
HAL Id: hal-01334717
https://hal.science/hal-01334717

Submitted on 22 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differentiated Multiple Aggregations in
Multidimensional Databases

Ali Hassan, Franck Ravat, Olivier Teste, Ronan Tournier, Gilles Zurfluh

To cite this version:
Ali Hassan, Franck Ravat, Olivier Teste, Ronan Tournier, Gilles Zurfluh. Differentiated Multiple
Aggregations in Multidimensional Databases. Transactions on Large-Scale Data- and Knowledge-
Centered Systems, 2015, vol. 21, pp. 20-47. �hal-01334717�

https://hal.science/hal-01334717
https://hal.archives-ouvertes.fr

To link to this article :
URL : http://tldks.faw.at/paper/135/

To cite this version : Hassan, Ali and Ravat, Franck and Teste, Olivier
and Tournier, Ronan and Zurfluh, Gilles Differentiated Multiple
Aggregations in Multidimensional Databases. (2015) LNCS journal
Transactions on Large-Scale Data- and Knowledge-Centered Systems,
vol. 21. pp. 20-47. ISSN 1869-1994

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15403

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Differentiated Multiple Aggregations

in Multidimensional Databases

Ali Hassan1(&), Frank Ravat1, Olivier Teste2, Ronan Tournier1,
and Gilles Zurfluh1

1 Université Toulouse 1 Capitole, IRIT (UMR 5505),
118 Route de Narbonne, 31062 Toulouse cedex 9, France
{hassan,ravat,tournier,zurfluh}@irit.fr

2 Université Toulouse 3 Paul Sabatier, IRIT (UMR 5505),
118 Route de Narbonne, 31062 Toulouse cedex 9, France

teste@irit.fr

Abstract. Many models have been proposed for modeling multidimensional
data warehouses and most consider a same function to determine how measure
values are aggregated according to different data detail levels. We provide a
conceptual model that supports (1) multiple aggregations, associating to the
same measure a different aggregation function according to analysis axes or
hierarchies, and (2) differentiated aggregation, allowing specific aggregations at
each detail level. Our model is based on a graphical formalism that allows
controlling the validity of aggregation functions (distributive, algebraic or
holistic). We also show how conceptual modeling can be used, in an R-OLAP
environment, for building lattices of pre-computed aggregates.

Keywords: Data warehouse � Conceptual modeling � Aggregate lattice �
Multiple aggregations � Aggregation functions

1 Introduction

Decision support systems, such as data warehouses, have shown their ability to inte-
grate large volumes of data by supporting effectively the analysis of stored data. These
decision support systems are elaborated from data sources, usually the operational
system of an organization; the data identified in the relevant sources are extracted,
transformed and loaded [26] in a storage area called a data warehouse. To allow
efficient querying and analysis of the data, specific data organization techniques have
been developed using multidimensional databases (MDB) [3, 13]. This type of mod-
eling considers the analyzed data from analysis indicators (i.e. measures grouped into
facts) as points in a multidimensional space, forming a data cube [8]. Each dimension
having various granularity/detail levels. Decision makers visualize extracts of data
cubes, usually a two-dimensional slice of a cube. From this structure, called a multi-
dimensional table (MT) [9], the decision maker can interact through manipulation
operations [22]. The most emblematic operations are drilling operations which change
the granularity level of the analyzed data and rotation operations which change the slice

of the cube. These operations are the most popular ones used for On-Line Analytic
Processing (OLAP).

This environment provides a suitable analysis framework for decision makers;
however, the imposed structure may be imperfect. In particular, a classical MDB
supports only the calculation of a measure made by the same aggregation function
while performing drilling or rotating operations (i.e. changing the analyzed slice of the
cube). For example, if we consider sales amounts, these can be calculated as the sum of
the products sold by cities and years (top part of Fig. 1). When drilling from cities to
countries, the new amounts are calculated using the same aggregation function (SUM
in the bottom part of Fig. 1). When the user wishes to change the aggregation function
between two slices of the manipulated cube, the classical BDM no longer guarantees
the validity of the calculated data, or even worse: does not support this type of
manipulation.

This paper aims at allowing non-uniform aggregations during user manipulations.
To ensure the validity of such aggregations, we define differentiated multiple

aggregations. Our proposal aims at developing a multidimensional model flexible
enough for designing cubes with aggregation functions according to different levels.

1.1 Case Study

The case study concerns a diploma delivery jury. Here, decision makers (jury mem-
bers) deliver diplomas by analyzing the marks (average, maximum, minimum) of
students and their rate of absenteeism.

Students are split into groups and the academic year has two semesters. Each
semester consists of Teaching Units (TU) and each TU is composed of several courses.
Each course is associated with a coefficient that represents the importance of the course
in the TU. We must take into account this coefficient to calculate the mark of the EU,
which itself is linked to an ECTS (European Credit Transfer System) used to calculate
the mark of semester. Each semester has the same amount of ECTS. In addition to the
courses and students, analysts can analyze marks and absenteeism rates according to
the dates (academic years).

Analysts may wish to observe absenteeism in two different ways:

– The first, called simple, is to calculate the percentage of absenteeism without dis-
tinction between different courses or TUs.

– The second, called weighted, uses the same coefficients (used for calculating the
marks of TUs and semesters) to calculate absenteeism rates.

An MDB is implemented using extracting, transforming processes and loading data
from the operational system, which we will not detail in this article. Figure 2 shows the
conceptual star schema [7, 21] of the MDB of our case study. This MDB analyzes the
measures (average marks ‘Avg_Mark’, maximum marks ‘Max_Mark’, minimum
marks ‘Min_Mark’ and absenteeism rates ‘Rate_Abs’) by ‘Courses’, ‘Students’ and
‘Dates’ (dimensions).

The dimension ‘Courses’ has two hierarchies ‘HCourse_Simple’ and ‘HCourse_
weighted’. Each hierarchy corresponds to a way to analyze the absenteeism rate (simple
and weighted). The other measures (‘Avg_Mark’, ‘Max_Mark’ and ‘Min_Mark’) are
analyzed in the same way on the two hierarchies. A course is characterized by a course
number (C_Id), a teaching unit number (TU_Id) and a semester. Each student has a
student number (S_Id) and a group number (G_Id). Academic years ‘Academic_year’
of the dimension ‘Dates’ are aggregated by periods of five years ‘period-5’ and periods
of ten years ‘period-10’.

1.2 Illustration of the Problem

This schema allows getting average marks by courses and by students (Fig. 3).
Obtaining the average mark by TU in this multidimensional environment requires
aggregating the average marks by courses in accordance with the function associated

Fig. 2. The MDB of the diploma delivery case study

22 A. Hassan et al.

with the measure Mark (AVG). But this operation gives a result that does not corre-
spond to examination modalities: an average mark by TU should be calculated from the
course marks and taking into account the coefficient of each course (Eq. 1). Similarly,
for average marks by semester, the ECTS of each TU (Eq. 2) has to be taken into
account. However, to calculate the general average mark for each student, one must
calculate the average of the TU marks (Eq. 3).

AVG TU ¼

P

Mark � Coeff
P

Coeff
ð1Þ

AVG Semester ¼

P

AVG TU � ECTS
P

ECTS
¼

P

P

Mark�Coeff
P

Coeff

" #

� ECTS

P

ECTS
ð2Þ

AVG ALL ¼ AVG AVG Semesterð Þ ð3Þ

Therefore, classical approaches that consider a single aggregation function for all
modeled aggregation levels in the star schema suffer from several limits:

– Variability of the aggregation function. Traditionally, models do not allow the
use of aggregation functions that vary along dimensions or hierarchical levels. In
our example, the aggregation function changes between the levels C_Id (courses),
TU_Id (teaching units) and the semester level.

