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INTRODUCTION

Numerous models, in ecology and elsewhere, describe the temporal evolution of a system by a Markov process which eventually gets killed in finite time. In population dynamics, for instance, extinction in finite time is a typical effect of finite population sizes. However, when populations are large, extinction usually occurs over very large time scales and the relevant phenomena are given by the behavior of the process conditionally to its non-extinction.

More formally, let pξ t q tě0 be a Markov process with values in E Y tBu where E is a metric space and B R E denotes an absorbing point (typically, the extinction set or the complement of a domain). Under appropriate assumptions, there exists a distribution ν on E (possibly depending on the initial distribution of ξ) such that lim tÑ8 Ppξ t P .|ξ t ‰ Bq " νp¨q.

(

Such a distribution well describes the behavior of the process before extinction, and is necessarily (see e.g [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]) a quasi-stationary distribution (QSD) in the sense that P ν pξ t P ¨|ξ t ‰ Bq " νp¨q. We refer the reader to the survey paper [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF] or the book [START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF] for general background and a comprehensive introduction to the subject.

The simulation and numerical approximation of quasi-stationary distributions have received a lot of attention in the recent years and led to the development and analysis of a class of particle systems algorithms known in the literature as Fleming-Viot algorithms (see [START_REF] Burdzy | A Fleming-Viot particle representation of the Dirichlet Laplacian[END_REF][START_REF] Cloez | Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space[END_REF][START_REF] Del Moral | A Moran particle system approximation of Feynman-Kac formulae[END_REF][START_REF] Villemonais | General approximation method for the distribution of Markov processes conditioned not to be killed[END_REF]). The principle of these algorithms is to run a large number of particles independently until one is killed Date: Compiled November 6, 2017. and then to replace the killed particle by an offspring whose location is randomly (and uniformly) chosen among the locations of the other (alive) particles. In the limit of an infinite number of particles, the (spatial) empirical occupation measure of the particles approaches the law of the process conditioned to never be absorbed; see for instance [43, Theorem 1] . Combined with [START_REF] Aldous | Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of markov chains[END_REF], this gives a method for estimating the QSD of the process.

In a related context the new paper [START_REF] Pollock | The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data[END_REF] demonstrates the importance to simulate QSDs in computational statistics as an alternative approach to classical MCMC simulations.

Recently, in the setting of finite state Markov chains, Benaim and Cloez [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF] (see also [START_REF] Blanchet | Theoretical analysis of a Stochastic Approximation approach for computing Quasi-Stationary distributions[END_REF]) analyzed and generalized an alternative approach introduced in [START_REF] Aldous | Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of markov chains[END_REF] in which the spatial occupation measure of a set of particles is replaced by the temporal occupation measure of a single particle. Each time the particle is killed it is risen at a location randomly chosen according to its temporal occupation measure. The details of the construction are recalled in Section 2.

The objective of this paper is twofold: on one hand, we aim at extending the results of [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF] to the setting of Markov chains with values in a general space, being killed when leaving a compact domain. Indeed, up to our knowledge, in all the previous works for this algorithm [START_REF] Aldous | Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of markov chains[END_REF][START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF][START_REF] Blanchet | Theoretical analysis of a Stochastic Approximation approach for computing Quasi-Stationary distributions[END_REF], the state space E is finite. On the other hand, we also explore various applications: we propose and investigate a numerical procedure, based on an Euler discretization, for approximating QSD of diffusions.

