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STOCHASTIC APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS ON
COMPACT SPACES AND APPLICATIONS

MICHEL BENAIM, BERTRAND CLOEZ, FABIEN PANLOUP

ABSTRACT. As a continuation of a recent paper, dealing with finite Markov chains, this paper
proposes and analyzes a recursive algorithm for the approximation of the quasi-stationary distri-
bution of a general Markov chain living on a compact metric space killed in finite time. The idea
is to run the process until extinction and then to bring it back to life at a position randomly chosen
according to the (possibly weighted) empirical occupation measure of its past positions. General
conditions are given ensuring the convergence of this measure to the quasi-stationary distribution
of the chain. We then apply this method to the numerical approximation of the quasi-stationary
distribution of a diffusion process killed on the boundary of a compact set. Finally, the sharpness
of the assumptions is illustrated through the study of the algorithm in a non-irreducible setting.

Keywords. Quasi-stationary distributions ; stochastic approximation ; reinforced random walks ; random perturba-
tions of dynamical systems; extinction rate; Euler scheme.
AMS-MSC. 65C20; 60B12; 60J10, Secondary 34F05; 60J20; 60J60.

1. INTRODUCTION

Numerous models, in ecology and elsewhere, describe the temporal evolution of a system by a
Markov process which eventually gets killed in finite time. In population dynamics, for instance,
extinction in finite time is a typical effect of finite population sizes. However, when populations
are large, extinction usually occurs over very large time scales and the relevant phenomena are
given by the behavior of the process conditionally to its non-extinction.

More formally, let pξtqtě0 be a Markov process with values in E Y tBu where E is a metric
space and B R E denotes an absorbing point (typically, the extinction set or the complement of a
domain). Under appropriate assumptions, there exists a distribution ν on E (possibly depending
on the initial distribution of ξ) such that

lim
tÑ8

Ppξt P .|ξt ‰ Bq “ νp¨q. (1)

Such a distribution well describes the behavior of the process before extinction, and is necessar-
ily (see e.g [33]) a quasi-stationary distribution (QSD) in the sense that

Pνpξt P ¨|ξt ‰ Bq “ νp¨q.

We refer the reader to the survey paper [33] or the book [19] for general background and a
comprehensive introduction to the subject.

The simulation and numerical approximation of quasi-stationary distributions have received
a lot of attention in the recent years and led to the development and analysis of a class of particle
systems algorithms known in the literature as Fleming-Viot algorithms (see [14, 18, 20, 43]). The
principle of these algorithms is to run a large number of particles independently until one is killed
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and then to replace the killed particle by an offspring whose location is randomly (and uniformly)
chosen among the locations of the other (alive) particles. In the limit of an infinite number of
particles, the (spatial) empirical occupation measure of the particles approaches the law of the
process conditioned to never be absorbed; see for instance [43, Theorem 1] . Combined with
(1), this gives a method for estimating the QSD of the process.

In a related context the new paper [40] demonstrates the importance to simulate QSDs in
computational statistics as an alternative approach to classical MCMC simulations.

Recently, in the setting of finite state Markov chains, Benaim and Cloez [6] (see also [12]) ana-
lyzed and generalized an alternative approach introduced in [1] in which the spatial occupation
measure of a set of particles is replaced by the temporal occupation measure of a single par-
ticle. Each time the particle is killed it is risen at a location randomly chosen according to its
temporal occupation measure. The details of the construction are recalled in Section 2.

The objective of this paper is twofold: on one hand, we aim at extending the results of [6] to the
setting of Markov chains with values in a general space, being killed when leaving a compact
domain. Indeed, up to our knowledge, in all the previous works for this algorithm [1, 6, 12], the
state space E is finite. On the other hand, we also explore various applications: we propose and
investigate a numerical procedure, based on an Euler discretization, for approximating QSD of
diffusions.

In contrast with the Fleming-Viot particle system, this algorithm requires less calculus but
more memory. Also, it only depends on only one parameter (the time) and then approximates in
the same time the conditioned dynamics and its long time limit; in particular, it does not require
to calibrate simultaneously the number of particles and the time parameter as in the standard
Fleming-Viot approach. Instead, in view of a convergence result for this algorithm, one needs to
obtain some properties which are similar to the commutation of the limits of large particles and
of the long time for the Fleming-Viot algorithm. For the particle system, this type of problem is
not completely solved in general but some results have been obtained in some particular settings;
see for instance [14, 17, 18, 25, 28, 42]. Note that an example where the commutation property
does not hold is exhibited in Section 3.1. Besides, let us cite [35], [6, Section 3] or [36] which
give three different discrete-time Fleming-Viot type algorithms where the double limit is either
not proved or proved under restrictive assumptions. Another difference is that the Fleming-Viot
process is often developed in continuous-time although our stochastic approximation scheme is
in discrete time. As a consequence it is difficult to compare our assumptions on the transition
kernel with the ones of the articles mentioned previously. However, implementing the methods
of [14, 28, 42] requires a discretization and then leads to the QSD of an Euler-type sequence
instead of the one of the target diffusion process. Theorem 3.9 corroborates the consistence of
their methods and also shows the consistence of our algorithm.

Outline. The paper is organized as follows: In Section 2 we detail the general framework,
the hypotheses and state our main results. In Section 3, we first discuss our assumptions in the
simple case of finite Markov chains and then focus on the application to the numerical approx-
imation of QSDs for diffusions (including theoretical results and numerical tests), The sequel
of the paper (Sections 4, 5, 6, and 7) is mainly devoted to the proofs and the details about their
sequencing will be given at the end of Section 3. We end the paper by some potential extensions
of this work to some more general settings such as non-compact domains or continuous-time
reinforced strategies.
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2. SETTING AND MAIN RESULTS

2.1. Notation and Setting. Let E be a compact metric space1 equipped with its Borel σ-field
BpEq. Throughout, we let BpE ,Rq denote the set of real valued bounded measurable functions
on E and CpE ,Rq Ă BpE ,Rq the subset of continuous functions. For all f P BpE ,Rq we let
}f}8 “ supxPE |fpxq| and we let 1 denote the constant map x ÞÑ 1. We let PpEq denote
the space of (Borel) probabilities over E equipped with the topology of weak* convergence.
For all µ P PpEq and f P BpE ,Rq, or f nonnegative measurable, we write µpfq (or µf ) for
ş

E fdµ. Recall that µn Ñ µ in PpEq provided µnpfq Ñ µpfq for all f P CpE ,Rq, and that
(by compactness of E and Prohorov Theorem), PpEq is a compact metric space (see e.g [21,
Chapter 11]).

A sub-Markovian kernel on E is a map Q : E ˆ BpEq ÞÑ r0, 1s such that for all x P E ,
A ÞÑ Qpx,Aq is a nonzero measure (i.e Qpx, Eq ą 0) and for all A P BpEq, x ÞÑ Qpx,Aq is
measurable. If furthermoreQpx, Eq “ 1 for all x P E , thenQ is called a Markov (or Markovian)
kernel.

Let Q be a sub-Markovian (respectively Markovian) kernel. For every f P BpE ,Rq and
µ P PpEq, we let Qf and µQ respectively denote the map and measure defined by

Qfpxq “

ż

E
fpyqQpx, dyq and µQp¨q “

ż

E
µpdxqQpx, ¨q.

If Qf P CpE ,Rq whenever f P CpE ,Rq, then Q is said to be Feller. For all n P N, we let Qn

denote the sub-Markovian (respectively Markovian) kernel recursively defined by

Qn`1px, ¨q “

ż

E
Qpy, ¨qQnpx, dyq and Q0px, ¨q “ δx.

A probability µ P PpEq is called a quasi-stationary distribution (QSD) for Q if µ and µQ are
proportional or, equivalently, if,

µ “
µQ

µQ1
.

The number
Θpµq :“ µQ1 (2)

is called the extinction rate of µ.
Note that when Q is Markovian, a quasi stationary distribution is stationary (or invariant) in

the sense that µ “ µQ. In this case Θpµq “ 1, otherwise Θpµq ă 1.

From now on and throughout the remainder of the paper we assume given a Feller sub-
Markovian kernel K on E .

Let B R E be a cemetery point. Associated to K is the Markov kernel sK on E Y tBu defined,
for all x P E , A P BpEq, by

$

&

%

sKpx,Aq “ Kpx,Aq,
sKpx, tBuq “ 1´Kpx, Eq, and
sKpB, tBuq “ 1.

(3)

The kernel sK can be understood as the transition kernel of a Markov chain pYnqně0 on E Y tBu
whose transitions in E are given by K and which is "killed" when it leaves E .

1For comments about a possible extension to the non-compact case, see Section 8
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Let δ : E ÞÑ r0, 1s be the function defined by

δ “ 1´K1.
That is, for every x P E ,

δpxq “ sKpx, tBuq “ 1´Kpx, Eq. (4)
For a given µ P PpEq, we let Kµ denote the Markov kernel on E defined by

Kµpx,Aq “ Kpx,Aq ` δpxqµpAq

for all x P E and A P BpEq. Equivalently, for every f P BpE ,Rq,
Kµfpxq “ Kfpxq ` δpxqµpfq.

The chain induced by Kµ behaves like pYnq until it is killed and then is redistributed in E
according to µ. Note that Kµ inherits the Feller continuity from K. For the sequel, an important
feature of Kµ is that µ is a QSD for K if and only if it is invariant for Kµ (see Lemma 4.3 for
details).

Let pΩ,F ,Pq be a probability space equipped with a filtration tFnuně0 (i.e an increasing fam-
ily of σ-fields). We now consider an E-valued random process pXnqně0 defined on pΩ,F , P q
adapted to tFnuně0 such that

X0 “ x P E and @n ě 0, PpXn`1 P dy|Fnq “ KµnpXn, dyq, (5)

where

µn “

řn
k“0 ηkδXk
řn
k“0 ηk

(6)

is a weighted occupation measure. Here pηnqně0 is a sequence of positive numbers satisfying
certain conditions that will be specified below (see Hypothesis 2.1).

With the definition of Kµ, this means that whenever the original process pYnqně0 is killed, it
is redistributed in E according to its weighted empirical occupation measure µn. Note that such
a process is a type of reinforced random walk (see e.g [38]). It is reminiscent of interacting
particle systems algorithms used for the simulation of QSDs such as the so-called Fleming-
Viot algorithm (see [14, 18, 43] and [6, Section 3]). However, while these latter algorithms
involve a large number of particles whose individual dynamics depend on the spatial occupation
measure of the particles, here there is a single particle whose dynamics depends on its temporal
occupation measure. From a simulation point of view, this is of potential interest, suggesting
fewer computations (but more memory) and leading to a recursive method which avoids (at
least in name) the trade-off between the number of particles and the time horizon induced by
Fleming-Viot algorithm.

Set, for n ě 0,
γn “

ηn
řn
k“0 ηk

.

The occupation measure can then be computed recursively as follows:

µn`1 “ p1´ γn`1qµn ` γn`1δXn`1 . (7)

Under appropriate irreducibility assumptions (see Hypothesis 2.2 below), Kµ admits a unique
invariant probability Πµ. Owing to the above characterization of QSDs as fixed points of µ ÞÑ
Πµ, we choose to rewrite the evolution of pµnq as:

µn`1 “ µn ` γn`1p´µn `Πµnq ` γn`1εn (8)
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where εn “ δXn`1 ´ Πµn . The process pµnq is therefore a stochastic approximation algorithm
associated to the ordinary differential equation (ODE) (for which rigorous sense will be given in
Section 5):

9µ “ ´µ`Πµ. (9)
The almost sure convergence of pµnq towards µ‹ (the QSD of K) will then be achieved by
proving that :

(i) The asymptotic dynamics of pµnqně0 matches with that of solutions of the above ODE:
more precisely, pµnqně0 is (at a different scale) an asymptotic pseudo-trajectory of the
ODE (in the sense of Benaim and Hirsch [7], see [5] for background).

(ii) The set FixpΠq “ tµ P PpEq, µ “ Πµu reduces to µ‹ and is a global attractor of the
ODE.

This strategy was applied in [6] when E is a finite set. However, the proofs in [6] strongly
rely on finite dimensional arguments that cannot be applied in this more general setting and the
new proofs will require a careful study of the kernel family pKµqµ.

2.2. Main results. We first summarize the standing assumptions under which our main results
will be proved. We begin by the assumptions on pγnqně1.

Hypothesis 2.1 (Standing assumption on pγnq). The sequence pγnqně0 appearing in equation
(7) is a non-increasing sequence such that

ÿ

ně0
γn “ `8 and lim

nÑ`8
γn lnpnq “ 0. (10)

The typical sequence is given by γn “ 1
n`1 , which corresponds to ηn “ 1 for all n ě 1.

