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Abstract. Referring Expression Generation (REG) algorithms, a core
component of systems that generate text from non-linguistic data, seek
to identify domain objects using natural language descriptions. While
REG has often been applied to visual domains, very few approaches deal
with the problem of fuzziness and gradation. This paper discusses these
problems and how they can be accommodated to achieve a more realistic
view of the task of referring to objects in visual scenes.
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1 Introduction

The aim of systems for automatically generating linguistic descriptions of visual
scenes is to generate text describing the scene contained in an image, simulating
the results provided by humans in the same task. In recent years, scene descrip-
tion has attracted a lot of attention as part of a growing trend to explore the
interface between vision and language in Natural Language Generation (NLG)
[1], as is the case of other kind of data [2-4].

Research in this area tends to focus on learning correspondences between
parts of an image and textual descriptions to generate descriptive captions [5—
7). A somewhat different focus is offered by work on Referring Expression Gen-
eration (REG), one of the most important tasks in NLG. A referring expression
is a noun phrase whose communicative purpose is to identify an object to the
hearer, for which it must be a distinguishing description, i.e., it must be “an
accurate description of the entity being referred to, but not of any other object
in the current context set”, the context set being “the set of entities that the
hearer is currently assumed to be attending to” [8]. The most standard way of
approaching REG computationally is by seeing the problem as a content selection
problem [9]. If a particular object is to be identified linguistically among a set of
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other objects, then the challenge is to find a set of properties of the object that
identifies it uniquely and to do so in a way that matches what human speakers
would do in a similar situation.

Formally, this means that there are two important criteria for a REG algo-
rithm to be successful. Let re = {p1,...,p,} stand for a referring expression
(a set of properties) returned by such an algorithm for some target referent o.
The description re is considered accurate if, for all p € re, o € [ p |, that is,
every property in the description is true of o. Furthermore, re is a successful
description if it uniquely identifies o, that is:

N [p]={o} (1)

pEre

The choice problem represented by REG has been explored in a number of
algorithms reviewed in detail in [9], though it has only recently been tackled in
the context of complex visual scenes [10, 11]. Referring expressions in images use
visual properties and concepts for characterizing univocally certain regions in
the image, corresponding to objects or areas of interest.

In many cases these concepts and properties are fuzzy or gradable in nature,
a factor that has been ignored in many REG algorithms, which typically treat a
target’s properties as symbols with a crisp extension. While exceptions to this
trend exist [12], they have focussed on prototypically gradable properties, such as
an object’s size. Yet, even properties such as an object’s colour admit of bound-
ary cases and gradations. Another simplification in existing REG models has to
do with the notion of an object itself: frequently, REG algorithms assume that the
relevant components of a visual scene are entities and their properties. However,
even the concept of an ‘entity’ can be argued to be fuzzy. An example where this
complication becomes an important issue is a weather forecasting application,
which needs to refer to a geographical region in order to describe the weather
conditions holding within it. As real-world applications show [13], regions corre-
sponding to a particular set of predicates describing the weather conditions will
often not be easily identifiable using place names or simple expressions based on
cardinal directions.

Thus, in addition to the problem of modelling the semantics of fuzzy concepts
with respect to their correspondence with properties of objects [14, 15], referring
expressions using fuzzy concepts may also match objects in the scene to a certain
extent, and this extent has to be calculated, introducing an additional complexity
in the REG problem. In particular, distinguishability of an object with respect
to others in terms of a referring expression involving fuzzy concepts turns out
to be a matter of degree. In this paper we address this problem.

The paper is organized as follows: in Section 2 we briefly discuss fuzzy visual
concepts. In Section 3 we deal with graduality in referring expressions. Impli-
cations of graduality in REG are discussed in Section 4. Section 5 concludes the
paper.
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2 Fuzzy concepts in visual scenes

Concepts related to low-level features like colour, texture, and shape are among
the most employed in linguistic description [16], and are usually affected by
fuzziness. Colour terms used as adjectives like red, vivid yellow, etc. are paradig-
matic examples of fuzzy concepts, and can be represented by means of fuzzy
subsets of crisp colours in some colour space. That is, each crisp colour (usually
represented by a triplet of numbers, whose domain and meaning vary from one
colour space to another) has a membership degree to each colour term. Several
proposals are available in the literature for determining the membership func-
tion representing each colour term [17]. Once the terms are defined, they have
to be matched to the objects under study. This is not a trivial issue because,
unless all the pixels comprising the object have the same colour, approaches for
associating colour terms to the whole object are necessary, like for instance the
notion of colour dominance [18]. Fuzzy approaches for defining shape (round,
regular, convex, etc.) and texture properties (coarseness, contrast, orientation,
etc.) are also available, see [19,20] and references therein.

