Since the vertices of T 2 other than p lie outside of T 1 , their images lie outside of D, and so we have

Let us consider the isometry

A(z) = z -p. Let T 2 = A(T 1 ) (see Figure
L(f (T 2 )) ≥ αL(f (T 1 )).
Moreover, another application of Proposition 1 implies that f (T 2 ) contains the disk

D(f (0), αL(f (T 2 ))).
Since all the points of f (C(0, 1)) are outside the interior of f (T 2 ) and thus also outside the interior of

D(f (0), αL(f (T 2 ))), it follows that m(0, 1) ≥ αL(f (T 2 )).
Summing up these estimates, we obtain

m(0, 1) ≥ αL(f (T 2 )) ≥ α 2 L(f (T 1 )) ≥ α 2 M (0, 1) . T 1 T 2 z M -1.0 -0.5 0.5 1.0 -1.0 -0.5 0.5 1.0 Figure 1. Configuration of C(0, 1), T 1 and T 2

Construction of Certain Triangles

Proposition 1 is a consequence of the following proposition.

Proposition 2. Let U be a neighborhood of D(0, 1), and let f : U → C be a homeomorphism onto its image such that f ∈ F σ . Let T be the closed triangle with vertices 0, 1, and ω = 1/2 + ( √ 3/2)i. Let q = p + 2 -9 . Then there exist points t 1 , t 2 ∈ T such that the points q, t 1 , t 2 form the vertices of an equilateral triangle and the inequalities |f (t j ) -f (p)| ≤ Cµ, and |f (p) -f (q)| ≥ cL(f (T )) hold for some constants c = c(σ) and

C = C(σ) where µ = dist(f (p), C \ f (T )).
We permit the trivial triangle where we have t 1 = t 2 = q.

Proof of Proposition 1 assuming Proposition 2. If t 1 = t 2 = q, then we have

cL(f (T )) ≤ |f (p) -f (q)| ≤ Cµ.
Otherwise, by the triangle inequality we have [START_REF] Ackermann | Quasiconformal mappings on planar surfaces[END_REF] |f

(p) -f (q)| ≤ |f (t 1 ) -f (p)| + |f (t 1 ) -f (q)|.
Since f ∈ F σ and t 1 , t 2 , q are the vertices of an equilateral triangle, we obtain

(2) |f (t 1 ) -f (q)| ≤ σ|f (t 1 ) -f (t 2 )|.
By Proposition 2, we have |f (t 1 ) -f (p)| ≤ Cµ and |f (t 2 ) -f (p)| ≤ Cµ, so that by this and the triangle inequality we get

|f (t 1 ) -f (t 2 )| ≤ |f (t 1 ) -f (p)| + |f (t 2 ) -f (p)| ≤ 2Cµ.
By Proposition 2, we have |f (p) -f (q)| ≥ cL(f (T )). Using this and appealing to |f (t 1 ) -f (p)| ≤ Cµ again, we obtain from ( 1) and (2) that

cL(f (T )) ≤ |f (p) -f (q)| ≤ Cµ + σ(2Cµ), whence µ ≥ c (2σ + 1)C L(f (T )) .

Proof of Proposition 2

Let the assumptions of Proposition 2 be satisfied. Recall that we write µ = dist(f (p), C \ f (T )). The idea of our proof of Proposition 2 is to define a curve γ in T going through p such that

(1) for all t ∈ γ we have |f (t) -f (p)| ≤ σµ(1 + 2σ 3 );

(2) there are two points t 1 , t 2 ∈ γ , such that q, t 1 , t 2 form the vertices of an equilateral triangle.

The proof of Proposition 2 results from Lemma 1 and Lemma 3.

We first prove the following result. Recall that ω = 1/2 + ( √ 3/2)i.