Now, let us focus on the assumptions on the sub-Markovian kernel K. We say that a non-
empty set A P BpEq Y tBu is accessible if for all x P E

ÿ

ně1

sKnpx,Aq ą 0.

It is called a weak2 small set if A Ă E and there exists a probability measure Ψ on E and ε ą 0
such that for all x P A

ÿ

ně1
Knpx, dyq ě εΨpdyq. (11)

Hypothesis 2.2 (Standing assumptions on K).
‚ pH1q K is Feller.
‚ pH2q The cemetery point tBu is accessible.

Assumptions H1 and H2 imply the existence of a quasi-stationary distribution but are not
sufficient to ensure its uniqueness (see the example developed in Subsection 3.1). For this, we
require the supplementary assumptions below

Hypothesis 2.3 (Additional assumptions on K).
‚ pH3q There exists an open accessible weak small set U .

2this is a mildly weaker definition than the usual definition of small or petite sets (see e.g [22, 34])
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‚ pH4q There exists a non increasing convex function C : R` ÞÑ R` satisfying
ż 8

0
Cpsqds “ 8 (12)

such that
ΨpKn1q

supxPE K
n1pxq ě Cpnq

where Ψ satisfies equation (11).

Roughly, the latter hypothesis stipulates that the rate at which the process dies is uniformly
controlled, in terms of the initial point. This is motivated by the recent work of Champagnat
and Villemonais [16] in which it is proved that under mildly stronger versions of H3 (namely,
K lpx, 9q ě εΨ for some l independent of x) and H4 (namely Cptq ě c ą 0) the sequence of
conditioned laws defined by

PxpYn P ¨|Yn P Eq “ Knpx, ¨q

Kn1pxq , n ě 0,

converges, as n Ñ 8, exponentially fast to a (unique) QSD. Here, Assumption H4 which
does not require the function s ÞÑ Cpsq to be lower-bounded does certainly not guarantee the
exponential rate but is a sharper and almost necessary assumption for the uniqueness and the
attractiveness of the QSD (on this topic, see also Remark 2.4 below and Proposition 3.3). More
precisely, it will be shown that under H3 and H4, the semiflow induced by (9) is globally
asymptotically stable (i.e FixpΠq is a singleton and is a global attractor).

Remark 2.4 (Sufficient condition). A simple condition ensuring Hypothesis 2.3 is that, for some
l ě 1, constants c1, c2 ą 0 and some Ψ P PpEq

c1Ψpdyq ď K`px, dyq ď c2Ψpdyq. (13)

Indeed, under (13), for n ě `,

c2ΨpKn´`1q ě Kn1 ě c1ΨpKn´`1q

while for n ď `, 1 ě Kn1 ě K`1 ě c1. Hence Cptq “ min
ˆ

c1
c2
, c1

˙

ą 0. Note that (13),

which is usual in the literature (see e.g. [9, Theorem 3.2]), is satisfied if K` admits a continuous
and positive density with respect to a positive reference measure.

Finally, note that in Hypotheses 2.2 and 2.3 there is no aperiodicity assumption on K.
We are now able to state our main general result about the convergence of the empirical

measure pµnqně0 towards the QSD.

Theorem 2.5 (Convergence of the algorithm). Assume Hypotheses 2.1, 2.2 and 2.3. Then, K
has a unique QSD µ‹ and the sequence pµnqně0 defined by (6) converges a.s. in PpEq towards
µ‹.

In fact, the previous setting also leads to the convergence in distribution of the reinforced
random walk:

Theorem 2.6 (Convergence in distribution of pXnqně0). Suppose that the assumptions of The-
orem 2.5 hold. Then, for any starting distribution α, pXnqně0 defined by (5) converges in
distribution to µ‹.
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The two above results thus show that the algorithm both produces a way to approximate µ‹

and also to sample a random variable with this distribution. The convergence in law of pXnqně0
may appear surprising due to the lack of aperiodicity assumption for pYnqně0. To overcome this
problem, we prove in fact that pXnqně0 gets asymptotically this property.

The extinction rate Θpµ‹q, defined in (2), can be estimated through the same procedure. For
this, we need to keep track of the times at which a "resurrection" occurs. We then construct pXnq

as follows. Let ppUn, Xnqq be a process adapted to tFnu, with Un P EYtBu, Xn P E , satisfying
X0 “ U0 “ x,

PpUn`1 P dy|Fnq “ sKpXn, dyq

and
Xn`1 “ Vn`11tUn`1“Bu ` Un`11tUn`1PEu,

where pVnq is a sequence of independent variables such that Vn`1 „ µn, conditionally on
σpFn, Un`1q. Clearly, pXnq satisfies (5) and the times at which Un “ B are the "resurrection"
times (at which Xn is redistributed).

Theorem 2.7 (Extinction rate estimation). Suppose that the assumptions of Theorem 2.5 are
satisfied. Then,

sθn :“ 1
n

n
ÿ

k“1
1tUk“Bu

nÑ`8
ÝÝÝÝÑ 1´Θpµ‹q.

Proof. Since PpUn`1 “ B|Fnq “ δpXnq , we can decompose sθn as

sθn “
Mn

n
` µnpδq

where pMnq is the martingale defined by Mn “
řn
k“1p1tUk“Bu ´ δpXk´1qq. Since the incre-

ments of pMnq are uniformly bounded, xMyn ď Cn and it follows from the strong law of large
numbers for martingales, that Mn

n Ñ 0 a.s. as n Ñ `8. On the other hand, µnpδq
nÑ`8
ÝÝÝÝÑ

µ‹pδq “ 1´Θpµ‹q a.s. This ends the proof. �

3. EXAMPLES AND APPLICATIONS

3.1. Finite Markov Chains. In this entire subsection, we consider the simple situation where
E is a finite set in order to discuss our main assumptions.

We use the notation
Kpx, yq “ Kpx, tyuq, @ x, y P E .

We say that x leads to y, written x ãÑ y, if
ř

ně0K
npx, yq ą 0. If A,B Ă E we write

A ãÑ B whenever there exist x P A and y P B such that x ãÑ y.
Kernel K is called indecomposable if there exists x0 P E such that x ãÑ x0 for all x P E , and

irreducible if x ãÑ y for all x, y P E .
Note that Hypothesis H1 is automatically satisfied (endow E with the discrete topology) and

that H3 is equivalent to indecomposability (choose U “ tx0u and Ψ “ δx0). From now on, we
investigate separately the irreducible and non-irreducible cases.

Irreducible setting. When K is irreducible Hypothesis H4 holds with Cpnq “ c ą 0. This
follows from the following lemma.
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Lemma 3.1. There exists c ą 0 such that

Kn1pxq “ Knpx, Eq ě cKnpy, Eq “ cKn1pyq

for all n P N and x, y P E such that x ãÑ y.

Proof. Let c1 “ mintKpx, yq : Kpx, yq ą 0u. If x ãÑ y, then the path which links x and y has
at most |E | ´ 1 steps and hence,

Dry P t1, . . . , |E | ´ 1u such that Krypx, yq ě c
ry
1 ě c

|E|´1
1 .

From the relation

Knpx, Eq ě Kn`rypx, Eq “
ÿ

y

Krypx, yqKnpy, Eq

it comes that
Knpx, Eq ě c

|E|´1
1 Knpy, Eq.

This proves the result with c “ c
|E|´1
1 . �

As a consequence, except for the rate of convergence, we retrieve [6, Theorem 1.2] (see also
[1, 12] for the convergence result in the case γn “ 1

n`1 ).

Theorem 3.2. Suppose K is irreducible and Kpx0, Eq ă 1 for some x0 P E . Then K has a
unique QSD µ‹ and under Hypothesis 2.1, pµnq converges almost surely to µ‹.

Bottleneck effect and condition H4. Here we discuss an example demonstrating the necessity
of condition H4 for non irreducible chains. Note that this example can also be understood as a
benchmark of more general processes admitting several QSDs such as general indecomposable
Markov chains.

Suppose E “ E1 Y E2 where E1 and E2 are nonempty disjoint sets such that

(1) @x, y P Ei x ãÑ y;
(2) E1 ãÑ E2;
(3) E2 ãÑ E1;
(4) E2 ãÑ B, (that is Dx P E2 Kpx, Eq ă 1) and E1 ãÑ B.

Let Ki be the kernel K restricted to Ei. That is

Ki “ pKpx, yqqx,yPEi .

Let µ‹i be the (unique) QSD of Ki and Θi the associated extinction rate. Note that, by irre-
ducibility of Ki, and the Perron Frobenius Theorem, Θi is nothing but the spectral radius of
Ki.

We consider µ‹i as an element of PpEq by identifying PpEiq with the set of µ P PpEq sup-
ported by Ei.

As previously noticed, H1,H2 and H3 are always true. However, assumption H4 might fail
to hold. More precisely, we have the following result.

Proposition 3.3 (Sharpness of H4). Condition H4 holds if and only if Θ1 ď Θ2. In this case
the unique QSD of K is µ‹2 and, under Hypothesis 2.1 µn Ñ µ‹2.



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 9

Proof. Fix x0 P E2 and let Ψ “ δx0 . Hence, H1, H2 and H3 hold. By Lemma 3.1 there exists
c ą 0 such that ΨpKn1q “ Kn1px0q ě cKn1pxq for all x P E2 and n ě 0. Thus H4 is
equivalent to

@x P E1, Kn1px0q ě CpnqKn1pxq (14)
with C satisfying (12). Let τ1 “ mintn ě 0 : Yn R E1u and τ2 “ mintn ě 0 : Yn “ Bu. By
Lemma 3.1 applied to each of the kernel Ki, and from the relation Θn

i “ µiK
n
i 1Ei , we get that

for all x P Ei
1
c

Θn
i ě Pxpτi ą nq ě cΘn

i (15)

for some c ą 0. Thus for all x P E1,

Pxpτ2 ą nq “ Ex rPpτ2 ą n|Fτ1qs “ Ex
“

PYτ1 pτ2 ą n´ τ1q
‰

ď
1
c
Ex

“

Θn´τ1
2 1τ1ďn ` 1τ1ąn

‰

by (15). Thus,

Pxpτ2 ą nq ď
1
c

Θn
2

n
ÿ

k“1
Θ´k2 pPxpτ1 ą k ´ 1q ´ Pxpτ1 ą kqq `

1
c
Pxpτ1 ą nq

“
1
c

Θn
2 pΘ´1

2 `

n´1
ÿ

k“1
pΘ´k´1

2 ´Θ´k2 qPxpτ1 ą kqq

“
1
c

Θn´1
2 p1` p1´Θ2q

n´1
ÿ

k“1
Θ´k2 Pxpτ1 ą kqq

Then, by (15) again, we get

Pxpτ2 ą nq ď OpΘn´1
2 q “ OpPx0pτ2 ą nqq

when Θ1 ă Θ2 and

Pxpτ2 ą nq ď OpΘn´1
2 p1` nqq “ OpPx0pτ2 ą nqp1` nqq

when Θ2 “ Θ1. This proves that (14) holds with Cptq “ C when Θ1 ă Θ2 and Cptq “
C{p1 ` tq when Θ1 “ Θ2. If now Θ1 ą Θ2, it follows from Theorem 3.4 below that another
QSD µ‹ ‰ µ‹2 exists, hence H4 fails.

�

For Θ1 ď Θ2, µ
‹
2 is a global attractor of the dynamics induced by (9), but when Θ1 exceeds

Θ2 a transcritical bifurcation occurs: µ‹2 becomes a saddle point whose stable manifold is PpE2q,
while there is another linearly stable point µ‹ whose basin of attraction is PpEqzPpE2q.

This behavior will be shown in section 7 and combined with standard techniques from sto-
chastic approximation, it will be used to prove the following result.

Theorem 3.4 (Behavior of the algorithm without Assumption H4). Suppose Θ1 ą Θ2. Then
there is another QSD µ‹ having full support (i.e µ‹pxq ą 0 for all x P E). Under Hypothesis
2.1,

(i) pµnqně0 converges almost surely to µ8 P tµ‹2, µ
‹u.

(ii) If X0 P E2, Xn P E2 for all n and µ8 “ µ‹2 with probability one.
(iii) If X0 P E1, the event tµ8 “ µ‹u has positive probability.
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(iv) If
ř

n

śn
i“1p1´ γiq ă `8, the event tDN P N : Xn P E2 for all n ě Nu has positive

probability, and on this event µ8 “ µ‹2.