Not only properties, but regions themselves can be fuzzy as well, as they
are usually defined in terms of their correspondence to properties [16]. In this
sense, a fuzzy region is defined as a fuzzy subset of pixels in the image. As an
example of this, if we take the homogeneity in colour as the criterion for deter-
mining regions, we obtain fuzzy regions like the ones in the image in Figure 1(a),
which shows a collection of cells as seen under the microscope. The regions cor-
responding to cells are characterized by being red but, whilst some of them have
clear boundaries, some others do not, since the colour of some pixels has partial
membership to red for some cells. Dozens of methods for fuzzy segmentation are
available [21].

The lack of clear boundaries of fuzzy regions is another source of fuzziness
for other properties which further complicates the task of calculating a region’s
other properties, including its size, shape, and its spatial relationships with other
regions and with the image framework (location), among others. These concepts,
which are themselves fuzzy even for crisp regions, have been an object of study
with fuzzy techniques [22,16,23]. It is easy to see examples of concepts that are
fulfilled only to some degree by objects in the image depicted in Figure 1(a),
such as round shape, above (spatial relationship), in the middle (location), etc.

In order to illustrate our discussion, let us consider, for the objects in Figure
1(a), the fuzzy properties small, dark, and upperleft. Table 1 shows example
fulfilment degrees of these properties for all the named objects in Figure 1(a).
For the property small, a fuzzy subset on the domain of the proportion of pixels in
the image has been employed. The property dark is calculated as the dominance
of the property low luminance of the pixels in an object. The property upperieft
is defined as a fuzzy region with square core and support, core with side 1/4
of the image, and support with side 3/8, with membership decreasing linearly.
We omit more specific details about how these degrees have been calculated for
reasons of space.



4 Albert Gatt et al.

(a) An image containing objects (b) Labelled cells in the image
with fuzzy properties

Fig. 1. An image with fuzzy properties and its labelled counterpart

3 Gradation in referring expressions

When referring expressions are comprised of fuzzy properties, both their ac-
curacy and their ability to discriminate an object become a matter of degree,
contrary to the view usually assumed by REG algorithms (see Section 1). In
this section we propose different ways to assess these, as well as some other
properties which are also important when generating referring expressions and
assessing their quality.

3.1 Accuracy

As we have noted, the accuracy of a referring expression with respect to a given
object measures the extent to which what the expression says is true for the
object, that is, the degree to which all the properties that appear in the ex-
pression hold for the object. When the referring expression is composed of fuzzy
properties, to calculate the accuracy of the expression for a given object we first
have to compute the fulfilment degree of each property; subsequently we have
to appropriately aggregate these degrees into a single value.

Let us once again consider a referring expression re involving properties
{p1,...,pn} and an object o. Let also p;(0) be the fulfilment degree of prop-
erty p; for object o. The accuracy of re for object o is calculated as follows:

Are (0) = ®p2 (0) (2)

where ® is a t-norm.

As an example, consider again Figure 1(a) (Figure 1(b) assigns numbers to
the cells) and the three referring expressions: The small object in the upper-left
(re1), The dark object in the upper-left (res), and The small and dark object(res).
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[Cell]Dark[Small[Upperleft[dark & small[dark & upperleft[small & upperleft|

