
HAL Id: hal-01334722
https://hal.science/hal-01334722v1

Submitted on 21 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond Formal Methods for Critical Interactive
Systems: Dealing with Faults at Runtime

Camille Fayollas, Célia Martinie, Philippe Palanque, Yannick Deleris

To cite this version:
Camille Fayollas, Célia Martinie, Philippe Palanque, Yannick Deleris. Beyond Formal Methods for
Critical Interactive Systems: Dealing with Faults at Runtime. Workshop on Formal Methods in Human
Computer Interaction (FoMHCI 2015), Jun 2015, Duisburg, Germany. pp. 19-23. �hal-01334722�

https://hal.science/hal-01334722v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15399

The contribution was presented at FoMHCI 2015 :
https://sites.google.com/site/wsfomchi/

To cite this version : Fayollas, Camille and Martinie De Almeida, Celia and
Palanque, Philippe and Deleris, Yannick Beyond Formal Methods for Critical
Interactive Systems: Dealing with Faults at Runtime. (2015) In: Workshop on Formal
Methods in Human Computer Interaction (FoMHCI 2015), 23 June 2015 - 23 June
2015 (Duisburg, Germany).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Beyond Formal Methods for Critical Interactive Systems:
Dealing with Faults at Runtime

Camille Fayollas2,3, Célia Martinie2, Philippe Palanque2, Yannick Deleris1

1 AIRBUS Operations,

316 Route de Bayonne,

31060, Toulouse, France

yannick.deleris@airbus.com

2ICS-IRIT, University of Toulouse,

118 Route de Narbonne,

F-31062, Toulouse, France

{Name}@ irit.fr

3LAAS-CNRS,

7 avenue du colonel Roche,

F-31077 Toulouse, France

cfayolla@laas.fr

ABSTRACT

Formal methods provide support for validation and verifica-

tion of interactive systems by means of complete and un-

ambiguous description of the envisioned system. They can

also be used (for instance in the requirements/needs identi-

fication phase) to define precisely what the system should

do and how it should meet user needs. If the entire devel-

opment process in supported by formal methods (for in-

stance as required by DO 178C [7] and its supplement 333

[8]) then classical formal method engineers would argue

that the resulting software is defect free. However, events

that are beyond the envelope of the specification may occur

and trigger unexpected behaviors from the formally speci-

fied system resulting in failures. Sources of such failures

can be permanent or transient hardware failures, due to

(when such systems are deployed in the high atmosphere

e.g. aircrafts or spacecrafts) natural faults triggered by al-

pha-particles from radioactive contaminants in the chips or

neutron from cosmic radiation. This position paper propos-

es a complementary view to formal approaches first by

presenting an overview of causes of unexpected events on

the system side as well as on the human side and then by

discussing approaches that could provide support for taking

into account system faults and human errors at design time.

Author Keywords

Formal methods; interactive systems; human reliabil-

ity; fault-tolerant systems.

ACM Classification Keywords

D.2.2 [Software] Design Tools and Techniques – Computer

aided software engineering (CASE).

INTRODUCTION

The overall dependability of an interactive system is the

one of its weakest component and there are many compo-

nents in such systems ranging from the operator processing

information and physically exploiting the hardware (input

and output devices), interaction techniques, to the interac-

tive application and possibly the underlying non interactive

system being controlled.

Building reliable interactive systems is a cumbersome task

due to their very specific nature. The behavior of these

reactive systems is event-driven. As these events are trig-

gered by human operators, these systems have to react to

unexpected events. On the output side, information (such as

the current state of the system) has to be presented to the

operator in such a way that it can be perceived and inter-

preted correctly. Lastly, interactive systems require address-

ing together hardware and software aspects (e.g. input and

output devices together with their device drivers).

In the dependable computing domain, empirical studies

have demonstrated (e.g. [20]) that software failures may

occur even though the development of the system has been

extremely rigorous. One of the many sources of such fail-

ures is called natural faults [1] triggered by alpha-particles

from radioactive contaminants in the chips or neutron from

cosmic radiation. A higher probability of occurrence of

faults [31] concerns systems deployed in the high atmos-

phere (e.g. aircrafts) or in space (e.g. manned spacecraft

[13]). Such natural faults demonstrate the need to go be-

yond classical fault avoidance at development time (usually

brought by formal description techniques and properties

verification) and to identify all the threats that can impair

interactive systems.

