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Abstract. This paper studies the extension of possibilistic logic to the case when

weights attached to formulas are symbolic and stand for variables that lie in a to-

tally ordered scale, and only partial knowledge is available on the relative strength

of these weights. A proof of the soundness and the completeness of this logic ac-

cording to the relative certainty semantics in the sense of necessity measures is

provided. Based on this result, two syntactic inference methods are presented.

The first one calculates the necessity degree of a possibilistic formula using the

notion of minimal inconsistent sub-base. A second method is proposed that takes

inspiration from the concept of ATMS. Notions introduced in that area, such as

nogoods and labels, are used to calculate the necessity degree of a possibilistic

formula. A comparison of the two methods is provided, as well as a comparison

with the original version of symbolic possibilistic logic.

1 Introduction

Possibilistic logic [1] is an approach to reason under uncertainty using totally ordered

propositional bases. In this logic, each formula is assigned a degree, often encoded by a

weight belonging to (0, 1], seen as a lower bound on the certainty level of the formula.

Such degrees of certainty obey graded versions of the principles that found the notions

of belief or knowledge in epistemic logic, namely the conjunction of two formulas is

not believed less than the least believed of their conjuncts. This is the basic axiom of

degrees of necessity in possibility theory [2]. See [3] for a recent survey of possibilistic

logic. Deduction in possibilistic logic follows the rule of the weakest link: the strength

of an inference chain is that of the least certain formula involved in this chain. The

weight of a formula in the deductive closure is the weight of the strongest path leading

from the base to the formula. Possibilistic logic has developed techniques for knowledge

representation and reasoning in various areas, such as non-monotonic reasoning, belief

revision and belief merging see references in [3].

About 10 years ago, a natural extension of possibilistic logic was proposed using

partially ordered symbolic weights attached to formulas [4], we call here symbolic pos-

sibilistic logic, for short. Weights represent ill-known certainty values on a totally or-

dered scale. Only partial knowledge on the relative strength of weights is supposed to

be available, under the form of weak inequality constraints. In that paper, a possibilistic

knowledge base along with the knowledge pertaining to weights is encoded in propo-

sitional logic, augmenting the atomic formulas with those pertaining to weights. They

give a characterisation, and a deduction method for plausible inference in this logic



using the idea of forgetting variables. This generalisation of possibilistic logic differs

from other approaches that represent sets of formulas equipped with a partial order in

the setting of conditional logics [5]. It also contrasts with another line of research con-

sisting in viewing a partial order on weights as a family of total orders, thus viewing a

symbolic possibilistic base as a set of usual possibilistic bases [6].

In this paper, we revisit symbolic possibilistic logic, first by assuming strict in-

equality constraints between weights and by focusing on the weighted completion of a

possibilistic knowledge base. We provide an original completeness proof, absent from

[4]. This proof is more general than the completeness proof of standard possibilistic

logic as, contrary to the latter, we cannot rely on classical inference from sets of for-

mulas having at least a given certainty degree. Specific inference methods to compute

the symbolic weight attached to a conclusion are proposed, especially some inspired

by the literature on abductive reasoning initiated by Reiter [7]. Our approach yields a

partial order on the language, while the alternative partially ordered generalizations of

possibilistic logic [4, 6] only compute a set of plausible consequences.

2 Symbolic possibilistic logic revisited

In this section, first we recall the construction of possibilistic logic. Then, we present

symbolic possibilistic logic. In the paper, L denotes a propositional language. Formulas

are denoted by φ1 · · ·φn, and Ω is the set of interpretations. [φ] denotes the set of

models of φ, a subset of Ω. As usual, ⊢ and |= denote syntactic inference and semantic

entailment, respectively.

2.1 Background on standard possibilistic logic

Possibilistic logic is an extension of classical logic which handles weighted formulas of

the form (φj , pj) where φj is a propositional formula and pj ∈ ]0, 1]. (φj , pj) is inter-

preted by N(φj) ≥ pj , where N is a necessity measure, the conjugate of a possibility

measure. A possibility measure [2] is defined on subsets of Ω from a possibility distri-

bution π on Ω as Π(A) = maxω∈A π(ω) expressing the plausibility of any proposition

φ, with [φ] = A, and the necessity measure expressing certainty levels is defined by

N(A) = 1−Π(A) where A is the complement of A.