I 0,00 0,29 0 0,00 0,00 0,00
2 0,00 | 0,71 0 0,00 0,00 0,00
3 | 1,00 | 1,00 0,96 1,00 0,96 0,96
4 0,83 0,00 0,85 0,00 0,83 0,00
5 | 0,00 | 0,00 0,05 0,00 0,00 0,00
6 | 0,00 | 0,00 0 0,00 0,00 0,00
7 0,00 | 0,14 0 0,00 0,00 0,00
8 0,33 0,14 0 0,14 0,00 0,00
9 10,33 | 0,00 0,33 0,00 0,33 0,00
10 | 0,00 | 0,00 0,01 0,00 0,00 0,00
11 [ 0,00 | 0,14 0 0,00 0,00 0,00
12 [ 0,00 | 0,43 0 0,00 0,00 0,00
13 [ 0,00 | 0,00 0 0,00 0,00 0,00
T4 | 0,00 | 0,00 0 0,00 0,00 0,00
15 | 0,00 | 0,00 0 0,00 0,00 0,00
16 | 0,00 | 0,00 0 0,00 0,00 0,00
17 [ 0,00 | 0,14 0 0,00 0,00 0,00
18 [ 0,17 | 0,14 0 0,14 0,00 0,00
19 [ 0,17 | 0,14 0 0,14 0,00 0,00
20 | 0,00 | 0,00 0 0,00 0,00 0,00
21 (0,17 | 0,43 0 0,17 0,00 0,00
22 | 0,00 | 0,00 0 0,00 0,00 0,00
23 | 0,17 | 0,20 0 0,17 0,00 0,00
24 | 0,00 | 0,86 0 0,00 0,00 0,00
25 | 0,00 | 0,00 0 0,00 0,00 0,00
26 | 0,00 | 0,57 0 0,00 0,00 0,00
27 | 0,50 | 0,43 0 0,43 0,00 0,00
28 | 0,67 | 0,00 0 0,00 0,00 0,00

Table 1. Fulfilment degree of several fuzzy properties and accuracy of three referring
expressions for the image in Figure 1(a).

According to data in table 1, and using the minimum as t-norm, we have
that:

— ey (rer) = min(small(cs), upperleft(cs)) = 0.96
— Gy (rez) = min(dark(cs), upperleft(cs)) = 0.96
— ae,y(reg) = min(small(cs), dark(cs)) =1

3.2 Referential success

As noted in Section 1, referential success is the extent to which the referring
expression unambiguously identifies the intended referent to the reader or hearer.
Consider again a referring expression re and a set of objects O = {o1,...,0m}.
The referential success of re with respect to a referent object o; is the degree to
which re is true for o; and false for the rest of objects, that is:

rsre(0) = are(0) @ | Q) lare(oy)) | €10,1] (3)

0; EONj#i

where ® is a t-norm and — is a fuzzy negation. Note that this notion of
referential success is quite different from the more traditional definition given
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in REG (see 1 above). As an example, consider again Figure 1(a) and the three
referring expressions in the previous section. In this case, if we once more use the
minimum as t-norm and the standard fuzzy negation operator, we have that:

— T8¢, (€3) = Min(aye, (¢3), ming; 2c, (1 — are, (¢j))) = min(0.96,1) = 0.96
— T'Spey(€3) = Min(are, (€3), Ming, £c, (1 — @re,(c5))) = min(0.96,0.17) = 0.17
— T8pe5(c3) = Min(aype, (€3), Ming; 2c, (1 — are, (¢5))) = min(1,0.57) = 0.57

As can be observed, though the three considered referring expressions are
almost equally true for cell 3, they have rather different degrees of referential
success. The two last expressions fail in the objective of unambiguously identi-
fying the referent object to the reader. This is due to the fact that the accuracy
of res regarding cell 4 is also high (ape,(cs) = 0.83) and the accuracy of res
regarding cell 27 is not low (@, (c27) = 0.43).

The presented measure is a natural extension of the conventional concept
of referential success when the accuracy of the referring expression for a given
object is fuzzy. However, this measure produces similar values when evaluating
referring expressions independently of the number of objects they fuzzily refer
to.

For example, consider the following sentences:

— req =The dark object.
— res =The object in the upper-left.

In both cases, the referential success with respect to cell 3 is rather low
(r$res(c3) = 0.17, rspe;(c3) = 0.15). However, if we do not have any other
alternative, we will probably choose res because, as can be seen in table 1, there
are fewer objects for which res is true to some extent than there are for rey.
That is, the fuzzy sets of objects of which res is to some extent true is more
specific, i.e. there is less uncertainty about which referent is intended.

To asses this uncertainty, Fuzzy Set Theory offers a wide variety of measures
of specificity of fuzzy sets. If O, is the fuzzy set of objects for which re is true
to some extent, with O,.(0) = ar.(0), then the specificity of re, Sp(re), should
satisfy, among others, the following:

— Sp(re) =1 iff O, is a crisp singleton.

— If Oy = 0, then Sp(re) = 0.

— If card(O,e) < card(Oye) and O, and O, are normal fuzzy sets, then
Sp(re) > Sp(re’), where card(-) is a suitable cardinality measure.