In contrast with the Fleming-Viot particle system, this algorithm requires less calculus but more memory. Also, it only depends on only one parameter (the time) and then approximates in the same time the conditioned dynamics and its long time limit; in particular, it does not require to calibrate simultaneously the number of particles and the time parameter as in the standard Fleming-Viot approach. Instead, in view of a convergence result for this algorithm, one needs to obtain some properties which are similar to the commutation of the limits of large particles and of the long time for the Fleming-Viot algorithm. For the particle system, this type of problem is not completely solved in general but some results have been obtained in some particular settings; see for instance [START_REF] Burdzy | A Fleming-Viot particle representation of the Dirichlet Laplacian[END_REF][START_REF] Cloez | Fleming-viot processes: two explicit examples[END_REF][START_REF] Cloez | Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space[END_REF][START_REF] Ferrari | Quasi stationary distributions and Fleming-Viot processes in countable spaces[END_REF][START_REF] Grigorescu | Immortal particle for a catalytic branching process[END_REF][START_REF] Villemonais | Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift[END_REF]]. Note that an example where the commutation property does not hold is exhibited in Section 3.1. Besides, let us cite [START_REF] Moral | On the stability of measure valued processes with applications to filtering[END_REF], [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF]Section 3] or [START_REF] Oçafrain | Non-failable approximation method for conditioned distributions[END_REF] which give three different discrete-time Fleming-Viot type algorithms where the double limit is either not proved or proved under restrictive assumptions. Another difference is that the Fleming-Viot process is often developed in continuous-time although our stochastic approximation scheme is in discrete time. As a consequence it is difficult to compare our assumptions on the transition kernel with the ones of the articles mentioned previously. However, implementing the methods of [START_REF] Burdzy | A Fleming-Viot particle representation of the Dirichlet Laplacian[END_REF][START_REF] Grigorescu | Immortal particle for a catalytic branching process[END_REF][START_REF] Villemonais | Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift[END_REF] requires a discretization and then leads to the QSD of an Euler-type sequence instead of the one of the target diffusion process. Theorem 3.9 corroborates the consistence of their methods and also shows the consistence of our algorithm.

Outline. The paper is organized as follows: In Section 2 we detail the general framework, the hypotheses and state our main results. In Section 3, we first discuss our assumptions in the simple case of finite Markov chains and then focus on the application to the numerical approximation of QSDs for diffusions (including theoretical results and numerical tests), The sequel of the paper (Sections 4, 5, 6, and 7) is mainly devoted to the proofs and the details about their sequencing will be given at the end of Section 3. We end the paper by some potential extensions of this work to some more general settings such as non-compact domains or continuous-time reinforced strategies.

SETTING AND MAIN RESULTS

2.1. Notation and Setting. Let E be a compact metric space 1 equipped with its Borel σ-field BpEq. Throughout, we let BpE, Rq denote the set of real valued bounded measurable functions on E and CpE, Rq Ă BpE, Rq the subset of continuous functions. For all f P BpE, Rq we let }f } 8 " sup xPE |f pxq| and we let 1 denote the constant map x Þ Ñ 1. We let PpEq denote the space of (Borel) probabilities over E equipped with the topology of weak* convergence. For all µ P PpEq and f P BpE, Rq, or f nonnegative measurable, we write µpf q (or µf ) for ş E f dµ. Recall that µ n Ñ µ in PpEq provided µ n pf q Ñ µpf q for all f P CpE, Rq, and that (by compactness of E and Prohorov Theorem), PpEq is a compact metric space (see e.g [START_REF] Dudley | Real Analysis and Probability[END_REF]Chapter 11]).

A sub-Markovian kernel on E is a map Q : E ˆBpEq Þ Ñ r0, 1s such that for all x P E, A Þ Ñ Qpx, Aq is a nonzero measure (i.e Qpx, Eq ą 0) and for all A P BpEq, x Þ Ñ Qpx, Aq is measurable. If furthermore Qpx, Eq " 1 for all x P E, then Q is called a Markov (or Markovian) kernel.

Let Q be a sub-Markovian (respectively Markovian) kernel. For every f P BpE, Rq and µ P PpEq, we let Qf and µQ respectively denote the map and measure defined by If Qf P CpE, Rq whenever f P CpE, Rq, then Q is said to be Feller. For all n P N, we let Q n denote the sub-Markovian (respectively Markovian) kernel recursively defined by

Q n`1 px, ¨q " ż E Qpy, ¨qQ n px, dyq and Q 0 px, ¨q " δ x .
A probability µ P PpEq is called a quasi-stationary distribution (QSD) for Q if µ and µQ are proportional or, equivalently, if, µ " µQ µQ1 .

The number Θpµq :" µQ1 (2) is called the extinction rate of µ.

Note that when Q is Markovian, a quasi stationary distribution is stationary (or invariant) in the sense that µ " µQ. In this case Θpµq " 1, otherwise Θpµq ă 1.

From now on and throughout the remainder of the paper we assume given a Feller sub-Markovian kernel K on E.

Let B R E be a cemetery point. (

) 3 
The kernel s K can be understood as the transition kernel of a Markov chain pY n q ně0 on E Y tBu whose transitions in E are given by K and which is "killed" when it leaves E.

Let δ : E Þ Ñ r0, 1s be the function defined by δ " 1 ´K1.