A possibilistic base is a finite set of weighted formulasΣ = {(φj , pj), j = 1 · · ·m}.

It can be associated with a possibility distribution πΣ on Ω in the following way:

∀j, πj(ω) =

{

1 if ω ∈ [φj ],

1− pj if ω 6∈ [φj ]
πΣ(ω) = min

j
πj(ω). (1)

Note that πj is the least informative possibility distribution among those such that

N(φj) ≥ pj , where a possibility distribution π is less informative than ρ if and only

if π ≥ ρ. Likewise πΣ is the least informative possibility distribution compatible with

the base Σ, on behalf of the principle of minimal specificity. It can be checked that

NΣ(φj) = minω 6∈[φj ](1−πΣ(ω)) ≥ pj is the least necessity degree in agreement with

Σ. However, it may occur that NΣ(φj) > pj . The (semantic) closure of Σ is then de-

fined by {(φ,NΣ(φ)) : φ ∈ L : NΣ(φ) > 0}, which simply corresponds to a ranking



on the language. The semantics of possibilistic logic allows to replace weighted con-

junctions (
∧

i φi, p) by a set of formulas (φi, p) without altering the underlying possi-

bility distribution, since N(φ ∧ ψ) = min(N(φ), N(ψ)): from the minimal specificity

principle, we can associate the same weight to each sub-formula in the conjunction.

Therefore, we can turn any possibilistic base into a semantically equivalent weighted

clausal base.

Syntactic inference in possibilistic logic A sound and complete syntactic inference

⊢π for possibilistic logic can be defined using axioms of classical logic turned into

formulas weighted by 1 and inference rules [1]:

– Weakening rule: If pi > pj then (φ, pi) ⊢π (φ, pj)
– Modus Ponens : {(φ→ ψ, p), (φ, p)} ⊢π (ψ, p)

This Modus Ponens rule embodies the law of accepted beliefs at any level, assumed

they form a deductively closed set [8]. It is related to axiom K of modal logic. The

soundness and completeness of possibilistic logic for the above proof theory can be

translated by the following equality [1]: NΣ(φ) = max{p : Σ ⊢π (φ, p)}
Note that we can also express inference in possibilistic logic by classical inference

on p-cuts Σ≥
p = {φj : pj ≥ p}[1]: NΣ(φ) = max{p : (Σ≥

p ) ⊢ φ}.
Inconsistency degree Inc(Σ) of a possibilistic baseΣ is defined as follows: Inc(Σ) =

max{p|Σ ⊢π (⊥, p)}. It can be proved that NΣ(φ) = Inc(Σ ∪ (¬φ, 1)) [1, 9].

2.2 Symbolic possibilistic logic (SPL)

In symbolic possibilistic logic (SPL), only partial knowledge is available on the rel-

ative strength of weights attached to formulas. So, weights are symbolic expressions

taking values on a totally ordered necessity scale (such as ]0, 1]), and there is a set

of constraints over these weights, describing their relative strength. The name “sym-

bolic possibilistic logic” indicates that we shall perform symbolic computations on the

weights. The set P of symbolic weights pj is recursively obtained using a finite set

of variables (called elementary weights) H = {a1, . . . , ak} taking values on the scale

]0, 1] and max /min expressions built on H: H ⊆ P, 1 ∈ P , and if pi, pj ∈ P , then

max(pi, pj),min(pi, pj) ∈ P .

Let Σ = {(φj , pj), j = 1, · · · ,m} be a symbolic possibilistic base where pj is a

max /min expression built on H . A formula (φj , pj) is still interpreted as N(φj) ≥
pj [4]. The knowledge about weights is encoded by a finite set C = {pi > pj} of

constraints between max /min expressions, a partial ordering on symbolic expressions.

We can prove p > q, denoted by C � p > q if and only if every valuation of symbols

appearing in p, q (on ]0, 1]) which satisfies the constraints in C also satisfies p > q.

