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ABSTRACT

We present an open-source library implementing fast algorithms for covari-
ance matrices computations, e.g., randomized low-rank approximations
(LRA) and fast multipole matrix multiplication (FMM). The library can
be used to approximate square roots of low-rank covariance matrices in O(N2)
operations in SVD form using randomized LRA, instead of the standard O(N3)
cost.
Low-rank covariance matrices given as kernels, e.g., Gaussian decay, evaluated
on 3D grids can be decomposed in O(N ) operations using the FMM. The
performance of the library is illustrated on two examples:

• Generation of Gaussian Random Fields (GRF) on large spatial grids

• MultiDimensional Scaling (MDS) for the classification of species.

RANDOM PROJECTION BASED LRA

Randomized SVD is a random projection-based LRA algorithms made
popular by Halko et al. [4], which returns an approximate SVD of a (symmet-
ric) matrix C ∈ R

N×N given a prescribed numerical rank r in O(N2 × r)
operations:

• Form an approximate basis Q ∈ R
N×r for the range of C.

– Form a sketched version of C using Gaussian random projection, i.e.,
application of C to a N -by-r Gaussian random matrix Ω.

Y = CΩ

– Then, orthogonalize Y by mean of a QR Decomposition

QR = Y

– Thus, we get a low-rank representation of C in the form

C ≈ Cr = QQTCQQT

with Frobenius/spectral error bounds that hold with high probability.

• Factorize Cr in SVD form: Cr = UΣUT.

– We start by assembling the small r-by-r matrix

B = QTCQ

– Then, perform a small SVD, i.e., B = UBΣBU
T
B.

– Form U = QUB and Σ = ΣB

• If C is positive semi-definite, then C ≈ Cr = AAT

A = QB1/2 = QUBΣ
1/2

+/− The method offers many advantages:

• Easily implemented and parallelized,

• easily extended to Cholesky, Interpolative Decomposition . . .

• cost dominated by matrix multiplication, i.e. O(r ×N2).

However, C should fulfill the following conditions:

• be low-rank (r << N),

• have a fast decreasing spectrum (st(C) = ‖C‖2F/‖C‖2S << N),

EFFICIENT GENERATION OF GRF

Aim This project aims at promoting new highly efficient FMM algorithms to
perform resource demanding computations in geostatistics.

Correlation kernels A Gaussian Random Field Y ∼ µ(0,C) is a multi-
variate Gaussian random variable with mean 0 and covariance C ∈ R

N×N .
The covariance can be prescribed as a kernel matrix, i.e.,

C =
{

k(rij)
}

i,j=1...N

where rij = ||xi − xj||2 denotes the distances between points of an arbitrary
grid and k is a correlation kernel such as

k1/2(r) = e−r/ℓ (Exponential decay)

k∞(r) = e−r2/(2ℓ2) (Gaussian decay)

The length scale ℓ characterizes the decreasing speed of the correlation.

Square-root algorithms Covariance matrices are spd by definition of
correlation kernels. Hence, C admits the following representation

C = AAT

where the matrix factor A ∈ R
N×N is often called a square root of C.

Methods for generating Gaussian Random Fields usually differ by the way A is
precomputed

• standard matrix decompositions (O(N3))

• circulant embedding (O(N logN ) for equispaced grids)

• the turning bands method (approximate)

Most of them become computationally prohibitive for large N , i.e., N over a
few thousands.

Randomized approach Dehdari and Deutsch [3] used the RandSVD in
order to precompute A in low-rank form in O(N2 × r) operations and
thus efficiently generate realizations of Gaussian Random Fields at a
O(N × r) cost. This approach still requires C to be fully assembled.
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Figure 1: Accuracy of the fixed rank Randomized SVD w.r.t. the compression rate for N = 2000 points

on the unit sphere and r = 20 . . . 200. Left: The effects of q power iterations using a fixed oversampling

of s = 50 on the exponential kernel. Right: The effects of the oversampling s alone (q = 0).

Fast Multipole Acceleration of the matrix multiplications involved in
the randomized SVD provides an algorithm for approximating A in O(r2×N )
operations with many benefits:

• matrix-free method with a O(r ×N ) memory footprint

• hierarchical methods handle heterogeneous grids more efficiently

However,

• the extra error involved by the FMM has to be monitored.

• H2-structure should apply well to C.
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Figure 2: Left: Running time for computing a randomized SVD using either the fixed rank or fixed

accuracy algorithm with q = 0 and s = 10. Matrices are multiplied either in a dense way (filled black

squares) or by means of a fmm scheme, particles are randomly distributed on the unit sphere and the

correlation is Gaussian (k∞) with ℓ = 0.5. Right: Realizations on the unit sphere with 72k points, k∞
and ℓ = 0.25 using FMM accelerated SVD (top) and smooth variant (bottom).

Perspectives Extension of the algorithm to other geoscientific application,
such as Data Assimilation:

• Joint work with Stanford University: Amalia Kokkinaki, Peter Kitanidis
(Civil Engineering) and Eric Darve.

• Efficient Ensemble Kalman Filters (EnKF)

– Perturbation of measurements

– Square Root EnKFs based on kernel methods

• Develop Python, R and Matlab interfaces

TAXONOMY VIA MULTIDIMENSIONAL SCALING (MDS)

Aim This project aims at developping new strategies for the classification
of species that benefits from the massive amount of data provided by New
Generation Sequencing (NGS) techniques.

Metric MDS aims at reconstructing a cloud of points X in a low-
dimensional feature space, e.g., X ∈ R

N×r, from a given distance/dissimilarity
matrix D ∈ R

N×N (Smith-Waterman scores of local alignment). The algo-
rithm [2] consists in:

• Assembling a covariance/similarity matrix as

Cij = 〈xi, xj〉 = −
1
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• Computing the SVD of C, i.e., C = UΣUT

• Forming X = C1/2 = UΣ1/2 (LS minimizer)

Figure 3: MDS using Gaussian Random Projection on 65k reads from a data set of marker ITS for

green plants. Main families (colors) can clearly be distinguished. However, most pixels contain more than

one specimen, and it is necessary to explore further axes to have a complete view of the whole data set.

Bottom Right: Another 20k reads from a diatom commnity in Geneva lake, with genetic distances. Here,

the z axis represents the number of reads which are stacked on the same pixel. Each spike represents

a species, with high concentration of reads, the variations being either natural variability or sequencing

errors. This permits an automatic procedure for community inventories.

Perspectives Develop automatic procedure for community inventories

• Analyze clustering, concentration of reads, . . .

• Improve visualization tools and methods.

Enhance algorithm and numerical analysis

• Compare with existing approaches based on random column selection.

• Improve storage and running time by partitionning data sets and com-
pressing covariance matrices.

OTHER FEATURES OF THE LIBRARY

Sources are available online as part of the open-source package FMR.
They can be downloaded for free at the following address

https://gforge.inria.fr/projects/fmr

Dependencies FMR relies on

• ScalFMM [1] for performing fast multipole matrix multiplication in
parallel (in shared and distributed memory)

• MKL for dense linear algebra and FFT

• Scotch or CClusteringLib for partitionning

Features The package provides:

• routines for generating Gaussian Random Fields based on

– standard LRA: Cholesky Decomposition, SVD or FFT for regular grids.

– randomized LRA: RandSVD and Nyström method with uniform or
leverage score-based sampling.

• a variety of correlation kernels: Matérn, Spherical model, Oseen-Gauss.

• a Python interface for MDS using Randomized SVD or Nyström

• a Matlab interface for Ensemble Kalman Filtering
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