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Abstract

The shape-from-shading problem, which aims at inferring the shape from
a single image, is known to be ill-posed. Yet, scientists pursue the 3D-
reconstruction of a shape from shading clues, considering the photometric
stereo problem which enables the use of several images, acquired under
different illuminations. Under standard assumptions such as diffuse reflection
or uniform lighting, it is well-known that photometric stereo becomes well-
posed using at least three images. In this work we consider the intermediate
case with two images. Our contributions are twofold. We first analyze the
arising ambiguities from a theoretical side. Based on this study, a reliable way
to solve the ambiguities is put forward. We show that, when the surface albedo
is known and integrability of the normals is imposed, the 3D-reconstruction
problem can be reformulated as a binary labelling problem, efficiently solvable
by resorting to the graph cut algorithm.

Keywords: 3D-reconstruction, shape-from-shading, photometric stereo,
PDEs, numerical analysis, optimization, graph cut.

1. Introduction

In the computer vision field, 3D-shape reconstruction using digital images
as input data has gained a growing importance. Interest in this task has
increased even more since most mass digital devices have been equipped
with cameras. Based on more than thirty years of research, such devices are
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potentially convertible into 3D-scanners without any hardware correction.
Among all the photographic 3D-reconstruction techniques, we focus in this
work on shape-from-shading (SFS) and photometric stereo (PS), which exploit
shading information when one (SFS) or several (PS) sources illuminate the
observed object. For a comprehensive overview on these techniques, see the
reference book [1] by Horn and Brooks, but also [2] and [3] for up-to-date
surveys on SFS and PS, respectively.

Many articles enlighted the impossibility of avoiding any ambiguity while
retrieving the shape from a single image, as in the SFS problem [4]. This
impossibility arises from the difficulty met in distinguishing the concave from
the convex surfaces. The most natural way to solve this problem is to use
more than one image: Woodham showed in [5] that three is the minimum
number of images to ensure well-posedness of the PS problem.

This work focuses on the intermediate case when only two images are
taken into account (this specific situation will be referred to as PS2). Besides
being particularly interesting for dedicated applications as single-day outdoor
PS from sun light [6, 7], the PS2 problem can be seen as the degenerative case
of lack of information from the three-source PS problem due to shadows [8].
In this view, we provide working tools aimed at solving the underlying
ambiguities, derived from a theoretical study.

There exist a combinatorial number of normal fields which are solutions
of the PS2 problem. Exhaustive search can be carried out among these
normal fields, in order to find the one which best satisfies a smoothness
constraint [9]. Alternatively, one may resort to the differential approach of PS,
which implicitely enforces smoothness. A meaningful solution of the resulting
PDE can be obtained either by specifying an explicit boundary condition [10],
or by resorting to regularization [8]. Unfortunately, knowledge of the surface
on the boundary is rarely available, and regularization techniques come along
with parameters to tune, which might be tedious.

We put forward a new method for solving the PS2 problem, which is based
on the non-differential approach of PS (normal estimation). We assume that
the setup consists of orthographic viewing geometry, parallel and uniform
lightings, as well as Lambertian reflectance. Under such assumptions, and
provided that the albedo is known, it is shown in this paper that the number of
possible solutions can be predicted beforehand. It is then demonstrated that
exhaustive search of the “best” normal field can be achieved efficiently using
the graph cut algorithm. In contrast with existing methods, the proposed one
requires neither knowing a boundary condition, nor tuning any parameter.
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The structure of the paper foresees a recall for the general equations of
SFS, PS and PS2 in Section 2. In Section 3, we compare the differential
and non-differential formulations of PS2. We show why the PS2 problem
usually has a unique solution in Section 4. In Section 5, a practical graph
cut-based [11] algorithm to compute this solution is introduced, and it is
applied in Section 6 to the problem of three-source PS with shadows.

2. From Shape-from-shading to Photometric Stereo

2.1. Shape-from-shading

To fully describe the problem we are interested in, let us first recall
some features of the SFS problem. We attach to the camera a 3D-Cartesian
coordinate system xyz, so that xy coincides with the image plane and z with
the optical axis. Under the assumption of orthographic projection, the visible
part of a surface is a graph z = u(x, y). It is well known that the SFS problem
is modeled by the image irradiance equation [1]:

R(n(x, y)) = I(x, y) (1)

where I(x, y) is the graylevel at image point (x, y), and the reflectance function
R(n(x, y)) gives the value of the light re-emitted by the surface as a function
of its orientation i.e., of the unit-length outgoing normal n(x, y) to the surface
at surface point [x, y, u(x, y)]>. The unknown depth u has to be reconstructed
on a compact domain Ω ⊂ R2 called the reconstruction domain.

Let us consider a unique parallel and uniform light beam whose direction
is indicated by the unit-length vector s = [s1, s2, s3]

> = [s̃>, s3]
> ∈ R3, and

whose intensity is denoted by ψ. Assuming the observed object has purely
diffuse reflection, and ignoring shadows, Eq. (1) can be written as follows:

ρ(x, y)ψ s · n(x, y) = I(x, y) (2)

where ρ(x, y) ∈ [0, 1] is the albedo.
In fact, this equality is nothing more than a relation of proportionality.

Knowing that the vectors s and n(x, y) have unit-length, and assuming that
ψ is a constant factor, it seems justified to rewrite Eq. (2) as a real equality:

ρ(x, y) s · n(x, y) = I(x, y) (3)

where I(x, y) ∈ [0, 1] should now be considered as the normalized graylevel.
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Eq. (3) is a particular non-differential formulation (amongst many others)
of the SFS problem. Once the normal field n has been estimated, it has to be
integrated. This means that the following equation in u has to be solved [12]:

n(x, y) =
1√

1 + ‖∇u(x, y)‖2

[
−∇u(x, y)>, 1

]>
(4)

where ∇u(x, y) = [∂xu(x, y), ∂yu(x, y)]> denotes the gradient of u(x, y). From
Eqs. (3) and (4), we get the following differential formulation of SFS:

ρ(x, y)
−s̃ · ∇u(x, y) + s3√

1 + ‖∇u(x, y)‖2
= I(x, y) (5)

which is a first-order nonlinear PDE of the Hamilton-Jacobi type. We refer
the interested reader to the survey presented in [2] for a presentation of recent
results on the eikonal equation, which follows from (5) when s = [0, 0, 1]>.

2.2. Photometric Stereo

Even if s is known, SFS is ill-posed without any additional knowledge on
the surface to be reconstructed. In most papers on SFS, the albedo ρ(x, y)
is supposed to be known, but this is still not enough to make the problem
well-posed. The simplest way to overcome SFS ill-posedness is to use m ≥ 2
images taken from the same point of view, illuminated by m light sources
(si, ψi), i ∈ [1,m]. This new problem is called photometric stereo (PS). The
classical resolution of PS is based on a local estimate of the outgoing unit-
length normal to the surface [5]. For a Lambertian surface, the non-differential
formulation of PS consists in solving a system of m equations of type (3):

ρ(x, y) si · n(x, y) = I i(x, y), i ∈ [1,m] (6)

As for SFS, this formulation requires that Eq. (4) is solved afterwards. From
a theoretical point of view, Eq. (4) admits a solution in u only if the estimated
normal field is integrable [13] (cf. Section 4.5). Due to estimation errors,
this is rarely the case in practice, hence projection of the estimated normal
field on the space of integrable fields must be achieved, resorting for instance
to Fourier analysis [13] or to variational methods [12]. Alternatively, one
can directly try to estimate the “most integrable” normal field. This is the
approach that is followed in Section 5.
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Of course, a differential formulation of PS also exists, which aims at solving
a system of m nonlinear PDEs of type (5):

ρ(x, y)
−s̃i · ∇u(x, y) + si3√

1 + ‖∇u(x, y)‖2
= I i(x, y), i ∈ [1,m] (7)

In the usual case, denoted PS3, where m ≥ 3 non-coplanar distant
calibrated light sources are used [5], system (6) reduces to a full-rank linear
system in m(x, y) = ρ(x, y) n(x, y) ∈ R3. Solving this system has several
advantages, compared to SFS: it is well-posed and can be locally solved, thus
parallelized. Furthermore, the albedo no longer has to be known.