At the semantic level, NΣ(φ) is now a symbolic max /min expression of the form

NΣ(φ) = min
ω 6�φ

max
j:ω 6�φj

pj . (2)

We directly use the expression defined in standard possibilistic logic. The main differ-

ence with standard possibilistic logic is that we cannot simplify this expression down to



a single weight. To perform inference at the syntax level, one must slightly reformulate

the inference rules of possibilistic logic in order to account for the symbolic nature of

weights:

– Fusion rule: {(φ, p), (φ, p′)}⊢π(φ,max(p, p′))
– Weakening rule: (φ, pi) ⊢π (φ,min(pj , p)), ∀p
– Modus Ponens : {(φ→ ψ, p), (φ, p)}⊢π(ψ, p)

We call skeleton of a possibilistic base Σ the set of propositional formulas appearing

in it, and denote it by Σ∗. If B is a subset of the skeleton Σ∗ of Σ that implies φ, it

is clear that (Σ, C) ⊢π(φ,minφj∈B pj). Using syntactic inference, we can compute the

expression representing the strength of deduction of φ from Σ:

N⊢
Σ(φ) = max

B⊆Σ∗,B⊢φ
min
j:φj∈B

pj . (3)

Note that in the above expression, it suffices to take max on all minimal subsets B for

inclusion that imply φ. The aim of SPL is to compare the strength degrees of any two

formulas in the language via their resulting weights.

Definition 1 (Σ, C) implies that φ is more certain than ψ ((Σ, C) |= φ > ψ) if and

only if C � N⊢
Σ(φ) > N⊢

Σ(ψ).

Example 1 LetΣ = {(x, p), (¬x∨y, q), (¬x, r), (¬y, s)}, C = {p > q, q > r, q > s}.

Then, N⊢
Σ(y) = max(min(p, q),min(p, r)) = q and N⊢

Σ(x) = p. So, x > y.

Note that in SPL, comparing the certainty degrees of formulas as per Definition 1 re-

quires that the set of constraints C be not empty. Otherwise, no strict inequalities can be

inferred between formula weights.

3 The completeness of symbolic possibilistic logic

The completeness of SPL comes down to proving that the two following expressions

are equal : NΣ(φ) = N⊢
Σ(φ), ∀φ ∈ L. This proof does not appear in [4], where the

focus is on plausible inference.

Proposition 1 SPL is sound and complete for the above inference system.

The proof cannot rely on cuts, like for standard possibilistic logic, due to the fact that

the weights are partially ordered. So we provide the sketch of a direct proof that the two

expressions of NΣ(φ) and N⊢
Σ(φ) coincide independently of constraints in C. In this

proof, we use the notion of hitting-set [7]:

Definition 2 (Hitting-set) Let S be a collection of sets. A hitting-set of S is a set H ⊆
∪Si∈SSi such that H ∩ Si 6= ∅ for each Si ∈ S . A hitting-set H of S is minimal if and

only if no strict subset of H is a hitting-set of S .

Proof of Proposition 1: Due to the lack of space, we only give the list of steps and results needed.

Let Σ−
ω be the subset of formulas in Σ∗ falsified by ω, and Σ+

ω be the subset of formulas in Σ∗

satisfied by ω. We have to prove that minω 6|=φ max
j:φj∈Σ

−

ω
pj = maxB⊆Σ∗,B⊢φ minφj∈B pj .

We distinguish cases according to whether Σ∗ is consistent or not.



1. Suppose that Σ∗ is consistent. Then all B’s implying φ are consistent.

We note that:
– For N⊢

Σ(φ), it is sufficient to consider the minimal (for set-inclusion) subsets of Σ∗,

say Bi, i = 1, n, that imply φ: N⊢
Σ(φ) = maxi=1,··· ,n minφj∈Bi

pj .

– For NΣ(φ), it is sufficient to consider the interpretations ω such that ω 6|= φ and Σ−
ω is

minimal (for set inclusion) : NΣ(φ) = min
ω 6|=φ,Σ

−

ω minimal max
j:φj∈Σ

−

ω
pj .

Lemma 1 If Σ∗ is a minimal (for set inclusion) base that implies φ, NΣ(φ) = N⊢
Σ(φ).