Lemma 1. Let T be the closed triangle with vertices 0, 1, and ω. Let p = 1/2+(85

√ 3•2 -9 )i and q = p+2 -9 . Then |f (q) -f (p)| ≥ cL(f (T )) for some positive constant c = c(σ).
Proof. Let us first consider the tiling of the plane by equilateral triangles with vertices in Λ = Z⊕ωZ. Define a chain of triangles (T j ) 0≤j≤J as a sequence of triangles with vertices in Λ such that T j ∩ T j+1 is an edge for all j with 0 ≤ j < J. Given two edges (v, w) and (v , w ), we may connect them by a chain of minimal length n ≥ 0. A simple induction argument implies

(3) |f (v) -f (w)| ≤ σ n |f (v ) -f (w )| if f ∈ F σ is defined in a neighborhood of the chain.
Let T be as defined in our hypotheses: it is tiled by N = 2 18 triangles of 2 -9 Λ, and [p, q] is an edge of this tiling. Therefore, for every other edge [v, w], it follows that

|f (v) -f (w)| ≤ σ N |f (p) -f (q)|.
But each side of T is the union of less than N edges of our tiling, therefore, the triangle inequality implies

L(f (T )) ≤ N σ N |f (p) -f (q)| .
We now prove a geometric lemma which will be used in the proof of Lemma 3. Proof. We note that cos θ ± ≥ 1/2 -1/4 > 1/8 ≥ |z| so that ϕ is less than π.

For the other inequality, we will estimate tan | arg(e iθ± -z)| to obtain a lower bound of both angles with the horizontal line:

tan | arg(e iθ± -z)| ≥ √ 3/2 -(|z| + 1/8) 1/2 + (|z| + 1/8) ≥ √ 3/2 -1/4 1/2 + 1/4 ≥ 2 √ 3 -1 3 ≥ 2 3 > tan(π/6).
Therefore ϕ is at least π/3. Now we demonstrate how to find the curve γ mentioned above.

Lemma 3. Under the assumptions of Proposition 2, there exists a curve γ in T going through p such that for all t ∈ γ we have

|f (t) -f (p)| ≤ σµ(1 + 2σ 3 )
and there are two points t 1 , t 2 ∈ γ , such that q, t 1 , t 2 form the vertices of an equilateral triangle. We permit the trivial triangle where we have t 1 = t 2 = q.

Proof. We will do this in several steps. We first define a curve that will join two points of the boundary of a disk contained in T (Step 1). To make sure that we will be able to find two points that form an equilateral triangle with q, we will extend this curve so that it has end points in a slightly larger disk, and is only close to the boundary of the larger disk when it is also close to its end points (Step 2). Then we will use Lemma 2 to find our triangle (Step 3).

Since √ 3 ≥ 8/5, it follows that dist(p, ∂T ) = 85 √ 3 • 2 -9 > 1/4 + 2 -6 , so that D(p, 1/4 + 2 -6
) is contained in the interior of T .

Throughout the proof, for x ∈ C, R x will denote the rotation centered at x by π/3 radians, defined by R x (z) = x + (z -x)ω and Rx the rotation centered at x by -π/3 radians, defined by Rx (z) = x + (z -x)ω. Recall that we set ω = 1/2 + ( √ 3/2)i.

Step 1: There exists a curve γ 2 that satisfies the following:

(1) We take w to be the first point of C(p, 1/4) encountered when moving along γ starting from p.

γ 2 ⊂ D(p, 1/4), (2) 

Now define

γ 2 = R p (γ 1 ) ∪ Rp (γ 1 ) .
Note that, for every s ∈ γ 1 , R p (s) and Rp (s) are two points in γ 2 which make an angle of 2π/3 seen from p.

Since f ∈ F σ , for all t ∈ γ 2 , we have

|f (t) -f (p)| ≤ σ|f (s) -f (p)| ≤ σµ
where s ∈ γ 1 denotes a point such that either t = R p (s) or t = Rp (s).