Example 3.5 (Two points space). The previous results are in particular adapted to the case where
Ei “ tiu, i “ 1, 2 and

K “

ˆ

a 1´ a
0 b

˙

with a, b P p0, 1q. Write µ P PpEq as µ “ px, 1´ xq, 0 ď x ď 1. Then

Kµ “

ˆ

a 1´ a
p1´ bqx b` p1´ bqp1´ xq

˙

and the ODE (9) writes

9x “ ´x`
p1´ bqx

p1´ aq ` p1´ bqx. (16)

In this case, one can check that Θ1 “ a and Θ2 “ b, µ‹2 “ δ2 and when a ą b, µ‹ “
a´b
1´bδ1 `

1´a
1´b δ2. In Figure 1, for a fixed value of b, we draw the phase portrait of the ODE (16)

in terms of a and especially the bifurcation which appears when a ą b.

FIGURE 1. Transcritical bifurcation associated to Equation (16); b “ 1{3,
Continuous line: a ÞÑ µ‹2p1q, dotted line: a ÞÑ µ‹p1q .

Remark 3.6 (Open problem). Suppose γn “ A
n . Although µ‹2 is a saddle point when Θ1 ą Θ2,

Theorem 3.4 shows that the event µn Ñ µ‹2 has positive probability when A ą 1. A challenging
question would be to prove (or disprove) that this event has zero probability when A ď 1. This
is reminiscent of the situation thoroughly analyzed for two-armed bandit problems in [29, 30].

Remark 3.7 (Conditioned dynamics). Note that by mimicking the proof of Lemma 7.2 below,
one is also able to compute the limit of the conditioned dynamics:

lim
nÑ8

PypYn P ¨|Yn P Eq “ lim
nÑ8

Knpy, ¨q

Kn1pyq “ ν,

where ν “ µ‹2 if Θ1 ď Θ2 or y P E2 and ν “ µ‹ when Θ1 ą Θ2 and y P E1. Furthermore,
at least for Example 3.5 above, it is worth noting that the convergence is not exponential when
Θ1 “ Θ2.
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Remark 3.8 (Fleming-Viot algorithm). Theorem 3.4 shows that, with positive probability, our
algorithm asymptotically matches with the behavior of the dynamics conditioned to the non-
absorption. Surprisingly, this is not the case for the discrete-time (or continuous-time) Fleming-
Viot particle system (see [6, Section 3], for the definition) which always converges to µ‹2. Actu-
ally, let us recall that this algorithm has two parameters: the (current) time t ě 0 and the number
of particles N ě 1. When the number of particles goes to infinity, it is known that the empirical
measure (induced by the particles at a fixed time) converges to the laws conditioned to not be
killed; see for instance [18, 43] in the continuous-time setting. However, if we keep constant
the number of particles and let first the time t tend to infinity then, one obtains the convergence
to µ‹2 in place of µ‹. This comes from the fact that the state where all the particles are in E2 is
absorbing and accessible. In this case, the commutation of the limits established in [6, Section
3] fails. Finally, note that the study of the rate of convergence of Fleming-Viot processes in a
two-points space is investigated in [17].

3.2. Approximation of QSD of diffusions. A potential application of this work is to generate
a way to simulate QSD of continuous-time Markov dynamics. To this end, the natural idea is to
apply the procedure to a discretized version (Euler scheme in the sequel) of the process. Here,
we focus on the case of non-degenerate diffusions pξtqtě0 in Rd killed when leaving a bounded
connected open set D. More precisely, let pξtqtě0 be the unique solution to the d-dimensional
SDE

dξt “ bpξtqdt` σpξtqdWt, ξ0 P D,

where b and σ are defined on Rd with values in Rd and Md,d respectively. One assumes below
that the diffusion is uniformly elliptic and that b and σ belong to C2pRdq (see Remark 3.10).

For a given step h ą 0, we denote by pξht qtě0, the stepwise constant Euler scheme defined by
ξ0 “ y P D,

@n P N, ξhpn`1qh “ ξhnh ` hbpξ
h
nhq ` σpξ

h
nhqpWpn`1qh ´Wnhq,

and for all t P rnh, pn ` 1qhq, ξht “ ξhnh. Under the ellipticity assumption on the diffusion,
the Markov chain pYn :“ ξhnhqn satisfies the assumptions of Theorem 2.5 (with E “ sD) (in
particular (13)) and thus admits a unique QSD that we denote by µ‹h.

This QSD can be approximated through the procedure defined above and the natural question
is: does pµ‹hqh converge to µ‹ when hÑ 0, where µ‹ denotes the unique QSD of pξtqtě0 killed
when leaving D ? A positive answer is given below.

Theorem 3.9 (Euler scheme approximation). Assume that pξtqtě0 is a uniformly elliptic dif-
fusion and that D is a bounded domain (i.e. connected open set) with C3-boundary. Then,
ppξtqtě0, BDq admits a unique QSD µ‹ and pµ‹hqhą0 converges weakly to µ‹ when hÑ 0.

Remark 3.10 (Smoothness assumptions). The uniqueness of µ‹ is given by Theorem 5.5 of
Chapter 3 in [39] (see also [27, Theorem (C)]). Also note that in the proof of the above theorem,
one makes use of some results of [26] about the discretization of killed diffusions. The C2-
assumption on b and σ is adapted to the setting of these papers but could be probably relaxed in
our context.
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We propose to illustrate the previous results by some simulations. We consider an Ornstein-
Uhlenbeck process

dξt “ ´ξtdt` dBt, t ě 0
killed outside an interval ra, bs and thus compute the sequence pµhnqně1 with step h.

We will assume that a “ 0 and b “ 3. In Figure 2, we represent on the left the approximated
density of µhn (obtained by a convolution with a Gaussian kernel) for a fixed value of h and dif-
ferent values of n. Then, on the right, n is fixed pn “ 107q and h decreases to 0. Unfortunately,

FIGURE 2. Left: Approximated density of pµhnq with h “ 0.01 and
n “ 5.104, 105, 106 (green, blue, red) Right: Comparison of µ‹h for h “

0.05, 0.01, 0.001, (red, orange, blue) with µ‹ (red, dotted-line)

even though the convergence in n seems to be fast, the convergence of µ‹h towards µ‹ is very
slow: the discretization of the problem underestimates the probability to be killed between two
discretization times. The slow convergence means in fact that this probability decreases slowly
to 0 with h.

However, it is now well-known that, under some conditions on the domain and/or on the di-
mension, it is possible to compute a sharp estimate of this probability. More precisely, let prξht qt
denote the refined continuous-time Euler scheme rξhnh “ ξhnh and for all t P rnh, pn` 1qhq,

rξht “
rξhnh ` pt´ nhqbp

rξhnhq ` σp
rξhnhqpWt ´Wnhq.

It can be shown that

L
´

prξht qtPrnh,pn`1qhs|rξ
h
nh “ x, rξhpn`1qh “ y

¯

“ L
ˆ

x`
t´ nh

h
py ´ xq ` σprξhnhqBh

t

˙

where for a given T ą 0, BT denotes the Brownian Bridge on the interval r0, T s defined by:
BT
t “ Wt ´

t
TWT . In dimension 1, the law of the infimum and the supremum of the Brownian

Bridge can be computed (see [26] for details and a discussion about higher dimension). One has
for every z ě maxpx, yq,

P

˜

sup
tPr0,T s

ˆ

x` py ´ xq
t

T
` λBT

˙

ď z

¸

“ 1´ exp
ˆ

´
2
Tλ2 pz ´ xqpz ´ yq

˙

.



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 13

Thus, this means that at each step n, if ξpn`1qh P D, one can compute, with the help of the above
properties, a Bernoulli random variable V with parameter

p “ PpDt P pnh, pn` 1qhq, ξht P Dc|ξnh “ x, ξpn`1qh “ yq (If V “ 1, the particle is killed).

This refined algorithm has been tested numerically and illustrated in Figure 3.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIGURE 3. Approximation of µ‹h with the Brownian Bridge method for h “
0.1 (blue) compared with the reference density (red, dotted-line)

Remark 3.11. Here, the effect of the Brownian Bridge method is only considered from a numer-
ical viewpoint. The theoretical consequences on the rate of convergence are outside of the scope
of this paper. Also remark that in order to get only one asymptotic for the algorithm, it would be
natural to replace the constant step h by a decreasing sequence as in [31, 37]. Once again, such
a theoretical extension is left to a future work.

Outline of the proofs. In Section 4, we begin by some preliminaries: the starting point is to
show that the QSD is a fixed point for the application µ ÞÑ Πµ (on PpEq) where Πµ denotes the
invariant distribution of Kµ (see Lemma 4.3 below). Then, in order to give a rigorous sense to
the ODE (9), we prove that this application is Lipschitz continuous for the total variation norm
(Proposition 4.5) by taking advantage of the exponential ergodicity of the transition kernel Kµ

and the control of the exit time τ (see Lemma 4.1 and Lemma 4.4 ). In Section 5, we define
the solution of the ODE and prove its global asymptotic stability. In Section 6, we then show
that (a scaled version of) pµnqně0 is an asymptotic pseudo-trajectory for the ODE. The proofs of
Theorems 2.5 and 2.6 are finally achieved at the beginning of Section 7. In this section, we also
prove the main results of Section 3: Theorems 3.4 and 3.9. We end the paper by some possible
extensions of our present work.
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4. PRELIMINARIES

We begin the proof by a series of preliminary lemmas. The first one provides uniform esti-
mates on the extinction time

τ “ mintn ě 0 : Yn “ Bu (17)
where pYnqně0 is a Markov chain with transition sK defined in (3).

Lemma 4.1 (Expectation of the extinction time). Assume H1 and H2. Then
(i) There exist N P N and δ0 ą 0 such that for all x P E , sKN px, tBuq ě δ0.

(ii)
sup
xPE

Exrτ s ă `8.

Proof. (i) By H1 the map x ÞÑ sKN px, Bq “ 1 ´KN1pxq is continuous on E . It then suffices
to show that there exists N P N such that sKN px, Bq ą 0 for all x P E . Suppose to the contrary
that for all N P N there exists xN P E such that sKN pxN , Bq “ 0. Hence sKkpxN , Bq “ 0 for
all k ď N. By compactness of E , we can always assume (by replacing pxN q by a subsequence)
that xN Ñ x˚ P E . Thus sKkpxN , Bq

NÑ8
ÝÝÝÝÑ sKkpx˚, Bq “ 0 for all k P N. This leads to a

contradiction with assumption H2.
(ii) Let N and δ0 be like in piq. By the Markov property, for all k P N˚

Pxpτ ą kNq “ Ex
”

PYpk´1qN pτ ą Nq1τąpk´1qN

ı

ď p1´ δ0qPxpτ ą pk ´ 1qNq. (18)

Thus, for all k P N
Pxpτ ą kNq ď p1´ δ0q

k

and, consequently,
1
N

Exrτ s ď
1
δ0
` 1.

�

Remark 4.2. Note that (18) leads in fact to the following statement: there exists λ ą 0 such
that supxPE Ereλτ s ă `8.

The following lemma is reminiscent of the approach developed in [24] for Markov chains
on the positive integers killed at the origin and in [4] for diffusions killed on the boundary of a
domain.

Lemma 4.3 (Invariant distributions and QSD). Assume H1. Then,
(i) For every µ P PpEq, Kµ is a Feller kernel and admits at least one invariant probability.

(ii) A probability µ‹ is a QSD for K if and only if it is an invariant probability of Kµ‹ .
(iii) Assume that for every µ, Kµ has a unique invariant probability Πµ. Then µ ÞÑ Πµ

is continuous in PpEq (i.e for the topology of weak convergence) and then there exists
µ‹ P PpEq such that µ‹ “ Πµ‹ or, equivalently, a QSD µ‹ for K.

Proof. (i) The Feller property is obvious under H1 and it is well known that a Feller Markov
chain on a compact space has an invariant probability (since any weak limit of the sequence
p 1
n

řn
k“1 νK

n
µ qně0 is an invariant probability).
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(ii) Since δ “ 1´K1, for every A P BpEq, we have

µ‹pAq “ pµ‹Kµ‹qpAq ô µ‹pAq “
pµ‹KqpAq

pµ‹Kq1 .

But, by definition µ‹ is a QSD if and only if the right-hand side is satisfied for every A P BpEq.
(iii) Let pµnqně0 be a probability sequence converging to some µ in PpEq. Replacing pµnqně0
by a subsequence, we can always assume, by compactness of PpEq, that pΠµnqně0 converges to
some ν. For every n ě 0 and f P CpE ,Rq, we have

Πµnpfq “ ΠµnpKµnfq “ ΠµnpKfq `Πµnpδqµnpfq.