We conclude that NΣ(φ) ≥ N⊢
Σ(φ) since for each B ⊆ Σ,NΣ(φ) ≥ NB(φ) = N⊢

B(φ).
Using distributivity, we can rewrite the syntactic necessity degree in terms of the mini-

mal hitting-sets of the set {B1, . . . , Bn}. By indexing all the minimal hitting-sets Hs of

{B1, . . . , Bn} by s ∈ S we obtain:

N
⊢
Σ(φ) = max

B⊆Σ∗,B⊢φ
min
φj∈B

pj = min
s∈S

max
φj∈Hs

pj .

Lemma 2 ∀ω 6|= φ,Σ−
ω is a hitting-set of {B1, . . . Bn} (that is ∀i, Bi ∩Σ−

ω 6= ∅).

Note that the above result holds in particular when Σ−
ω is minimal. The sub-bases Σ−

ω such

that ω 6|= φ that are minimal are the complements of the maximal sub-bases M¬φ of Σ∗

consistent with ¬φ, the set of which we denote by M¬φ. Notice that:

Lemma 3 The complement of each minimal hitting-set Hs of {B1, . . . Bn} is a maximal

sub-base of Σ∗ consistent with ¬φ.

Then we can obtain the converse inequality NΣ(φ) ≤ N⊢
Σ(φ) since:

N⊢
Σ(φ) = mins∈S maxφj∈Hs pj = minM

¬φ=Hs,s∈S maxφj 6∈M
¬φ

pj

≥ minM
¬φ∈M

¬φ
maxφj 6∈M

¬φ
pj = NΣ(φ).

2. Suppose that Σ∗ is inconsistent with no constraint on the weights. Then, some of the minimal

sub-bases that imply φ may be inconsistent. We have the following results:

– Let I1, . . . , Ip be the minimal inconsistent sub-bases of Σ∗ (smallest inconsistent sub-

bases in the sense of inclusion). The inconsistency degree of Σ is Inc(Σ) = N⊢
Σ(⊥) =

maxp

k=1
minφj∈Ik pj , and N⊢

Σ(φ) = max(Inc(Σ),
maxn

i=1 minφj∈Bi
pj), Bi being the minimal consistent sub-bases that imply φ (if any).

– N⊢
Σ(φ) ≥ Inc(Σ). However there is never strict inequality if C = ∅.

– The definition of NΣ(φ) is the same as in the consistent case. However, ∀ω,Σ+
ω ⊂ Σ

(since Σ+
ω is consistent).

Now, we are able to prove completeness:

– Lemma 1 can be used. Now, Σ∗ is a minimal inconsistent base implying φ, and none

of its sub-bases implies φ. The inequality NΣ(φ) ≥ N⊢
Σ(φ) still holds (note that mini-

mality does not exclude inconsistency).

– For Lemma 2, Σ+
ω is always consistent. So in the case of an inconsistent set Ii, we can-

not have Ii ⊂ Σ+
ω . The proof of Lemma 2 still holds, since the sets Hs are consistent,

as the M¬φ.

So completeness has been proved even if the base Σ∗ is inconsistent.
✷

Remark: However, it may happen that some minimal inconsistent subset Ii of Σ∗

is not a minimal sub-base implying φ. For instance, if Σ = {(φ, a), (¬φ, b)} the unique

minimal sub-base implying φ is {φ}. In that case,N⊢
Σ(φ) = maxB⊆Σ∗,B⊢φminφj∈B pj =

max(min(a, b), a) = a = NΣ(φ). Similarly, N⊢
Σ(¬φ) = b. So we have N⊢

Σ(⊥) =
min(a, b) ≤ N⊢

Σ(φ) and N⊢
Σ(⊥) ≤ N⊢

Σ(¬φ). We have {a} ⊂ {a, b} but it cannot be

concluded that N⊢
Σ(⊥) < N⊢

Σ(¬φ).



4 Toward inference methods in symbolic possibilistic logic

In this section, we will present two syntactic inference methods that calculate the ne-

cessity degree N⊢
Σ(φ) of a possibilistic formula. The first method is based on the use of

the notion of minimal inconsistent sub-base. The second one is inspired by abductive

reasoning. We assume that the weights bearing on formulas of the original SPL base

are elementary, with possibility of assigning the same weight to different formulas.