3.3 A multiobjective problem

In order to asses the goodness or adequacy of a referring expression, other quality
dimensions can be considered, apart from the ones previously discussed, simi-
larly to what happens in complete linguistic descriptions [3]. The REG literature
contains a number of such proposals. Thus, brevity has been proposed as a cri-
terion of adequacy [24] based on the conversational maxim, due to Grice [25],
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that a cooperative communicator should say no more than is required for the
purposes of the exchange. Similarly, humanlikeness has been explored based on a
variety of psycholinguistic findings, such as for example the extent to which the
properties selected in a referring expression are salient or ‘preferred’ by speak-
ers [26,27]. Finally, it has been argued that the use of certain properties in a
referring expression depends on the relevance to the user given their current
communicative task [28] as well as their knowledge state [29].

Though in the example used in this section it has been possible to determine
the best referring expression for cell 3, in general, the problem of generating a
referring expression for a given object does not always lead to a single best solu-
tion. It is quite normal to find that different measures of quality are correlated to
different degrees; for instance, they might exert opposing influences, be contra-
dictory, and/or have a negative correlation. For example, as we add properties
to a referring expression, we increase the specificity but we also decrease brevity
and probably also accuracy and ease of comprehension. Interestingly, empirical
work comparing a large number of REG algorithms against shared datasets sug-
gests that in fact, different evaluation metrics corresponding to different quality
dimensions often do not correlate with each other [27].

This means that there is in general no such thing as the optimum or best
referring expression for a given object, and the referring expression generation
is a multiobjective optimization problem, as explained in [30, 31] for complete
linguistic descriptions.

4 REG in the presence of graduality: a discussion

As we have noted, gradability and fuzziness have not received much attention
in the REG literature. An exception is the work of van Deemter [12], who pro-
poses a semantics for gradable properties, such as those related to the size of
an object, and an algorithm to incorporate these properties in a REG procedure.
van Deemter proposes to represent gradable properties numerically, preceding
the standard REG content determination procedure with a step in which such
properties are converted into inequalities. For example, if o is defined as having
a value n for its height, this would be ‘unpacked’ into a set of inequalities of the
form n > m, for all m which are values of height that are less than n. A standard
REC algorithm can now use these inequalities as it would any other property,
assuming that content selection is followed by an appropriate realisation step to
convert them into an appropriate natural language string.

This approach is arguably less general than the one proposed in this paper.
In particular, if we abandon the view that the relationship between objects and
their properties is necessarily boolean (in the sense that an object either has a
property or it doesn’t) and adopt the more graded notion of degree of fulfilment,
it is possible to treat all properties as potentially graded, or rather, all objects
in a domain as having a particular property to different degrees. The contrast
between the definition of accuracy and referential success given in (1) and (2-3)
makes this explicit.
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4.1 Discriminatory power

From the perspective of knowledge representation, this also eschews a core sim-
plifying assumption made in many approaches to REG, namely, that properties
are mutually exclusive. For example, consider an object’s colour. In a domain
in which some objects are red and some are pink, it is typically assumed that
[ red ] N[ pink ] = 0, so that a REG algorithm that determines, for a target
referent o, that o € [ red ], can safely ignore all objects in the extension of pink,
since the latter is a completely different property.

This assumption has had an important implication for the development of
heuristics to control the search performed by a REG algorithm during content
selection, especially where the notion of discriminatory power is concerned. Dis-
criminatory power refers to the informativeness of a property, that is, the extent
to which it is true of the target referent, but false of other objects in the domain
[24]. Thus, algorithms which define the quality of a referring expression in terms
of brevity or informativity make use of this notion in trying to generate brief de-
scriptions, by prioritising properties with higher discriminatory power, under the
assumption that this will help the reader or hearer to identify the object more
efficiently [24, 32, 33]. Returning to our example of colour, if the target referent
happens to be the only red object in the domain, these algorithms will tend to
select this property. The problem is that the object in question might also have
a non-zero degree of fulfilment with respect to the property pink, based on the
closeness of this colour to red, so that the discriminatory value of the property
selected is not as clear-cut as was initially assumed.