WHY FORMAL METHODS AND ZERO DEFECT
APPROACHES ARE NOT ENOUGH

To be able to ensure that the system will behave properly

whatever happens, a system designer has to consider all the

issues that can impair the functioning of that system. In the

perspective of identifying all of them, in the domain of

dependable computing, Avizienis et al [1] have defined a

typology of faults. This typology leads to the identification

of 31 elementary classes of faults. Figure 1 presents a sim-

plified view of this typology and makes explicit the two

main categories of faults (top level of the figure): i) the

ones occuring at development time (including bad designs,

programming errors, …) and ii) the one occuring at opera-

This article is published and distributed under Creative Commons Attribu-

tion 4.0 International license (CC BY).

tion times (right-hand side of the figure including user error

such as slips, lapses and mistakes as defined in [25]).

We propose to organize the leaves of the typology in five

different groups as each of them brings a special problem

(issue) to be addressed:

· Development software faults (issue 1): software faults

introduced by a human during the system development.

· Malicious faults (issue 2): faults introduced by human

with the deliberate objective of damaging the system

(e.g. causing service denial or crash of the system).

· Development hardware faults (issue 3): natural (e.g.

caused by a natural phenomenon without human in-

volvement) and human-made faults affecting the hard-

ware during its development.

· Operational natural faults (issue 4): faults caused by a

natural phenomenon without human participation, af-

fecting the hardware and occurring during the service

of the system. As they affect hardware, they are likely

to damage software as well.

· Operational human-errors (issue 5): faults resulting from

human action during the use of the system. These faults

are particularly of interest for interactive system and

the next subsection describe them in detail.

We consider that malicious faults are beyond the scope of

this position paper and will thus not be further discussed.

However, it might be interesting within the workshop to

address this aspect that is more and more relevant with the

open, collaborative interactive systems.

Considering system faults

In the domain of fault-tolerant systems, empirical studies

have demonstrated (e.g. [20]) that software crashes may

occur even though the development of the system has been

extremely rigorous. One of the many sources of such crash-

es is called natural faults [1] triggered by alpha-particles

from radioactive contaminants in the chips or neutron from

cosmic radiation. A higher probability of occurrence of

faults [31] concerns systems deployed in the high atmos-

phere (e.g. aircrafts) or in space (e.g. manned spacecraft

[13]). Furthermore the evolution of modern IC components

may lead in the next future to a higher probability of physi-

cal faults in operation. Although the recommendation for

avionics systems is 100 FITs over 25 years lifetime, the

current Deep Sub-Micron (DSP) technology may lead to a

failure rate up to 1000 FITs, only during 5 years operational

life time [28]. This is major worry in the avionics industry

since this tendency has two bad sided effects, i) the reduc-

tion of the life time of the systems and ii) the increase of the

failure rate due to hardware faults. Such natural faults

demonstrate the need to go beyond classical fault avoidance

at development time (usually brought by formal description

techniques and properties verification) and to identify all

the threats that can impair interactive systems.

Considering human errors

Several contributions in the human factors domain deal

with studying internal human processes that may lead to

actions that can be perceived as erroneous from an external

view point. In the 1970s, Norman, Rasmussen and Reason

have proposed theoretical frameworks to analyze human

error. Norman, proposed a predictive model for errors [21],

where the concept of "slip" is highlighted and causes of

error are rooted in improper activation of patterns of action.

Figure 1. Typology of faults in computing systems (adapted from [1]) and associated issues for the resilience of these systems

Rasmussen proposes a model of human performance which

distinguishes three levels: skills, rules and knowledge (SRK

model) [25]. This model provides support for reasoning

about possible human errors and has been used to classify

error types. Reason [26] takes advantages of the contribu-

tions of Norman and Rasmussen, and distinguishes three

main categories of errors:

1. Skill-based errors are related to the skill level of perfor-

mance in SRK. These errors can be of one of the 2 fol-

lowing types: a) Slip, or routine error, which is defined

as a mismatch between an intention and an action [21];

b) Lapse which is defined as a memory failure that pre-

vents from executing an intended action.