We may wonder whether the differential formulation (7) would really be
pertinent for PS3. The main advantage of solving (7) is that integrability is
implicitly ensured, unlike solving (6), knowing that the lack of integrability
of n complicates the resolution of Eq. (4) [13]. However, the problem (7) has
two drawbacks: it is nonlinear and cannot be solved locally [14].

In this paper, we focus on the resolution of PS when linear system (6) is
not full-rank. In such cases, the non-differential formulation does not have
as many advantages as for PS3, and the differential formulation might be
worthwhile, at least because it is better-posed since the integrability constraint
is implicitely satisfied. Indeed, practical solutions to the rank-deficient PS
problem use this differential formulation. Yet, as discussed in Section 3.2,
differential approaches have to resort either to a boundary condition (which
is rarely available) or to regularization (which requires parameter tuning).
The solution presented in Section 5, which is based on the non-differential
formulation, involves neither boundary condition nor parameter tuning.

2.3. Scope of our Work: Photometric Stereo Using Two Images

The scope of our work is the intermediate case m = 2 of PS between
m = 1 (SFS) and m ≥ 3 (PS3), denoted PS2. Such a problem arises in
real-time 3D-reconstruction of non-rigid objects [15]. This application can be
carried out using PS3, an RGB sensor and three colored lightings. Yet, when
one of the light source is occluded, only two of the color channels provide
meaningful shading clues, and hence a PS2 problem must be solved. The PS2
problem is also very similar to the case m ≥ 3 with coplanar light vectors si.
A concrete example to be mentioned is the case when a scene is illuminated
by the sun [6]. In both cases, the linear system (6) is no longer full-rank in
m(x, y) = ρ(x, y) n(x, y).
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The PS2 problem has been addressed in few papers. Onn and Bruckstein
prove in [9] that the determination of the normal is a priori ambiguous,
and demonstrate how to eliminate this ambiguity using the integrability
constraint. Yang et al. study the problem in the particular case of convex
objects [16]. In [6], Sato and Ikeuchi use the resolution method designed by
Onn and Bruckstein to solve the PS problem using m ≥ 3 images under solar
illumination, which partially brings us back to the PS2 problem [17]. In [18],
Kozera reaches the same conclusions as Onn and Bruckstein, by making an
analytical resolution of the differential formulation. From 1995 and for over
ten years, only Ikeda addressed the PS2 problem [19]. However, he essentially
considers the second image as a means to more accurately solve the SFS
problem. More recently, the problem of outdoor PS has been reexplored
in [7, 20, 21]. Finally, let us quote a preliminary version [10] of our work.

One could wonder whether the PS2 problem is not purely formal, con-
sidering that the actual trend is to deal with far more than two images, as
in [22] where a full video is used, or in [20, 21] where timelapse images se-
quences, acquired over several years, are considered. Apart from the intrinsic
interest we can find in studying the number of solutions to the PS2 prob-
lem, PS in the presence of shadows has been studied in several recent papers
[8, 23, 24, 25, 26, 27, 28]. When m > 3, the graylevels which lie inside shadows
are considered as outliers and left out of the estimation [23, 24, 25] or dealt
with in a robust estimation process such as the Expectation-Maximization
algorithm [26]. Most recent techniques assume that such outliers are sparsely
distributed in the images, and hence design sparsity-enhancing algorithms
[27, 28]. When m = 3, Hernández et al. show in [8] that implementing a
specific treatment for the twice-lit points i.e., for those where the PS2 problem
may arise, improves the 3D-reconstruction accuracy. The application of our
study will precisely be to improve the 3D-reconstruction in such shadow areas
(see Section 6).

3. Photometric Stereo Using Two Images: A Theoretical Study

3.1. Non-differential Formulation of the PS2 Problem

Taking m = 2 in (6), the non-differential formulation of PS2 is written as:
ρ(x, y)

[
s1

1 n1(x, y) + s1
2 n2(x, y) + s1

3 n3(x, y)
]

= I1(x, y)

ρ(x, y)
[
s2

1 n1(x, y) + s2
2 n2(x, y) + s2

3 n3(x, y)
]

= I2(x, y)

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1

(8)
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If ρ(x, y) is assumed to be known, the problem (8) consists at each point (x, y)
in a nonlinear system of three equations with three unknowns (n1, n2, n3).
The nonlinearity of the third equation could give rise to a non-unique solution,
as observed by Ikeuchi and Horn in [29]: “Naturally, the above nonlinear
equations [...] may have more than one solution, in which case additional
information (such as a third image) may be needed to find a unique answer”.
Indeed, most of the time, (8) does not have a unique but two solutions.

To solve (8), we only consider the set S of twice-lit unit-length normals n
i.e., those where s1 ·n > 0 and s2 ·n > 0. This set is an open part of Gaussian
sphere G limited by two planes containing the origin (see Fig. 1-a):{

π1 : s1
1 n1 + s1

2 n2 + s1
3 n3 = 0

π2 : s2
1 n1 + s2

2 n2 + s2
3 n3 = 0

(9)

Planes π1 and π2 are orthogonal, respectively, to s1 and s2. At each twice-
lit point (x, y) characterized by the graylevels I1(x, y) and I2(x, y), and by
the supposedly known albedo ρ(x, y) 6= 0, system (8) admits two solutions,
denoted n+(x, y) and n−(x, y), which are the intersections of S and of two
planes which are obtained by translating π1 and π2 of I1(x, y)/ρ(x, y) and
I2(x, y)/ρ(x, y) in the directions of s1 and s2, respectively. See Fig. 1-b for a
geometrical interpretation of n+(x, y) and n−(x, y). The analytical formulae
for them will be derived in Section 5.1. Let us denote by π the plane supported
by s1 and s2 and containing the origin of G. It is obvious that n+(x, y) and
n−(x, y) are symmetric with respect to π, for any (x, y) ∈ Ω.

If I1(x, y) and I2(x, y) exactly match the Lambertian model (3), the
non-differential problem (8) admits either two solutions, or one if n+(x, y) =
n−(x, y). But, if this model is not exactly satisfied, which may happen with
real images, there may be some points (x, y) without any exact solution. The
way to effectively handle these different cases will be specified in Section 5.1.
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Figure 1: (a) The set S of twice-lit normals, emphasized in red, is a part of Gaussian
sphere G limited by the planes π1 and π2, which are orthogonal to light vectors s1 and s2.
(b) An example where the system (8) admits two solutions in n (marked in red).

3.2. Differential Formulations of the PS2 Problem

Taking m = 2 in (7), and adding a Dirichlet boundary condition, a first
differential formulation of the PS2 problem is written as two nonlinear PDEs:

ρ(x, y)
−s̃1 · ∇u(x, y) + s1

3√
1 + ‖∇u(x, y)‖2

= I1(x, y) a.e. (x, y) ∈ Ω

ρ(x, y)
−s̃2 · ∇u(x, y) + s2

3√
1 + ‖∇u(x, y)‖2

= I2(x, y) a.e. (x, y) ∈ Ω

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω

(10)

Besides its nonlinearity, the main drawback of problem (10) concerns the need
for a boundary condition: the function g(x, y), taken in the space of Lipschitz
functions, represents a piece of information which is rarely available. On the
other hand, since a common factor ρ(x, y)/

√
1 + ‖∇u(x, y)‖2 occurs in both

PDEs of (10), we can combine them in order to simultaneously eliminate the
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albedo ρ(x, y) and the nonlinearity (we only have to suppose that ρ(x, y) 6= 0):[
I2(x, y) s̃1 − I1(x, y) s̃2

]
· ∇u(x, y) = I2(x, y) s1

3 − I1(x, y) s2
3 (11)

Considering the same boundary condition as in (10), we deduce:{
b(x, y) · ∇u(x, y) = f(x, y) a.e. (x, y) ∈ Ω

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω
(12)

where: {
b(x, y) = I2(x, y) s̃1 − I1(x, y) s̃2

f(x, y) = I2(x, y) s1
3 − I1(x, y) s2

3

(13)

This second differential formulation of the PS2 problem allows us to propagate
boundary information g(x, y) across Ω through vector field b(x, y). Indeed, if
b(x, y) and f(x, y) are two bounded (but not necessarily continuous) functions
defined by (13), and if g(x, y) is a Lipschitz function, then (12) admits a
unique Lipschitz solution u(x, y) [14]. It is worth emphasizing that this
implies that the differential formulations of PS2 allow one to reconstruct
surfaces that are differentiable almost everywhere. In practice, this means
that surfaces having sharp structures could be retrieved. In contrast, using
the non-differential approach, the surface must be assumed to be C1, so that
the normal is defined everywhere. If edges or depth discontinuities are in fact
present, they must be adequately handled during the integration stage [12].