4.1 Syntactic inference based on minimal inconsistent sub-bases

Given a formula φ, computing the expression in equation (3) requires the determination

of all minimal sub-bases Bi such that Bi ⊢ φ. Some of the minimal sub-bases that

imply φ may be inconsistent. In that case, they are minimal inconsistent in Σ∗.

Lemma 4 Let B ⊆ Σ∗ inconsistent and minimal implying φ. Then B is minimal in-

consistent in Σ∗.

So, if B ⊆ Σ∗ is a minimal sub-base implying φ, either B is consistent or B is

a minimal inconsistent sub-base of Σ∗. However, it may happen that some minimal

inconsistent sub-base in Σ∗ is not a minimal sub-base implying φ. It follows easily:

Proposition 2 Let B1, · · · , Bk be the minimal consistent sub-bases of Σ∗ implying φ.

Let I1, · · · , Il be the minimal inconsistent sub-bases in Σ∗ which do not contain any

Bj , j = 1 · · · k, N⊢
Σ(φ) = max(maxki=1 minφj∈Bi

pj ,maxli=1 minφj∈Ii pj)

Besides, we know that B ⊆ Σ∗ is minimal implying φ if and only if B is minimal

such that B ∪ {¬φ} is inconsistent. We can prove even more:

Proposition 3 Let (Σ, C) be an SPL base, and B a sub-base of Σ∗.

– If B is consistent and minimal implying φ then B ∪{¬φ} is a minimal inconsistent

sub-base of Σ∗ ∪ {¬φ}.

– IfK is a minimal inconsistent sub-base ofΣ∗∪{¬φ} containing ¬φ, thenK\{¬φ}
is consistent, minimal implying φ.

Due to Proposition 2 and Proposition 3, computingN⊢
Σ(φ) amounts to determining:

– the set of minimal inconsistent subsets Ki of Σ∗ ∪ {¬φ} containing ¬φ;

– the minimal inconsistent sub-bases of Σ∗ which do not contain any of the Bi =
Ki \ {¬φ}’s obtained in the previous step.

The above computation comes down to the well-known problem of determining the

minimal inconsistent sub-bases, forming a set MIS(S), of a given set of formulas

S. Let B⊢(φ) = {B ⊆ Σ∗|B ∪ {¬φ} ∈ MIS(Σ∗ ∪ {¬φ})} and Bi(φ) = {B ∈
MIS(Σ∗)|B does not contain any base from B⊢(φ)}. Then let B(φ) = B⊢(φ)

⋃

Bi(φ).
So, the necessity degree of a formula φ can be computed as follows:

N⊢
Σ(φ) = max

Bi∈B(φ)
min
φj∈Bi

pj (4)



The most efficient method for solving the MIS problem exploits the duality be-

tween minimal inconsistent subsetsMIS(S), and maximal consistent subsetsMCS(S),
and the fact that checking the consistency of a base is less time-consuming than check-

ing its inconsistency [10]. Given a propositional base S, MIS(S) is obtained from

MCS(S) using hitting-sets [10, 11].

Once we are able to compute the necessity degree of a formula, according to def-

inition 1, we can compare two SPL formulas by comparing their necessity degrees

which are max /min expressions. So we have to check whether C � N⊢
Σ(φ) > N⊢

Σ(ψ)
that is C � maxB∈B(φ) mini:φi∈B ai > maxC∈B(ψ) minj:φj∈C bj . That amounts

to finding an expression min(a1, · · · an) in N⊢
Σ(φ) which dominates all expressions

min(b1, · · · , bm) in N⊢
Σ(ψ). Rather than applying this test in a brute force way, it is

natural to use sets of elementary weights instead of formulas, and to simplify the expres-

sions of N⊢
Σ(φ) and N⊢

Σ(ψ) using C prior to comparing them. The inference technique

proposed next is useful to that effect.

4.2 Syntactic inference based on ATMSs

In this section, we present another syntactic method for SPL inference, based on ab-

ductive reasoning. Namely, consider the weights involved in the computation ofN⊢
Σ(φ)

as assumptions that explain the certainty of φ. It suggests to use an Assumption-based

Truth-Maintenance System (ATMS [12]), in which a distinction is made between two

kinds of data, the data representing knowledge and the data representing assumptions.

We first recall the basic definitions of ATMS, then we show how we encode an SPL

base in order to use an ATMS for computing the necessity degree of a formula.

