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ABSTRACT 

Formal methods provide support for validation and verifica-

tion of interactive systems by means of complete and un-

ambiguous description of the envisioned system. They can 

also be used (for instance in the requirements/needs identi-

fication phase) to define precisely what the system should 

do and how it should meet user needs. If the entire devel-

opment process in supported by formal methods (for in-

stance as required by DO 178C [7] and its supplement 333 

[8]) then classical formal method engineers would argue 

that the resulting software is defect free. However, events 

that are beyond the envelope of the specification may occur 

and trigger unexpected behaviors from the formally speci-

fied system resulting in failures. Sources of such failures 

can be permanent or transient hardware failures, due to 

(when such systems are deployed in the high atmosphere 

e.g. aircrafts or spacecrafts) natural faults triggered by al-

pha-particles from radioactive contaminants in the chips or 

neutron from cosmic radiation. This position paper propos-

es a complementary view to formal approaches first by 

presenting an overview of causes of unexpected events on 

the system side as well as on the human side and then by 

discussing approaches that could provide support for taking

into account system faults and human errors at design time. 
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INTRODUCTION 

The overall dependability of an interactive system is the 

one of its weakest component and there are many compo-

nents in such systems ranging from the operator processing 

information and physically exploiting the hardware (input 

and output devices), interaction techniques, to the interac-

tive application and possibly the underlying non interactive 

system being controlled. 

Building reliable interactive systems is a cumbersome task 

due to their very specific nature. The behavior of these 

reactive systems is event-driven. As these events are trig-

gered by human operators, these systems have to react to 

unexpected events. On the output side, information (such as 

the current state of the system) has to be presented to the 

operator in such a way that it can be perceived and inter-

preted correctly. Lastly, interactive systems require address-

ing together hardware and software aspects (e.g. input and 

output devices together with their device drivers).  

In the dependable computing domain, empirical studies 

have demonstrated (e.g. [20]) that software failures may 

occur even though the development of the system has been 

extremely rigorous. One of the many sources of such fail-

ures is called natural faults [1] triggered by alpha-particles 

from radioactive contaminants in the chips or neutron from 

cosmic radiation. A higher probability of occurrence of 

faults [31] concerns systems deployed in the high atmos-

phere (e.g. aircrafts) or in space (e.g. manned spacecraft 

[13]). Such natural faults demonstrate the need to go be-

yond classical fault avoidance at development time (usually 

brought by formal description techniques and properties 

verification) and to identify all the threats that can impair 

interactive systems. 

WHY FORMAL METHODS AND ZERO DEFECT 
APPROACHES ARE NOT ENOUGH  

To be able to ensure that the system will behave properly 

whatever happens, a system designer has to consider all the 

issues that can impair the functioning of that system. In the 

perspective of identifying all of them, in the domain of 

dependable computing, Avizienis et al [1] have defined a 

typology of faults. This typology leads to the identification 

of 31 elementary classes of faults. Figure 1 presents a sim-

plified view of this typology and makes explicit the two 

main categories of faults (top level of the figure): i) the 

ones occuring at development time (including bad designs, 

programming errors, …) and ii) the one occuring at opera-
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tion times (right-hand side of the figure including user error 

such as slips, lapses and mistakes as defined in [25]).

We propose to organize the leaves of the typology in five 

different groups as each of them brings a special problem 

(issue) to be addressed: 

· Development software faults (issue 1): software faults 

introduced by a human during the system development.  

· Malicious faults (issue 2): faults introduced by human 

with the deliberate objective of damaging the system 

(e.g. causing service denial or crash of the system).  

· Development hardware faults (issue 3): natural (e.g. 

caused by a natural phenomenon without human in-

volvement) and human-made faults affecting the hard-

ware during its development.  

· Operational natural faults (issue 4): faults caused by a 

natural phenomenon without human participation, af-

fecting the hardware and occurring during the service 

of the system. As they affect hardware, they are likely 

to damage software as well.  

· Operational human-errors (issue 5): faults resulting from 

human action during the use of the system. These faults 

are particularly of interest for interactive system and 

the next subsection describe them in detail. 