By H1, the maps Kf and δ are continuous and hence by letting nÑ8, one obtains

νpfq “ νpKfq ` νpδqµpfq,

namely ν is an invariant for Kµ. By uniqueness ν “ Πµ. This proves the continuity of the map
µ ÞÑ Πµ. Now, since PpEq is a convex compact subset of a locally convex topological space (the
space of signed measures equipped with the weak* topology) every continuous mapping from
PpEq into itself has a fixed point by Leray-Schauder-Tychonoff fixed point theorem.

�

For all µ P PpMq and t ě 0 we let Pµt denote the Markov kernel on E defined by

Pµt px, ¨q :“ e´t
ÿ

n

tn

n!K
n
µ px, ¨q. (19)

It is classical (and easy to verify) that
(a) pPµt qtě0 is a semigroup (i.e Pµt`sf “ Pµt P

µ
s f for all f P BpE ,Rq);

(b) Every invariant probability for Kµ is invariant for Pµt ;
(c) Pµt is Feller whenever Kµ is (in particular under H1).

If pXµ
n qně0 is a Markov chain with transition Kµ, pPµt qtě0 denotes the semi-group of pXµ

Nt
qtě0

where pNtqtě0 is an independent Poisson process with intensity 1.
For any finite signed measure ν on M recall that the total variation norm of ν is defined as

}ν}TV “ supt|νf | : f P BpE ,Rq, }f}8 ď 1u (20)
“ ν`pEq ` ν´pEq

where ν “ ν` ´ ν´ is the Hahn Jordan decomposition of ν. Let us recall that if P is a Markov
kernel on M and α, β P PpEq, then

}αP ´ βP }TV ď }α´ β}TV (21)

since }Pf}8 ď }f}8.

Lemma 4.4 (Uniform exponential ergodicity). Assume H1 and H2. Then there exists 0 ă ε ă 1
such that for all α, β, µ P PpEq and t ě 0

}αPµt ´ βP
µ
t }TV ď p1´ εqttu}α´ β}TV.

In particular, if Πµ denotes an invariant probability for Kµ,

}αPµt ´Πµ}TV ď p1´ εqttu}α´Πµ}TV.

As a consequence, Kµ has a unique invariant probability.



16 MICHEL BENAIM, BERTRAND CLOEZ, FABIEN PANLOUP

Proof. (i). Set Pµ “ Pµ1 . Let δ0 ą 0 and N P N be given by Lemma 4.1 (i). It easily seen by
induction that for all k ě 1 and f : E ÞÑ r0,8r measurable,

Kk
µf ě µpfqKk´1δ.

Thus,

Pµf ě
1
e
µpfq

N
ÿ

k“1

1
k!K

k´1δ ě
1
eN !µpfq

N
ÿ

k“1
Kk´1δ

“
1
eN !µpfqp1´K

N1q ě εµpfq (22)

where
ε “

1
eN !δ0.

Let Rµ be the kernel on E defined by

@x P E , Pµpx, .q “ εµp.q ` p1´ εqRµpx, .q. (23)

Inequality (22) makes Rµ a Markov kernel. Thus for all α, β P PpEq

}αPµ ´ βPµ}TV “ p1´ εq}αRµ ´ βRµ}TV ď p1´ εq}α´ β}TV,

(where the last inequality follows from (21)) and, by induction,

}αPnµ ´ βP
n
µ }TV ď p1´ εqn}α´ β}TV.

Now, for all t ě 0 write t “ n` r with n P N and 0 ď r ă 1. Then,

}αPµt ´ βP
µ
t }TV “ }αP

µ
r P

n
µ ´ βP

µ
r P

n
µ }TV

ď p1´ εqn}αPµr ´ βPµr }TV ď p1´ εqn}α´ β}TV.

As mentioned before, if Πµ is an invariant probability forKµ, Πµ is also an invariant probability
for pPµt qtě0. The second inequality is thus obtained by setting β “ Πµ and uniqueness of the
invariant probability is a consequence of the convergence of pαPµt qtě0 towards Πµ. �

4.1. Explicit form for Πµ. Let us denote by A the transition kernel on E defined by

Apx, .q “
ÿ

ně0
Knpx, .q

and set
}A}8 “ supt}Af}8 : f P BpE ,Rq, }f}8 ď 1u.

Remark that
}A}8 “ sup

xPE
Apx, Eq P r0,8s.

Proposition 4.5. Assume H1 and H2. Then:
(i) For all x P E ,

1 ď Apx, Eq“ A1pxq “ Exrτ s ď }A}8 ă 8.
(ii) For all µ P PpMq,

Πµ “
µA

pµAqp1q . (24)

(iii) The map µ ÞÑ Πµ is Lipschitz continuous for the total variation distance.
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Proof. (i) The inequality Apx, Eq ě 1 is obvious. For the second one, we remark that for all
x P E

Apx, Eq “
ÿ

ně0
Knpx, Eq “

ÿ

ně0
Pxpτ ą nq “ Exrτ s ď sup

x
Expτq ă 8

where the last inequality follows from Lemma 4.1.
(ii) For any f P BpE ,Rq,

µAKµpfq “ µ

˜

ÿ

ně0
pKn`1f `Knδµpfqq

¸

“
ÿ

ně0
µKn`1f ` µpfqµp

ÿ

ně0
Knpδqq.

Since
ř

ně0K
nδpxq “

ř

ně0
`

Knpx, Eq ´Kn`1px, Eq
˘

“ Apx, Eq ´ pApx, Eq ´ 1q “ 1, it
follows that

pµAqKµpfq “ µpfq `
ÿ

ně1
µKnf “ pµAqpfq.

As a consequence, µA is an invariant measure and it remains to divide by its mass to obtain an
invariant probability.

(iii) It follows from (i) that }µA}TV ď }µ}TV}A}8 and µA1 ě 1. Thus, reducing the fraction,
it easily follows from (ii) that }Πµ ´Πν}TV ď 2}A}8}µ´ ν}TV. �

5. THE LIMITING ODE

As mentioned before, the idea of the proof of Theorem 2.5 is to show that the long time behav-
ior of pµnqně0 can be precisely related to the long term behavior of a deterministic dynamical
system PpEq induced by the "ODE"

“ 9µ “ ´µ`Πµ.” (25)

The purpose of this section is to define rigorously this dynamical system and to investigate some
of its asymptotic properties.

Throughout the section, hypotheses H1 and H2 are implicitly assumed. Recall that PpEq is
a compact metric space equipped with a distance metrizing the weak* convergence.

A semi-flow on PpEq is a continuous map

Φ : R` ˆ PpEq Ñ PpEq,
pt, µq ÞÑ Φtpµq

such that
Φ0pµq “ µ and Φt`spµq “ Φt ˝ Φspµq.

We call such a semi-flow injective if each of the maps Φt is injective.
A weak solution to (25) with initial condition µ P PpEq, is a continuous map ξ : R` ÞÑ PpEq

such that

ξptqf “ µf `

ż t

0
p´ξpsqf `Πξpsqfqds

for all f P CpEq and t ě 0.
We shall now show that there exists an injective semi-flow Φ on PpEq such that the trajectory

tÑ Φtpµq is the unique weak solution to (25) with initial condition µ.
Let MspEq be the space of finite signed measures on E equipped with the total variation norm

} ¨ }TV (defined by equation (20)). By a Riesz type theorem, MspEq is a Banach space which
can be identified with the dual space of CpE ,Rq equipped with the uniform norm (see e.g [21,
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chapter 7]). In particular, the supremum in the definition of } ¨ }TV can be taken over continuous
functions.

Proposition 4.5 (i) and the fact that K is Feller imply that
ř

Knf is normally convergent
in CpE ,Rq for any f P CpE ,Rq. More precisely,

ř

ně0 }K
nf}8 ď }A}8}f}8 and hence

f Ñ Af is a bounded operator on CpE ,Rq. Furthermore, its adjoint µ Ñ µA is bounded on
MspEq. Thus, by standard results on linear differential equations in Banach spaces, etA is a well
defined bounded operator and the mappings pt, fq Ñ etAf and pt, µq Ñ µetA areC8 mappings
satisfying the differential equations

d

dt
petAfq “ petAAfq “ AetAf

and
d

dt
pµetAq “ µpetAAq “ µAetA.

For µ P PpMq and t ě 0 set
gt “ etA1 P CpEq, (26)

rΦtpµq :“ µetA

µgt
P PpEq,

and

sµptq “

ż t

0
rΦspµqA1ds.

Note that, by Proposition 4.5 (i), 9sµptq “ rΦtpµqA1 “ µetAA1
µetA1 ě 1 and hence sµ maps diffeo-

morphically R` onto itself. We let τµ denote its inverse and

Φtpµq “ rΦτµptqpµq (27)

Proposition 5.1. The map Φ defined by (27) is an injective semi-flow on PpEq and for all
µ P PpEq, t ÞÑ Φtpµq is the unique weak solution to (25) with initial condition µ.

Proof. Step 1 (Continuity of Φ) : Let µn Ñ µ in PpEq and tn Ñ t. Then for all f P CpEq

|µne
tnAf ´ µetAf | ď |µne

tnAf ´ µne
tAf | ` |µne

tAf ´ µetAf |

ď }etnA ´ etA}8}f}8 ` |µne
tAf ´ µetAf |.

The second term goes to zero because µn Ñ µ and the first one by strong continuity of t ÞÑ etA.

This easily implies that the maps pt, µq Ñ rΦtpµq and pt, µq Ñ sµptq are continuous. The
continuity of the latter combined with the relation sµn ˝ τµnptnq “ tn implies that every limit
point of tτµnptnqu equals τµptq; but since τµptq ď t (because sµptq ě t) the sequence tτµnptnqu
is bounded and this proves the continuity of pt, µq Ñ τµptq. Continuity of Φ follows.
Step 2 (Injectivity of Φ): Suppose Φtpµq “ Φtpνq for some t ě 0, µ, ν P PpEq. Set τ “ τµptq

and σ “ τνptq. Assume σ ě τ. Multiplying the equality rΦτ pµq “ rΦσpνq by e´τA shows that
µ “ rΦσ´τ pνq. Thus

t “ sµpτq “

ż τ

0
rΦs`σ´τ pνqA1ds “

ż σ

0
rΦspνqA1ds´

ż σ´τ

0
rΦspνqA1ds

“ t´ sνpσ ´ τq

This implies that τ “ σ, hence µ “ ν.
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Step 3 ( tÑ Φtpµq is a weak solution): The mappings tÑ rµt :“ rΦtpµq and tÑ µt :“ Φtpµq
are C8 from R` into MspMq. Furthermore,

9
rµt “ rµtA´ prµtA1q rµt “ 9sµptqp´ rµt `Π

Ăµtq,

so that
9µt “ ´µt `Πµt

and, in particular,

µtf ´ µ0f “

ż t

0
p´µsf `Πµsfqds

for all f P CpEq.
Step 4 (Uniqueness and flow property): Let tµtu and tνtu be two weak solutions of (25). By
separability of CpEq, }µt´ νt}TV “ supfPH |µtf ´ νtf | for some countable set H Ă CpEq. This
shows that t Ñ }µt ´ νt}TV is measurable, as a countable supremum of continuous functions.
Thus, by Lipschitz continuity of µ ÞÑ Πµ with respect to the total variation distance (see Lemma
4.5) we get that

}µt ´ νt}TV ď }µ0 ´ ν0}TV ` L

ż t

0
}µs ´ νs}TVds

for some L ą 0. Hence, by the measurable version of Gronwall’s inequality ([23, Theorem 5.1
of the Appendix])

}µt ´ νt}TV ď eLt}µ0 ´ ν0}TV

and hence there is at most one weak solution with initial condition µ0. This, combined with
(ii) above shows that t Ñ Φtpµq is the unique weak solution to (25). The semi-flow property
Φt`s “ Φt ˝ Φs follows directly from this uniqueness. �

5.1. Attractors and attractor free sets. A set K Ă PpEq is called invariant under Φ (respec-
tively positively invariant) if ΦtpKq “ K (respectively ΦtpKq Ă Kq, for all t ě 0.

If K is compact and invariant, then by injectivity of Φ and compactness, each map Φt maps
homeomorphically K onto itself. In this case we set

ΦK
t “ Φt|K

for t ě 0 and
ΦK
t “ pΦ´t|Kq´1

for all t ď 0. It is not hard to check that ΦK : RˆK ÞÑ K is a flow, i.e. a continuous map such
that ΦK

t ˝ ΦK
s “ ΦK

t`s for all t, s P R.
An attractor for Φ is a non empty compact invariant set A having a neighborhood UA (called

a fundamental neighborhood) such that for every neighborhood V of A there exists t ě 0 such
that

s ě tñ ΦspUAq Ă V.