2. Rule-based mistakes are related to the rule level of per-

formance in SRK and are defined as the application of an

inappropriate rule or procedure.

3. Knowledge-based errors are related to the knowledge

level in SRK and are defined as an inappropriate usage

of knowledge, or a lack of knowledge or corrupted

knowledge preventing from correctly executing a task.

At the same time, Reason proposed a model of human per-

formance called GEMS [26] (Generic Error Modelling

System), which is also based on the SRK model and dedi-

cated to the representation of human error mechanisms.

GEMS is a conceptual framework that embeds a detailed

description of the potential causes for each error types

above. These causes are related to various models of human

performance. For example, a perceptual confusion error in

GEMS is related to the perceptual processor of the Human

Processor model [5].

Causes of errors and their observation are different concepts

that should be separated when analyzing user errors. To do

so, Hollnagel [15] proposed a terminology based on 2 main

concepts: phenotype and genotype. The phenotype of an

error is defined as the erroneous action that can be ob-

served. The genotype of the error is defined as the charac-

teristics of the operator that may contribute to the occur-

rence of an erroneous action.

These concepts and the classifications above provide sup-

port for reasoning about human errors and have been wide-

ly used to develop approaches to design and evaluate inter-

active systems [29]. As pointed out in [21] investigating the

association between a phenotype and its potential genotypes

is very difficult but is an important step in order to assess

the error-proneness of an interactive system.

PROPOSALS FOR DEALING WITH SYSTEM FAILURES
AND HUMAN ERRORS

Although system failures and human errors can both occur

at runtime and be strongly correlated, these two problems

are handled separately when developing an interactive sys-

tem.

Dealing with operational natural faults

The issue of operational natural faults has hardly been stud-

ied in the field of human-computer interaction and just a

few contributions are available about this topic. However,

this issue has long been studied in the field of dependable

computing systems. As the operational natural faults are

unpredictable and unavoidable, the dedicated approach for

dealing with them is fault-tolerance [1] that can be achieved

through specialized fault-tolerant architectures, by adding

redundancy or diversity using multiple versions of the same

software or by fault mitigation: reducing the severity of

faults using barriers or healing behaviors [19].

To deal with these faults, we proposed two approaches:

· The reconfiguration of the interaction techniques or

possibly the organization of display when required by

the occurrence of hardware faults [18].

· The adaptation of fault-tolerant architecture for devel-

oping fault-tolerant widgets as proposed in [33] or for

extending this approach to all the interactive compo-

nents of the interactive system (including for example

the interaction techniques) as proposed in [10].

Dealing with human errors

Many techniques have been proposed for identifying which

human errors may occur in a particular context and what

could be their consequences in this given context.

· Several human reliability assessment techniques such

as CREAM [12], HEART [35], and THERP [33] are

based on task analysis. They provide support to assess

the possibility of occurrence of human errors by struc-

turing the analysis around task descriptions. Beyond

these commonalities, THERP technique also provides

support for assessing the probability of occurrence of

human errors.

· Task models based techniques have also been proposed

to identify, describe and analyze potential human errors

and human tasks deviation such as in [29], [9] and [23].

Dealing with both operational natural faults and human
errors

Integrated approaches can be envisioned for taking into

account both system faults and human errors. Such ap-

proaches can leverage existing techniques in the fields of:

dependable computing, human reliability assessment and

human computer interaction. As proposed in [16], a step-

wise and iterative process can be used to identify in a sys-

tematic way human error and system failures for an under-

development interactive systems. From this systematic

identification, the construction of enriched task models

(embedding potential human errors and system faults), can

provide support for analyzing their impact and proposing

changes for modifying the system.

ILLUSTRATIVE EXAMPLE FROM THE ATM WORLD

The typology of faults introduced in Figure 1 can be easily

applied to any application providing support to understand-

ing how the approach followed for the development of a

system is addressing the various faults.

In the case of AMAN application proposed for the work-

shop, the various faults can lead to failures in the manage-

ment of the aircrafts by the air traffic controllers. For in-

stance, as detailed in [17], we have analysed 3 types of

failures leading to 3 automation degradation scenarios:

advisories from AMAN being not available anymore, advi-

sories being frozen for a while then starting again and advi-

sories provided being delayed.