That is, for every x P E, δpxq " s Kpx, tBuq " 1 ´Kpx, Eq. (4) For a given µ P PpEq, we let K µ denote the Markov kernel on E defined by K µ px, Aq " Kpx, Aq `δpxqµpAq for all x P E and A P BpEq. Equivalently, for every f P BpE, Rq,

K µ f pxq " Kf pxq `δpxqµpf q.
The chain induced by K µ behaves like pY n q until it is killed and then is redistributed in E according to µ. Note that K µ inherits the Feller continuity from K. For the sequel, an important feature of K µ is that µ is a QSD for K if and only if it is invariant for K µ (see Lemma 4.3 for details).

Let pΩ, F, Pq be a probability space equipped with a filtration tF n u ně0 (i.e an increasing family of σ-fields). We now consider an E-valued random process pX n q ně0 defined on pΩ, F, P q adapted to tF n u ně0 such that X 0 " x P E and @ n ě 0, PpX n`1 P dy|F n q " K µn pX n , dyq, (

where

µ n " ř n k"0 η k δ X k ř n k"0 η k (6)
is a weighted occupation measure. Here pη n q ně0 is a sequence of positive numbers satisfying certain conditions that will be specified below (see Hypothesis 2.1). With the definition of K µ , this means that whenever the original process pY n q ně0 is killed, it is redistributed in E according to its weighted empirical occupation measure µ n . Note that such a process is a type of reinforced random walk (see e.g [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF]). It is reminiscent of interacting particle systems algorithms used for the simulation of QSDs such as the so-called Fleming-Viot algorithm (see [START_REF] Burdzy | A Fleming-Viot particle representation of the Dirichlet Laplacian[END_REF][START_REF] Cloez | Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space[END_REF][START_REF] Villemonais | General approximation method for the distribution of Markov processes conditioned not to be killed[END_REF] and [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF]Section 3]). However, while these latter algorithms involve a large number of particles whose individual dynamics depend on the spatial occupation measure of the particles, here there is a single particle whose dynamics depends on its temporal occupation measure. From a simulation point of view, this is of potential interest, suggesting fewer computations (but more memory) and leading to a recursive method which avoids (at least in name) the trade-off between the number of particles and the time horizon induced by Fleming-Viot algorithm.

Set, for n ě 0,

γ n " η n ř n k"0 η k .
The occupation measure can then be computed recursively as follows:

µ n`1 " p1 ´γn`1 qµ n `γn`1 δ X n`1 . ( 7 
)
Under appropriate irreducibility assumptions (see Hypothesis 2.2 below), K µ admits a unique invariant probability Π µ . Owing to the above characterization of QSDs as fixed points of µ Þ Ñ Π µ , we choose to rewrite the evolution of pµ n q as:

µ n`1 " µ n `γn`1 p´µ n `Πµn q `γn`1 ε n (8)
where ε n " δ X n`1 ´Πµn . The process pµ n q is therefore a stochastic approximation algorithm associated to the ordinary differential equation (ODE) (for which rigorous sense will be given in Section 5):

9 µ " ´µ `Πµ . ( 9 
)
The almost sure convergence of pµ n q towards µ ‹ (the QSD of K) will then be achieved by proving that :

(i) The asymptotic dynamics of pµ n q ně0 matches with that of solutions of the above ODE: more precisely, pµ n q ně0 is (at a different scale) an asymptotic pseudo-trajectory of the ODE (in the sense of Benaim and Hirsch [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF], see [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] for background). (ii) The set FixpΠq " tµ P PpEq, µ " Π µ u reduces to µ ‹ and is a global attractor of the ODE. This strategy was applied in [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF] when E is a finite set. However, the proofs in [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF] strongly rely on finite dimensional arguments that cannot be applied in this more general setting and the new proofs will require a careful study of the kernel family pK µ q µ . 2.2. Main results. We first summarize the standing assumptions under which our main results will be proved. We begin by the assumptions on pγ n q ně1 . Hypothesis 2.1 (Standing assumption on pγ n q). The sequence pγ n q ně0 appearing in equation ( 7) is a non-increasing sequence such that ÿ ně0 γ n " `8 and lim nÑ`8

γ n lnpnq " 0. (10) 
The typical sequence is given by γ n " 1 n`1 , which corresponds to η n " 1 for all n ě 1. Now, let us focus on the assumptions on the sub-Markovian kernel K. We say that a nonempty set A P BpEq Y tBu is accessible if for all x P E

ÿ ně1 s K n px, Aq ą 0.
It is called a weak2 small set if A Ă E and there exists a probability measure Ψ on E and ą 0 such that for all x P A ÿ ně1

K n px, dyq ě Ψpdyq. ( 11 
)
Hypothesis 2.2 (Standing assumptions on K).