Equivalently, if d is a distance metrizing PpEq
lim
tÑ8

dpΦtpµq, Aq “ 0,

uniformly in µ P UA.
The basin of attraction of A is the set BaspAq consisting of points µ P PpEq such that

limtÑ8 dpΦtpµq, Aq “ 0.
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Attractor A is called global if its basin is the full space PpEq. It is not hard to verify that there
is always a (unique) global attractor for Φ given as

A “
č

tě0
ΦtpPpEqq.

If K denotes a compact invariant set, an attractor for ΦK is a non empty compact invariant set
A Ă K having a neighborhood UA such that for every neighborhood V of A there exists t ě 0
such that

s ě tñ ΦspUA XKq Ă V.

If furthermore A ‰ K, A is called a proper attractor.
K is called attractor free provided K is compact invariant and ΦK has no proper attractors.

Attractor free sets coincide with internally chain transitive sets and characterize the limit sets of
asymptotic pseudo trajectories (see [7, 5]). Recall that the limit set of pµnq is defined by

L “
č

ně0
tµk | k ě nu.

In the present context, by Theorem 6.4 of Section 6, this implies that

Theorem 5.2 (Characterisation of L). Under Hypotheses 2.2 and 2.1, the limit set of tµnu is
almost surely attractor free for Φ.

This theorem, combined with elementary properties of attractor free sets, gives the following
(more tractable) result.

Corollary 5.3 (Limit set and attractors). Assume Hypotheses 2.2 and 2.1. Let L be the limit set
of tµnu. With probability one,

(i) L is a compact connected invariant set.
(ii) If A is an attractor and LX BaspAq ‰ H, then L Ă A. In particular, L is contained in

the global attractor of Φ.

Note that in the two previous theorems, we do not assume Hypothesis 2.3. In particular, the
previous result may be true in some settings with several QSDs. This flexibility is, for instance,
used in the proof of Theorem 3.4.

5.2. Global Asymptotic Stability. The flow Φ is called globally asymptotically stable if its
global attractor reduces to a singleton tµ‹u. Observe that, in such a case, µ‹ is necessarily the
unique equilibrium of Φ, hence the unique QSD of K.

We shall give here sufficient conditions ensuring global asymptotic stability. The main idea
is to relate the (nonlinear) dynamics of Φ to the (linear) Fokker-Planck equation of a nonhomo-
geneous Markov process on E . This idea is due to Champagnat and Villemonais in [16] where
it was successfully used to prove the exponential convergence of the conditioned laws and the
exponential ergodicity of the Q-process for a general almost surely absorbed Markov process.

For all t ě 0 and s P R let Rt,s be the bounded operator defined on CpEq by

Rt,sf “
ept´sqApfgsq

gt
“
ept´sqApfesA1q

etA1
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where g is defined by (26). It is easily checked3 that Rt,t “ Id and Rt,s ˝ Rs,u “ Rt,u for all
t, s ě 0 and u P R. Furthermore, for all t ě s ě 0 Rt,s is a Markov operator. That is Rt,s1 “ 1
and Rt,sf ě 0 whenever f ě 0.
To shorten notation we set

Rt “ Rt,0.

The flow rΦ and the family tRtutě0 are linked by the relation

rΦtpδxq “ δxRt

for all t ě 0 and x P E . However, note that for an arbitrary µ P PpEq rΦtpµq and µRt are not
equal. Indeed, recall that µRtf “

ş

E Rtfpxqµpdxq.

Lemma 5.4. Let dω be any distance on PpEq metrizing the weak* convergence. Assume that

∆t :“ sup
x,yPE

dωpδxRt, δyRtq Ñ 0

as tÑ8. Then Φ is globally asymptotically stable.

Proof. By compactness of E the condition ∆t Ñ 0 is independent of the choice of dω. We can
then assume that dFM is the Fortet-Mourier distance (see e.g [21, 41]) given as

dωpµ, νq “ supt|µf ´ νf | : }f}8 ` Lippfq ď 1u. (28)

where Lippfq stands for supx‰y
|fpxq´fpyq|
dpx,yq .

Since

|µRtf ´ νRtf | “ |

ż

pRtpxq ´Rtfpyqqdµpxqdνpyq| ď sup
x,yPE

|Rtfpxq ´Rtfpyq|,

it follows from (28) that
∆t “ sup

µ,νPPpMq
dωpµRt, νRtq. (29)

Fix ν P PpEq. Then

sup
sě0

dωpνRt`s, νRtqq “ sup
sě0

dωppνRt`s,tqRt, νRtq ď ∆t.

This shows that tνRtutě0 is a Cauchy sequence in PpEq. Then νRt Ñ µ‹ for some µ‹ and for
all µ P PpEq

dωpµRt, µ
‹q ď ∆t.

Now, for all f P CpEq

|rΦtpµqf ´ µ
‹f | “

ˇ

ˇ

ˇ

ˇ

µ ppRtf ´ µ
‹fqgtq

µgt

ˇ

ˇ

ˇ

ˇ

ď }Rtf ´ µ
‹f}8 “ sup

x
|δxRtf ´ µ

‹f |.

Therefore dωprΦtpµq, µ
‹q ď ∆t and

dωpΦtpµq, µ
‹q ď ∆τµptq ď sup

!

∆s : s ě t

}A}8

)

3One can also note that Rt,s is the resolvent of the linear differential equation on CpEq 9u “ 1
gt
pApugtq ´

pAuqgtq. This explains the unusual order for the indices of R (w.r.t. the standard notation of in-homogeneous
Markov processes).
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where the last inequality follows from the fact that 9sµptq ď }A}8. This proves that tµ‹u is a
global attractor for Φ. �

Recall that gtpxq “ etA1 (see equation (26)).

Lemma 5.5. Assume H1,H2,H3. Assume furthermore that
ÿ

n

Ψpgnq
}gn}8

“ 8

where Ψ is the probability measure given by (11). Then Φ is globally asymptotically stable.

Proof. We first assume that U “ E in condition H3. That is Apx, dyq ě εΨpdyq for all x P E .
Then, for all f ě 0 and n P N

Rn`1,nf “
eApfgnq

eAgn
ě

Apfgnq
e}A}8}gn}8

ě ε
Ψpfgnq

e}A}8}gn}8
.

Let Ψn P PpEq be defined as Ψnpfq “
Ψpfgnq
Ψpgnq . We get

Rn`1,npx, ¨q ě εnΨnp¨q

with εn “ εe´}A}8 Ψpgnq
}gn}8

. Thus, reasoning exactly like in the proof of Lemma 4.4, for all µ, ν P
PpEq

‖ µRn`1,n ´ νRn`1,n ‖TVď p1´ εnq ‖ µ´ ν ‖TV

and, consequently,

‖ δxRn`1 ´ δyRn`1 ‖TVď 2
n
ź

k“0
p1´ εkq.

The condition
ř

n εn “ 8 then implies that ‖ δxRn`1 ´ δyRn`1 ‖TVÑ 0 uniformly in x, y as
tÑ8. In particular, the assumption, hence the conclusion, of Lemma 5.4 is satisfied.

To conclude the proof it remains to show that there is no loss of generality in assuming that
U “ E in H3. By Feller continuity, and Portmanteau’s theorem, for all n P N and δ ą 0 the set

Upn, δq “ tx P E : Knpx, Uq ą δu

is open. Thus by H3 and compactness of E , there exist δ ą 0 and n1, . . . , nk P N such that

E “
k
ď

i“1
Upni, δq.

Let now x P E . Then x P Upni, δq for some i and

Apx, dyq ě
ÿ

ně0
Kni`npx, dyq “

ż

U
Knipx, dzqApz, dyq ě εδΨpdyq.

�

The next proposition shows that under H1,H2,H3 and H4, the assumptions of the preceding
lemma are satisfied.

Proposition 5.6 (Convergence of Φ). Assume H1,H2,H3 and H4. Then the assumptions of
Lemma 5.5 are satisfied. In particular, Φ is globally asymptotically stable.



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 23

Proof. By Lemma 4.1 (i) there exists N P N˚ and Θ ă 1 such that

KN px, Eq ď Θ

for all x P E . Let pZnqně1 be a sequence of i.i.d random variables on N having a geometric
distribution,

PpZn “ kq “ Θkp1´Θq, k ě 0.
Let pUnq be a sequence of i.i.d random variables on t0, . . . , N´1u having a uniform distribution,

PpUn “ kq “
1
N
, k “ 0, . . . , N ´ 1,

and let pNtqtě0 be a standard Poisson process with parameter 1.We assume that pZnqně1, pUnqně1, pNtqtě0
are mutually independent.

By independence we get that

E

«

K
řNt
i“1pNZi`Uiq

Θ
řNt
i“1 Zi

ff

“
ÿ

ně0

tn

n!e
´tE

„

KNZ1`U1

ΘZ1

n

“
ÿ

ně0

tn

n!e
´t

˜

p1´Θq
N

ÿ

kě0

ÿ

r“0,...,N´1
KNk`r

¸n

“ e´tet
p1´Θq
N

A.

To shorten notation, set s “ t p1´Θq
N . Then, for all x P E

Ψpgsq “ ΨpesA1q “ etE

«

ΨpK
řNt
i“1pNZi`Uiq1q

Θ
řNt
i“1 Zi

ff

ě etE

«

C

˜

Nt
ÿ

i“1
pNZi ` Uiq

K
řNt
i“1pNZi`Uiq1pxq

Θ
řNt
i“1 Zi

¸ff

where the last inequality comes from hypothesis H4.
For all n P N,k “ pkiq P NN˚ and r “ priq P t0, . . . , N ´ 1uN˚ set

F pn,k, rq “ K
řn
i“1pNki`riq1pxq

Θ
řn
i“1 ki

and

Gpn,k, rq “ C

˜

n
ÿ

i“1
pNki ` riq

¸

and hence, the preceding inequality can be rewritten as,

Ψpgsq ě etE rGpNt, Z, UqF pNt, Z, Uqs .

Write pn,k, rq ď pn1,k1, r1q when n ď n1, ki ď k1i and ri ď r1i. The relations KN px,Eq
Θ ď 1 and

Kpx, Eq ď 1 on one hand, and the monotonicity of C on the other hand, imply that

F pn,k, rq ď F pn1,k1, r1q

and
Gpn,k, rq ď Gpn1,k1, r1q
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whenever pn,k, rq ď pn1,k1, r1q Then, by tensorisation of the classical FKG inequality, and
Jensen inequality, we get that

Ψpgsq ě etE rGpNt, Z, UqsE rF pNt, Z, Uqs

ě etC

ˆ

t
N

1´Θ `
N ´ 1

2

˙

E rF pNt, Z, Uqs “ C

ˆ

t
N

1´Θ `
N ´ 1

2

˙

gspxq.

That is

Ψpgsq ě C

ˆ

N2

p1´Θq2 s`
N ´ 1

2

˙

gspxq,

so that the assumptions of Lemma 5.5 are fulfilled.
�

6. ASYMPTOTIC PSEUDO-TRAJECTORY

Our aim is now to prove that pµnqně0, correctly normalized, is an asymptotic pseudo-trajectory
of the flow Φ defined by (27).

6.1. Background. To prove that our procedure has asymptotically the dynamics of an ODE,
we first need to embed it in a continuous-time process at an appropriate scale. Let us add some
notation to explain this point. For n ě 0 and t ě 0, set τn “

řn
k“1 γk and mptq “ suptk ě

0, t ě τku. Let ppµtqtě0, psµtqtě0, psεtqtě0, psγtqtě0 defined for all n ě 0 and s P r0, γn`1q by

pµτn`s “

ˆ

1´ s

γn`1

˙

µn `
s

γn`1
µn`1, sµτn`s “ µn,

sετn`s “ εn and sγpτn ` sq “ γn. With this notation, Equation (8) can be written as follows:

pµt “ µ0 `

ż t

0
hpsµsqds`

ż t

0
sεsds

with hpµq “ ´µ`Πµ. The aim of this section is now to show that pµ is a pseudo-trajectory of Φ
defined in (27). Let dω be a metric on P whose topology corresponds to the convergence in law
(as for instance the Fortet-Mourier distance defined in (28)). A continuous map ζ : R` Ñ P is
called an asymptotic pseudo-trajectory for Φ if

@T ą 0, lim
tÑ8

ˆ

sup
0ďsďT

dωpζpt` sq,Φps, ζptqqq
˙

“ 0.

Note that this definition makes an explicit reference to dω but is in fact purely topological (see
[5, Theorem 3.2]). In our setting, the asymptotic pseudo-trajectory property can be obtained by
the following characterization:

Theorem 6.1 (Asymptotic pseudo-trajectories). The following assertions are equivalent.
(1) The function pµ is (almost surely) an asymptotic pseudo-trajectory for Φ.
(2) For all continuous and bounded f and T ą 0,

lim
tÑ8

sup
0ďsďT

|

ż t`s

t
sεufdu| “ 0 a.s. (30)

Proof. This is a consequence of [8, Proposition 3.5]. �
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The previous theorem is one of the main differences with the previous article [6]. Indeed,
in finite state space, the topology of the total variation distance is not stronger than the weak
topology.