– Shortcomings of basic functions. When aggregating data across hierarchical lev-
els, in our example, we use non-standard aggregation functions which use com-
plementary data other than measure values (i.e. coefficients Coeff, weights ECTS).

– Aggregation constraints. The way to make the calculation of aggregation func-
tions may be constrained. In our example, as shown in (Eq. 2), the average per
semester cannot be obtained directly from the marks per courses. It is necessarily
calculated from the averages per TUs. Similarly, the general average is calculated
from the averages per semesters (Eq. 3).

The objective of this paper is to propose a multidimensional model sufficiently
expressive to support these various aggregations. Then, we study the impacts of this
conceptual model on the lattice of pre-aggregates [8] at the logical level.

Fig. 3. A MT visualizing the student’s average marks by course

Differentiated Multiple Aggregations in Multidimensional Databases 23

In previous work [11], we detailed our conceptual model and presented simply the
logical model. Here, we:

– Extend the conceptual model with a new type of aggregation (hierarchical);
– Revisit the execution order mechanism in order to be more expressive;
– Detail the logical model;
– Implement our prototype to study the consequences on lattice reductions.

The rest of this paper is organized as follows: Sect. 2 reviews related work. Sec-
tion 3 defines our conceptual multidimensional model: classical concepts, extensions
for differentiated multiple aggregations and associated graphical formalisms. Section 4
shows the logical R-OLAP model of our star schema and its optimization relations. We
detail our prototype and experiments in Sect. 5 and the last section concludes this work
and states some future work.

2 Related Work

There are typically two approaches for modeling multidimensional databases. The first
is based on the data cube (or hypercube) metaphor according to which the MDB is
represented by cubes. The second is known as multidimensional modeling, where the
MDB is described by a star schema or a constellation [13]. Our work falls in the second
category. A cube is based on an equivocal separation between the structure elements
and the values [24]: modeling analysis axes is not very expressive especially due to the
difficulty for representing the hierarchical organization of the data. It is also limited for
representing constellations of facts with shared dimensions.

Several surveys of the domain [3, 17, 25] and comparative studies [1, 2, 7, 9, 14,
16, 18–23, 27] are available in the scientific literature. One, [17], deals with problems
related to complex structures such as non-strict, roll-up incomplete and drill-down
incomplete hierarchies. We don’t address this kind of problem. We focus on the
problem of using several aggregation functions during an analysis.

Most of the existing proposals consider that a measure is associated with only one
aggregation function for all aggregation levels. This function calculates the same
aggregation for all combinations of all modeled parameters.

The treatment of aggregation of measures in the multidimensional space has
evolved (Table 1). Two contributions [9, 27] do not specify aggregation functions at
the measure level; however, they leave the possibility to use several aggregation
functions for each measure during OLAP analyses. This provides great flexibility, but
allows the user to do errors by using inappropriate aggregation functions. In addition,
one advantage of specifying the aggregation functions in the conceptual model is to use
them for the cube computation, i.e. for the pre-computation of the aggregates. In [19,
21, 23], the authors, in theirs conceptual models, can link to a single measure a set of
functions which includes only valid functions. However, in these three papers, the same
function will be used with all the dimensions and all aggregation levels.

In [4, 6], the authors assume that the aggregation function is determined for a
measure in the analysis queries. This function can change from one query to another
one while concerning the same measure. But in each query, the aggregation function

24 A. Hassan et al.

will be used uniformly over all the dimensions involved in the analysis. In [5], although
the authors store multiple aggregations data in a hierarchical organization according to
the time granularities, they use the same function for all granularities.

The YAM2 model [1] and the work presented in [7] support a different aggregation
function with each dimension. However, these models do not support function change
neither between hierarchies nor within the hierarchical levels. This limit has been lifted
by the aggregation model of [20] which allows associating an aggregation function to
each dimension or each hierarchy or sub-hierarchy, but the model considers only
standard functions (SUM, AVG, MIN, MAX and COUNT). In [2] the authors over-
come this limit. However, these last two papers [2, 20] suffer from a limitation: the
authors do not consider the case where aggregation functions are non-commutative (for
example, average and weighted average).

Regarding commercial tools, “Business Objects” uses a single aggregation function
for each measure. By contrast, “Microsoft Analysis Services” offers the possibility that
a “custom rollup” can be applied in a hierarchy in several ways [10]:

– By using unary operators to solve the aggregation problem over a particular type of
hierarchy (parent-child attributes hierarchy). These hierarchies are built from a
single attribute with a reflexive join relationship on the attribute itself (i.e. techni-
cally a join on the dimension table itself).

– By using MDX scripts, either directly or by using the attribute property “Cus-
tomRollupColumn” which indicates a column where MDX scripts are stored.

These two ways concern aggregation functions but it is not related to a specific
dimension or an aggregation level. It is related to a member (an instance) of an
aggregation level in a hierarchy (i.e. a line in the dimension table). Therefore, applying
this “custom rollup” to a single aggregation level requires repeating it for all the
instances of that level. This poses a storage problem and reduces performance [10].
Moreover, binding a “custom rollup” with a specific instance can cause difficulties
when updating data.

The MDX language allows the possibility for building data sets (that will be
aggregated by aggregation functions) using functions: PeriodsToDate, YTD, QTD,
MTD, Crossjoin, Cousin, Descendants, Children, Hierarchize, and Members. However,
this possibility is not related to our problem: changing the aggregation function
according to a considered analysis dimension or hierarchy or level.

The above was about how the integration of aggregation functions within the
multidimensional model. But, there is another point that should be taken into con-
sideration; it is the aggregation functions itself. Aggregation functions are classified:

– From an aggregation mechanism point of view, aggregation functions belong to
three different categories [8]: The first corresponds to distributive functions that
calculate aggregated values of the selected granularity level from the values already
aggregated at the lower level (e.g. yearly amounts can be calculated by summing
monthly values). The second corresponds to algebraic functions that calculate
aggregated values from stored intermediate results (for example, the average of an
amount per year can be calculated from the sum of the amounts and counting the
occurrences from a month level). Finally, the third corresponds to holistic functions

Differentiated Multiple Aggregations in Multidimensional Databases 25

of the cube. These operations are the most popular ones used for On-Line Analytic
Processing (OLAP).

This environment provides a suitable analysis framework for decision makers;
however, the imposed structure may be imperfect. In particular, a classical MDB
supports only the calculation of a measure made by the same aggregation function
while performing drilling or rotating operations (i.e. changing the analyzed slice of the
cube). For example, if we consider sales amounts, these can be calculated as the sum of
the products sold by cities and years (top part of Fig. 1). When drilling from cities to
countries, the new amounts are calculated using the same aggregation function (SUM
in the bottom part of Fig. 1). When the user wishes to change the aggregation function
between two slices of the manipulated cube, the classical BDM no longer guarantees
the validity of the calculated data, or even worse: does not support this type of
manipulation.

This paper aims at allowing non-uniform aggregations during user manipulations.
To ensure the validity of such aggregations, we define differentiated multiple

aggregations. Our proposal aims at developing a multidimensional model flexible
enough for designing cubes with aggregation functions according to different levels.