' pH 1 q K is Feller. ' pH 2 q
The cemetery point tBu is accessible.

Assumptions H 1 and H 2 imply the existence of a quasi-stationary distribution but are not sufficient to ensure its uniqueness (see the example developed in Subsection 3.1). For this, we require the supplementary assumptions below Hypothesis 2.3 (Additional assumptions on K).

' pH 3 q

There exists an open accessible weak small set U .

' pH 4 q There exists a non increasing convex function C : R `Þ Ñ R `satisfying ż 8 0

Cpsqds " 8 [START_REF] Blanchet | Theoretical analysis of a Stochastic Approximation approach for computing Quasi-Stationary distributions[END_REF] such that

ΨpK n 1q sup xPE K n 1pxq ě Cpnq
where Ψ satisfies equation [START_REF] Bieniek | Extinction of Fleming-Viot-type particle systems with strong drift[END_REF].

Roughly, the latter hypothesis stipulates that the rate at which the process dies is uniformly controlled, in terms of the initial point. This is motivated by the recent work of Champagnat and Villemonais [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] in which it is proved that under mildly stronger versions of H 3 (namely, K l px, 9 q ě Ψ for some l independent of x) and H 4 (namely Cptq ě c ą 0) the sequence of conditioned laws defined by

P x pY n P ¨|Y n P Eq " K n px, ¨q K n 1pxq
, n ě 0, converges, as n Ñ 8, exponentially fast to a (unique) QSD. Here, Assumption H 4 which does not require the function s Þ Ñ Cpsq to be lower-bounded does certainly not guarantee the exponential rate but is a sharper and almost necessary assumption for the uniqueness and the attractiveness of the QSD (on this topic, see also Remark 2.4 below and Proposition 3.3). More precisely, it will be shown that under H 3 and H 4 , the semiflow induced by ( 9) is globally asymptotically stable (i.e FixpΠq is a singleton and is a global attractor).

Remark 2.4 (Sufficient condition). A simple condition ensuring Hypothesis 2.3 is that, for some l ě 1, constants c 1 , c 2 ą 0 and some Ψ P PpEq

c 1 Ψpdyq ď K px, dyq ď c 2 Ψpdyq. (13) 
Indeed, under [START_REF] Bouleau | Numerical methods for stochastic processes[END_REF], for n ě ,

c 2 ΨpK n´ 1q ě K n 1 ě c 1 ΨpK n´ 1q while for n ď , 1 ě K n 1 ě K 1 ě c 1 . Hence Cptq " min ˆc1 c 2 , c 1 ˙ą 0. Note that (13),
which is usual in the literature (see e.g. [9, Theorem 3.2]), is satisfied if K admits a continuous and positive density with respect to a positive reference measure.

Finally, note that in Hypotheses 2.2 and 2.3 there is no aperiodicity assumption on K.

We are now able to state our main general result about the convergence of the empirical measure pµ n q ně0 towards the QSD. Theorem 2.5 (Convergence of the algorithm). Assume Hypotheses 2.1, 2.2 and 2.3. Then, K has a unique QSD µ ‹ and the sequence pµ n q ně0 defined by (6) converges a.s. in PpEq towards µ ‹ .

In fact, the previous setting also leads to the convergence in distribution of the reinforced random walk: Theorem 2.6 (Convergence in distribution of pX n q ně0 ). Suppose that the assumptions of Theorem 2.5 hold. Then, for any starting distribution α, pX n q ně0 defined by (5) converges in distribution to µ ‹ .

The two above results thus show that the algorithm both produces a way to approximate µ ‹ and also to sample a random variable with this distribution. The convergence in law of pX n q ně0 may appear surprising due to the lack of aperiodicity assumption for pY n q ně0 . To overcome this problem, we prove in fact that pX n q ně0 gets asymptotically this property.