As in [6] and older works on reinforced random walks (see references therein), we now need
some properties of solutions of Poisson equations to prove that (30) holds. However, in contrast
with the finite-space setting of [6], the associated bounds are intricate.

6.2. Poisson Equation related to Kµ. For a fixed µ and a given function f : E Ñ R, let us
consider the Poisson equation

f ´Πµf “ pI ´Kµqg. (31)

The existence of a solution g “ Qµf to this equation and the smoothness of µ ÞÑ Qµf play an
important role for the study of our algorithm. These properties are stated in Lemma 6.3. Before,
we need to establish the following technical lemma:

Lemma 6.2 (Lipschitz property of µÑ Kj
µ ). For every µ, ν P PpEq and j P N, we have

sup
αPPpEq

}αKj
µ ´ αK

j
ν}TV ď 2j}µ´ ν}TV, (32)

and for every bounded function f then

sup
xPE

}Kj
µpfq ´K

j
νpfq}8 ď 2j}f}8}µ´ ν}TV.

Proof. By the definition of the total variation, the second part follows from the first one. We
thus only focus on the first statement. For every j P N, one sets

κjpµ, νq “ sup
αPP

}αKj
µ ´ αK

j
ν}TV.

We have κ0pµ, νq “ 0 and since Kµp.q “ Kp.q ` δp.qµ and αpδq ď 1,

κ1pµ, νq “ sup
αPP

}αKµ ´ αKν}TV “ }αpδqpµ´ νq}TV ď }µ´ ν}TV.

Furthermore, for every j ě 0,

}αpKµq
j`1 ´ αpKνq

j`1}TV “ }αpK ` δµqpKµq
j ´ αpK ` δνqpKνq

j}TV

“ }αKpKj
µ ´K

j
νq ` αpδqµpKµq

j ´ αpδqνpKνq
j}TV

ď }αKKj
µ ´ αKK

j
ν}TV ` }αpδqµpKµq

j ´ αpδqνpKµq
j}TV

` }αpδqνpKµq
j ´ αpδqνpKνq

j}TV

ď κjpµ, νq ` }µ´ ν}TV ` κjpµ, νq “ 2κjpµ, νq ` }µ´ ν}TV.

Note that for the last inequality, we again used that αpδq ď 1 and that for every probabilities
α, β and every transition kernel P , }αP ´ βP }TV ď }α ´ β}TV. An induction of the previous
inequality then leads to:

@j P N, κjpµ, νq ď 2j}µ´ ν}TV

This yields (32). �
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Lemma 6.3 (Poisson equation). Assume Hypothesis 2.2. Let µ P PpEq. Let pPµt qtě0 be defined
by (19). Then, for any measurable function f : E Ñ R, the Poisson equation (31) admits a
solution denoted by Qµf and defined by

Qµfpxq “

ż `8

0
pPµt fpxq ´Πµpfqqdt, (33)

Furthermore,
(i) for every µ P PpEq, }Qµf}8 ď C}f}8.

(ii) for every µ, α P PpEq, |αQµf | ď C}f}8}α´Πµ}TV.
(iii) for every µ P PpEq and measurable f : E Ñ R, }Qµf ´Qνf}8 ď C2}f}8}µ´ ν}TV.
(iv) for every µ, α P PpEq, }αQµ ´ αQν}TV ď C2}µ´ ν}TV.

Note that our work is closely related to [8] which also investigates the pseudo-trajectory prop-
erty of a measure-valued sequence. Nevertheless, the scheme of the proof for the smoothness of
the Poisson solutions is significantly different. Indeed, in contrast with [8, Lemma 5.1], which is
proved using classical functional results (such as the Bakry-Emery criterion), the above lemma
(especially piiiq and pivq) is obtained using a refinement of the ergodicity result provided by
Lemma 4.4.

Proof. First, by Lemma 4.4, the integral in (33) is well defined. Then, coming back to the
definition of pPµt qtě0 (see (19)), one can readily check that pPµt qtě0 has infinitesimal generator
Lµ defined on continuous functions f : E Ñ R by Lµf “ pKµ ´ Iqf . Without loss of
generality, one can assume that Πµpfq “ 0. Then, by the Dynkin formula and the commutation
and linearity properties, it follows that

@x P E , @t ě 0, Pµt fpxq “ fpxq ` Lµ
ż t

0
Pµs fpxqds.

Letting t go to 8 and using again Lemma 4.4 (to ensure the convergence of the right and left
hand sides), we deduce that it is a solution to the Poisson equation.

Statements piq and piiq are also straightforward consequences of Lemma 4.4. Thus, in the
sequel of the proof, we only focus on the "Lipschitz" properties piiiq and pivq.
Without loss of generality, we assume in the sequel that }f}8 ď 1. By (23), for every t ě 0

pα´ βqPµt “ p1´ εqttupαP
µ
t´ttu ´ βP

µ
t´ttuqR

ttu
µ (34)

where, with the notation of Lemma 4.4, Rµ is given by

Rµ “
1

p1´ εq

˜

e´1
ÿ

jě0

1
j!K

j
µ ´ εµ

¸

(35)

The kernels Kj
µ are Lipschitz continuous with respect to the total variation norm, uniformly in

α P PpEq, as it can be checked in Lemma 6.2 above. Set

Ξnpµ, νq “ sup
αPPpEq

}αRnµ ´ αR
n
ν }TV.

From (35) and (32), we have

Ξ1pµ, νq ď
e

p1´ εq}µ´ ν}TV.
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Now,

Ξn`1pµ, νq ď sup
αPPpEq

}pαRnµqRµ ´ pαR
n
µqRν}TV ` sup

αPPpEq
}pαRnµqRν ´ pαR

n
ν qRν}TV

ď Ξ1pµ, νq ` Ξnpµ, νq,

where for the second term, we used that for some laws α and β and for a transition kernel P ,
}αP ´ βP }TV ď }α´ β}TV. By induction, it follows that

Ξnpµ, νq ď
ne

p1´ εq}µ´ ν}TV.

As a consequence, there exists a constant C such that

}Rnµf ´R
n
νf}8 ď Cn}µ´ ν}TV.

and for every α P PpEq,

|αpRµq
nf ´ αpRνq

nf | ď Cn}µ´ ν}TV. (36)

Let us now prove that µÑ Qµfpxq is Lipschitz continuous. From the definition ofQµ and from
(34), we have

Qµfpxq ´Qνfpxq “
`8
ÿ

n“0
p1´ εqn

ż 1

0

`

pδx ´ΠµqP
µ
r R

n
µf ´ pδx ´ΠνqP

ν
r R

n
νf

˘

dr.

Now, for every n ě 0 and r P r0, 1q,
ˇ

ˇ

ˇ
pδx ´ΠµqP

µ
r R

n
µf ´ pδx ´ΠνqP

ν
r R

n
νf

ˇ

ˇ

ˇ

ď |δxpP
µ
r ´ P

ν
r qR

n
µf | ` |pΠµP

µ
r ´ΠνP

ν
r qR

n
νf |

` |δxP
ν
r pR

n
µf ´R

n
νfq| ` |ΠνP

ν
r pR

n
µf ´R

n
νfq|

The two last terms can be controlled by (36) with α “ δxP
ν
r and α “ ΠνP

ν
r “ Πν respec-

tively. For the second one, one can deduce a bound from Proposition 4.5 piiiq and the fact that
sup
}g}8ď1

}Rnµg}8 ď 1. Finally for the first one, using Lemma 6.2 and (19), we have

|δxpP
µ
r ´ P

ν
r qR

n
µf | ď e´r

ÿ

jě0

rj

j! }δxK
j
µ ´ δxK

j
ν}TV ď er}µ´ ν}TV

. One deduces that, for some constants C1, C2 ą 0,

|Qµfpxq ´Qνfpxq| ď
`8
ÿ

n“0
p1´ εqn r2Cn}µ´ ν}TV ` C1}µ´ ν}TVs ď C2}µ´ ν}TV.

Since the Lipschitz constantC2 does not depend on x, the statements piiiq and pivq easily follow.
�
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6.3. Asymptotic Pseudo-trajectories.

Theorem 6.4. Under Hypotheses 2.1 and 2.2 ppµtqtě0 is an asymptotic pseudo-trajectory of Φ
as defined by (27).

Remark 6.5. Since the limit of precompact asymptotic pseudo trajectories is internally chain
transitive (see [7], [5]), this theorem implies Theorem 5.2, hence Corollary 5.3.

Proof. By Theorem 6.1, it is enough to show that for any bounded continuous function f , for
any T ą 0,

lim sup
tÑ`8

sup
sPr0,T s

ˇ

ˇ

ˇ

ˇ

ż t`s

t
sεspfqds

ˇ

ˇ

ˇ

ˇ

“ 0

which in turn is equivalent to, for every m ě 0

lim sup
nÑ`8

max
jďm

ˇ

ˇ

ˇ

ˇ

ˇ

n`j
ÿ

k“n

εkpfq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

Here,

εnpfq “ γn`1 pfpXn`1q ´Πµnpfqq “ γn`1 pQµnfpXn`1q ´KµnQµnfpXn`1qq .

We decompose this term as follows:

εnpfq “ γn`1∆Mn`1pfq `∆Rn`1pfq ` γn`1∆Dn`1pfq (37)

with

∆Mn`1pfq “ QµnfpXn`1q ´KµnQµnfpXnq

∆Rn`1pfq “ pγn`1 ´ γnqKµnQµnfpXnq `
`

γnKµnQµnfpXnq ´ γn`1Kµn`1Qµn`1fpXn`1q
˘

∆Dn`1pfq “
`

Kµn`1Qµn`1fpXn`1q ´KµnQµnfpXn`1q
˘

.

First, let us focus on ∆Rn`1. Using for the first part that pγnqně0 is decreasing and that px, µq ÞÑ
KµQµfpxq is (uniformly) bounded (Lemma 6.3 (i)), and a telescoping argument for the second
part yields for any positive integer m:

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“n

∆Rkpfq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cγn.

Second p∆Mkq is a sequence of pFnq-martingale increments. From Lemma 6.3, ∆Mnpfq is
bounded (and thus subgaussian). As a consequence, using that limnÑ`8 γn logpnq “ 0, one
can adapt the arguments of [5, Proposition 4.4] (based on exponential martingales) to obtain that

lim sup
nÑ`8

max
jďm

ˇ

ˇ

ˇ

ˇ

ˇ

n`j
ÿ

k“n

γk∆Mkpfq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.
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Finally, for the last term, one uses that µ ÞÑ Kµ and µ ÞÑ Qµ are Lipschitz continuous. More
precisely, using Lemma 6.3 (i), (iii) and Lemma 6.2, we see that there exists C ą 0 such that

ˇ

ˇKµn`1Qµn`1fpXn`1q ´KµnQµnfpXn`1q
ˇ

ˇ

ď
ˇ

ˇKµn`1Qµn`1fpXn`1q ´Kµn`1QµnfpXn`1q
ˇ

ˇ

`
ˇ

ˇKµn`1QµnfpXn`1q ´KµnQµnfpXn`1q
ˇ

ˇ

ď}Qµn`1f ´Qµnf}8

`
›

›pKµn`1 ´KµnqpQµnfq
›

›

8

ďC}f}8}µn`1 ´ µn}TV

ďC}f}8γn`1,

where for the last line, we simply used (7). This ends the proof. �

7. PROOF OF THE MAIN RESULTS

7.1. Proof of Theorem 2.5. By Proposition 5.6, tµ‹u is a global attractor for Φ. The result then
follows from Corollary 5.3.

7.2. Proof of Theorem 2.6. Let us assume for the moment that there exist C ą 0 and ρ P p0, 1q
such that for any starting distribution α,

@n ě 0, }αKn
µ‹ ´ µ

‹}TV ď Cρn. (38)

With this assumption, µ‹ is a global attractor for the discrete time dynamical system on P
induced by the map µ ÞÑ µKµ‹ . Let νn be the law of Xn, for n ě 0; namely νnpAq “ PpXn P

Aq, for every Borel set A. To prove that νn Ñ µ‹, it is then enough to prove that the sequence
pνnqně0 is an asymptotic pseudo-trajectory of this dynamics; namely that dωpνnKµ‹ , νn`1q Ñ
0. Indeed, the limit set of a bounded asymptotic pseudo-trajectory is contained in every global
attractor (see e.g [5, Theorem 6.9] or [5, Theorem 6.10].) So, let us firstly show that for every
continuous and bounded function f ,

lim
nÑ8

pνn`1pfq ´ νnKµ‹fq “ 0. (39)

By definition of the algorithm, for every n ě 0,

E rfpXn`1q | Fns “ KµnfpXnq “ KfpXnq ` µnpfqδpXnq

Taking the expectation, we find

νn`1pfq “ νnKpfq ` ErµnpfqδpXnqs “ νnKµ‹pfq ` Erpµnpfq ´ µ‹qpfqqδpXnqs.