Definition 3 Let (J , A) be an ATMS base where J is a consistent base of propositional

formulas, and A is a set of propositional variables (the assumptions).

– Any subset E of A is called an environment

– An environment E is J -incoherent if and only if E ∪ J is inconsistent

– A nogood is a minimal J -incoherent environment

– An environment E supports φ if and only if E is not J -incoherent and E ∪ J ⊢ φ

Given (J , A) and a formula φ, the ATMS is able to provide all the minimal environ-

ments that support φ, under the form of a set Label(φ).

Given an SPL base (Σ, C), the possibilistic base Σ is encoded by a pair (J , A) as

follows : each elementary weight ai is associated with a propositional variable (for sim-

plicity we keep ai as propositional variable) and each SPL formula (φi, ai) is encoded

by the propositional formula ¬ai ∨ φi.

Definition 4 Let (Σ, C) be an SPL base. The associated ATMS base (JΣ ,A) is defined

by : JΣ = {¬ai ∨ φi|(φi, ai) ∈ Σ} and A = {ai|(φi, ai) ∈ Σ}

As shown in Section 4.1, in order to compute N⊢
Σ(φ), we have to consider the

sub-bases of Σ∗ which are minimal implying φ and consistent, and then some of the

minimal inconsistent sub-bases of Σ∗. Moreover, for computing N⊢
Σ(φ), we only need



the weights associated with the formulas belonging to these sub-bases. With the en-

coding of Definition 4, it is easy to see that each consistent sub-base of Σ∗ which is

minimal implying φ exactly corresponds to an environment in Label(φ) with respect to

the ATMS base (JΣ , A). And each minimal inconsistent sub-base of Σ∗ exactly corre-

sponds to a nogood with respect to the ATMS base (JΣ , A). So, it follows easily from

Proposition 2 that :

Proposition 4 Given an SPL base (Σ, C) and the associated ATMS base (JΣ , A), let

U(φ) = {U1, · · · , Uk} be the so-called useful nogoods for φ, i.e. the nogoods which do

not contain any environment of Label(φ). Then we have:

N⊢
Σ(φ) = max(maxE∈Label(φ) mina∈E a,maxki=1 mina∈Ui

a).

See [13] for further details on calculating labels and nogoods.

Example 2 Let Σ = {(¬x ∨ y, a), (x, b), (¬y, c), (¬x, e)}. This SPL base is encoded

by the ATMS base: JΣ = {¬a∨¬x∨y,¬b∨x,¬c∨¬y,¬e∨¬x} and A = {a, b, c, e}.

We obtain Label(y) = {{a, b}}. The nogoods are {a, b, c}, {b, e}, hence only the

second one is useful for y. So, N⊢
Σ(y) = max(min(a, b),min(b, e)).

4.3 Comparing complex symbolic weights

One of the benefits of the last method lies in the fact that everything is computed only in

terms of weights (in the label of the formula and the useful nogoods). Then constraints

on weights can be used to simplify the max /min expressions, while in the previous

method, we use all formulas in the symbolic possibilistic base. Moreover, in the ATMS

method, one can think of exploiting constraints and simplify the sets of weights involved

in the comparison of the necessity degrees at the moment we are producing them.So it

is natural to simplify the expressions of N⊢
Σ(φ) and N⊢

Σ(ψ) prior to comparing them,

– first by replacing each set of weights B ∈ Label(φ) ∪ U(φ) by the reduced set of

weights W = minC(B) consisting of the least elementary weights in B according

to the partial order defined by the constraints in C.
– Then by deleting the dominated sets W in the resulting family in the sense that

C � min{a ∈W ′} > min{a ∈W} for some other set W ′, using Algorithm 1.

Of course we can apply these simplifications as soon as elements of the labels or

useful nogoods are produced.

Example 2 (continued) Consider againΣ = {(¬x∨y, a), (x, b), (¬y, c), (¬x, e)} with

C = {a > b, a > c, b > e, c > e}. We want to check if C � N⊢
Σ(y) > N⊢

Σ(¬x). Note

that Label(y) = {{a, b}} and U(y) = {{b, e}}. Likewise Label(¬x) = {{a, c}, {e}},

and there is no useful nogood for ¬x.