The extinction rate Θpµ ‹ q, defined in (2), can be estimated through the same procedure. For this, we need to keep track of the times at which a "resurrection" occurs. We then construct pX n q as follows. Let ppU n , X n qq be a process adapted to tF n u, with

U n P E Y tBu, X n P E, satisfying X 0 " U 0 " x, PpU n`1 P dy|F n q " s KpX n , dyq and X n`1 " V n`1 1 tU n`1 "Bu `Un`1 1 tU n`1 PEu ,
where pV n q is a sequence of independent variables such that V n`1 " µ n , conditionally on σpF n , U n`1 q. Clearly, pX n q satisfies (5) and the times at which U n " B are the "resurrection" times (at which X n is redistributed).

Theorem 2.7 (Extinction rate estimation). Suppose that the assumptions of Theorem 2.5 are satisfied. Then,

s θ n :" 1 n n ÿ k"1 1 tU k "Bu nÑ`8 ÝÝÝÝÑ 1 ´Θpµ ‹ q.
Proof. Since PpU n`1 " B|F n q " δpX n q , we can decompose s θ n as

s θ n " M n n `µn pδq
where pM n q is the martingale defined by M n " ř n k"1 p1 tU k "Bu ´δpX k´1 qq. Since the increments of pM n q are uniformly bounded, xM y n ď Cn and it follows from the strong law of large numbers for martingales, that Mn n Ñ 0 a.s. as n Ñ `8. On the other hand, µ n pδq nÑ`8 ÝÝÝÝÑ µ ‹ pδq " 1 ´Θpµ ‹ q a.s. This ends the proof.

EXAMPLES AND APPLICATIONS

3.1. Finite Markov Chains. In this entire subsection, we consider the simple situation where E is a finite set in order to discuss our main assumptions.

We use the notation Kpx, yq " Kpx, tyuq, @ x, y P E.

We say that x leads to y, written x ãÑ y, if ř ně0 K n px, yq ą 0. If A, B Ă E we write A ãÑ B whenever there exist x P A and y P B such that x ãÑ y.

Kernel K is called indecomposable if there exists x 0 P E such that x ãÑ x 0 for all x P E, and irreducible if x ãÑ y for all x, y P E.

Note that Hypothesis H 1 is automatically satisfied (endow E with the discrete topology) and that H 3 is equivalent to indecomposability (choose U " tx 0 u and Ψ " δ x 0 ). From now on, we investigate separately the irreducible and non-irreducible cases.

Irreducible setting. When K is irreducible Hypothesis H 4 holds with Cpnq " c ą 0. This follows from the following lemma. Lemma 3.1. There exists c ą 0 such that K n 1pxq " K n px, Eq ě cK n py, Eq " cK n 1pyq for all n P N and x, y P E such that x ãÑ y.

Proof. Let c 1 " mintKpx, yq : Kpx, yq ą 0u. If x ãÑ y, then the path which links x and y has at most |E| ´1 steps and hence, Dr y P t1, . . . , |E| ´1u such that K ry px, yq ě c ry

1 ě c |E|´1 1 .
From the relation

K n px, Eq ě K n`ry px, Eq " ÿ y K ry px, yqK n py, Eq it comes that K n px, Eq ě c |E|´1 1 K n py, Eq.
This proves the result with c " c

|E|´1 1 .
As a consequence, except for the rate of convergence, we retrieve [6, Theorem 1.2] (see also [START_REF] Aldous | Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of markov chains[END_REF][START_REF] Blanchet | Theoretical analysis of a Stochastic Approximation approach for computing Quasi-Stationary distributions[END_REF] for the convergence result in the case γ n " 1 n`1 ). Theorem 3.2. Suppose K is irreducible and Kpx 0 , Eq ă 1 for some x 0 P E. Then K has a unique QSD µ ‹ and under Hypothesis 2.1, pµ n q converges almost surely to µ ‹ . Bottleneck effect and condition H 4 . Here we discuss an example demonstrating the necessity of condition H 4 for non irreducible chains. Note that this example can also be understood as a benchmark of more general processes admitting several QSDs such as general indecomposable Markov chains.

Suppose E " E 1 Y E 2 where E 1 and E 2 are nonempty disjoint sets such that (1) @x, y P E i x ãÑ y;

(2) E 1 ãÑ E 2 ;

(3) E 2 ãÑ E 1 ;

(4) E 2 ãÑ B, (that is Dx P E 2 Kpx, Eq ă 1) and E 1 ãÑ B.

Let K i be the kernel K restricted to E i . That is

K i " pKpx, yqq x,yPE i .
Let µ ‹ i be the (unique) QSD of K i and Θ i the associated extinction rate. Note that, by irreducibility of K i , and the Perron Frobenius Theorem, Θ i is nothing but the spectral radius of K i .