But by Theorem 2.5 and dominated convergence theorem,

lim
nÑ8

Erpµn ´ µ‹qpfqδpXnqs “ 0,

and hence (39) holds.
We are now free to choose any metric on P embedded with the weak topology. Let pfkqkě0

be a sequence of C8 functions dense in the space of continuous and bounded (by 1) functions
(with respect to the uniform convergence). Consider the distance dω defined by

dωpµ, νq “
ÿ

kě0

1
2k |µpfkq ´ νpfkq|.
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It is well known that dω is a metric on P which induces the convergence in law. From (39) and
dominated convergence Theorem, we have that dωpνnKµ‹ , νn`1q Ñ 0.

It remains to prove inequality (38). The proof is similar to Lemma 4.4. Indeed, by Lemma
4.1, there exists N ě 0 and δ0 such that for all x P E such that sKN px, Bq ě δ0. Using that
µ‹Kµ‹ “ θ‹µ

‹, we have
KN
µ‹ “ KN ` sKN p¨, Bqµ‹

and hence the following lower-bound holds: infxPE K
N
µ‹px, ¨q ě δ0µ

‹p¨q. It then implies bound
(38) with the same argument as that of Lemma 4.4.

Remark 7.1 (Periodicity). Note that the previous argument shows in particular that the uniform
ergodicity ofKµ‹ is preserved in a non-aperiodic setting. This is the reason why the convergence
in distribution of pXnqně1 also holds in this case.

7.3. Proof of Theorem 3.4. The proof relies on the following lemma.

Lemma 7.2. Suppose Θ1 ą Θ2. Then
(i) PpE2q is positively invariant under Φ and Φ|PpE2q is globally asymptotically stable

with attractor tµ‹2u.
(ii) There exists another equilibrium for Φ (i.e another QSD for K) µ‹ having full support

(i.e µ‹pxq ą 0 for all x P E). Furthermore tµ‹u is an attractor whose basin of attraction
is PpEqzPpE2q.

Proof. (i) It easily follows from the assumption E2 ãÑ E1, and from the definitions ofKµ and Πµ

that PpE2q is positively invariant under Φ. By irreducibility of K2, Lemma 3.1 and Proposition
5.6, µ‹2 is then a global attractor for Φ|PpE2q.

(ii) Let di be the cardinal of Ei and d “ d1 ` d2. Identifying BpEi,Rq (respectively BpE ,Rq )
with column vectors of Rdi (respectively Rd) and MpEiq (respectively MpEq) with row vectors
of Rdi (respectively Rd), K can be written as a dˆ d block triangular matrix

K “

ˆ

K1 K12
0 K2

˙

,

where for each i “ 1, 2,Ki is a di ˆ di irreducible matrix.
Let ElΘ1

and ErΘ1
be the left and right eigenspaces associated to Θ1. That is

ElΘ1 “ tµ P MpEq : µK “ Θ1µu

and
ErΘ1 “ tf P BpE ,Rq : Kf “ Θ1fu.

We claim that
ElΘ1 “ Rµ‹ (40)

for some µ‹ P PpEq having full support (i.e µpxq ą 0 for all x); and

ErΘ1 “ Rf˚ (41)

for some f˚ P BpE ,R`q satisfying

f˚pxq ą 0 ô x P E1,

and µ‹pf˚q “ 1.
Actually, by irreducibility ofK1 and the Perron Frobenius Theorem (for irreducible matrices),

Θ1 is a simple eigenvalue of K1 and there exists g P BpE1,Rq :“ Rd1 with positive entries such
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that K1g “ Θ1g. Θ1 being strictly larger than the spectral radius Θ2 of K2, Θ1 is not an
eigenvalue of K2. Thus, it is also simple for K and (41) holds with f˚ defined by f˚pxq “ gpxq
for x P E1 and f˚pxq “ 0 for x P E2.

Again by the Perron Frobenius theorem (but this time for non irreducible matrices) there
exists µ‹ P PpEqXElΘ1

, so that, by simplicity of Θ1, (40) holds. It remains to check that µ‹ has
full support. First, observe that µ‹ cannot be supported by E2 for otherwise µ‹ would be a left
eigenvector of K2 and Θ1 an eigenvalue of K2. Thus there exists x P E1 such that µ‹pxq ą 0,
but since x ãÑ y, then for all yP E , we have µ‹pyq ą 0.

Replacing f˚ by f˚

µ‹pf˚q we can always assume that

µ‹pf˚q “ 1.
This ends the proof of the claim.

Let pf˚qK “ tν P MpEq : νpf˚q “ 0u. It follows from what precedes that the splitting

MpEq “ Rµ‹ ‘ pf˚qK

is invariant by the map ν ÞÑ νK, hence also by ν ÞÑ νA, and ν ÞÑ νetA. Let AK denote the
operator on pf˚qK defined by

νAK “ νA´ 1
1´Θ1

ν.

For all µ P PpEqzPpE2q, µpf
˚q ‰ 0 and µ decomposes as µ “ µpf˚qµ‹ ` rµ with rµ “

µ´ µpf˚qµ‹ P pf˚qK. Therefore

µetA “ µpf˚qe
t

1´Θ1 µ‹ ` rµetA “ µpf˚qe
t

1´Θ1

ˆ

µ‹ `
rµ

µpf˚q
etA

K

˙

and

rΦtpµq :“ µetA

µetA1
“
µ‹ ` rµ

µpf˚qe
tAK

1` rµ
µpf˚qe

tAK1
.

Now, remark that any eigenvalue Λ of AK writes

Λ “ 1
1´ λ ´

1
1´Θ1

where λ “ a` ib is an eigenvalue of K distinct from Θ1. In particular, a ă Θ1 ă 1. Then,

RepΛq “ 1´ a
p1´ aq2 ` b2 ´

1
1´Θ1

ď
1

1´ a ´
1

1´Θ1
ă 0.

The fact that all eigenvalues of AK have negative real part implies that }etA} Ñ 0 as t Ñ
8. This proves that limtÑ8

rΦtpµq “ µ‹ and that for every compact set K Ă PpEqzPpE2q
the convergence is uniform in µ P K (because µ ÞÑ µpf˚q is separated from zero on such a
compact). This shows that µ‹ is an attractor for rΦ whose basin is PpEqzPpE2q. Proceeding like
in the end of the proof of Lemma 5.4 we conclude that the same is true for Φ. �

We now pass to the proof of Theorem 3.4.
(i) Let L be the limit set of tµnu. If L Ă PpE2q, then L “ tµ‹2u because L is compact invariant
and, by Lemma 7.2 (i), tµ‹2u is the only compact invariant subset of PpE2q. IfLXPpEqzPpE2q ‰
H, then by Lemma 7.2 (ii) and Corollary 5.3, L “ tµ‹u.
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(ii) If X0 P E2, then µ0 “ δX0 P PpE2q and, by the definition of pXnq (see equation (5)),
pXnq lives in E2. This implies that µn Ñ µ‹2 by assertion (i).

(iii) If X0 P E1, the point µ‹ is straightforwardly attainable (in the sense of [5, Definition
7.1]) and then, by [5, Theorem 7.3], we have

P
´

lim
nÑ8

µn “ µ‹
¯

ą 0.

(iv) Let us now prove the last point of Theorem 3.4 using an ad hoc argument under the
additional assumption:

ÿ

ně0

n
ź

i“0
p1´ γiq ă `8. (42)

If X0 P E2 there is nothing to prove. We then suppose that X0 “ x P E1. Clearly there exists
n0 ě 1 such that Xn0 P E2 with positive probability. Using the estimate (15), the definition of
pXnq and the recursive formula (7) we get that for all n ą n0:

PpXn`1 P E1|Fnq ď p1´ cΘ2qµnpE1q

almost surely on the event tXn P E2u and

µnpE1q “ µn0pE1q
n
ź

i“n0`1
p1´ γiq ď

n
ź

i“n0`1
p1´ γiq

almost surely on the event
tXn0 , Xn0`1, . . . , Xn P E2u.

Therefore

PpXn0 , Xn0`1, . . . , Xn`1 P E2q “ E
´

PpXn`1 P E2|Fnq1tXn0 ,Xn0`1,...,XnPE2u

¯

ě

˜

1´ p1´ cΘ2q
n
ź

i“n0`1
p1´ γiq

¸

P pXn0 , Xn0`1, . . . , Xn P E2q ;

and, consequently,

P p@n ě n0 Xn P E2q ě
ź

něn0`1

˜

1´ p1´ cΘ2q
n
ź

i“n0`1
p1´ γiq

¸

PpXn0 P E2q.

The right hand side of the previous bound is positive if and only if (42) holds.

7.4. Proof of Theorem 3.9. We begin by recalling a classical lemma about the L2-control of
the distance between the Euler scheme and the diffusion (see e.g. [13, Theorem B.1.4] for a very
close statement).

Lemma 7.3. Assume that b and σ are Lipschitz continuous functions. Then, for every positive
T , there exists a constant CpT q such that for every starting point x of Rd,

Ex

«

sup
tPr0,T s

|ξht ´ ξt|
2

ff

ď CpT qp1` |x|2qh.

We continue with some uniform controls of the exit time of D. For a given set A and a path
w : R` ÞÑ Rd, we denote by τApwq the exit time of A defined by:

τApwq “ inftt ą 0, wptq P Acu.
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Lemma 7.4. Assume that b and σ are Lispchitz continuous functions and that σσ˚ ě ρ0Id.
Then,
(i) Let δ ą 0 and set Dδ “ tx P Rd, dpx,Dq ď δu. For each t0 ą 0, we have

sup
xPD

PxpτDδpξq ą t0q ă 1.

(ii) There exist some compact subsets K and rK of D such that K Ă rK and such that there exist
some positive t0, t1, such that for all h ą 0,

@x P D, Px
´

ξt0 P K, τDpξhq ą t0

¯

ą 0
and

inf
xPK

Pxpξt1 P K and@t P r0, t1s, ξt P rKq ą 0.

Proof. piq Using the fact that for every t0 ą 0, supsPr0,t0s |ξ
x
s ´ ξx0

s | Ñ 0 in probability when
x Ñ x0, one deduces from the dominated convergence theorem that x ÞÑ PxpτDδpξq ą t0q is
continuous on sD. As a consequence, it is enough to show that for every x P D, PxpτDδpξq ą
t0q ă 1. This last point is a consequence of the ellipticity condition.
piiq Let us begin by the first statement. Let t0 ą 0. Since the Euler scheme is stepwise constant,
it is enough to show that Pxpξhrt0{hsh P K, ξh`h P D, ` P t0, . . . , rt0{hsuq ą 0. This follows
easily from the fact that, under the ellipticity condition, the transition kernel of the discrete
Euler scheme is a (uniformly) non-degenerated Gaussian with bounded bias (on compact sets).

For the second statement, let x0 P D, K “ sBpx0, rq and rK “ sBpx0, 2rqwhere r “ 1
4dpx0, BDq.

For every x P K, let ψx,x0 : r0, 1s Ñ R denote the function defined by ψx,x0ptq “ tx0`p1´tqx,
t P r0, 1s. Let t1 ą 0. Since ψx,x0 is C1 and supxPK,tPr0,1s |Btψ

x,x0 | ă `8, it is well-known
(see e.g. [3, Theorem 8.5]) that for all ε ą 0, there exists a positive cε such that

@x P K, Pxp sup
tPr0,t1s

|ξt ´ ψ
x,x0ptq| ď εq ě cε.

Taking ε “ r
2 , the result follows.

�

Proof of Theorem 3.9. First, let us remark that by the ellipticity condition, we have for every
starting point x of D, τDpξhq “ τ

sDpξ
hq a.s. Actually, as mentioned before, LpY h

k`1|Y
h
k “ xq

is a non-degenerate Gaussian random variable, which implies that PpY h
k`1 P BD|Y

h
k P Dq “ 0.

Furthermore, if x P BD, τ
sDpξ

hq “ 0. Then, if one denotes by µ‹h the unique QSD of Y h killed
when leaving sD, it follows that µ‹hpBDq “ 0. Without loss of generality, one can thus work with
D instead of sD in the sequel.