We consider that malicious faults are beyond the scope of 

this position paper and will thus not be further discussed. 

However, it might be interesting within the workshop to 

address this aspect that is more and more relevant with the 

open, collaborative interactive systems.  

Considering system faults 

In the domain of fault-tolerant systems, empirical studies 

have demonstrated (e.g. [20]) that software crashes may 

occur even though the development of the system has been 

extremely rigorous. One of the many sources of such crash-

es is called natural faults [1] triggered by alpha-particles 

from radioactive contaminants in the chips or neutron from 

cosmic radiation. A higher probability of occurrence of 

faults [31] concerns systems deployed in the high atmos-

phere (e.g. aircrafts) or in space (e.g. manned spacecraft 

[13]). Furthermore the evolution of modern IC components 

may lead in the next future to a higher probability of physi-

cal faults in operation. Although the recommendation for 

avionics systems is 100 FITs over 25 years lifetime, the 

current Deep Sub-Micron (DSP) technology may lead to a 

failure rate up to 1000 FITs, only during 5 years operational 

life time [28]. This is major worry in the avionics industry 

since this tendency has two bad sided effects, i) the reduc-

tion of the life time of the systems and ii) the increase of the 

failure rate due to hardware faults. Such natural faults 

demonstrate the need to go beyond classical fault avoidance 

at development time (usually brought by formal description 

techniques and properties verification) and to identify all 

the threats that can impair interactive systems. 

Considering human errors 

Several contributions in the human factors domain deal 

with studying internal human processes that may lead to 

actions that can be perceived as erroneous from an external 

view point. In the 1970s, Norman, Rasmussen and Reason 

have proposed theoretical frameworks to analyze human 

error. Norman, proposed a predictive model for errors [21], 

where the concept of "slip" is highlighted and causes of 

error are rooted in improper activation of patterns of action. 

Figure 1. Typology of faults in computing systems (adapted from [1]) and associated issues for the resilience of these systems



Rasmussen proposes a model of human performance which 

distinguishes three levels: skills, rules and knowledge (SRK 

model) [25]. This model provides support for reasoning 

about possible human errors and has been used to classify 

error types. Reason [26] takes advantages of the contribu-

tions of Norman and Rasmussen, and distinguishes three 

main categories of errors: 

1. Skill-based errors are related to the skill level of perfor-

mance in SRK. These errors can be of one of the 2 fol-

lowing types: a) Slip, or routine error, which is defined 

as a mismatch between an intention and an action [21];

b) Lapse which is defined as a memory failure that pre-

vents from executing an intended action. 

2. Rule-based mistakes are related to the rule level of per-

formance in SRK and are defined as the application of an 

inappropriate rule or procedure. 

3. Knowledge-based errors are related to the knowledge 

level in SRK and are defined as an inappropriate usage 

of knowledge, or a lack of knowledge or corrupted 

knowledge preventing from correctly executing a task. 

At the same time, Reason proposed a model of human per-

formance called GEMS [26] (Generic Error Modelling 

System), which is also based on the SRK model and dedi-

cated to the representation of human error mechanisms. 

GEMS is a conceptual framework that embeds a detailed 

description of the potential causes for each error types 

above. These causes are related to various models of human 

performance. For example, a perceptual confusion error in 

GEMS is related to the perceptual processor of the Human 

Processor model [5].  

Causes of errors and their observation are different concepts 

that should be separated when analyzing user errors. To do 

so, Hollnagel [15] proposed a terminology based on 2 main 

concepts: phenotype and genotype. The phenotype of an 

error is defined as the erroneous action that can be ob-

served. The genotype of the error is defined as the charac-

teristics of the operator that may contribute to the occur-

rence of an erroneous action.  

These concepts and the classifications above provide sup-

port for reasoning about human errors and have been wide-

ly used to develop approaches to design and evaluate inter-

active systems [29]. As pointed out in [21] investigating the 

association between a phenotype and its potential genotypes 

is very difficult but is an important step in order to assess 

the error-proneness of an interactive system.