We consider µ ‹ i as an element of PpEq by identifying PpE i q with the set of µ P PpEq supported by E i .

As Proof. Fix x 0 P E 2 and let Ψ " δ x 0 . Hence, H 1 , H 2 and H 3 hold. By Lemma 3.1 there exists c ą 0 such that ΨpK n 1q " K n 1px 0 q ě cK n 1pxq for all x P E 2 and n ě 0. Thus H 4 is equivalent to @x P E 1 , K n 1px 0 q ě CpnqK n 1pxq (14) with C satisfying [START_REF] Blanchet | Theoretical analysis of a Stochastic Approximation approach for computing Quasi-Stationary distributions[END_REF]. Let τ 1 " mintn ě 0 : Y n R E 1 u and τ 2 " mintn ě 0 : Y n " Bu. By Lemma 3.1 applied to each of the kernel K i , and from the relation

Θ n i " µ i K n i 1 E i , we get that for all x P E i 1 c Θ n i ě P x pτ i ą nq ě cΘ n i ( 15 
)
for some c ą 0. Thus for all x P E 1 ,

P x pτ 2 ą nq " E x rPpτ 2 ą n|F τ 1 qs " E x " P Yτ 1 pτ 2 ą n ´τ1 q ‰ ď 1 c E x " Θ n´τ 1 2 1 τ 1 ďn `1τ 1 ąn ‰
by [START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF]. Thus, For Θ 1 ď Θ 2 , µ ‹ 2 is a global attractor of the dynamics induced by ( 9), but when Θ 1 exceeds Θ 2 a transcritical bifurcation occurs: µ ‹ 2 becomes a saddle point whose stable manifold is PpE 2 q, while there is another linearly stable point µ ‹ whose basin of attraction is PpEqzPpE 2 q. This behavior will be shown in section 7 and combined with standard techniques from stochastic approximation, it will be used to prove the following result. Theorem 3.4 (Behavior of the algorithm without Assumption H 4 ). Suppose Θ 1 ą Θ 2 . Then there is another QSD µ ‹ having full support (i.e µ ‹ pxq ą 0 for all x P E). Under Hypothesis 2.1, (i) pµ n q ně0 converges almost surely to

P x pτ 2 ą nq ď 1 c Θ n 2 n ÿ k"1 Θ ´k 2 pP x pτ 1 ą k ´1q ´Px pτ 1 ą kqq `1 c P x pτ 1 ą nq " 1 c Θ n 2 pΘ ´1 2 `n´1 ÿ k"1 pΘ ´k´1 2 ´Θ´k 2 qP x pτ 1 ą kqq " 1 c Θ n´1 2 p1 `p1 ´Θ2 q n´1 ÿ k"1 Θ ´k 2 P x pτ 1 ą
µ 8 P tµ ‹ 2 , µ ‹ u. (ii) If X 0 P E 2 , X n P E 2 for all n and µ 8 " µ ‹
2 with probability one. (iii) If X 0 P E 1 , the event tµ 8 " µ ‹ u has positive probability.

(iv) If ř n ś n i"1 p1 ´γi q ă `8, the event tDN P N : X n P E 2 for all n ě N u has positive probability, and on this event µ 8 " µ ‹ 2 . Example 3.5 (Two points space). The previous results are in particular adapted to the case where E i " tiu, i " 1, 2 and

K " ˆa 1 ´a 0 b ẇith a, b P p0, 1q. Write µ P PpEq as µ " px, 1 ´xq, 0 ď x ď 1. Then K µ " ˆa 1 ´a p1 ´bqx b `p1 ´bqp1 ´xq ȧnd the ODE (9) writes 9 x " ´x `p1 ´bqx p1 ´aq `p1 ´bqx . ( 16 
)
In this case, one can check that Θ 1 " a and Θ 2 " b, µ ‹ 2 " δ 2 and when a ą b, µ ‹ "

a´b 1´b δ 1 `1´a 1´b δ 2 .
In Figure 1, for a fixed value of b, we draw the phase portrait of the ODE ( 16) in terms of a and especially the bifurcation which appears when a ą b. 

a Þ Ñ µ ‹ 2 p1q, dotted line: a Þ Ñ µ ‹ p1q . Remark 3.6 (Open problem). Suppose γ n " A n . Although µ ‹ 2 is a saddle point when Θ 1 ą Θ 2 , Theorem 3.4 shows that the event µ n Ñ µ ‹
2 has positive probability when A ą 1. A challenging question would be to prove (or disprove) that this event has zero probability when A ď 1. This is reminiscent of the situation thoroughly analyzed for two-armed bandit problems in [START_REF] Lamberton | A penalized bandit algorithm[END_REF][START_REF] Lamberton | When can the two-armed bandit algorithm be trusted?[END_REF].