If a rigorous development process is followed and formal

methods are used (as proposed in DO178-C [7]) one could

expect that such failures would not occur. However, natural

faults could easily produce such undesired behaviours. Sim-

ilarly human errors such as not perceiving the advisories or

interpreting them incorrectly could also end up with similar

malfunction (but this time at organizational level only as

the system is supposed to function correctly).

CONCLUSION

This position paper argues that formal methods are good

candidates for dealing with development faults. However,

this position paper has also presented a typology of faults

that identify other sources of failures that development

faults: natural faults and human errors.

In order to cover all these faults and to prevent related fail-

ures to occur we argued that multiple combined approaches

(including formal methods) should be applied. For instance,

it is interesting to note that detection and recovering mech-

anisms for natural faults could be described using formal

methods in order to guarantee that their behaviour will be

conformant with the expected one (as presented in [34]).

We have not addressed issues related to malicious faults

that could however be discussed during the workshop.

REFERENCES

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.

Basic concepts and taxonomy of dependable and secure

computing. In IEEE Trans. on Dependable and Secure

Computing, vol.1, no.1, pp. 11- 33, Jan.-March 2004.

2. Back J., Blandford A, CurzonP. Recognising Erroneous

and Exploratory Interactions. INTERACT (2) 2007:

127-140

3. Barboni, E., Bastide, R., Lacaze, X. Navarre, D., Palan-

que, P. Petri Net Centered versus User Centered Petri

Nets Tools. AWPN 2003 - 10th Workshop on Algo-

rithms and Tools for Petri Nets, Eichstätt, Germany,

26/09/2003-27/09/2003.

4. Beaudouin-Lafon, M. et al. CPN/Tools: A Post-WIMP

Interface for Editing and Simulating Coloured Petri

Nets. In Proc. of ICATPN'2001: 22nd International Con-

ference on Application and Theory of Petri Nets (June

2001, Newcastle upon Tyne, England), Lecture Notes in

Computer Science, Springer-Verlag, 2001, pp. 71-80.

5. Card, S., Moran, T., Newell, A. The model human pro-

cessor: An engineering model of human performance.

John Wiley & Sons, 1986.

6. Dix, A. Upside down As and algorithms – computa-

tional formalisms and theory. J. Carroll (Ed.), HCI

Models Theories and Frameworks: Toward a Multidis-

ciplinary Science, Morgan Kaufmann, San Francisco

(2003), pp. 381–429 (Chapter 14).

7. DO-178C / ED-12C, Software Considerations in Air-

borne Systems and Equipment Certification, published

by RTCA and EUROCAE, 2012

8. DO-333 Formal Methods Supplement to DO-178C and

DO-278ASoftware Tool Qualification Considerations,

published by RTCA and EUROCAE December 13,

2011

9. Fahssi, R., Martinie, C., Palanque, P. Enhanced Task

Modelling for Systematic Identification and Explicit

Representation of Human Errors. In Proc. of IFIP TC 13

Intl. Conf. on HCI, INTERACT 2015, Bamberg.

10.Fayollas C., Fabre J-C., Palanque P., Barboni E., Na-

varre D., Deleris Y: Interactive cockpits as critical ap-

plications: a model-based and a fault-tolerant approach.

Int. Journal on Critical Component-Based Software

4(3): 202-226 (2013)

11.Fayollas, C., et al. A Software-Implemented Fault-

Tolerance Approach for Control and Display Systems in

Avionics. In Proc. PRDC 2014, IEEE, 21-30.

12.Gram, C., Cockton, G. Design principles for Interactive

Software. London. 1996. Chapman & Hall.

13.Hecht H. and Fiorentino E. Reliability assessment of

spacecraft electronics. In Annual Reliability and Main-

tainability Symp., pages 341–346. IEEE, 1987.

14.Hollnagel E. “The phenotype of erroneous actions Im-

plications for HCI design,” in G. R. S. Weir and J. L.

Alty, Eds , Human Computer Interaction and the Com-

plex Systems, London: Academic Press, 1991.

15.Hollnagel, Erik. Cognitive reliability and error analysis

method (CREAM). Elsevier, 1998.