1.1 Case Study

The case study concerns a diploma delivery jury. Here, decision makers (jury mem-
bers) deliver diplomas by analyzing the marks (average, maximum, minimum) of
students and their rate of absenteeism.

Students are split into groups and the academic year has two semesters. Each
semester consists of Teaching Units (TU) and each TU is composed of several courses.
Each course is associated with a coefficient that represents the importance of the course
in the TU. We must take into account this coefficient to calculate the mark of the EU,
which itself is linked to an ECTS (European Credit Transfer System) used to calculate
the mark of semester. Each semester has the same amount of ECTS. In addition to the
courses and students, analysts can analyze marks and absenteeism rates according to
the dates (academic years).

Fig. 1. Uniform aggregation in slices of a cube

Differentiated Multiple Aggregations in Multidimensional Databases 21

Differentiated Multiple Aggregations

in Multidimensional Databases

Ali Hassan1(&), Frank Ravat1, Olivier Teste2, Ronan Tournier1,
and Gilles Zurfluh1

1 Université Toulouse 1 Capitole, IRIT (UMR 5505),
118 Route de Narbonne, 31062 Toulouse cedex 9, France
{hassan,ravat,tournier,zurfluh}@irit.fr

2 Université Toulouse 3 Paul Sabatier, IRIT (UMR 5505),
118 Route de Narbonne, 31062 Toulouse cedex 9, France

teste@irit.fr

Abstract. Many models have been proposed for modeling multidimensional
data warehouses and most consider a same function to determine how measure
values are aggregated according to different data detail levels. We provide a
conceptual model that supports (1) multiple aggregations, associating to the
same measure a different aggregation function according to analysis axes or
hierarchies, and (2) differentiated aggregation, allowing specific aggregations at
each detail level. Our model is based on a graphical formalism that allows
controlling the validity of aggregation functions (distributive, algebraic or
holistic). We also show how conceptual modeling can be used, in an R-OLAP
environment, for building lattices of pre-computed aggregates.

Keywords: Data warehouse � Conceptual modeling � Aggregate lattice �
Multiple aggregations � Aggregation functions

1 Introduction

Decision support systems, such as data warehouses, have shown their ability to inte-
grate large volumes of data by supporting effectively the analysis of stored data. These
decision support systems are elaborated from data sources, usually the operational
system of an organization; the data identified in the relevant sources are extracted,
transformed and loaded [26] in a storage area called a data warehouse. To allow
efficient querying and analysis of the data, specific data organization techniques have
been developed using multidimensional databases (MDB) [3, 13]. This type of mod-
eling considers the analyzed data from analysis indicators (i.e. measures grouped into
facts) as points in a multidimensional space, forming a data cube [8]. Each dimension
having various granularity/detail levels. Decision makers visualize extracts of data
cubes, usually a two-dimensional slice of a cube. From this structure, called a multi-
dimensional table (MT) [9], the decision maker can interact through manipulation
operations [22]. The most emblematic operations are drilling operations which change
the granularity level of the analyzed data and rotation operations which change the slice

We define the attribute set and the hierarchy set respectively as

A ¼ [m
i¼1 A

Di andH ¼ [m
i¼1 H

Di

Definition 3. A hierarchy, denoted Hj (abusive notation of HDi

j , 8 i 2 [1..m], 8 j 2 [1..

si]) is defined by (nHj, PHj, ≺Hj, WeakHj), where:

– nHj 2 N is the name that identifies the hierarchy,

– PHj = p
Hj

1 ; . . .; p
Hj

qj

n o

is a set of attributes called parameters, PHj � ADi,

– ≺
Hj = p

Hj

x ; p
Hj

y

& '

jp
Hj

x 2 PHj ^ p
Hj

y 2 PHj

n o

is an antisymmetric and transitive binary

relation between parameters. Remember that the antisymmetry means that

p
Hj

k1
�Hj p

Hj

k2

& '

^ p
Hj

k2
�Hj p

Hj

k1

& '

) p
Hj

k1p ¼ p
Hj

k2 while the transitivity means that

p
Hj

k1
�Hj p

Hj

k2

& '

^ p
Hj

k2
�Hj p

Hj

k3

& '

) p
Hj

k1 �
Hj p

Hj

k3.

– WeakHj : PHj ! 2A
DinP

Hj

is an application that associates to each parameter a set of
dimension attributes, called weak attributes (2N represents the power set of N).

We define parameter sets as

PDi ¼ [
si

j¼1P
Hj and P ¼ [m

i¼1P
Di ¼ [m

i¼1[
si
j¼1P

Hj

Lemma 1. For each dimension Di, a root parameter, denoted IdDi 2 PDi, exists. It is

defined as follows: 8j 2 ½1::si�; 8p
Hj

k 2 pDi
; IdDi 6¼ p

Hj

k jIdDi �Hj p
Hj

k .

Lemma 2. For each dimension Di, a extremity parameter, denoted AllDi 2 PDi, exists.

It is defined as follows: 8j 2 ½1::si�; 8p
Hj

k 2 pDi
;A11Di 6¼ p

Hj

k jp
Hj

k �Hj A11Di .

Lemma 3. For each dimension Di, all its attributes are exclusively either parameters or
weak attributes, PDi \ WDi = ∅ and PDi [WDi = ADi.

3.2 Extensions for Differentiated Multiple Aggregations

We enrich the multidimensional model for specifying how the aggregations calcula-
tions are performed during OLAP analysis. This corresponds to three extensions:

– The first extension concerns the aggregation process which allows using several
aggregation functions for the same measure:

• Differentiated aggregation. It consists in aggregating measure values between
two parameters (aggregation levels) of a hierarchy. The aggregation function is
associated with one measure and one parameter. This kind of aggregation allows
a specific aggregation over each level of granularity.

• Multiple hierarchical aggregation. It is used to aggregate the measure values
between all the parameters over a hierarchy. This is a simplified representation

instead of a repeated use of the same differentiated function over several levels
of granularity. It is important to note that several aggregation functions can be
associated to a same measure; one for each hierarchy.

• Multiple dimensional aggregation. It consists in aggregating measure values
using different aggregation functions depending on the used dimension. Simi-
larly to multiple hierarchical aggregation, multiple dimensional aggregation is a
simplified representation instead of a repeated use of the same multiple hierar-
chical aggregation over several hierarchies. The same aggregation is performed
over each level of granularity of a dimension. The function is associated with
one measure and a dimension.

• General aggregation. This function is associated only with a measure without
taking into account neither parameter nor hierarchy nor dimension. This is a
simplified representation instead of a repeated use of the same multiple
dimensional function over several dimensions. This is equivalent to aggregation
functions in classical models.

– The second extension concerns the execution order for handling the case of non
commutative aggregation functions. It is possible to have different aggregation
functions during an analysis. These functions are generally not commutative.
Therefore, it is necessary to plan in the MDB an execution order when using the
functions between the different dimensions.

– The third extension concerns aggregation constraints which aim at handling the
case where the measure cannot be calculated from the base level. All aggregations
are not carried out uniformly using systematically all lower hierarchical levels
(contrarily to the aggregation process designed in classical multidimensional
models). Therefore, we introduce a constraint mechanism on the aggregation pro-
cess to indicate the valid aggregation level that allows obtaining the upper level.

Let F = {f1, f2,…} be a finite set of aggregation functions.