Remark 3.7 (Conditioned dynamics). Note that by mimicking the proof of Lemma 7.2 below, one is also able to compute the limit of the conditioned dynamics:

lim nÑ8 P y pY n P ¨|Y n P Eq " lim nÑ8 K n py, ¨q K n 1pyq " ν,
where ν " µ ‹ 2 if Θ 1 ď Θ 2 or y P E 2 and ν " µ ‹ when Θ 1 ą Θ 2 and y P E 1 . Furthermore, at least for Example 3.5 above, it is worth noting that the convergence is not exponential when Θ 1 " Θ 2 .

Remark 3.8 (Fleming-Viot algorithm). Theorem 3.4 shows that, with positive probability, our algorithm asymptotically matches with the behavior of the dynamics conditioned to the nonabsorption. Surprisingly, this is not the case for the discrete-time (or continuous-time) Fleming-Viot particle system (see [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF]Section 3], for the definition) which always converges to µ ‹ 2 . Actually, let us recall that this algorithm has two parameters: the (current) time t ě 0 and the number of particles N ě 1. When the number of particles goes to infinity, it is known that the empirical measure (induced by the particles at a fixed time) converges to the laws conditioned to not be killed; see for instance [START_REF] Cloez | Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space[END_REF][START_REF] Villemonais | General approximation method for the distribution of Markov processes conditioned not to be killed[END_REF] in the continuous-time setting. However, if we keep constant the number of particles and let first the time t tend to infinity then, one obtains the convergence to µ ‹ 2 in place of µ ‹ . This comes from the fact that the state where all the particles are in E 2 is absorbing and accessible. In this case, the commutation of the limits established in [6, Section 3] fails. Finally, note that the study of the rate of convergence of Fleming-Viot processes in a two-points space is investigated in [START_REF] Cloez | Fleming-viot processes: two explicit examples[END_REF].

Approximation of QSD of diffusions.

A potential application of this work is to generate a way to simulate QSD of continuous-time Markov dynamics. To this end, the natural idea is to apply the procedure to a discretized version (Euler scheme in the sequel) of the process. Here, we focus on the case of non-degenerate diffusions pξ t q tě0 in R d killed when leaving a bounded connected open set D. More precisely, let pξ t q tě0 be the unique solution to the d-dimensional SDE dξ t " bpξ t qdt `σpξ t qdW t , ξ 0 P D, where b and σ are defined on R d with values in R d and M d,d respectively. One assumes below that the diffusion is uniformly elliptic and that b and σ belong to C 2 pR d q (see Remark 3.10).

For a given step h ą 0, we denote by pξ h t q tě0 , the stepwise constant Euler scheme defined by ξ 0 " y P D, @n P N, ξ h pn`1qh " ξ h nh `hbpξ h nh q `σpξ h nh qpW pn`1qh ´Wnh q, and for all t P rnh, pn `1qhq, ξ h t " ξ h nh . Under the ellipticity assumption on the diffusion, the Markov chain pY n :" ξ h nh q n satisfies the assumptions of Theorem 2.5 (with E " s D) (in particular [START_REF] Bouleau | Numerical methods for stochastic processes[END_REF]) and thus admits a unique QSD that we denote by µ ‹ h . This QSD can be approximated through the procedure defined above and the natural question is: does pµ ‹ h q h converge to µ ‹ when h Ñ 0, where µ ‹ denotes the unique QSD of pξ t q tě0 killed when leaving D ? A positive answer is given below. Theorem 3.9 (Euler scheme approximation). Assume that pξ t q tě0 is a uniformly elliptic diffusion and that D is a bounded domain (i.e. connected open set) with C 3 -boundary. Then, ppξ t q tě0 , BDq admits a unique QSD µ ‹ and pµ ‹ h q hą0 converges weakly to µ ‹ when h Ñ 0.