In order to ensure robustness to noise, propagation schemes used in [10]
may be advantageously replaced by variational methods, recasting the linear
PDE (12) as the following optimization problem: min

u: Ω→R

∫∫
Ω

[
b(x, y) · ∇u(x, y)− f(x, y)

]2
dx dy

s.t. u(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω

(14)

When m ≥ 3 images are available, it was shown in [30] that variational
models such as (14) may be considered in several more difficult situations
such as color PS, PS with pointwise sources or perspective PS, even without
a boundary condition. Yet, when m = 2, explicit knowledge of the function g
is required in order to ensure that the characteristics are not reconstructed
independently. An alternative consists in using anisotropic regularization, in
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order to “couple” the 3D-reconstructions of each characteristics, by ensuring
smoothness along directions that are not tangent to the characteristics. A
suitable variational model, which was introduced by Hernández et al. in [8],
is written as follows:

min
u: Ω→R

∫∫
Ω

{[
b(x, y) · ∇u(x, y)− f(x, y)

]2
+ α

[
b⊥(x, y) · ∇u(x, y)

]2
+ β

[
b⊥(x, y)>H(u)(x, y)b⊥(x, y)

]2}
dxdy

(15)

where the field b⊥ is perpendicular to the characteristic curves and H(u) is the
Hessian matrix of u. The parameters α and β must be tuned appropriately,
in order to ensure that the regularization is sufficient, yet avoiding over-
smoothing the solution (cf. Section 5.4).

3.3. Example of PS2 Problem

In order to question the consistency between the different formulations
of the PS2 problem, let us take the example of a plane surface u(x, y) = x
illuminated by light vectors s1 = [0, 0, 1]> and s2 = 1

2
[1, 1,

√
2]>. If ρ ≡ 1,

the images of this surface using model (6) are uniform, with graylevels

I1(x, y) = 1√
2

and I2(x, y) =
√

2−1
2
√

2
. Let us first solve this PS2 example using

the non-differential formulation (8), which is written as:
n3(x, y) =

1√
2

n1(x, y) + n2(x, y) +
√

2n3(x, y)

2
=

√
2− 1

2
√

2

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1

(16)

This system admits two solutions n+ = 1√
2

[−1, 0, 1]> and n− = 1√
2

[0,−1, 1]>,

independently of (x, y). If the surface to be reconstructed is supposed to
be differentiable everywhere, there are only two acceptable normal fields
n(x, y) = n+ or n(x, y) = n−. It follows from (4) that there are two possible
values for ∇u(x, y):

−1

n+
3 (x, y)

[
n+

1 (x, y)
n+

2 (x, y)

]
=

[
1
0

]
;
−1

n−3 (x, y)

[
n−1 (x, y)
n−2 (x, y)

]
=

[
0
1

]
(17)
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Imposing u(0, 0) = 0 to fix the integration constants, we finally obtain two
solutions u+(x, y) = x and u−(x, y) = y. Fortunately, one of these solutions
is the genuine surface.

Now, let us write the first differential formulation (10), supposing ρ ≡ 1:
1√

1 + ‖∇u(x, y)‖2
=

1√
2

−∂xu(x, y)− ∂yu(x, y) +
√

2

2
√

1 + ‖∇u(x, y)‖2
=

√
2− 1

2
√

2

(18)

Note that no boundary condition is available. System (18) is equivalent to:{
∂xu(x, y) + ∂yu(x, y) = 1

‖∇u(x, y)‖2 = 1
(19)

By replacing ‖∇u(x, y)‖2 with ∂xu(x, y)2+∂yu(x, y)2, we quickly find that (19)
has the same solutions (17) in ∇u(x, y) as (16). Both formulations are thus
consistent, in the sense that they provide the same global solutions.

It follows from the definitions (13) that:

b(x, y) = − 1

2
√

2
[1, 1]> ; f(x, y) = − 1

2
√

2
(20)

In the absence of a boundary condition, the second differential formulation (12)
reduces to:

∂xu(x, y) + ∂yu(x, y) = 1 (21)

Unsurprinsingly, this PDE is the first equation of (19), which admits an infinity
of solutions. For instance, all functions u(x, y) = a x+ (1− a) y + w(x− y),
for any a ∈ R and any differentiable function w : R → R, are solutions
to (21). How can it be explained that this formulation does not lead to
the same conclusion as the others? In fact, without a boundary condition,
differential formulation (12) is a necessary but insufficient condition. For
better constraint, a boundary condition is required (but rarely available).

To conclude, there is obviously no inconsistency between the non-differential
formulation and the first differential formulation of the PS2 problem. Hence,
both these formulations should allow us to predict the same number of global
solutions. Let us examine in more detail this issue.
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4. PS2 Problem: Predicting the Number of Solutions

At any twice-lit point (x, y) ∈ Ω, we know from Section 3.1 that the PS2
problem admits one or two solutions in n(x, y). Of course, in order to predict
the number of normal fields, the points where the normal can be determined
unambiguously are of primary importance. Such singular points have been
studied in detail to solve the SFS problem [29].

4.1. Singular Points

As already observed in Section 3.1, the first situation where normal
uniqueness can be proved is reached when both solutions n+(x, y) and n−(x, y)
to the problem (8) coincide. In this case, the unique solution is inside plane π.
The set SR of such normals is a geodesic on G. It is the intersection between
S and π (see Fig. 2-a). A second type of singular points is that when among
the solutions to (8), one points towards the viewer (SG set in Fig. 2-b), while
the other one points away (SY set in Fig. 2-b). In this case, the ambiguities
are easy eliminated by choosing the “visible” normal. Let ΩR and ΩG be the
singular points sets where the normal belongs to SR or SG, respectively.

s1 s2SR

E

z

x

y

SG

SY

s1 s2

z

y

xE

(a) (b)

Figure 2: (a) Red geodesic SR is the intersection between S and π. Each normal pointing
to SR is known without ambiguity. (b) This also holds true for each normal pointing to
SG, since the other possible normal points towards the non-visible part SY of S.
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Since a PS2 problem comes down to a pair of SFS problems (with the
constraint that the camera pose is unique), one could wonder why the singular
points of each SFS problem are not taken into account. These points are such
that n = s1 in the first image, or n = s2 in the second. However, both these
values of n are inside SR, since they support plane π. This shows us that the
singular points of the PS2 problem include those of each SFS subproblem.