Definition 4. A multidimensional schema, denoted S, is defined by (F, D, Star,
Aggregate), where:

– F = {F1,…, Fn} is the set of facts, if |F| = 1 then the multidimensional schema is
called a star schema while if |F| > 1 it is a constellation schema,

– D = {D1,…, Dm} is the set of dimensions,
– Star: F→ 2D is a function that associates each fact to a set of dimensions according

to which it can be analyzed.

– Aggregate: M ! 2N��F�2D�2H�2P�N�
associates each measure to a set of aggrega-

tion functions. Aggregate defines the different types of aggregation functions sup-
ported by our model:

• If 2D, 2H and 2P are not used (2D = ∅, 2H = ∅ and 2P = ∅) then the function is a
general aggregation function.

• If 2H and 2P are not used (2D ≠ ∅, 2H = ∅ and 2P = ∅) then the function is a
multiple dimensional aggregation function. Here, the function aggregates the
measure over the entire considered dimension.

• If 2P only is not used (2D ≠ ∅, 2H ≠ ∅ and 2P = ∅) then the function is a
multiple hierarchical aggregation function. Here, the function aggregates the
measure over the entire considered hierarchy.

• If 2D ≠ ∅, 2H ≠ ∅ and 2P ≠ ∅ then the function is a differentiated aggregation

function. Here, the function aggregates the measure between a considered
parameter and the parameter directly above it in the same hierarchy.

ℕ* binds to each function an execution order. The aggregation function with the
smallest order is the highest priority. If the aggregation functions are commutative, then
both functions will have the same order. Choosing a valid order depends on the
requirements of the user. It may differ from one case to another, even if the functions
are the same in both cases.

ℕ
− is to constraint aggregations by indicating a specific level from which the

considered aggregation must be calculated. An unconstrained aggregation will be
associated with 0 while a constrained aggregation will be associated with a negative
value to force the calculation from a chosen level lower than the considered level.

Lemma 4. Aggregation functions ensure the full coverage of multidimensional
schemas. Thus there does not exist any parameter (i.e. aggregation levels) for which the
aggregation function to be applied is unknown.

8i 2 1::n½ �; 8mk 2 MFi
; 9f 2 F ;9x1 2 N

�
; 9x2 2 N

�
;

x1;
f ; fg; fg; fg; x2

()

2 Aggregate mkð Þ
*

*

8Dj 2 Star Fið Þ x1;
f ; Dj

+ ,

; fg; fg; x2
()

2 Aggregate mkð Þ
*

*

8Hs 2 H j x1;
f ; Dj

+ ,

; Hsf g; fg; x2
()

2 Aggregate mkð Þ
*

*

8Pq 2 Psn All j
+ ,

x1;
f ; Dj

+ ,

; Hsf g; Pq

+ ,

; x2
()

2 Aggregate mkð Þ
*

*

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Less formally, the coverage of the schema is carried out in several ways:

– By using a general aggregation function,
– By using a multiple dimensional aggregation function for each dimension,
– By using a multiple hierarchical aggregation function for each hierarchy,
– By using a differentiated aggregation function for each aggregation level,
– By combining multiple aggregation functions with differentiated ones. Each

dimension or hierarchy having no multiple function must have a differentiated
function for each aggregation level (i.e. parameter).

3.3 Formalisms

Textual Formalisms. The example of the diploma delivery illustrated in case study, is
defined formally by (F, D, Star, Order, Aggregate) where:

– F = {FGraduate}, where the fact is defined by FGraduate = (‘Graduate’, {Avg_Mark,
Max_Mark, Min_Mark, Rate_Abs }).

– D = {DCourses, DStudents, DDates}, where the dimensions are defined by:
• DCourses = (‘Courses’, {aC_Id, aCoeff, aCTitle, aTU_Id, aECTS, aTUTitle, aSemester,

ALLDCourses}, {HHCourse_Simple, HHCourse_weighted}) with
• HHCourse_Simple = (‘HCourse_Simple’, {aC_Id, aTU_Id, aSemester, ALL

DCourses},
{(aC_Id, aTU_Id), (aTU_Id, aSemester), (aSemester, ALL

DCourses)}, {(aC_Id, {aCoeff,
aCTitle}), (aTU_Id, {aECTS, aTUTitle})}),

• HHCourse_Simple = (‘HCourse_Simple’, {aC_Id, aTU_Id, aSemester, ALL
DCourses},

{(aC_Id, aTU_Id), (aTU_Id, aSemester), (aSemester, ALL
DCourses)}, {(aC_Id, {aCoeff,

aCTitle}), (aTU_Id, {aECTS, aTUTitle})}).

• DStudents = (‘Students’, {aS_Id, aSName, aG_Id, aGName, ALLDStudents},
{HHGroup}) with
• HHGroup = (‘HGroup’, {aS_Id, aG_Id, ALL

DStudents}, {(aS_Id, aG_Id), (aG_Id,
ALLDStudents)}, {(aS_Id, {aSName}), (aG_Id, {aGName })}).

• DDates = (‘Dates’, {aAcademic_year, aPeriod-5, aPeriod-10, ALL
DDates}, {HHDates})

with
• HHDates = (‘HDates’, {aAcademic_year, aPeriod-5, aPeriod-10, ALLDDates},

{(aAcademic_year, aPeriod-5), (aPeriod-5, aPeriod-10), (aPeriod-10, ALL
DDates)}).

– Star : F → 2D |
Star(FGraduate) = {DCourses, DStudents, DDates }

– Aggregate : M ! 2N��F�2D�2H�2P�N�
j

Aggregate (Avg_Mark) = {(2, AVG(Avg_Mark), {}, {}, {}, 0),1

(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_weighted}, {C_Id}, 0),
(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_weighted}, {TU_Id},-1),2

(1, AVG(Avg_Mark), {Courses}, {HCourse_weighted}, {Semester}, -1),
(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_Simple}, {C_Id}, 0),
(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_Simple}, {TU_Id}, -1),
(1, AVG(Avg_Mark), {Courses}, {HCourse_Simple}, {Semester}, -1)}
Aggregate (Max_Mark) = {(2, MAX(Avg_Mark), {}, {}, {}, 0),
(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_weighted}, {C_Id}, 0),

1 Note that there is no constraint on the aggregation.
2 The aggregated values are computed from the values at the level directly below the one considered.

(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_weighted}, {TU_Id},-1),
(1, AVG(Avg_Mark), {Courses}, {HCourse_weighted}, {Semester}, -1),
(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_Simple}, {C_Id}, 0),
(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_Simple}, {TU_Id}, -1),
(1, AVG(Avg_Mark), {Courses}, {HCourse_Simple}, {Semester}, -1)}

Aggregate (Rate_Abs) = {(2, AVG(Rate_Abs), {}, {}, {}, 0),
(1, AVG_W(Rate_Abs, Coeff), {Courses}, {HCourse_weighted}, {C_Id}, 0),
(1, AVG_W(Rate_Abs, ECTS), {Courses}, {HCourse_weighted}, {TU_Id},-1),
(1, AVG(Rate_Abs), {Courses}, {HCourse_weighted}, {Semester}, -1)}

Aggregate(Min_Mark) is identical to Aggregate(Max_Note) except that it uses the
MIN function instead of MAX.