Step 2: Let a, b be the end points of γ 2 . There exists a curve γ 3 such that Clearly γ 2a also has an end point on the boundary of D a . Let a denote an end point of γ 2a on the boundary of D a . Use the tangent line to D(p, 1/4) at a to divide D a in half, and then divide each half into thirds. So we have divided D a into closed sectors of π/3 radians with three such sectors lying entirely outside of D(p, 1/4). Let S a denote the middle sector lying completely outside of D(p, 1/4). Then there exists n ∈ {2, 3} such that when γ 2a is rotated nπ/3 radians in an appropriate direction about a, the image of a under the rotation will lie in S a . Let the image of γ 2a under this rotation be denoted by γ 3a . Now we will bound the quantity |f (t) -f (p)| where t ∈ γ 3a . Fix t ∈ γ 3a . Let t 0 be the point on γ 2a whose image under the rotation is t. Without loss of generality we will assume this rotation was clockwise. Let t i denote the image of t 0 under a clockwise rotation of iπ/3 radians where i = 1, . . . , n (t = t n ). Then since a, t i-1 , t i (1 ≤ i ≤ n) form an equilateral triangle, we have

|f (t i ) -f (a)| ≤ σ|f (t i-1 ) -f (a)|. Since a, t 0 ∈ γ 2 we have |f (a) -f (t 0 )| ≤ |f (a) -f (p)| + |f (p) -f (t 0 )| ≤ 2σµ and |f (a) -f (p)| ≤ σµ.
Thus since n is at most 3 we may apply (3) with n ≤ 3, which together with the triangle inequality yields

|f (t) -f (p)| ≤ |f (a) -f (p)| + |f (a) -f (t)| ≤ σµ + σ n |f (a) -f (t 0 )| ≤ σµ(1 + 2σ n ) ≤ σµ(1 + 2σ 3 ). Furthermore γ 3a must intersect the circle C(p, 1/4 + √ 3 • 2 -7
). This is because γ 3a has an end point in S a and therefore the distance of the end point of γ 3a from D(p, 1/4) must be at least cos(π/6)

• 2 -6 = √ 3 • 2 -7
. This is depicted in Figure 2. ). Let γ 3 be the connected component of (γ

2 ∪ γ 3a ∪ γ 3b ) ∩ D(p, 1/4 + √ 3 • 2 -7
) which includes points in both γ 3a and γ 3b . Then for all points t ∈ γ 3 ,

|f (t) -f (p)| ≤ σµ(1 + 2σ 3 ).
The curve γ in Lemma 3 can be chosen as γ = γ 3 .

Step 3: Let q = p + 2 -9 . There exist t 1 , t 2 ∈ γ 3 such that {q, t 1 , t 2 } form an equilateral triangle.

Let D q be the smallest disk centered at q which contains D(p, 1/4).

Then D q ⊂ D(p, 1/4 + √ 3 • 2 -7 ) since |p -q| = 2 -9 ≤ √ 3 • 2 -8 . Let γ 4 be the connected component of γ 3 ∩ D q which has end points A ∈ D a ∩ D q and B ∈ D b ∩ D q .
Note that, if we write a = p + |a -p|e iθa and A = p + |A -p|e iθ A , where |θ A -θ a | is chosen to be as small as possible modulo 2π, then Therefore, by Lemma 2 applied in D(p, 1/4), the angle between A -q and B -q lies in (π/3, π). Hence,

|θ A -θ a | ≤ 2|a -A|/(1/4) ≤ 2 • 2 -6 /(1/4) ≤ 1/
D a S a D(p, 1/4 + √ 3/2 7 ) D(p, 1/4)
Figure 2 the images A r and B r of A and B respectively under Rq will separate A and B on ∂D q . Thus the image Rq (γ 4 ) must intersect γ 4 at a point q , say. This gives us our desired equilateral triangle since q, q , and the pre-image q of q form an equilateral triangle. This completes the proof of Lemma 3.

To complete the proof of Proposition 2, we note that the points t 1 and t 2 required will be the points q and q . It remains to be shown that |f (q ) -f (p)| ≤ Cµ and |f (q ) -f (p)| ≤ Cµ for some constant C. Since q ∈ γ 4 ⊂ γ 3 , we have |f (q ) -f (p)| ≤ σ(1 + 2σ 3 )µ by part (3) in Step 2. But also q ∈ γ 4 , so that for the same reason |f (q ) -f (p)| ≤ σ(1 + 2σ 3 )µ. This completes the proof of Proposition 2.

Proof of Theorem 2

We prove Theorem 2 by approximating f by linear mappings at points where f is differentiable.