The normal field is continuous if the surface is supposed to be C1. Under
such an assumption, is it possible to propagate the knowledge of the normal in
a singular point to its non-singular neighbours? The answer to this question
depends on which type of singular points is referred to. Let PR ∈ ΩR be
a singular point of the first type i.e., one whose normal is inside SR. The
normal in a non-singular neighbour P̄R of PR can lie on both sides of SR.
The subsets of S which are upon and below the geodesic SR are respectively
called SU and SB, see Fig. 3. In other words, there is a remaining ambiguity
on the normal in P̄R. Now, let PG ∈ ΩG be a singular point of the second
type, whose normal is inside SG. In any non-singular neighbour P̄G of PG, we
can infer from the normal field continuity that the normal is inside SU . To
conclude, the normal is unambiguously known in all points connected to ΩG

inside Ω\ΩR, which can be considered as supplementary singular points.

s1 s2

SB

SR

E

z

x

y
s2

s1

SG

SU

SR

SY

y

xE

(a) (b)

Figure 3: (a) Set SB is colored in pink. It is the subset of S bounded by equator E and
geodesic SR. (b) Gaussian sphere G is seen from the camera point of view (i.e. z direction).
Orange set SU is the subset of S located between SG and SR.
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4.2. Using the Singular Points to Construct a Boundary Condition

As an illustration, let us calculate a pair of images of the smooth surface
depicted in Fig. 4-a, supposing ρ ≡ 1. The light directions are given,
respectively, by (θ1, φ1) = (60◦, 17◦) and (θ2, φ2) = (135◦, 17◦), which avoids
shadows (see Figs. 4-b and 4-c).

The sets of singular points ΩR and ΩG, which are numerically estimated
from the estimation of n+ and n− described in Section 5, are superimposed
to these images. In each of the five connected parts of Ω\ΩR, there are two
solutions: one is contained in SU , the other in SB. This gives rise to 25 = 32
continuous normal fields. Nevertheless, a difference between our count and
that put forward by Onn and Bruckstein [9] comes from the detection of
ΩG: since the region Ω\ΩR containing ΩG is determined, only the other four
regions are ambiguous, leading eventually to 24 = 16 possible normal fields.

The solution u can be calculated over each connected singular points set,
up to a constant of integration. Knowing that differential formulation (12)
needs a boundary condition to be well-posed, this is a simple way to construct
one. Since ∂Ω is connected to ΩG inside Ω\ΩR (see Figs. 4-b and 4-c), the
solution can be univocally calculated along ∂Ω. According to [14], this allows
us to predict a unique solution, which is of course the original surface shown
in Fig. 4-a. Based on this example, we could conclude that the non-differential
and differential approaches to the PS2 resolution are complementary, in order
to predict the number of solutions. Namely, the boundary condition required
by the latter is provided by the former.

(a) (b) (c)

Figure 4: (b-c) A pair of 256 × 256 synthetic images (stored in 32 bits) of the smooth
surface (a), such that all the points are twice-lit, over which ΩR (in red) and ΩG (in green)
are superimposed.
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4.3. A Possible Remaining Ambiguity

The conclusion of the previous section does not always hold true. For
instance, in a case such as the example of Section 3.3, there is no singular point
(all the points have the same normal). Let us show another counterexample
originally exhibited by Kozera in [31]. The surface represented by equation
z = x y, with uniform albedo ρ ≡ 1, illuminated by light vectors s1 = [s, s, c]>

and s2 = [−s,−s, c]>, where s =
√

2/2 sinφ and c = cosφ, for a given
φ ∈ ]0, π/2[, is characterized by the following graylevel functions:

I1(x, y) =
s (−x− y) + c√

1 + x2 + y2

I2(x, y) =
−s (−x− y) + c√

1 + x2 + y2

(22)

The two first equations of non-differential problem (8) are rewritten as:
s [n1(x, y) + n2(x, y)] + c n3(x, y) =

s (−x− y) + c√
1 + x2 + y2

−s [n1(x, y) + n2(x, y)] + c n3(x, y) =
−s (−x− y) + c√

1 + x2 + y2

(23)

Since by definition, s and c are nonzero, system (23) is equivalent to:
n1(x, y) + n2(x, y) =

−x− y√
1 + x2 + y2

n3(x, y) =
1√

1 + x2 + y2

(24)

Using (24), the third equation of (8) can be rewritten as:

n1(x, y)2 +
x+ y√

1 + x2 + y2
n1(x, y) +

x y

1 + x2 + y2
= 0 (25)

It is easy to check that this second-order equation always admits two real
solutions in n1(x, y), which come down to a unique solution when y = x.
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These solutions give rise to two possible normals at each point (x, y) ∈ Ω:

n+(x, y) =
1√

1 + x2 + y2

−y−x
1

 ; n−(x, y) =
1√

1 + x2 + y2

−x−y
1

 (26)

We deduce from (26) and (4) two possible values for ∇u(x, y):

−1

n+
3 (x, y)

[
n+

1 (x, y)
n+

2 (x, y)

]
=

[
y
x

]
;
−1

n−3 (x, y)

[
n−1 (x, y)
n−2 (x, y)

]
=

[
x
y

]
(27)

Both these vector fields are easily integrated, which provides us with two
solutions u+(x, y) = x y and u−(x, y) = (x2 + y2)/2, up to two additive
constants. That is to say, there is a remaining ambiguity.

On the other hand, ΩG is empty, but it is easily deduced from (26) that ΩR

is the straight line y = x. The solution can therefore be calculated along this
line, up to a constant. Using a similar rationale as in Section 4.2, we should
conclude that the solution is unique, which would contradict the previous
result. This contradiction is easily explained: the prediction of [14] holds true
only if the solution is known on a curve which is not a characteristic. As we
will see in the next section, this condition is precisely not valid in this case.

4.4. Using the Characteristics to Predict the Number of Solutions

In the previous example, vector each vector b(x, y) defined in Eq. (13) is
parallel to [1, 1]>. The characteristics are thus the straight lines represented by
equations y = x+ η, η ∈ R, including the set ΩR. Depth u can be univocally
calculated along each characteristic, up to a constant. This uniqueness result
is not contradicted by the previous two-fold ambiguity since, for any η ∈ R:

u+(x, x+ η)− u−(x, x+ η) = x(x+ η)− x2 + (x+ η)2

2
= −η

2

2
(28)

is independent from x.
If u(x, y) is known at one point of each characteristic, we have a better

understanding why problem (12) has a unique solution. Following this
rationale, all functions of the following form seem to be solutions to the
previous example:

u(x, y) = u+(x, y) + v(y − x) (29)

provided that v is a scalar function such that v(y − x) is constant along each
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characteristic. In fact, any function v is not acceptable because, as already
noted, differential formulation (12) is a necessary but unsufficient condition,
in the absence of boundary condition. From (29), we deduce:

∇u(x, y) =

[
y − v′(y − x)
x+ v′(y − x)

]
(30)

Eq. (7) tells us that the surface z = u(x, y) of albedo ρ ≡ 1 is a solution to
the previous example only if:

−s [y − v′(y − x)]− s [x+ v′(y − x)] + c√
1 + [y − v′(y − x)]2 + [x+ v′(y − x)]2

= I1(x, y)

s [y − v′(y − x)] + s [x+ v′(y − x)] + c√
1 + [y − v′(y − x)]2 + [x+ v′(y − x)]2

= I2(x, y)

(31)

Using (22), we easily find the only two solutions in v′(y − x) to system (31):{
v′1(y − x) = 0

v′2(y − x) = y − x
=⇒


v1(y − x) = K1, K1 ∈ R

v2(y − x) =
(y − x)2

2
+K2, K2 ∈ R

(32)

Plugging (32) into (29), we eventually obtain the two following solutions:
u1(x, y) = u+(x, y) +K1

u2(x, y) = u+(x, y) +
(y − x)2

2
+K2 = u−(x, y) +K2

(33)

This result confirms that there are only two analytical solutions u+ and u−,
up to the constants K1 and K2.