Using C we can reduce {a, b} to {b} and {b, e} to {e} and the necessity degree of y to

b, since b > e ∈ C. Likewise we can reduce {a, c} to {c} and the necessity degree of

¬x to c since c > e ∈ C. Now, b > c 6∈ C, so we cannot conclude y > ¬x (nor the

converse).

In general, the deletion of dominated sets of weights can be achieved by means of

Algorithm 1 applied to all pairs of reduced sets in Label(φ) ∪ U(φ).
Finally we can compare the set of non-dominated reduced subsets fromLabel(φ)∪U(φ)
with the one for Label(ψ) ∪ U(ψ), in order to decide if φ > ψ, using Algorithm 2.



Algorithm 1: Comp_Min

Data: F and G two sets of weights,

C a set of constraints.

Result: minF > minG ?

—————————————–

Dec:=false;

while Dec=false and bi ∈ G do

Dec:=true;

while Dec=true and ai ∈ F do

Dec:=Dec ∧ ai > bi ∈ C;

return Dec;

Algorithm 2: Comp_Max

Data: F and G two families of sets of

weights, C a set of constraints

Result:

maxF∈F minF > maxG∈G minG ?

———————————————–

Dec:=false;

while Dec=false and Ej ∈ F do

Dec:=true;

while Dec=true and Ei ∈ G do
Dec:=Dec

∧ Comp_Min(Ei, Ej , C);

return Dec;

5 Related works

The question of reasoning with a partially ordered knowledge base encoded in a sym-

bolic possibilisitic logic has been addressed previously in [4]. These authors have pro-

posed to encode symbolic possibilistic pairs in propositional logic like in section 4.2.

However there are several differences:

– A possibilistic formula (φ, a) in [4] is encoded as a formula A ∨ φ where A is a

variable supposed to mean “≥ a”, i.e. [a, 1] (while we use ¬a ∨ φ ∈ JΣ).

– Constraints between weights in [4] are reflexive (not strict), of the form p ≥ q
with complex max-min weights. It allows them to be encoded also as propositional

formulas (for elementary constraints, ¬A ∨ B encodes a ≥ b). It is then possible

to express all pieces of information (formulas and weights) about an SPL base in

a single propositional base containing only clauses, which makes it natural to use

the variable forgetting technique so as to deduce the necessity degree of a formula.

We cannot encode strict constraints using a material implication, hence the use of

the ATMS approach. We must encode the SPL base in two parts and we thus apply

techniques such as MIS, and ATMS notions plus specific algorithms to compare

complex weights.

– In [4], C � p > q means C � p ≥ q and C 6� q ≥ p and is somewhat analogous

to strict Pareto order between vectors. With this vision, from Σ = {(φ, a), (ψ, b)}
and C = ∅ we could infer infer NΣ(φ ∨ ψ) > NΣ(φ). Indeed, one has NΣ(φ) =
a,NΣ(φ ∨ ψ) = max(a, b) C � max(a, b) ≥ a but not C � a ≥ max(a, b). This is

problematic because it amounts to interpreting strict inequality as the impossibility

of proving a weak one, which is non-monotonic. In our method, p > q holds pro-

vided that it holds for all instantiations of p, q in accordance with the constraints.

Only such strict constraints appear in C.

In the future it should be interesting to handle both strict and loose inequality con-

straints, since loose constraints between formula weights can be derived in our setting

just by means of the weakening inference rule.



6 Conclusion

This paper is another step in the study of inference from a partially ordered proposi-

tional base. We present a version of possibilistic logic with partially ordered symbolic

weights. It differs from conditional logic frameworks [5] by the use of the minimal

specificity principle which is not at work in such logical frameworks. We provide a

proof of the soundness and completeness of this logic. Two syntactic inference meth-

ods are defined which allow us to infer new formulas with complex symbolic weights

(necessity degrees of formulas): One that requires the enumeration of minimal incon-

sistent subsets to calculate necessity degrees. The other use results from the ATMS

formalism. It enables constraints over weights to be taken into account so as to simplify

the comparison of symbolic necessity degrees. This work has potential applications for

the revision and the fusion of beliefs, as well as preference modeling [14].
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