Therefore

cos x = - 2 ν cos π 3 = - 1 ν .
It follows that sin 2 x = 1 -1/ν 2 so κ = 0 for

z = 1 ν -1 + iε ν 2 -1
with ε ∈ {±1}. For these values of z, one gets

κ = ν + 2Re(αz) ν + 2Re(ᾱz) = ν 2 -1 -ε 3(ν 2 -1) ν 2 -1 + ε 3(ν 2 -1)
which is maximal for ε = -1. So we obtain

skew( f ) 2 = ν 2 -1 + 3(ν 2 -1) ν 2 -1 -3(ν 2 -1) = (ν 2 -1)/3 + 1 (ν 2 -1)/3 -1 > 1 . Note that ν 2 -1 > 3 since ν > 2. Let us write τ = skew( f ) > 1 so that (ν 2 -1)/3 = τ 2 + 1 τ 2 -1 , ν 2 = 3 τ 2 + 1 τ 2 -1 2 + 1 = 4(τ 4 + τ 2 + 1) (τ 2 -1) 2
and thus

µ + µ -1 = ν = 2 √ τ 4 + τ 2 + 1 τ 2 -1 . Hence µ 2 -2µ √ τ 4 + τ 2 + 1 τ 2 -1 + 1 = 0 .
We compute the reduced discriminant

∆ = τ 4 + τ 2 + 1 (τ 2 -1) 2 -1 = 3τ 2 (τ 2 -1) 2
and we deduce from 0 < µ < 1 that

µ = √ τ 4 + τ 2 + 1 - √ 3τ τ 2 -1 . Thus K( f ) = 1 + µ 1 -µ = τ 2 -1 + √ τ 4 + τ 2 + 1 - √ 3τ τ 2 -1 - √ τ 4 + τ 2 + 1 + √ 3τ = ϕ(τ ), say. Write t = √ τ 4 + τ 2 + 1 and note that t 2 = (τ 2 -1) 2 + 3τ 2 so that ϕ(τ ) = [(τ 2 -1 + t) - √ 3τ ][(τ 2 -1 + t) + √ 3τ ] [(τ 2 -1) + √ 3τ ] 2 -t 2 = [(τ 2 -1) + t] 2 -3τ 2 2 √ 3τ (τ 2 -1) = 2[(τ 2 -1) 2 + t(τ 2 -1)] 2 √ 3τ (τ 2 -1) = τ 2 -1 + √ τ 4 + τ 2 + 1 √ 3τ .
Differentiation shows that ϕ(τ ) is an increasing function of τ , so that since τ = skew( f ) = skew(f, z 0 ) ≤ σ, we have

K( f ) = ϕ(τ ) ≤ ϕ(σ) = σ 2 -1 + √ σ 4 + σ 2 + 1 √ 3σ .
Hence K(f ) ≤ ϕ(σ) = K(σ) as defined in Theorem 2.

If µ ∈ (0, 1) is given and if f (z) = z + µz, then we may take f = f and σ = τ in the above argument, and we see that K(f ) = K(σ). Thus the upper bound in Theorem 2 is best possible.

6. An Alternative Proof of the Quasiconformality of Mappings Satisfying the

Hypotheses of Theorem 1

From Proposition 1, there are several ways of establishing that a mapping f satisfying the hypotheses of Theorem 1 satisfies the analytic definition of quasiconformality which is equivalent to Definition 1. For

|ξ| = 1, we denote by ∂ ξ f (z) the directional derivative lim t↓0 (f (z + tξ) -f (z))/(tξ).
Definition 2. We say that a homeomorphism f : U → V is absolutely continuous on lines if for every rectangle R = {(x, y) : a < x < b, c < y < d} with R ⊂ U , f is absolutely continuous on a.e. interval I x = {(x, y) : c < y < d} and a.e. interval I y = {(x, y) : a < x < b}. An orientation-preserving homeomorphism f is called quasiconformal if f is absolutely continuous on lines and there exists K ≥ 1 such that

max ξ |∂ ξ f (z)| ≤ K min ξ |∂ ξ f (z)| a.e.
Proposition 1 tells us that the image of every equilateral triangle, T , contains a disk with radius proportional to L(f (T )). In [6, Section 4.5], Hubbard uses this to prove that the map belongs to the Sobolev space W 1,2 loc by an approximation argument. We propose another approach which shows directly that the map satisfies the ACL property.