Let Kh denote the sub-Markovian kernel related to the discrete-time Euler scheme killed
when it leaves D. Namely, for every bounded Borelian function f : Rd Ñ R,

Khfpxq “ Erfpx` hbpxq `
?
hσpxqZq1

tx`hbpxq`
?
hσpxqZPDus

where Z „ N p0, Idq. Let ρh denote the extinction rate related to µ‹h. We have
ż

Khfpxqµ‹hpdxq “ ρhµ
‹
hpfq. (43)
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Setting λh “ logpρhq{h, it easily follows from an induction that for every positive t, for every
bounded measurable function f : D Ñ R,

Eµ‹
h
rfpξht q1τDpξhqąts “ Chptq expp´λhtqµ‹hpfq (44)

where Chptq “ expp th ´ t th uq.

The aim is now to first show that pµ‹hqh is tight on the open set D and then, to prove that
every weak limit µ (for the weak topology induced by the usual topology on D) is a QSD. The
convergence will follow from the uniqueness of µ‹ given in Theorem 5.5 of [39, Chapter 3].
This task is divided in three steps:

Step 1 (Bounds for λh): We prove that there exist some positive λmin, λmax and h0 such
that for any h P p0, h0q, λh defined in (44) satisfies λmin ď λh ď λmax. Let us begin by the
lower-bound. For every x P D and δ ą 0,

PxpτDpξhq ą t0q ď PxptτDδpξq ą t0u Y t sup
tPr0,t0s

|ξh ´ ξ| ě δuq

ď PxpτDδpξq ą t0q ` Px

˜

sup
tPr0,t0s

|ξh ´ ξ| ě δ

¸

.

By Lemma 7.4(i) and Lemma 7.3, one easily deduces that for h small enough,

a :“ sup
xPD

PxpτDpξhq ą t0q ă 1.

Recalling that ξh is stepwise constant, note that t0 can be replaced by th0 “ tt0{huh in the
previous inequality. Then,

PxpτDpξhq ą kth0q “ PxpτDpξhq ą kth0 |τDpξ
hq ą pk ´ 1qth0qPxpτDpξhq ą pk ´ 1qth0q

ď aPxpτDpξhq ą pk ´ 1qth0q.

By induction, it follows that there exists h0 P p0, t0q such that for every t ą 0 and h P p0, h0q,

PxpτDpξhq ą tq ď att{th0 u ď C expp´λmintq

with λmin “ ´ logpaq{pt0 ´ h0q. Since the right-hand side does not depend on x, one deduces
that Pµ‹

h
pτDpξ

hq ą tq ď C expp´λmintq. Since this inequality holds for every t (with C not
depending on t), it follows from (44) that λmin ă λh (using that Cptq ď e). This yields the
lower-bound. As concerns the upper-bound, one first deduces from Lemmas 7.3 and 7.4(ii) that

there exists a compact subset K of D such that there exist some positive t0, t1, h0 and ε, such
that for every x P D, and h P p0, h0q, Pxpξht0 P K, τDpξhq ą t0q ą 0 and

inf
yPK

Pypξht1 P K and@t P r0, t1s, ξht P Dq ě ε. (45)

Once again, using the fact that ξh is stepwise constant, one sets th0 “ tt0{huh and th1 “ tt1{huh.
We have

PxpτDpξhq ą tq ě Pxpξhth0``th1 P K, ` P t0, . . . , Nhptqu, τDpξ
hq ą tq
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withNhptq “ inft`, th0` `th1 ą tu. Using the Markov property and an induction, it follows from
(45) that, for h small enough, for every t ą th0 , for every x P D,

PxpτDpξhq ą tq ě Pxpξht0 P K, τDpξhq ą t0qε
Nhptq

ě CPxpξht0 P K, τDpξhq ą t0q exp
ˆ

logpεq
2t1

t

˙

,

where in the last inequality, we used that for h small enough

Nhptq “

Z

t´ th0
th1

^

` 1 ě t

th1
´
th0
th1
ě

t

2t1
´ δ, δ ą 0.

Set λmax “ ´
logpεq

2t1 . Since Pxpξht0 P K, τDpξhq ą t0q ą 0 for every x P D, it follows from what
precedes that for every t ą t0,

PµhpτDpξ
hq ą tq ě c expp´λmaxtq,

where c is a positive constant (which does not depend on t). By (44), one can conclude that
λh ă λmax (using that Cptq ě 1).

Step 2 (Tightness of pµ‹hq): We show that pµ‹hqhPp0,h0s is tight on D. For δ ą 0, set Bδ :“
tx P D, dpx, BDq ď δu. We need to prove that for every ε ą 0, there exists δε ą 0 such that for
every h P p0, h0q, µ‹hpBδεq ď ε. First, by (44) (applied with t “ 1) and Step 1,

µ‹hpBδq ď Eµ‹
h

”

1tξh1 PBδuXtτDpξhqą1u

ı

ď Pµ‹
h
pξh1 P Bδq.

But, under the ellipticity condition, Lpξh1 |ξh0 “ xq admits a density ph1px, .q w.r.t. the Lebesgue
measure λd and by [32, Theorem 2.1] (for instance),

sup
x,x1

ph1px, x
1q ď C

where C does not depend on h. As a consequence, for every x P D,

Pµ‹
h
pξh1 P Bδq ď

ż

ph1px, x
1qλdpdx

1q ď CλdpBδq.

The tightness follows.
Step 3 (Identification of the limit): Let pµ‹hnqn denote a convergent subsequence to µ. One

wants to show that µ “ µ‹ (where µ‹ stands for the unique QSD of the diffusion killed when
leaving D). To this end, it remains to show that there exists λ ą 0 such that for any positive t
and any bounded continuous function f : D Ñ R,

Eµrfpξtq1τDpξqąts “ expp´λtqµpfq. (46)

With standard arguments, one can check that this is enough to prove this statement when f is C2

with compact support in D.
Let us consider Equation (44). First, up to a potential extraction, one can deduce from Step

1 that λhn Ñ λ P R. By the weak convergence of pµ‹hnqn, it follows that the right-hand side of
(44) satisfies:

Chptq expp´λhtqµ‹hpfq Ñ expp´λtqµpfq. (47)

Second, by [26] (Theorem 2.4 and remarks of Section 6 therein about the hypothesis of this
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theorem), there exists a constant C1ptq such that for all x P D,

|Exrfpξht q1τDpξhqąts ´ Exrfpξtq1τDpξqąts| ď CfC1ptq
?
h.

It follows that

sup
xPD

|Exrfpξht q1τDpξhqąts ´ Exrfpξtq1τDpξqąts|
hÑ0
ÝÝÝÑ 0.

As a consequence,

Eµ‹
h
rfpξht q1τDpξhqąts ´ Eµ‹

h
rfpξtq1τDpξqąts

hÑ0
ÝÝÝÑ 0.

Now, by a dominated convergence argument (using that supsPr0,ts |ξxs ´ ξx0
s | Ñ 0 in probability

when x Ñ x0), one remarks that x ÞÑ Exrfpξtq1τDpξqąts is (bounded) continuous on D. As a
consequence, Eµ‹

hn
rfpξtq1τDpξqąts Ñ Eµrfpξtq1τDpξqąts so that

Eµ‹
hn
rfpξhnt q1τDpξhn qąts

hÑ0
ÝÝÝÑ Eµrfpξtq1τDpξqąts.

Equality (46) follows by plugging the above convergence and (47) into (44).

8. EXTENSIONS

8.1. Non-compact case: Processes coming down from infinity. In the main results, we chose
to restrain our considerations to compact spaces. When E is only locally compact, the results of
this paper could be extended to the class of processes which come down from infinity (CDFI), i.e.
which have the ability to come back to a compact set in a bounded time with a uniformly lower-
bounded probability (for more details, see e.g. [2, 15, 19]). First, note that (CDFI)-condition is a
usual and sharp assumption which ensures uniqueness of the QSD in the locally compact setting.
Second, the (CDFI)-condition is in particular ensured if E is locally compact and if there exists
a map V , such that tV ď Cu is compact for every C ą 0 and M :“ supxPE KV pxq is finite.
Also, let us remark that P̄ :“ tµ P PpEq, µpV q ď Mu is compact for the weak convergence
topology (owing to the coercivity condition on V ) and is invariant under the action of the kernel
K. Then, on this subspace P̄ , the main arguments of the proof of the main results could be
adapted to obtain the convergence of the algorithm.

8.2. Non-compact space: the minimal QSD. In Theorem 3.4, we have seen that when a pro-
cess admits several QSDs, our algorithm may select all of its QSDs with positive probabili-
ties. When (CDFI)-condition fails in the non-compact setting (think for instance about the real
Ornstein-Uhlenbeck process killed when leaving R`), uniqueness generally fails and one can
not expect the algorithm to select only one QSD. However, if the aim is to approximate the
so-called minimal QSD, namely the one associated to the minimal eigenvalue and appearing in
the Yaglom limit, then, one can use a compact approximation method in the spirit of [42]. More
precisely, consider for instance a diffusion process pξtqtě0 on Rd killed when leaving an un-
bounded domain D and denote by µ‹ the related minimal QSD (when exists). Let also pKnqně1
be an increasing sequence of compact spaces such that

Ť

ně1Kn “ D. Then, under some non-
degeneracy assumptions (see e.g. Theorem 3.9), the QSD µ‹n related toKn is unique for every n
and by [42, Theorem 3.1], limnÑ`8 µ

‹
n “ µ‹. Then, using our algorithm for an approximation

of µ‹n would lead to an approximation of µ‹ for n large enough.
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8.3. Continuous-time algorithm. In view of the approximation of the QSD of a diffusion pro-
cess pξtqtě0 on a bounded domain D satisfying the assumptions of Theorem 3.9, it may be of
interest to study the convergence of a continuous-time equivalent of our algorithm (instead of
considering an Euler scheme with constant step). Of course, without discretization, such a prob-
lem is mainly theoretical but it is worth noting that the difficulties mentioned below should be
very similar if one investigated an algorithm with decreasing step (on this topic, see also Remark
3.11).The continuous-time algorithm is defined as follows:

‚ let x P D and pX1
t qtě0 be as pξtqtě0 with initial condition ξ0 “ x;

‚ let τ1 “ inftt ě 0 | X1
t R Du, for all t ă τ1 we set Xt “ X1

t ;
‚ Let µt “ 1

t

şt
0 δXsds be the occupation measure of X;

‚ Let U be a random variable distributed as µτ1 (conditionally on the stopping time σ-field
Fτ1);

‚ we set Xτ1 “ U ;
‚ the process then evolves as above starting from U .

We denote by pτkqkě1 the sequence of jumping times. At the nth time, the process jumps
uniformly over the positions from all its past and not only from rτn, τn`1s. This sequence of
stopping times is increasing and almost surely converges to some τ8 P p0,`8s. The process
pXtqtě0 is well defined until the time τ8. It is not trivial that τ8 “ 8 because the process
pXtqtě0 can be arbitrarily close to the boundary and the times between jumps become arbitrarily
short. Nonetheless, we have

Lemma 8.1 (Non-explosion of the continuous-time algorithm). Under the assumptions of The-
orem 3.9, we have τ8 “ `8 a.s.

The proof is given below. This type of problem is reminiscent of the Fleming-Viot particle
system [10, 11, 43]. However, the comparison stops here because our procedure is not "Markov-
ian" and their proofs can not be adapted.

Proof of Lemma 8.1. Let x P D be the starting point of pXtqtě0. Fix ε ą 0 such that dpx, BDqąε
and choose 0 ă δ ă ε. Let pBtqtě0 a Brownian motion and choose z in the ballBpx, δq of center
x and radius δ. We let pξzt qtě0 be the solution of

dξzt “ bpξzt qdt` σpξ
z
t qdBt, ξz0 “ z,

and
τε,δ,x “ inf

zPBpx,δq
inftt ě 0 | ξzt R Bpx, εqu.

The variable τε,δ,x is almost-surely positive. On tτ8 ă `8u, we have, for every t P rτ1, τ8q,

µtpBpx, δqq ě
τε,δ,x
τ8

.

As a consequence on tτ8 ă `8u, the process pXtqtě0 jumps infinitely often in Bpx, δq. But if
it starts from a point z P Bpx, δq, its absorption time can be bounded from below by a random
variable σ (independent from the past) such that σ has the same law as τε,δ,x. Hence, we have

τ8 ě
ÿ

ně1
σn,
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on tτ8 ă `8u, where pσnqně1 is a sequence of i.i.d. random variable distributed as τε,δ,x. As
they are positive, the strong law of large numbers ensures that

ř

ně0 σn “ `8 almost surely
and then Ppτ8 ă `8q “ 0. �
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