4.5. Integrability Constraint

Even if vector field [p, q]> = [−n1/n3,−n2/n3]> is easily calculated from
a normal field, there is no guarantee that this vector field is integrable i.e.,
that it satisfies the integrability constraint [32]:

∂p

∂y
=
∂q

∂x
(34)
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whereas this is required, if the surface is supposed to be at least C2, in order
to be sure that equation ∇u = [p, q]> has a solution in u. Onn and Bruckstein
note in [9] that “most of the time”, in each connected part P of Ω\ΩR, one
of the two possible normal fields may be discarded since it is not integrable.
To decide, they rely on a criterion deduced from (34):∫∫

(x,y)∈P

[
∂p

∂y
(x, y)− ∂q

∂x
(x, y)

]2

dx dy = 0 (35)

They also characterize the “rare cases” where (35) is satisfied by more
than one normal field, in which case the PS2 problem admits several solutions.
In fact, the examples of Sections 3.3 and 4.3 are such “rare cases”.

Let us now return to the example of Fig. 4. Using the non-differential
formulation, we found 24 = 16 possible normal fields. A more complex
rationale based on the topology of sets ΩR and ΩG allowed us to predict a
unique solution. Consequently, among the sixteen normal fields, only one is
integrable. However, a prediction based on topology is difficult to extend to
the discrete framework, since the notion of continuity will be lost.

Indeed, let us calculate the sets ΩR and ΩG when the images are quantized.
It is clear from Fig. 5 that the topology of ΩR is very sensitive to quantization
noise. It is thus no longer possible to predict the number of solutions using
the rationale of Section 4.2 from such a fragmented set ΩR.

Figure 5: Two same images as in Fig. 4, quantized using 256 levels (8 bits). While this is
not the case of ΩG (right), ΩR becomes fragmented (left).

We show in the next section that it is possible to efficiently find the most
integrable normal field, and hence to eliminate the ambiguities of the PS2
problem, without knowledge of a boundary condition [10] nor parameter
tuning [8].
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5. Photometric Stereo Using Two Images: A Numerical Resolution

We know from Section 3.1 that the PS2 problem admits at most two
solutions in n at each point (x, y) ∈ Ω (see Fig. 6). We can thus a priori
construct at most 2|Ω| different discrete normal fields, where |Ω| denotes the
number of pixels inside Ω. Yet, except in some rare cases [9], only one of
these candidates is integrable. Let us show how to efficiently find this most
integrable normal field.

n n+ n−

u u+ u−

Figure 6: Top: RGB-encoded normal fields (n is the ground truth, n+ and n− are the
normal fields estimated by (42)), using the quantized dataset presented in Fig. 5. Bottom:
3D-shapes obtained integrating the normals [12]. The normal fields n+ and n− are only two
solutions among 2|Ω|, since any combination of both these normal fields is also plausible.

5.1. Estimating the Candidate Normal Fields

Problem (8) has two solutions n+ and n− at each point. Let us first show
how to express these solutions using a purely algebraic method.

At each point (x, y) ∈ Ω, the two first equations of problem (8) write (the
dependencies in (x, y) are omitted):[

s1>

s2>

]
︸ ︷︷ ︸
S>∈R2×3

n =

[
I1

ρ
I2

ρ

]
︸︷︷︸
i∈R2

(36)
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With a view to solving Eq. (36) in the least-squares sense in order to handle
quantization noise, we reformulate problem (8) as follows:{

min
n

∥∥S>n− i
∥∥2

s.t. ‖n‖ = 1
(37)

The singular value decomposition (SVD) of S> can be written as:

S> = UΣV> = σ1u1v
>
1 + σ2u2v

>
2 (38)

In (38), σ1 ≥ σ2 > 0 are the pair of strictly positive singular values of S
(S has rank 2, since s1 and s2 are non-collinear), u1 and u2 are orthonormal
vectors of R2, and v1 and v2 are orthonormal vectors of R3. It can be shown
(Theorem 5.5.1 in [33]) that the minimum-norm solution of the least-squares
problem resulting from (36):n0 = argmin

n∈E
‖n‖

s.t. E =
{
n ∈ R3, ‖S>n− i‖2 ≤ ‖S>m− i‖2 ∀m ∈ R3

} (39)

is written as:

n0 =
u>1 i

σ1

v1 +
u>2 i

σ2

v2 (40)

Let us now solve problem (37). Three cases can occur:

1. If ‖n0‖ = 1, then n+ = n− = n0 is the only exact solution to (37). This
corresponds to the singular points discussed in Section 4.1.

2. If ‖n0‖ < 1, then the set of solutions to problem (37) can be written as:

n0 + Rv3 (41)

where v3 is a unit-length vector of the kernel of S> (this kernel has
dimension 1, according to the rank theorem). Two of these solutions
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have unit-length, which are the only two solutions to problem (37)1:{
n+ = n0 +

√
1− ‖n0‖2 v3

n− = n0 −
√

1− ‖n0‖2 v3

(42)

3. Finally, if ‖n0‖ > 1, the problem admits no exact solution. It is tempting
to choose the approximate solution n+ = n− = n0

‖n0‖ , but this is not the

real solution to (37). It is proven in [33] that this solution writes as:

n(λ0) =
σ1u

>
1 i

σ2
1 + λ0

v1 +
σ2u

>
2 i

σ2
2 + λ0

v2 (43)

which reduces to n0 when λ0 = 0, yet λ0 is in fact the unique positive
solution in λ to the following secular equation:(

σ1u
>
1 i

σ2
1 + λ

)2

+

(
σ2u

>
2 i

σ2
2 + λ

)2

− 1 = 0 (44)

Eq. (44) could be rewritten under the form of an algebraic equation of
degree 4 in λ, and solved using the Ferrari-Cardan formulae. Instead,
we used in our implementation a Newton method. However, it should
be reminded that an equation of this type has to be solved at each
pixel such that ‖n0‖ > 1. If the targetted application has real-time
requirements [15], n0/‖n0‖ may be preferred as a fast approximation of
the solution to (37), although it is not the exact solution.

5.2. Disambiguating the Problem by Graph Cut

The case ‖n0‖ < 1 being by far the most frequent, we can actually build
almost 2|Ω| normal fields, which are all solutions to problem (8). In [34], it
is proposed to better constrain the problem assuming that the normals are
distributed according to a Laplace law, but this assumption is hard to justify.
As discussed in Section 4.5, we would rather advise using the integrability
constraint of the normal field, which is much less restrictive (the surface is
simply assumed C2, at least piecewise). We will now describe the practical
resolution of the problem (8) based on this constraint.

1The expressions (42) a posteriori explain the signification of the superscripts + and −.
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Finding the “most integrable” normal field amounts to finding the one such
that the integrability constraint (34) is “best” approximated over Ω. This can
be formulated as the variational problem (35). Yet, such a variational problem
does not account for the fact that we know explicitely the 2|Ω| possible normal
fields. An exhaustive search of the most integrable normal field could be
preferred, but it may be computationally infeasable on large data. Instead,
we suggest to recast the task of finding the most integrable normal field as a
binary labelling problem whose solution can be found efficiently, by means of
the graph cut algorithm [11].