Proof. First we show that f is absolutely continuous on lines. This part of the proof parallels Pfluger's proof that a mapping satisfying the geometric definition of quasiconformality is absolutely continuous on lines. His proof can be found in [START_REF] Pfluger | Über die Äquivalenz der geometrischen und der analytischen Definition quasikonformer Abbildungen[END_REF] and is reproduced in English in [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF], p. 162. We fix a rectangle R = {(x, y) : a < x < b, c < y < d} and let I y = {(x, y) : a < x < b} for y between c and d. Define A(y) to be the area in f (R) beneath the image of I y . Since A is an increasing function of y, it is differentiable almost everywhere. We will show that f | Iy is absolutely continuous for all y at which A is differentiable; a similar argument applies to vertical line segments. We select an arbitrary collection {(z * k , z k )} n k=1 of disjoint sub-intervals of I y where z k = (x k , y) and z * k = (x * k , y). We consider the collection of rectangles {R k } n k=1 where each R k has height δ and has its bottom side contained in the kth sub-interval. More precisely, fix k and draw a rectangle of height δ above (z * k , z k ). Set N k equal to the smallest integer greater than or equal to

|x * k -x k | δ . We draw N k equilateral triangles in R k .
The triangles all have one side on the interval [z * k , z k ] and they overlap only at their vertices. The first N k -1 triangles have width δ and the last triangle has width x * k -x k -δ(N k -1). Let ∆ k,i denote the side length of the ith triangle for

1 ≤ i ≤ N k and set ∆ k,0 = 0. Set N = n k=1 N k . Then N ≤ n k=1 |x * k -x k | δ + n.
Let α be as in Proposition 1. By Proposition 1, the image of each of our triangles must contain a disk of radius comparable to the greatest distance between the images of the vertices of the triangle. Thus the total area of all the images of our rectangles of height δ and width x * k -x k is greater than or equal to (4)

n k=1 N k j=1 πα 2 |f (x k + j i=1 ∆ k,i , y) -f (x k + j i=1 ∆ k,i-1 , y)| 2 .
Then by the Cauchy-Schwarz inequality, ( 4) is greater than or equal to

πα 2 N   n k=1 N k j=1 |f (x k + j i=1 ∆ k,i , y) -f (x k + j i=1 ∆ k,i-1 , y)|   2 ≥ πα 2 N n k=1 |f (z * k ) -f (z k )| 2 ≥ πα 2 n k=1 |x * k -x k | δ + n n k=1 |f (z * k ) -f (z k )| 2 = πα 2 n k=1 |x * k -x k |+δn δ n k=1 |f (z * k ) -f (z k )| 2 .
Recall that A(y) is defined to be the area in f (R) beneath the image of the line segment I y . Since the sum of the areas of the images of our rectangles of height δ and width x * k -x k is less than or equal to A(y + δ) -A(y), we have

πα 2 n k=1 |f (z * k ) -f (z k )| 2 ≤ A(y + δ) -A(y) δ n k=1 |x * k -x k | + δn .
Since we chose y at which A is differentiable, letting δ → 0 gives

πα 2 n k=1 |f (z * k ) -f (z k )| 2 ≤ A (y) n k=1 |x * k -x k | .
Since A (y) exists almost everywhere this gives absolute continuity on almost every horizontal line segment.

The proof is analogous for vertical line segments.

To then conclude that f is quasiconformal we note that since f is open and absolutely continuous on lines, f is differentiable almost everywhere by a theorem of Gehring and Lehto [START_REF] Astala | Elliptic partial differential equations and quasiconformal mappings in the plane[END_REF]. Now the computations in the proof of Theorem 2 show that

max ξ |∂ ξ f (z)| ≤ K(σ) min ξ |∂ ξ f (z)|
at points where f is differentiable and hence almost everywhere. According to the analytic definition of quasiconformality (Definition 2), the mapping f is quasiconformal.

7. Appendix by Colleen Ackermann: An Analogue of the Main Theorem in Hilbert Spaces of Dimension at Least Three

In dimensions three and higher the proof of an analogue of Theorem 1 is surprisingly simpler than the proof of Theorem 1. Furthermore the proof itself gives an elegant bound on K(σ).