The function Avg_W(X, Y) takes as input tow numerical parameters. It returns the
average of values of X weighted by Y. In other words, the weighted average:

Avg W X;Yð Þ ¼
R X� Yð Þ

RY

Regarding the measures ‘Avg_Mark’, ‘Max_Mark’ and ‘Min_Mark’, it is aggre-
gated in an identical way on the two hierarchies of the dimension ‘Courses’. Moreover,
the aggregation of the measures ‘Max_Mark’ and ‘Min_Mark’ is based on the
aggregation of ‘Avg_Mark’. This clearly appears through the use of the measure
‘Avg_Mark’ in aggregation functions of ‘Max_Mark’ and ‘Min_Mark’. For the
maximum mark ‘Max_Mark’ of a course or a teaching unit for a group of students, we
must first calculate the mark ‘Avg_Mark’ of this course or TU for each student, and
then we determine from the obtained marks, the maximum mark.

If we analyze for example the average marks ‘Avg_Mark’ using the dimensions
‘Dates’ and ‘Students’, the decisional system must use the general function ‘AVG
(Avg_Mark)’ to aggregate the measure values because there is no other specific
function for these dimensions. If we analyze using the dimension ‘Courses’, the system
uses on each aggregation level a different differentiated aggregation function. Aggre-
gation is done using the level directly below (AVG_W to aggregate the ‘TU_Id’ and
‘Semester’ levels using the ‘C_Id’ and ‘TU_Id’ levels respectively and AVG for ‘ALL’
level using the ‘Semester’ level). Furthermore, if we analyze data using two or more
dimensions then functions over the dimension ‘Courses’ are a priority; that means that
we must apply it before the other functions.

Graphical Formalisms. Associated with the formal definitions, we introduce a
two-level graphical formalism for easing the understanding of the MDB schema:

– Structural Schema. The structural schema is used to display globally the multi-
dimensional elements (facts, dimensions and hierarchies) hiding aggregation
mechanisms. This global view (see Fig. 2) is defined by the function Star. The
graphical formalism is based on [7, 22].

– Aggregation schema. For each measure mk2M
Fi, an aggregation schema is

obtained using the function Aggregate. This schema details the aggregation

Fig. 4. Graphical notation extensions (Aggregation schemas)

mechanisms involved in the selected measure analysis (multiple, differentiated and
general aggregations, constraints of aggregation and execution order) but shows
simply the structural elements directly related to the measure. This schema is an
extension of our previous work [11].

Figure 4 illustrates three aggregation schemes (a, b, c) corresponding to the mea-
sures ‘Rate_Abs’, ‘Avg_Mark’ and ‘Max_Mark’ (we do not present the measure
‘Min_Mark’). As shown in Fig. 4, the hierarchies are presented in split version, unlike
the structural schema (Fig. 2) where it is presented in compact version, e.g. hierarchies
‘HCourse_weighted’, ‘HCourse_Simple’ in Fig. 4 (b and c).

The aggregation functions are modeled by diamonds. Each diamond also indicates
the execution order and the possible aggregation constraint. The positions of the dia-
monds depend on the type of function:

– A general function is represented by a diamond on the fact,
– A multiple dimensional function is on the edge connecting facts to dimensions,
– A multiple hierarchical function is represented on the bottom of the hierarchy,
– A differentiated aggregation function is a label on the edge linking two parameters.

Figure 4 (d) presents multiple aggregation (dimensional and hierarchical) functions
and commutativity in the execution order. We assume that there is a multiple dimen-
sional function AVG(Rate_Abs) on the dimension ‘Dates’. This function is commu-
tative with the functions of the dimension ‘Courses’. We assume also that there is a
multiple hierarchical function on the hierarchy ‘HDates’. This function is commutative
with the general function.

Aggregation with a constraint assigned to -1 is calculated from the directly lower
level. E.g. the average mark ‘Avg_Mark’ by semester is calculated from average marks
by UEs. In case, we would have chosen to calculate this average by semester from the
marks by courses, the constraint would be assigned to -2.

4 Relational-OLAP (R-OLAP) Logical Model

Current multidimensional schema implementations use mainly the relational approach
R-OLAP [13]. This approach has many advantages such as reusing proven data
management mechanisms and the ability to manage very large volumes of data.

4.1 R-OLAP Star

In this relational context, the conceptual multidimensional structures (facts and
dimensions) are translated into relations [13]. Applied to our example, the R-OLAP
schema is the following:

COURSES (C_Id, Coeff,CTitle,TU_Id,ECTS,TUTitle,Semester)

STUDENTS (S_Id, SName, G_Id, GName)

DATES (Academic_year, Period-5, Period-10)

GRADUATE (C_Id#,S_Id#,Academic_year#, Avg_Mark, Rate_Abs)

According to aggregation functions for the maximum and minimum marks
‘Max_Mark’, ‘Min_Mark’ (cf. Fig. 4); these measures are calculated from the average
mark measure ‘Avg_Mark’. So their values can be obtained directly from those of the
measure ‘Avg_Mark’ without storing them in the relational table corresponding to
the fact of model.

The aggregation functions are stored in the database. We use a meta-schema (not
detailed here, for more information see [12]) to describe the multidimensional schema
(facts, dimensions and hierarchies) corresponding to the R-OLAP relations that store
the analysis data. It also describes the different aggregation functions and the possible
aggregation constraints.

4.2 Optimized Star

Conceptual modeling allows structuring hierarchically the analysis axis (dimension)
graduations (parameters). These hierarchies are exploited for pre-computing the
aggregations required by decision makers to navigate and to perform analyses in the
multidimensional space (using OLAP). Traditionally, these pre-aggregations are
modeled by a lattice of pre-computed aggregates [3, 8] where:

– each node represents a pre-computed aggregate and
– each edge represents a path for computing aggregates. If the aggregation function

used is distributive or algebraic, the aggregate can be calculated from the directly
lower aggregate, while if it is holistic, the calculus is from the base relation [8].

To avoid that the lattice is too complex, we simplify the example of the diploma
delivery jury. We take into account only two dimensions:

– ‘Courses’ with two hierarchies ‘HCourse_Simple’ and ‘HCourse_weighted’
– ‘Students’ with one hierarchy ‘HGroup’.

Fig. 5. Classical optimization lattice (We use abbreviations (‘Sem’ for ‘Semester’, ‘ALLC
’ for

‘ALLDCourses
’, ‘ALLS

’ for ‘ALLDStudents
’))

Figure 5 shows the lattice of pre-aggregates of the measure ‘Rate_Abs’. Each node
represents a relation. E.g. the nodes ‘TU_Id_S_Id’ and ‘C_Id_ALLS

’ correspond to the
following respective relations:

TU_Id_S_Id (TU_Id, S_Id, Rate_Abs, Abs_sum, Abs_count)

C_Id_ALL
S
(C_Id, Rate_Abs, Abs_sum, Abs_count)

In these relations, the attribute ‘Rate_Abs’ represents the absenteeism rate calcu-
lated by the aggregation function AVG. Here, it is a case of algebraic function, so we
store intermediate values (the sum ‘Abs_sum’ and the count ‘Abs_count’ of occur-
rences of the absenteeism rate) that will be used to calculate the upper nodes. In the
classical approach, contrarily to our proposition, a unique aggregation function is used
in the whole lattice for the measure ‘Rate_Abs’.

4.3 Extending the Approach with Multiple and Differentiated

Aggregations

The flexibility introduced in the conceptual model impacts the lattice.

Increasing the Number of Nodes. In our model, by using the multiple hierarchical
and/or differentiated aggregation functions, we can associate the same parameter in
different hierarchies with different aggregation functions. This gives different results for
the same analysis depending on the used hierarchy. Thus, new nodes compatible with
results of all these possible aggregations will be produced in the lattice (Fig. 6). For
example, the absenteeism rate ‘Rate_Abs’ of a TU by groups of students can be
calculated by the average function ‘AVG(Rate_Abs)’ over the hierarchy
‘HCourse_Simple’ or by the weighted average ‘AVG_W(Rate_Abs, Coeff)’ on the
hierarchy ‘HCourse_weighted’ (see Fig. 4 (a)); of course each function gives different
results.