Let us attribute to each pixel a label l ∈ {+,−} indicating the normal n+

or n−, and let us denote by [pl, ql]> = [−nl1/nl3,−nl2/nl3]> the corresponding
discrete approximation of the surface gradient ∇u. The “optimal” labelling
l : Ω→ {+,−} is the one which makes the normal field the “most integrable”.
Thus, we now have to solve the following discrete version of the variational
problem (35) over Ω:

min
l

∑∑
(x,y)∈Ω

[
∂pl

∂y
(x, y)− ∂ql

∂x
(x, y)

]2

(45)

In order to discretize the space derivatives of problem (45) using finite
differences of order 1, we should consider the four possible cliques families of
order 3: 

C3
1 =

{
{(x, y), (x− 1, y), (x, y − 1)} ∈ Ω3

}
C3

2 =
{
{(x, y), (x+ 1, y), (x, y − 1)} ∈ Ω3

}
C3

3 =
{
{(x, y), (x− 1, y), (x, y + 1)} ∈ Ω3

}
C3

4 =
{
{(x, y), (x+ 1, y), (x, y + 1)} ∈ Ω3

} (46)

If we denote (l1, l2, l3) the labels of each clique’s three pixels, in the same
order they are defined in (46), problem (45) can be rewritten as:

min
l

∑
c3∈C3

V int
c3 (l1, l2, l3) (47)

where C3 = ∪4
i=1C3

i , and potential V int
c3 (l1, l2, l3) gives the local integrability

for the current clique c3 and the current labeling l. For example, if c3
1 ∈ C3

1 :

V int
c31

(l1, l2, l3) =
[(
pl1(x, y)− pl3(x, y − 1)

)
−
(
ql1(x, y)− ql2(x− 1, y)

)]2

(48)
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Problem (47) is a labeling problem where the local potential depends on the
current pixel and on two of its neighbours. Such combinatorial optimization
problems have been studied in [35], where it has been proven that the graph
cut algorithm [11] can be used to minimize the energy

∑
c3∈C3 V

int
c3 (l1, l2, l3),

provided that its regularity (sub-modularity) is ensured, which means here:
V int
c3 (+,+, l3) + V int

c3 (−,−, l3) ≤ V int
c3 (+,−, l3) + V int

c3 (−,+, l3)

V int
c3 (+, l2,+) + V int

c3 (−, l2,−) ≤ V int
c3 (+, l2,−) + V int

c3 (−, l2,+)

V int
c3 (l1,+,+) + V int

c3 (l1,−,−) ≤ V int
c3 (l1,+,−) + V int

c3 (l1,−,+)

(49)

for any c3 ∈ C3 and any (l1, l2, l3) ∈ {+,−}3. Of course, these inequalities
have no reason to be satisfied.

5.3. Ensuring the Regularity Condition

To ensure the regularity condition, we modify the problem (47) by intro-
ducing a regularization term of the Ising type:

min
l

∑
c3∈C3

V int
c3 (l1, l2, l3) +

∑
c2∈C2

V Ising
c2 (l1, l2) (50)

where C2 = ∪4
i=1C2

i gathers the four following sets of cliques of order 2:
C2

1 =
{
{(x, y), (x− 1, y)} ∈ Ω2

}
C2

2 =
{
{(x, y), (x, y − 1)} ∈ Ω2

}
C2

3 =
{
{(x, y), (x− 1, y − 1)} ∈ Ω2

}
C2

4 =
{
{(x, y), (x+ 1, y − 1)} ∈ Ω2

} (51)

and V Ising
c2 (l1, l2) is defined as follows, where (l1, l2) denote the labels of the

two pixels of each clique c2 ∈ C2, in the same order they are defined in (51):

V Ising
c2 (l1, l2) = βc2 δ(l1 6= l2) (52)

In Eq. (52), βc2 is a positive or zero local coefficient i.e., such a coefficient must
be fixed for each c2 ∈ C2. Enforcing the regularity condition for (50), we deduce
a lower bound for each βc2 . For example, if c2

3 = {(x, y), (x− 1, y − 1)} ∈ C2
3 :

βc23 ≥
1

2
max

{
0, max

(l3,l4)∈{+,−}2

{
∆V int

c33
(l3),∆V int

c32
(l4)
}}

(53)
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where c3
3 = c2

3 ∪ (x, y− 1), c3
2 = c2

3 ∪ (x− 1, y), and (l3, l4) denote the labels of
(x, y − 1) and (x− 1, y), respectively. Finally, for j ∈ {2, 3} and k ∈ {+,−}:

∆V int
c3j

(k) = V int
c3j

(k,+,+)+V int
c3j

(k,−,−)−V int
c3j

(k,+,−)−V int
c3j

(k,−,+) (54)

From a Markovian point of view, our approach consists in using non-
stationary Ising models. The use of such models corresponds to a piecewise
uniform prior on the labeling l. We know from Section 4 that there exist
a finit number of connected areas over which the solutions n+ and n− are
different (these areas are bounded by the set ΩR). If these normal fields are
estimated as indicated in Section 5.1, they will be continuous inside each area,
so the optimal labeling should change only along their boundaries. The Ising
prior is thus consistent with the theoretical analysis conducted in Section 4.

Yet, in order not to bias the 3D-reconstruction which should rather be
guided by integrability, this prior should have as few influence as possible:
according to inequalities like (53), it is possible to predict, for each clique
c2 ∈ C2, the smallest value of coefficient βc2 to ensure the regularity condition.
These coefficients should therefore not be considered as parameters, which
is an advantage. This allows us to limit the energy regularization, only in
order to ensure regularity in the sense of Kolmogorov [35], thus avoiding
oversmoothing. When coefficients βc2 are not fixed to their minimum values,
the labeling is oversmoothed, which biases the 3D-reconstruction (see Fig. 7).
Our approach thus avoids the difficulty of tuning the regularization parameters,
which is a problem with existing methods (cf. Figs. 8 and 9).

5.4. An Efficient Method for Solving the PS2 Problem

To sum up, the method of resolution of the PS2 problem that we recom-
mend comprises two stages:

1. The calculation of normal fields n+ and n− as indicated in Section 5.1.

2. The disambiguation of the problem using the integrability criterion, an
8-connected Ising model, the minimum values of the coefficients βc2 like
for instance (53), and the graph cut algorithm.

Both steps can be efficiently conducted: the initial solutions n+ and n− are
explicit, and optimization by graph cut guarantees a minimum CPU time2.

2It is stated in [11] that “the running time is nearly linear in practice”.

24



Labels Classif. error Normals Angular error
β
c2

=
β

m
in

τ = 1% MAE = 0.48◦

β
c2

=
2
0β

m
in

τ = 5% MAE = 1.67◦

β
c2

=
50
β

m
in

τ = 17% MAE = 5.75◦

Figure 7: The oversmoothing of the labeling obtained using high values of coefficients βc2 ,
on the dataset from Fig. 6. From left to right: obtained labeling (black for n+, white
for n−), XOR map between the estimated labels and the ground truth one (τ indicates the
percentage of wrong labels), estimated normal field, and absolute angular error in degrees
(MAE is the mean angular error). The choice βc2 = βmin indicates minimal coefficients
(cf. (53)).

The 3D-reconstruction shown in the first row of Fig. 7 is obtained applying
this method to the example of Fig. 6. The normal field is very similar to that
of the ground truth: when the albedo is known and in the absence of shadow,
our method is able to recover almost exactly the genuine normals.

In addition to being parameter-free and not requiring a boundary condition,
Figs. 8 and 9 show us that the proposed method is able to confine estimation
errors, which may be useful if a shadow is present in one (or both) of the
images. This is in contrast with existing methods, for which an estimation
error in one pixel may propagate to its neighbors.

25



[8] [8]

[30] α = 0.15 α = 0.01

I1 + Dirichlet β = 1 β = 0.3 Proposed

φ
=

20
◦

MAE = 1.83◦ MAE = 13.65◦ MAE = 11.58◦ MAE = 0.43◦

φ
=

40
◦

MAE = 6.77◦ MAE = 13.17◦ MAE = 11.94◦ MAE = 0.78◦

φ
=

60
◦

MAE = 12.64◦ MAE = 15.87◦ MAE = 15.76◦ MAE = 2.06◦

Figure 8: Angular errors on the normals. The dataset from Fig. 5 was considered while
increasing the zenithal angles φ for the lightings, in order to create stronger shadowing
effects. Our method confines the errors in the shadow areas, while requiring neither a
boundary condition nor parameter tuning (α and β are defined in Eq. (15)).

[30] + Dirichlet [8] (α = 0.15, β = 1)

[8] (α = 0.01, β = 0.3) Proposed

Figure 9: 3D-reconstructions corresponding to the second row in Fig. 8.
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Yet, our approach has one major weakness with respect to existing methods.
Indeed, we assume that the albedo is known. In contrast, since existing
methods [8, 30] are based on image ratios, knowledge of the albedo is not
required. As a consequence, their methods are robust to unpredicted albedo
variations, while ours is not. As it is illustrated in Figs. 10 and 11, this
represents an important limitation of our method. To conclude, our method
yields overall more accurate 3D-reconstructions than existing ones, and is
more flexible (neither need for boundary condition nor parameter tuning),
but only when the albedo is known. This restriction is also recurrent in shape-
from-shading, where albedo estimation must be carried out beforehand using
interpolation techniques [36, 37], or within the 3D-reconstruction process by
introducing priors on the albedo and the shape [38].