Theorem 3. Let H 1 and H 2 be Hilbert spaces with dim(H 1 ) = dim(H 2 ) ≥ 3 and let U ⊂ H 1 , V ⊂ H 2 be domains. Suppose that f : U → V is a homeomorphism and that for all closed equilateral triangles T ⊂ U , skew(f (T )) ≤ σ. Then f is σ 3 -quasiconformal when using the metric definition of quasiconformality.

Note that Definition 1 can be used to define quasiconformal mappings also between Hilbert spaces, whether finite-dimensional or infinite-dimensional. The same discussion on the locality of quasiconformality made in the introduction applies here as well and enables us to weaken the hypothesis that skew(f (T )) ≤ σ holds for all equilateral triangles.

Proof. Fix a point p ∈ U , a positive number r with r < dist(p, ∂U ) and points a 1 , a 2 ∈ ∂B(p, r). We will prove |f (a 1 ) -f (p)| ≤ σ 3 |f (p) -f (a 2 )|. Let P ⊂ H 1 be the affine plane containing {p, a 1 , a 2 } and let us fix a point q ∈ H 1 so that → pq is orthogonal to P and let us restrict ourselves to the three-dimensional space containing {p, a 1 , a 2 , q} that we may identify with R 3 . For the sake of convenience, we will consider spherical coordinates (r, θ, ϕ) with origin p so that (r, θ, π/2) reduces to polar coordinates in P and so that a 1 and a 2 have coordinates (r, ±θ/2, π/2) where θ ∈ (0, π] denotes the non-oriented angle between → pa 1 and → pa 2 . Case 1: If θ ≤ 2π/3, then we may find ϕ ∈ [0, π/2] such that 2 sin ϕ cos(θ/2) = 1 and we set b = (r, 0, ϕ).

Both triangles T j with vertices {p, a j , b}, j = 1, 2, are equilateral by construction and they share a common side with end points at b and p. 

Acknowledgments

We would like to thank the referee for several very helpful comments that improved the clarity of the exposition. The authors would also like to thank Jeremy Tyson for many productive discussions particularly with regard to the Appendix. We would further like to thank Kari Astala for helpful remarks related to the formulation of Theorem 2.

The key point of both of our proofs of Theorem 1 given here is contained in Proposition 1, where it is proved that the image of a triangle contains a disk of a definite size, exhibiting a certain length-area estimate. This approach goes back to Pfluger and was pushed forward by P. Koskela where |f (D(x, r))| denotes the Lebesgue measure of f (D(x, r)); see [START_REF] Koskela | Linear dilation and absolute continuity[END_REF] for details. The authors would like to thank Pekka Koskela for mentioning this similarity.

Definition 1 .

 1 Let f : U → V be a homeomorphism between planar domains. When D(z, r) = {w ∈ C :|z -w| ≤ r} ⊂ U , define M (z, r) = sup{|f (z) -f (w)| : |z -w| = r}, and m(z, r) = inf{|f (z) -f (w)| : |z -w| = r}. Suppose that K ≥ 1. The mapping f is said to be K-quasiconformal if H(z) = lim supr→0 M (z, r) m(z, r) ≤ K for a.e. z ∈ U , and if H(z) is bounded in U . In his book [6] John Hubbard obtained a new characterization of quasiconformal mappings. Let T be a closed topological triangle with specified vertices, L(T ) = max{|a -b| : a, b are vertices of T } and l(T ) = min{|a -b| : a, b are vertices of T }. We define skew(T ) = L(T ) l(T ) .

Lemma 2 .

 2 Let |z| ≤ 1/8 and suppose that |θ ± -(±π/3)| ≤ 1/8. Then the angle ϕ between e iθ+ -z and e iθ--z which crosses the positive real axis belongs to (π/3, π).

  γ 2 has end points on C(p, 1/4) which are exactly 2π/3 radians apart, and (3) for all points t ∈ γ 2 we have |f (t) -f (p)| ≤ σµ. Let p ∈ ∂T be such that d(f (p), f (p )) = µ and let γ = f -1 ([f (p), f (p )]). Since D(p, 1/4) is contained in the interior of T , we may consider the component γ 1 of γ ∩ D(p, 1/4) that contains p, and we denote by w ∈ C(p, 1/4) the other end point of γ 1 .