The number of nodes in the classical lattice (Fig. 5) is calculated by multiplying the
number of parameters in each dimension:

number of nodes ¼
Y

m

i¼1

PDi
*

*

*

*

In our model, assuming that each parameter has its own aggregation function, the
number of nodes in the lattice (Fig. 6) is calculated by multiplying the sum in each
dimension of number of parameters in each hierarchy; here, we must be careful for not
count the root parameter of a dimension several times with the different hierarchies:

number of nodes =
Y

m

i¼1

X

Sj

j¼1

PHj
*

*

*

*� 1
()

þ 1

 !

Edge Types. The differentiated and multiple aggregation functions involve using
different aggregation computations for each edge of the lattice (Fig. 6), contrary to the
traditional approach which usually considers only a single aggregation function.

When multiple paths are possible, the less costly path is preferred. The cost
function (not detailed here) favors the most effective computation time [15]. However,
the use of different aggregation functions on each edge of the lattice makes the cost
estimate more complex than in usual lattices.

The possibility of use different aggregation functions for a same measure requires
differentiating lattice edges. This typing to indicate the corresponding aggregation
function between two nodes. For example, Fig. 4 (a) presents the aggregation schema
of the absenteeism rate. Three aggregation functions are used to calculate the absen-
teeism rate ‘Rate_Abs’. For each teaching unit and semester over the hierarchy
‘HCourse_weighted’, the absenteeism rate takes into account the courses coefficients
and teaching units ECTS and uses a weighted function (AVG_W). Thus, in the lattice,
it is necessary to distinguish the edges between (‘C_Id’ and ‘TU_Id’) and between
(‘TU_Id’ and ‘Semester’) parameters over the hierarchy ‘HCourse_weighted’ (that use
AVG_W) from the other edges (that use AVG).

In Fig. 6, simple lines correspond to the AVG function and double or triple lines are
for AVG_W functions.

Blocking Transitivity. Constraints (the specific level from which the considered
aggregation must be calculated) associated with the aggregation functions have
repercussions on the lattice. Edges with a symbol (crosses in a circle in Fig. 7) come
from these constraints which require calculating the node from another specific node.
It is then forbidden to calculate an upper node using transitivity from lower nodes as it
would be in a classical schema. Thus the computing paths are blocked as soon as such
an edge is encountered; e.g. the node ‘Sem(HS)_S_Id’ is calculable from the direct
lower node ‘TU_Id(HS)_S_Id’; using transitivity, it is also calculable from the lower

Fig. 6. Lattice with typed edges (Execution orders (< x >) were added to facilitate the
understanding of the next impacts (blocking transitivity and pruning the lattice). And we use
abbreviations (‘HW’ for the hierarchy ‘HCourse_weighted’, ‘HS’ for the hierarchy
‘HCourse_Simple’))

node ‘C_Id_S_Id’. However, the blocked edge resulting from the constraint of the
function ‘AVG_W(Rate_Abs, ECTS)’ which operates on the edge (‘TU_Id(HW)
_S_Id’, ‘Sem(HW)_S_Id’) blocks the calculation transitivity. Therefore, the node ‘Sem
(HW)_S_Id’ is calculable from the direct lower node ‘TU_Id(HW)_S_Id’ but not from
another lower node (such as ‘C_Id_S_Id’).

Similarly, the change of execution orders or functions between edges blocks also
transitivity. In other words, if all previous edges for a specific edge correspond to
different functions or different execution orders, then this edge is non transitive; e.g. the
edge (‘ALLC(HW)_S_Id’, ‘ALLC(HW)_G_Id’) corresponds to the function ‘AVG
(Rate_abs)’ with an execution order of value 2 (see Fig. 6). This edge has a single
previous edge (‘Sem(HW)_S_Id’, ‘ALLC(HW)_S_Id’) which corresponds to the same
function ‘AVG(Rate_abs)’ but with an execution order of value 1 (see Fig. 6). Because
of the difference between the execution orders, the edge (‘ALLC(HW)_S_Id’,
‘ALLC(HW)_G_Id’) is not transitive. Therefore, the node ‘ALLC(HW)_ ALLS

’ is
calculable by transitivity from the node ‘ALLC(HW)_S_Id’ but it is not calculable by
transitivity from the node ‘Sem(HW)_S_Id’, because the aggregation schema (Fig. 4
(a)) requires to calculate firstly the absenteeism rates according to the dimension
‘Courses’ (node ‘ALLC(HW)_S_Id’) in order then to calculate absenteeism rate based
on the dimension ‘Students’ (‘ALLC(HW)_ ALLS

’).
Figure 7 shows the resulting pre-aggregate lattice. Edges with crossed circle are

obtained either from aggregation constraints or from the change of execution orders or
aggregation functions between the edges.

Pruning the Lattice. Some paths or edges are invalid; therefore, these can be elimi-
nated to reduce the lattice size (Fig. 8). This pruning is possible using the execution
order. An edge can be deleted if it is preceded by an edge with a larger execution order
(see Fig. 6).

In our example (see Fig. 4 (a)), we cannot apply the weighted average function
‘AVG_W(Rate_Abs, Coeff)’ on the ‘Courses’ dimension (with an execution order of

Fig. 7. Lattice with non transitive edges

value 1) after the function ‘AVG(Rate_Abs)’ on the dimension ‘Students’ (with an
execution order of value 2) as this would give erroneous results. Thus, to obtain the
node ‘TU_Id(HW)_G_Id’ (absenteeism rate by group and TU on the hierarchy
‘HCourse_weighted’), it is impossible to calculate it from the node ‘C_Id_G_Id’
(absenteeism rate by group and course on the hierarchy ‘HCourse_weighted’).
Therefore, the edge between ‘C_Id_G_Id’ and ‘TU_Id(HW)_G_Id’ can be deleted.

Figure 8 shows the final controlled pre-aggregate lattice after deleting the invalid
edges.

Modifying Edges. In our model, we have proposed a mechanism of aggregation
constraint to fix the valid aggregation level from which a higher level is calculated.
This valid level is not necessarily the one directly lower level. We express this case
when we use a constraint value other than 0 (the aggregation can be calculated from
any lower level) or - 1 (the aggregation can only be calculated from the level directly
below the selected one). Such constraints imply possible path changes in the lattice.

In our example, the absenteeism rate by semester on the hierarchy ‘HCourse_
weighted’ is calculated from the absenteeism rates by TU (constraint value = -1) (see Fig. 4
(a)). In case we had chosen to calculate this rate by semester from the rates by courses, the
constraint would have been assigned to -2 and the lattice would have been as Fig. 9.

5 Validations

To demonstrate the feasibility of our approach, we have produced a prototype: OLAP-
Multi-Function, described hereafter. We validate our proposal by overcoming the limits
suffered by the software “Business Objects” with our prototype. Finally, experiments
based on our prototype are detailed.

Fig. 8. Controlled pre-aggregate lattice (with pruned edges)

5.1 OLAP-Multi-Function Prototype

Our prototype was implemented using Java 7 on top of the Oracle 12g DBMS. It allows
designing a MDB with differentiated and multiple aggregation functions as well as
supervising the OLAP manipulations carried out by analysts using a graphical
representation.