For sake of completeness, well-posedness of the PS2 problem with unknown
albedo is briefly discussed hereafter.

[8] [8]

[30] α = 0.15 α = 0.01

I1 + Dirichlet β = 1 β = 0.3 Proposed

d
ρ

=
10

MAE = 1.88◦ MAE = 14.06◦ MAE = 11.82◦ MAE = 2.71◦

d
ρ

=
50

MAE = 2.00◦ MAE = 14.16◦ MAE = 11.87◦ MAE = 9.22◦

d
ρ

=
10

0

MAE = 2.05◦ MAE = 14.24◦ MAE = 11.89◦ MAE = 14.50◦

Figure 10: The 256× 256 images were created with ρ everywhere equal to 1 except on a
diagonal band with width dρ pixels where it was set to 0.9. Assuming (wrongly) that ρ ≡ 1
induces a bias with our method, while existing methods are independent from the albedo.
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[30] + Dirichlet [8] (α = 0.15, β = 1)

[8] (α = 0.01, β = 0.3) Proposed

Figure 11: 3D-reconstructions corresponding to the second row in Fig. 10.

5.5. PS2 Problem with Unknown Albedo

At this stage, it is interesting to quote a variant of the PS2 problem, where
the surface to be reconstructed has an unknown albedo. The presence of a
supplementary unknown ρ(x, y) at each point (x, y) ∈ Ω could drastically
complicate the problem. A main feature of the PS3 problem is that the albedo
can be univocally estimated [5]. This is not the case for SFS since, even if
the albedo is known, the problem is usually ill-posed [39]. We will see that
the PS2 problem with unknown albedo is more similar to SFS than to PS3.

Let us first give a geometric interpretation of (11). Since s =
[
s̃>, s3

]>
and n(x, y) is parallel to

[
−∇u(x, y)>, 1

]>
, this equation is rewritten as:[

I2(x, y) s1 − I1(x, y) s2
]
· n(x, y) = 0 (55)

Eq. (55) can be directly derived from the two first equations of (8). It means
that n(x, y) lies within a plane χ(x, y) which is orthogonal to the vector
I2(x, y) s1− I1(x, y) s2. Naturally, χ(x, y) is orthogonal to the plane π as well,
which is supported by the vectors s1 and s2. It is noteworthy that Eq. (55)
holds true for any albedo value ρ(x, y), because Eq. (11) has been derived
from problem (10) by elimination of ρ(x, y).

We know from Section 3.1 that, for any known albedo value ρ(x, y),
problem (8) has two solutions n+(x, y) and n−(x, y) which are symmetric
with respect to π. The geometric interpretation of Eq. (55) means that for
a fixed pair of graylevels (I1(x, y), I2(x, y)), different values of ρ(x, y) will
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provide different values of n+(x, y) and n−(x, y) which all lie within χ(x, y).
Fig. 12 shows us that n+(x, y) and n−(x, y) move towards plane π as ρ(x, y)
decreases from 1 towards a limit value ρinf(x, y) which corresponds to the limit
case n+(x, y) = n−(x, y). Hence, at each (x, y), a range of values [ρinf(x, y), 1]
are feasible for ρ(x, y). If s1 6= s2, it can be shown that this limit is worth:

ρinf(x, y) =

√
I1(x, y)2 + I2(x, y)2 − 2 I1(x, y) I2(x, y) (s1 · s2)

1− (s1 · s2)2
(56)

Hence, the PS2 problem with unknown albedo is ill-posed. However, it is
worth underlining that, when a boundary condition is available, problem (12)
can be solved without any knowledge of ρ(x, y). Moreover, ρ(x, y) can be a
posteriori calculated in this case, using any of the PDEs of (10).

Figure 12: Normals n+(x, y) and n−(x, y) move towards π as ρ(x, y) decreases from 1
towards a minimum value ρinf(x, y) which corresponds to the limit case n+(x, y) = n−(x, y).
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As an example, let us reconsider the example of Section 3.3, under the
assumption that ρ(x, y) is unknown. The non-differential problem (16) be-
comes: 

ρ(x, y)n3(x, y) =
1√
2

ρ(x, y)
n1(x, y) + n2(x, y) +

√
2n3(x, y)

2
=

√
2− 1

2
√

2

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1

(57)

For any given value of ρ(x, y), the two first equations of (57), which can be
rewritten as n3(x, y) = 1√

2 ρ(x,y)
and n1(x, y) + n2(x, y) = −1√

2 ρ(x,y)
, admit an

infinity of solutions:

n(x, y) =
1

ρ(x, y)

 1√
2

−1
0
1

+ t

−1
1
0

 (58)

which depend on a real parameter t. Replacing expression (58) of n(x, y) in
the third equation of (57), we find after some algebra the following result:

n(x, y) =
1

2
√

2 ρ(x, y)

−1− ε
√

4 ρ(x, y)2 − 3

−1 + ε
√

4 ρ(x, y)2 − 3
2

 (59)

where ε = ±1. In (59), the albedo value ρ(x, y) can be arbitrarily chosen,
provided that 4 ρ(x, y)2 − 3 ≥ 0. This means that ρ(x, y) ≥

√
3/2, which

is actually the limit value ρinf(x, y) given in (56). Clearly, this problem is
ill-posed since at each point (x, y) ∈ Ω, for each value ρ(x, y) ∈ [

√
3/2, 1],

there are two possible normals, due to the two possible values of ε in (59).
To conclude, with the non-differential approach that we follow in this

article, the PS2 problem can be solved unambiguously only if the albedo
is known beforehand. Nevertheless, let us now show that solving the PS2
problem in an efficient way is not a purely formal challenge.
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6. An Application: Improving Three-source Photometric Stereo

We have seen in Section 5 that the accuracy of PS2 strongly depends on
the presence of shadows. The simplest way to ensure robustness to shadows
is to consider a third image, i.e. the PS3 problem. By placing the lights
appropriately, one can ensure that each surface point is lit in at least two
out of the three images, and resort to a combination of the PS2 and the PS3
techniques. This can improve a lot the accuracy of real-time PS based on
color photometric stereo [15].

6.1. The Recurrent Problem of Shadows

The three photographs of the first row of Fig. 13, which are available on
the web3, show a plaster bust of Beethoven illuminated by three non-coplanar,
parallel and uniform light beams. Since the light vectors are provided, these
real data are particularly well adapted to the PS3 technique (see Section 2.2).
In addition, let us remark that no boundary condition is available.

Solving at each point (x, y) ∈ Ω a linear system of type (6), then integrating
the normals using [12], we indeed obtain a “satisfactory” 3D-shape (see
Fig. 14), but this is contradicted by the estimated albedo (see Fig. 13-d),
which should be uniform since the material is homogeneous. We also note
that the points where the albedo estimate is biased lie inside the shadows.

The problem of dealing with shadows in PS is well-known. Because they
constitute an unavoidable departure from the Lambertian model (2), shadow
graylevels are usually considered as outliers. In this view, most contributions
[23, 24, 25, 26, 27, 28] assume that m > 3 images are available, which is
not the case here. Only [8] considers the case m = 3, and thus “two-source
photometric stereo [. . . ] in the presence of shadows”.

Based on a simple shadow detection (we used the same graph cut-based
approach as in [40]), Fig. 13-e shows how Ω can be split into four subsets:
Ω3, Ω1,2

2 , Ω1,3
2 and Ω2,3

2 , with straightforward notations (Ω1,3
2 is empty in this

example). A PS3/PS2 combination can then be considered: the PS2 technique
can be used over the pixels lit in only two images, and the PS3 technique
elsewhere. The PS3 solution is also used for the points shadowed in more
than one image, for stability reasons, yet it would probably be possible to
define three other subsets Ω1

1, Ω2
1 and Ω3

1 and resort to SfS over these sets.