( 1 )

 1 γ 3 ⊂ D(p, 1/4) ∪ D(a, 2 -6 ) ∪ D(b, 2 -6 ); (2) γ 3 has both end points on C(p, 1/4 + √ 3 • 2 -7 ); (3) for all points t ∈ γ 3 , |f (t) -f (p)| ≤ σµ(1 + 2σ 3 ).Let D a = D(a, 2 -6 ) and D b = D(b, 2 -6 ). Let γ 2a and γ 2b be the components of γ 2 ∩ D a and γ 2 ∩ D b that have end points at a and b respectively.

  We proceed similarly near b and define a curve γ 3b contained in D b with end points at b and at some point on the intersection of the boundary of D b and S b (defined analogously to S a ) such that for all t ∈ γ 3b we have |f (t) -f (p)| ≤ σµ(1 + 2σ 3 ); as above, γ 3b intersects the circle C(p, 1/4 + √ 3 • 2 -7

8

 8 and similarly for b and B. Note that | arg(a -p)| + | arg(b -p)| = 2π/3 and |p -q|/(1/4) = 2 -7 ≤ 1/8.

Case 2 :

 2 Thus |f (p) -f (a 1 )| ≤ σ|f (p) -f (b)| ≤ σ 2 |f (p) -f (a 2 )|. If θ > 2π/3, consider the equilateral triangle T 0 with vertices p, a 1 and b where b is the image of a 1 under a rotation in P of angle π/3 so that the smaller angle between b and a 2 is less than or equal to 2π/3. Thus by Case 1|f (p) -f (b )| ≤ σ 2 |f (p) -f (a 2 )|.Then since the triangle T 0 has sides with endpoints at p and a 1 , and p and b we have|f (p) -f (a 1 )| ≤ σ|f (p) -f (b )| ≤ σ 3 |f (p) -f (a 2 )|.

  and S. Rogovin who proved that the ACL property of a homeomorphism f between open sets of R n , n ≥ 2, could be established from anL 1 -control of (5) k f = lim inf r→0 diam(f (D(x, r))) n |f (D(x, r))| 1/(n-1)

 

Proof. Let the assumptions of Theorem 2 be satisfied. Theorem 1 implies that f is locally quasiconformal and hence differentiable with f z = 0 at almost every point of U . Let z 0 be a point of differentiability such that skew(f, z 0 ) ≤ σ. We compute the maximum possible value for H(z 0 ), which yields the same upper bound for the dilatation of f at z 0 . Since H(z 0 ) is invariant under Möbius transformations we may compose with translations, a dilation and a rotation to assume that

Then f (z) = z + f z (z 0 )z + (z) where (z)/|z| tends to 0 as z tends to z 0 , and thus skew(f, z 0 ) = skew( f , z 0 ) where f (z) = z + f z (z 0 )z. It now suffices to prove that for all affine mappings f that can arise in this way, under the assumptions of Theorem 2, the maximal dilatation of f is at most K(σ). This then shows that also the maximal dilatation of our original mapping f is at most K(σ), as required. Thus from now on we only consider f . We will first compute the skew of f , and then express K( f ) in terms of skew( f ).

and all r > 0. This implies skew( f (T )) where T is an equilateral triangle is invariant under translations, complex conjugation and dilations of T . Thus for all equilateral triangles T ,

Indeed, suppose T has vertices A, B and C, and skew(T

First we translate A to the origin, and then we dilate T so its side lengths are equal to 1. If AB is π/3 radians clockwise from AC, it is clear that our statement is true; otherwise we take the complex conjugate of T to change the orientation of T and then, since skew( f (T )) is invariant under complex conjugation of T , our claim is true.

Hence we have skew

Let µ = f z (z 0 ). If µ = 0, then skew( f ) = 1, so we assume that 0 < µ < 1. Write ν = µ + µ -1 > 2 and β = e iπ/6 . Let w ∈ C with |w| = 1. We have