Prototype Architecture. The main functionality of OLAP-Multi-Function (Fig. 10) is
visualizing and facilitating the integration of aggregation functions in the multidi-
mensional model. It is based on a set of graphic interfaces (Constructor) for defining
the four types of aggregation functions (general, multiple dimensional, multiple hier-
archical, differentiated), their execution orders and aggregation constraints.

Fig. 9. Lattice with constraint = -2

Fig. 10. Prototype architecture

The structural schema is displayed as a constellation graph based on graphic for-
malisms of facts, dimensions, and hierarchies introduced in [21, 22]. Different aggre-
gation schemas are visualized in the form of a hyperbolic graph. For querying, the
analyst selects the measure and the desired aggregation levels. After validation, OLAP-
Multi-Function automatically calculates the result and presents it in the form of an
R-OLAP table.

The storage level includes two databases. The first one contains the meta-schema
that describes the structural elements of the multidimensional schema (facts, dimen-
sions and hierarchies) as well as the aggregation functions, execution orders and
aggregation constraints to build valid and coherent SQL queries (for more information
about the meta-schema, see [12]). The second one contains facts and dimensions data
implemented with the R-OLAP model.

SQL Queries Generator. To supervise the analysis, the prototype has a SQL query
generator. The analyst configures the calculations to be done: the user must specify the
measure and the desired aggregation levels. The generator translates interactions into
SQL scripts executable in the context of an R-OLAP implementation. The generation
process consists of the four following steps, described using a BPMN diagram
(Business Process Modeling Notation) in Fig. 11:

1. Detecting tables of the logical R-OLAP model: this step identifies the tables used to
store analysis data.

2. Determining aggregation functions: using the meta-schema and the required
aggregation levels, this step identifies aggregation functions to be applied to per-
form the analysis.

3. Simplifying aggregation functions: this step is for detecting possible redundant
calculations, i.e. a needless repetition of an aggregation function

4. Generating the SQL script: from the meta-schema and the previous steps, this step
generates the final SQL query. It sends it to the DBMS that calculates the query and
returns the results to the prototype.

Fig. 11. SQL queries generator (shown in BPMN)

5.2 Discussing

We present in this section the advantages of our prototype OLAP-Multi-Function over
one of the most used commercial tool: “Business Objects” (BO).

Business Objects. According to our knowledge, the major limit of BO is to use only one
aggregation function for each measure. To know how far we can overcome this problem,
we have applied our example (Fig. 2) in BO. We associated the measure ‘Avg_Mark’
with the aggregation function AVG. Thus, we can perform all possible analyses on
dimensions ‘Students’ and ‘Dates’. For example, we can analyze the average marks of
courses (‘C_Id’ level) by periods of five years (‘period-5’ level and ‘ALL’ level on the
‘Students’ dimension). This analysis can be performed by the following SQL query:

SELECT C.C_Id, D.Period-5, AVG(G.Avg_Mark) AS Avg_Mark

FROM COURSES C, DATES D, GRADUATE G

WHERE G.C_Id = C.C_Id AND G.Academic_year = D.Academic_year

GROUP BY C.C_Id, D.Period-5

But for analyzing the data along the dimension ‘Courses’, we use a non-standard
aggregation function: ‘AVG_W’ (weighted average). To solve this problem, there are
two proposals:

– The use of a calculated measure: this proposal means defining a new measure
(AVG_Mark_TU) calculated by Eq. 1, defined in Sect. 1.2 (Fig. 12). The problem
with this proposal is that this equation (“Select:” in Fig. 12) will not be used to
calculate the measure at the TU level but at the base level (‘C_ID’), then to calculate
the measure at the TU level, its own aggregation function will be used to aggregate
the values.

– The use of a variable: the advantage of this proposal is that the variable can use
values of an aggregated measure contrary to the calculated measure that use only
the base values. The problem is that if the variable uses values other than the
measure, these values must be used in the analysis, otherwise there will be errors;
e.g. the variable ‘AVG_Var’ (Fig. 13) is calculated by Eq. 1 where the values of
‘Coeff’ are not used in the analysis, hence the errors. To overcome this problem and
get the requested results, we can define two new measures: the first M1 = SUM
(Coeff * AVG_Mark); the second M2 = SUM(Coeff) and then the variable becomes
AVG_Var = M1 /M2.

Thus, by using variables, we can calculate:

1. A non-standard function,
2. A second aggregation function from the results of the main function associated with

the measure. This is similar to associating two aggregation functions with one
measure.

The limits of the use of a variable are when that variable is used for a specific level
(as the variable ‘AVG_Var’ in our example); then there is no constraint that forbids the
user to use it for a different level and that would give a wrong result. Another limit is
that we cannot use a variable to calculate another variable otherwise there will be errors

(Fig. 13). Thus we cannot use the variable ‘AVG_Var’ to calculate the average marks
at the Semester level.

OLAP-Multi-Function. Our prototype integrates several aggregation functions for the
same measure in the multidimensional model. It overcomes the two principal limits of
BO: the use of non-standard functions and the use of several aggregation functions. To
use the non-standard weighted average function ‘AVG_W’, a generic aggregation
function was implemented:

– An Oracle object type (class) was used to implement the four routines of the Data
cartridge interface ODCIAggregate: ODCIAggregateInitialize, ODCIAggregateIt-
erate, ODCIAggregateMerge and ODCIAggregateTerminate. These methods cor-
respond to internal operations that each aggregation function performs (respectively
Initialize, Iterate, Merge and Terminate).

– Then, our aggregation function ‘AVG_W’ was created to compute a weighted
average based on our previous object type. This function takes one parameter
composed of the data to aggregate and the weight (TYPE data_weighted AS OBJECT

(value NUMBER, weight NUMBER)).

Fig. 12. Use of a calculated measure in a BO query

Fig. 13. Use of a variable in a BO report

In order to use several aggregation functions in the same analysis, our SQL gen-
erator can generate nested queries. Note that the SQL queries are generated using an
interface where the user manipulates only multidimensional concepts. Thus, the
complexity of both the aggregation and the logical structure of the MDB are hidden.
E.g. the SQL query generated by our prototype for analyzing the average marks by
semester and by group of students is as follows:

5.3 Experiments

The SQL query generator serves as an experimental platform for which we show a
series of experiments.

Experiment 1. The first experiment is intended to study the impact of our proposal on
the execution time of OLAP analysis queries.

Collection: to our knowledge, there are no benchmarks that use for a same measure,
different aggregation functions according to analysis axes, hierarchies and aggregation
levels. Therefore, we use data related to the diploma delivery jury; the data grouping
size on the dimension ‘Courses’ is five, i.e. each instance of a higher level corresponds
to five instances of lower level (for example, each semester has five TUs).

Protocol: we observe the execution time (in seconds) in accordance with the number of
tuples of the fact (from two to ten millions) of three queries:

– The first query aggregates average marks at the TU level. It uses (as in the classical
model) a single aggregation function (‘AVG_W’),

– The second query aggregates average marks at the semester level. It is based on two
aggregation functions (‘AVG_W’ twice),

– The third query aggregates average marks at the ‘ALL’ level. It requires three
aggregation functions (‘AVG_W’ twice and ‘AVG’ once).

We chose these three queries to present the impact of using several functions
(second and third queries) compared with the classical model that uses a single function
(first query).