3http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/Industrial/
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(a) I1 (b) I2 (c) I3

(d) (e)

Figure 13: (a-b-c) Three photographs of a plaster bust of Beethoven. (d) Albedo estimated
using the PS3 technique, which is biased in the shadow areas. (e) Partition of Ω: Ω3

(white), Ω1,2
2 (red), and Ω2,3

2 (blue). PS2 is applied in the Ω2 sets, and PS3 elsewhere.

PS3 PS2 PS3/PS2 ([8]) PS3/PS2 (ours)

Figure 14: 3D-shape reconstructed from the three photographs of the top line of Fig. 13,
using different techniques. The PS2 technique is applied to the pair of images (I1, I2).
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To apply the method described in Section 5.4 to the PS3/PS2 combination,
we first need to estimate the albedo. Knowing that it is uniform since the
material is homogeneous, this can be carried out by evaluating the histogram
peak of the estimated albedo inside the set Ω3, which can be considered as
the “real” albedo: we obtained the value ρ = 0.74.

As shown in Fig. 14, using only two images yields biased results because
PS2 is not robust to shadows. Yet, as shown in Fig.15, combining the PS3
and PS2 techniques can improve a lot the accuracy of the 3D-reconstruction.
In addition, it seems that using the proposed PS2 framework inside this
combination improves the results, in comparison with state-of-the-art.

PS3 PS3/PS2 ([8]) PS3/PS2 (ours)

Figure 15: Frontal (top) and side (bottom) views of the 3D-reconstructions obtained using
PS3, and two versions of the combination PS3/PS2. Ours is able to recover fine-scale
details more accurately in the shadow areas.
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In order to quantitatively assess the accuracy of the proposed PS2 frame-
work, we extracted three images from the dataset [41], which contains 96
images in total, and for which ground truth normals are available. Our PS2
method was applied only over a shadow area, indicated in red, where the
albedo is approximately uniform. The proposed method is able to handle shad-
ows even when they are located near the boundaries, which is a known failure
case of the differential approach in the absence of a boundary condition [8].

PS3 PS3/PS2 ([8]) PS3/PS2 (ours)

Figure 16: Top row: Three images of a Lambertian object, and the Ω3/Ω
2,3
2 partition.

The area indicated in red lies almost entirely in the shadow in the first image. Middle
row: angular error (in degrees) obtained using, from left to right, the PS3 method (MAE
= 11.84◦), the PS2/PS3 combination from [8] (MAE = 11.27◦), and the proposed one
(MAE = 11.57◦). The differential approach, which ensures smoothness, is globally more
satisfactory than the non-differential one. Bottom: 3D-reconstruction results. The MAE
over the area indicated in red are worth, respectively, 20.79◦, 25.49◦ and 16.73◦. Our
method achieves the best 3D-reconstruction in the shadow area.
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6.2. Color Photometric Stereo

Hernández et al. argue the following in [8]: “Using photometric stereo
on just three images may seem like an unreasonably hard restriction. There
is, however, a particular situation when only three images are available.
This technique is known as color photometric stereo”. Indeed, the most
straightforward application of PS2 is color photometric stereo, a technique
where three light sources with different colors and positions are used to
simultaneously provide three (graylevel) images of the surface under three
different illuminations.

This idea is due to Kontsevich et al., who show in [42] how to reconstruct
the 3D-shape of a white painted scene, illuminated by m = 3 color light
sources. Indeed, the number of channels of a standard color image is three.
Considering each channel as a graylevel image, a single RGB image is enough
to apply the PS3 technique. A deformable scene such as a face can therefore
be reconstructed, even if the person is not standing still: Hernández et al.
show in [15] “how multispectral lighting allows one to essentially capture
three images (each with a different light direction) in a single snapshot, thus
making per-frame photometric reconstruction possible”. An example of such
an RGB image extracted from a video sequence4 is shown in Fig. 17. Let
us nevertheless point out that the albedo map should be the same in each
channel. In practice, this requires that the scene is made-up. Since applying
make-up also ensures that the albedo is uniform, it can be estimated by
evaluating the histogram peak.

(a) (b) (c) (d) (e)

Figure 17: (a) An RGB image of a face illuminated by three directional, non-coplanar,
color light sources. (b-c-d) Decomposition of the image (a) in three channels (red, green,

blue). (e) Partition of Ω into sets Ω3 (white), ΩR,B2 (green), and ΩG,B2 (blue).

4http://mi.eng.cam.ac.uk/research/projects/VideoNormals/
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We can apply the PS3 technique to the image of Fig. 17-a but, without
any specific treatment, the result is biased around the nose (see Fig. 18),
since the shadow renders the red channel unusable in this area (see Fig. 17-b).

As in Section 6.1, the histogram of the albedo allows us to estimate the
(uniform) albedo, and therefore to use the PS2 framework within the PS3/PS2
combination. In comparison with PS3, the result is greatly improved, even
if artifacts are visible at the junction between the Ω3 and Ω2 areas. The
proposed method even outperforms state-of-the-art.

PS3 PS3/PS2 ([8]) PS3/PS2 (ours)

Figure 18: 3D-reconstructions obtained from the single RGB image of Fig. 17-a. Only our
method is able to restore the nastril area. The artifacts around the shadow area boundary
are probably due to the overlapping spectra of the light sources: these artifacts are also
visible in the images of Fig. 17-b and Fig. 17-c, although they should not.

7. Conclusion and Future Prospects

In this paper, we first compared in Section 3 the non-differential formula-
tion of the PS2 problem with two differential formulations. This comparison
led us to provide in Section 4 a theoretical study of PS2. Building upon
this study, we chose the non-differential formulation of PS2 for its numerical
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resolution, which is detailed in Section 5. With this approach, two normals
can explain the graylevels at each point. Our main contribution consists in
reformulating the 3D-reconstruction problem as a binary labelling problem,
which is solved by means of the graph cut algorithm. The criterion to be
optimized is integrability, and a non-stationary Ising term must be added to
satisfy the regularity condition.

The straightforward application of this contribution is color photometric
stereo, which is explored in Section 6. Our method is validated on RGB
images extracted from a video sequence. It improves the 3D-reconstruction
fineness, while being quite fast. The real-time requirement expressed in [15]
is thus not compromised. We moreover assert that this approach is more
justified than regularization schemes. Regularization should not be used for
disambiguating the 3D-reconstruction problem, but rather for smoothing the
residual noise. In this view, future extensions of our work may include an
additional regularization designed to ensure more robustness. Yet, designing
computationally-efficient algorithms for regularizing normal fields is not an
easy task, because of the unit-length constraint. Recent developments on half-
quadratic algorithms designed for manifold-valued images [43] may constitute
an interesting option.

Nevertheless, the assumption that the albedo is known greatly limits the
applicability of our study. As future work we plan to extend it to the PS2
problem with unknown albedo. A solution to this more complex problem
would be, assuming the albedo known and uniform, that is to say ρ0 ≡ 1, to
get a first estimate u0 of the 3D-shape using the method described in Section
5.1. It seems then possible to solve the problem, using the constraint u ≈ u0

as an additional regularization, to deduce a new estimate ρ1, and then to
loop. A natural perspective of this extension is to cope with images taken by
a webcam on a sunny day, as in [7], since the sun rays move within a plane
and linear system (6) is not full-rank.

Finally, throughout this article, we made the hypothesis of an orthographic
camera. The proposed method of resolution of the PS2 problem could be
used as such for a perspective camera, although the constraint of integrability
is more complicated [44], as this only serves to disambiguate a combinatorial
optimization problem. Obviously, the perspective should be taken into account
in the final step, when the normals are integrated [12].
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