16.Martinie C., Palanque P., Ragosta M., Sujan M-A., Na-

varre D., Pasquini A.: Understanding Functional Reso-

nance through a Federation of Models: Preliminary

Findings of an Avionics Case Study. SAFECOMP 2013:

216-227

17.Martinie, C., Palanque, P., Fahssi, R., Blanquart, J.-P.,

Fayollas, C., Seguin, C. Task Model-Based Systematic

Analysis of Both System Failures and Human Errors.

IEEE Transactions on Human-Machine Systems, to ap-

pear in 2015.

18.Navarre, D., Palanque, P. and S. Basnyat, “A formal

approach for user interaction reconfiguration of safety

critical interactive systems,” in Proc. Int. Conf Comp.

Safety, Rel. Security, 2008, pp. 373–386.

19.Neema, S., Bapty, T., Shetty, S., and Nordstrom; S.

Autonomic fault mitigation in embedded systems. Eng.

Appl. Artif. Intell., vol. 17, no. 7,pp. 711–725, 2004.

20.Nicolescu B., Peronnard P., Velazco R., and Savaria Y.

Efficiency of Transient Bit-Flips Detection by Software

Means: A Complete Study. Proc. of the 18th IEEE Int.

Symp. on Defect and Fault Tolerance in VLSI Systems

(DFT '03). IEEE Computer Society, 377-384.

21.Norman, D. A. (1981). Categorization of action slips.

Psychological review, 88(1), 1.

22.Papatzanis, G, Curzon, P., Blandford, A. Identifying

Phenotypes and Genotypes: A Case Study Evaluating an

In-Car Navigation System. EHCI/DS-VIS 2007, pp.

227-242.

23.Paterno, F., Santoro, C., “Preventing user errors by sys-

tematic analysis of deviations from the system task

model”, 2002, Int. Journal on Human Computing Sys-

tems, Elsevier, vol. 56, n. 2,pp. 225-245.

24.Polet, P, Vanderhaegen, F, and Wieringa, P. Theory of

safety related violation of system barriers. Cognition

Technology & Work, 4, 3, 171-179. 2002.

25.Rasmussen, J. Skills, rules, knowledge: signals, signs

and symbols and other distinctions in human perfor-

mance models, IEEE transactions: Systems, Man

&Cybernetics, 1983.

26.Reason, J T. Generic error modelling system: a cogni-

tive framework for locating common human error

forms. New technology and human error, 63, 86. 1987.

27.Reason, J. (1990). Human Error, Cambridge University

Press

28.Regis, D.; Hubert, G.; Bayle, F.; Gatti, M., "IC compo-

nents reliability concerns for avionics end-

users," Digital Avionics Systems Conference

IEEE/AIAA 32nd pp.2C2-1,2C2-9, 5-10 Oct. 2013

29.Rimvydas Ruksenas, Paul Curzon, Ann Blandford,

Jonathan Back: Combining Human Error Verification

and Timing Analysis. EHCI/DS-VIS 2007: 18-35

30.Rizzo, A., Ferrante, D., & Bagnara, S. (1995). Handling

human error. Expertise and technology: Cognition &

human-computer cooperation, 195-212.

31.Schroeder B., E. Pinheiro, and W.-D. Weber. DRAM

errors in the wild: a large-scale field study. In ACM

SIGMETRICS, pages 193–204, Seattle, WA, June 2009.

32.Silva, J-L., Fayollas, C., Hamon, A., Palanque, P., Mar-

tinie, C., Barboni, E. Analysis of WIMP and Post WIMP

Interactive Systems based on Formal Specification. In-

ternational Workshop on Formal Methods for Interac-

tive Systems (FMIS 2013), London, 24/06/2013, Elec-

tronic Communications of the EASST.

33.Swain, A. D., Guttman, H. E. Handbook of Human Re-

liability Analysis with Emphasis on Nuclear Power

Plant Applications, Final report. NUREG/CR- 1278.

SAND80-0200. RX, AN. US Nuclear Regulatory Com-

mission, August 1983.

34.Tankeu-Choitat, A. et al. Self-checking components for

dependable interactive cockpits using formal description

techniques. In Proc. PRDC 2011, 164-173.

35.Williams, J. C. A data-based method for assessing and

reducing human error to improve operational perfor-

mance. In Human Factors and Power Plants, IEEE,

1988. p. 436-450.