Results: Fig. 14 (right) shows the execution time of the three queries. Queries execution
times increase regularly with the number of tuples. The distance between the curves of
the first query (aggregation in the classical model) and the second query (aggregation in
our proposed model) represents the overhead time of our model required to apply the
second aggregation function. This time is approximately 5 % of the total query exe-
cution time. The additional time to apply the third function seems to be non-remarkable
(the curve of third query is nearly on top of the curve of second query). In fact, this
phenomenon is related to the data volume that decreases with the functions previously
applied. Thus, when calculating the third function, the data volume is significantly
reduced compared with the initial volume.

Experiment 2. The second experiment aims at studying the relationship between the
execution time and the data grouping size. By grouping size, we mean the number of
values of a lower parameter that are grouped into one value of a higher parameter.

Collection: we work on two different versions of our example of the diploma delivery
jury; the first one with data grouping size 2 on the dimension ‘Courses’ and the second
one with data grouping size 5.

Protocol: we observe the execution time in accordance with the number of tuples and
the size of the data grouping of the four queries:

– Two queries at the TU level (one with a grouping size of 2 and the other with5) that
use an aggregation function.

– Two queries at ‘ALL’ level (one with a grouping size of 2 and the other with 5) that
use three aggregation functions.

Results: Fig. 14 (left) shows the execution time of the four queries. The execution time
of queries with grouping size 5 is less than that of the queries with a grouping size of 2.
We note that the query execution time seems mainly influenced by the grouping size.
Thus, the query with grouping size 2 and a single aggregation function (TU (2)) is more

Fig. 14. Experiments

expensive in terms of computing time than the query with a grouping size of 5 despite
three aggregation functions (ALL (5)). The grouping size appears to have a crucial
impact on the execution time.

6 Conclusion and Future Work

This paper defines a conceptual multidimensional data model flexible enough to allow
the designer to specify differentiated and multiple aggregations. Multiple, as the same
measure can be aggregated by several aggregation functions according to analysis axes
or hierarchies and differentiated as these aggregations may vary, depending on the
aggregation level. Furthermore, the model is expressive enough to check the function
calculations validity. Aggregation constraints define the level from which the aggre-
gation should be calculated. The execution order defines the necessary order between
non-commutative aggregation functions.

This model is based on a two-level graphical formalism: the structural schema
describes the multidimensional structures while hiding the aggregation complexity and
aggregation schemas detail the aggregation mechanisms for each measure.

At the logical level, the implementation can be optimized by a controlled lattice of
pre-computed aggregates, where invalid edges can be pruned.

We plan to continue our work by revisiting algorithms that compute pre-aggregates,
adapting them to our model and studying the effects of changes in the lattice when
selecting nodes for improving performance. We also plan to study OLAP manipulation
operators on our model.

References

1. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model extending
UML. Inf. Syst. 31(6), 541–567 (2006)

2. Boulil, K., Bimonte, S., Pinet, F.: Un modèle UML et des contraintes OCL pour les
entrepôts de données spatiales. De la représentation conceptuelle à l’implémentation. In:
Ingénierie des Systèmes d’Information (ISI), vol. 16(6), pp. 11–39 (2011). (In French)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

4. Cuzzocrea, A.: Providing probabilistically-bounded approximate answers to non-holistic
aggregate range queries in OLAP. In: 8th International Workshop on Data Warehousing and
OLAP (DOLAP 2005), pp. 97–106 (2005)

5. Cuzzocrea, A., Furfaro, F., Masciari, E., Saccà, D., Sirangelo, C.: Approximate query
answering on sensor network data streams. In: Stefanidis, A., Nittel, S. (eds.) GeoSensor
Networks, pp. 53–72. CRC Press, Boca Raton (2004)

6. Cuzzocrea, A., Saccà, D.: Balancing accuracy and privacy of OLAP aggregations on data
cubes. In: 13th International Workshop on Data Warehousing and OLAP (DOLAP 2010),
pp. 93–98 (2010)

7. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R schemes.
In: International Conference on HICSS 1998, vol. 7, pp. 334–343 (1998)

8. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: a relational aggregation
operator generalizing group-by, cross-tab, and sub-total. In: International Conference on
ICDE 1996, pp. 152–159 (1996)

9. Gyssens, M., Lakshmanan, L. V. S.: A foundation for multi-dimensional databases. In:
International Conference on VLDB 1997, pp. 106–115 (1997)

10. Harinath, S., Zare, R., Meenakshisundaram, S., Carroll, M., Guang-Yeu Lee, D.:
Professional Microsoft SQL Server Analysis Services 2008 with MDX. Wiley Publishing,
Indianapolis (2009)

11. Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Differentiated multiple
aggregations in multidimensional databases. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2012. LNCS, vol. 7448, pp. 93–104. Springer, Heidelberg (2012)

12. Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Agrégations multiples
différentiées dans les bases de données multidimensionnelles. In: Ingénierie des Systèmes
d’Information (ISI), vol. 18(2), pp. 75–102 (2013). (In French)

13. Kimball, R., Ross, M.: The Data Warehouse Toolkit: the Definitive Guide to Dimensional
Modeling, 3rd edn. John Wiley & Sons, NY (2013). ISBN 978-1-118-53080-1

14. Jaecksch, B., Lehner, W.: The planning OLAP model - a multidimensional model with
planning support. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862,
pp. 14–25. Springer, Heidelberg (2011)

15. Kotidis, Y., Roussopoulos, N.: DynaMat: a dynamic view management system for data
warehouses. In: International Conference on SIGMOD 1999, pp. 371–382 (1999)

16. Lujàn-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional modeling in
data warehouses. Data Knowl. Eng. 59, 725–769 (2006)

17. Mazón, J.N., Lechtenbörger, J., Trujillo, J.: A survey on summarizability issues in
multidimensional modelling. Data Knowl. Eng. 68, 1452–1469 (2009)

18. Oliveira, R., Rodrigues, F., Martins, P., Moura, J.P.: Extending the dimensional templates
approach to integrate complex multidimensional design concepts. In: Cuzzocrea, A., Dayal,
U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 26–38. Springer, Heidelberg (2011)

19. Pedersen, T.B., Jensen, C., Dyreson, C.: A foundation for capturing and querying complex
multidimensional data. Inf. Syst. 26, 383–423 (2001)

20. Prat, N., Wattiau, I., Akoka, J.: Representation of aggregation knowledge in OLAP systems.
In: the 18th European Conference on Information Systems ECIS. (2010)

21. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Graphical querying of multidimensional
databases. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690,
pp. 298–313. Springer, Heidelberg (2007)

22. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP
manipulations. Int. J. Data Warehous. Min. 4(1), 17–46 (2008)

23. Silva, J., Times, V.C., Salgado, A.C.: A set of aggregation functions for spatial measures. In:
11th International Workshop on Data Warehousing and OLAP (DOLAP 2008), ACM.
ISBN: 978-1-60558-250-4, pp. 25–32 (2008)

24. Torlone, R.: Conceptual multidimensional models. In: Rafanelli, M. (ed.) Multidimensional
Databases: Problems and Solutions, pp. 69–90. IGI Publishing Group, PA (2003)

25. Vassiliadis, P., Sellis, T.K.: A survey of logical models for OLAP databases. SIGMOD Rec.
28(4), 64–69 (1999)

26. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activities as graphs. In:
International Conference on DMDW 2002, pp. 52–61 (2002)

27. Vassiliadis, P., Skiadopoulos, S.: Modelling and optimisation issues for multidimensional
databases. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 482–
497. Springer, Heidelberg (2000)