4.2 Salience and contextual knowledge

Explicitly accounting for fuzziness also has implications for the way in which
another important quality heuristic is modelled in a REG algorithm, namely,
salience or preference. Many algorithms [26, 34] give priority to properties, not
based on discriminatory power, but on how salient, relevant or preferred they
are. This notion of preference is usually defined by appealing to psycholinguistic
findings, for example, the finding that speakers tend to avoid prototypically
gradable properties such as size, unless they are absolutely required, in contrast
for example to colour which, as we have seen, is used very frequently [35, 36].
However, many such findings are based on experimental domains in which colours
are maximally salient and distinct. A fuzzy approach can of course handle such
cases, given that the fulfilment degree of an object with respect to a colour which
is maximally salient in a domain would be higher than it would be in case the
property is less salient, that is, closer to other colours. However, this approach
would also enable more nuanced models, in which preference or salience can be
computed in less straightforward cases, as in the example in Figure 1(a) above.
Indeed, the human tendency to use colouring referring expressions decreases
significantly in the presence of colours that are similar, or close to each other [37].
Similarly, the tendency to use size increases, when the size difference between a
target referent and its distractors is large [38].
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Note that a graded notion of salience is also more faithful to the findings in
the vision literature, where many computational models of visual salience iden-
tify salient regions based on a combination of the properties we have discussed
in this paper, treating these properties as gradable [39,40]. The framework pro-
posed here could potentially be adapted to the findings from the vision literature,
by incorporating a psychologically plausible definition of salience into the com-
putation of degree of fulfilment that determines the likelihood for a property to
be selected by a REG procedure.

A further trend in computational research on vision is the incorporation of
top-down, or contextual, knowledge [41, 15]. Certain models [42,43] have suc-
cessfully modelled human shifts of attention in visual scenes by incorporating
both feature-based salience and knowledge of the type of scene being viewed.
Thus, the salience of an object depends not only on the distinctiveness of its
properties, but on human expectations concerning its location and function in a
particular scene. Returning to our running example, when viewing an array of
cells, such as those in Figure 1(a), a biologist’s attention might be drawn less by
their colour (perhaps because this is relatively unimportant, or expected, where
cells and tissues are concerned), but by their other properties. Future research
on REG will need to take into account these top-down, expectation-based mech-
anisms, which are also known to influence the way humans refer to objects [44,
45]. Tt is an open question whether the computation of the degree of fulfilment
of a fuzzy property can be modulated by such top-down considerations.

4.3 Spatial relations

Finally, another area in which fuzzy sets can play an important role in REG is in
reference to objects using (spatial) relations to other elements of a scene. Since
the early work of Dale and Haddock [46], the problem has been mostly defined
in logical terms: the elements of a scene that can serve as potential anchors for
a target referent in a spatial relation such as in front of are themselves encoded
explicitly in the REG input [47], though there has been some work that takes
a more realistic perspective in selecting salient landmarks [34, 10]. Once again,
the simplifying assumptions underlying REG algorithms can be relaxed using a
fuzzy approach to spatial relations, especially where these are ‘uncertain’ and
not necessarily mutually exclusive. For instance, in Figure 1(b) if the object to be
identified is cell 1, it can be seen that it is above cell 6 but also overlaps with it to
some degree. It is not clear whether a good referring expression in this case should
combine the two relations (the small cell at the top which is above and slightly
overlaps another), select only one, perhaps the most salient one, or simply rely
on a non-relational frame of reference (the one at the top towards the middle).
Many techniques have been described to handle fuzzy spatial relationships, and
we believe that REG would benefit from an exploration of this literature. Some
related work has shown that fuzzy sets can be useful in generating appropriate
natural language descriptions of uncertain temporal relations between events
[48]; applying similar strategies to spatial relations is a promising way forward.



10 Albert Gatt et al.

5 Conclusions

In this paper, we have tackled a classic problem in the generation of natural
language from non-linguistic data, namely, referring expression generation. Fo-
cussing on visual scenes, we have sought to extend the remit of REG algorithms,
by (a) abandoning some simplifying assumptions related to knowledge represen-
tation, especially the assumption that properties are crisp sets and that they
are either true or false of an object; and (b) extending the notions of accuracy
and referential success to deal with the more complex picture that gradability
affords. Our discussion has also pointed to several directions for future work,
notably the possibility of integrating the types of models proposed in this paper
with findings from the vision literature concerning salience. We believe this is a
promising direction in which to take research on REG; indeed, it potentially of-
fers a way to bridge the gap between research on fuzzy sets, research on Natural
Language Generation, and work in computer vision.
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