PROPOSALS FOR DEALING WITH SYSTEM FAILURES 
AND HUMAN ERRORS 

Although system failures and human errors can both occur 

at runtime and be strongly correlated, these two problems 

are handled separately when developing an interactive sys-

tem. 

Dealing with operational natural faults 

The issue of operational natural faults has hardly been stud-

ied in the field of human-computer interaction and just a 

few contributions are available about this topic. However, 

this issue has long been studied in the field of dependable 

computing systems. As the operational natural faults are 

unpredictable and unavoidable, the dedicated approach for 

dealing with them is fault-tolerance [1] that can be achieved 

through specialized fault-tolerant architectures, by adding 

redundancy or diversity using multiple versions of the same 

software or by fault mitigation: reducing the severity of 

faults using barriers or healing behaviors [19].

To deal with these faults, we proposed two approaches: 

· The reconfiguration of the interaction techniques or 

possibly the organization of display when required by 

the occurrence of hardware faults [18].

· The adaptation of fault-tolerant architecture for devel-

oping fault-tolerant widgets as proposed in [33] or for 

extending this approach to all the interactive compo-

nents of the interactive system (including for example 

the interaction techniques) as proposed in [10]. 

Dealing with human errors 

Many techniques have been proposed for identifying which 

human errors may occur in a particular context and what 

could be their consequences in this given context. 

· Several human reliability assessment techniques such 

as CREAM [12], HEART [35], and THERP [33] are 

based on task analysis. They provide support to assess 

the possibility of occurrence of human errors by struc-

turing the analysis around task descriptions. Beyond 

these commonalities, THERP technique also provides 

support for assessing the probability of occurrence of 

human errors. 

· Task models based techniques have also been proposed 

to identify, describe and analyze potential human errors 

and human tasks deviation such as in [29], [9] and [23]. 

Dealing with both operational natural faults and human 
errors 

Integrated approaches can be envisioned for taking into 

account both system faults and human errors. Such ap-

proaches can leverage existing techniques in the fields of: 

dependable computing, human reliability assessment and 

human computer interaction. As proposed in [16], a step-

wise and iterative process can be used to identify in a sys-

tematic way human error and system failures for an under-

development interactive systems. From this systematic 

identification, the construction of enriched task models 

(embedding potential human errors and system faults), can 

provide support for analyzing their impact and proposing 

changes for modifying the system.

ILLUSTRATIVE EXAMPLE FROM THE ATM WORLD 

The typology of faults introduced in Figure 1 can be easily 

applied to any application providing support to understand-



ing how the approach followed for the development of a 

system is addressing the various faults.  

In the case of AMAN application proposed for the work-

shop, the various faults can lead to failures in the manage-

ment of the aircrafts by the air traffic controllers. For in-

stance, as detailed in [17], we have analysed 3 types of 

failures leading to 3 automation degradation scenarios: 

advisories from AMAN being not available anymore, advi-

sories being frozen for a while then starting again and advi-

sories provided being delayed.  

If a rigorous development process is followed and formal 

methods are used (as proposed in DO178-C [7]) one could 

expect that such failures would not occur. However, natural 

faults could easily produce such undesired behaviours. Sim-

ilarly human errors such as not perceiving the advisories or 

interpreting them incorrectly could also end up with similar 

malfunction (but this time at organizational level only as 

the system is supposed to function correctly).  

CONCLUSION  

This position paper argues that formal methods are good 

candidates for dealing with development faults. However, 

this position paper has also presented a typology of faults 

that identify other sources of failures that development 

faults: natural faults and human errors.  

In order to cover all these faults and to prevent related fail-

ures to occur we argued that multiple combined approaches 

(including formal methods) should be applied. For instance, 

it is interesting to note that detection and recovering mech-

anisms for natural faults could be described using formal 

methods in order to guarantee that their behaviour will be 

conformant with the expected one (as presented in [34]).  

We have not addressed issues related to malicious faults 

that could however be discussed during the workshop.  
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