Remark 3.10 (Smoothness assumptions). The uniqueness of µ ‹ is given by Theorem 5.5 of Chapter 3 in [START_REF] Pinsky | Positive harmonic functions and diffusion[END_REF] (see also [27, Theorem (C)]). Also note that in the proof of the above theorem, one makes use of some results of [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF] about the discretization of killed diffusions. The C 2assumption on b and σ is adapted to the setting of these papers but could be probably relaxed in our context.

We propose to illustrate the previous results by some simulations. We consider an Ornstein-Uhlenbeck process dξ t " ´ξt dt `dB t , t ě 0 killed outside an interval ra, bs and thus compute the sequence pµ h n q ně1 with step h. We will assume that a " 0 and b " 3. In Figure 2, we represent on the left the approximated density of µ h n (obtained by a convolution with a Gaussian kernel) for a fixed value of h and different values of n. Then, on the right, n is fixed pn " 10 7 q and h decreases to 0. Unfortunately, FIGURE 2. Left: Approximated density of pµ h n q with h " 0.01 and n " 5.10 4 , 10 5 , 10 6 (green, blue, red) Right: Comparison of µ ‹ h for h " 0.05, 0.01, 0.001, (red, orange, blue) with µ ‹ (red, dotted-line) even though the convergence in n seems to be fast, the convergence of µ ‹ h towards µ ‹ is very slow: the discretization of the problem underestimates the probability to be killed between two discretization times. The slow convergence means in fact that this probability decreases slowly to 0 with h. However, it is now well-known that, under some conditions on the domain and/or on the dimension, it is possible to compute a sharp estimate of this probability. More precisely, let p r ξ h t q t denote the refined continuous-time Euler scheme r ξ h nh " ξ h nh and for all t P rnh, pn `1qhq,

r ξ h t " r ξ h nh `pt ´nhqbp r ξ h nh q `σp r ξ h nh qpW t ´Wnh q. It can be shown that L ´pr ξ h t q tPrnh,pn`1qhs | r ξ h nh " x, r ξ h pn`1qh " y ¯" L ˆx `t ´nh h py ´xq `σp r ξ h nh qB h t ẇhere
for a given T ą 0, B T denotes the Brownian Bridge on the interval r0, T s defined by: B T t " W t ´t T W T . In dimension 1, the law of the infimum and the supremum of the Brownian Bridge can be computed (see [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF] for details and a discussion about higher dimension). One has for every z ě maxpx, yq,

P ˜sup tPr0,T s ˆx `py ´xq t T `λB T ˙ď z ¸" 1 ´exp ˆ´2 T λ 2 pz ´xqpz ´yq ˙.
Thus, this means that at each step n, if ξ pn`1qh P D, one can compute, with the help of the above properties, a Bernoulli random variable V with parameter p " PpDt P pnh, pn `1qhq, ξ h t P D c |ξ nh " x, ξ pn`1qh " yq (If V " 1, the particle is killed).

This refined algorithm has been tested numerically and illustrated in Figure 3. Here, the effect of the Brownian Bridge method is only considered from a numerical viewpoint. The theoretical consequences on the rate of convergence are outside of the scope of this paper. Also remark that in order to get only one asymptotic for the algorithm, it would be natural to replace the constant step h by a decreasing sequence as in [START_REF] Lemaire | An adaptive scheme for the approximation of dissipative systems[END_REF][START_REF] Panloup | Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process[END_REF]. Once again, such a theoretical extension is left to a future work.

Outline of the proofs. In Section 4, we begin by some preliminaries: the starting point is to show that the QSD is a fixed point for the application µ Þ Ñ Π µ (on PpEq) where Π µ denotes the invariant distribution of K µ (see Lemma 4.3 below). Then, in order to give a rigorous sense to the ODE (9), we prove that this application is Lipschitz continuous for the total variation norm (Proposition 4.5) by taking advantage of the exponential ergodicity of the transition kernel K µ and the control of the exit time τ (see Lemma 4.1 and Lemma 4.4 ). In Section 5, we define the solution of the ODE and prove its global asymptotic stability. In Section 6, we then show that (a scaled version of) pµ n q ně0 is an asymptotic pseudo-trajectory for the ODE. The proofs of Theorems 2.5 and 2.6 are finally achieved at the beginning of Section 7. In this section, we also prove the main results of Section 3: Theorems 3.4 and 3.9. We end the paper by some possible extensions of our present work.

PRELIMINARIES

We begin the proof by a series of preliminary lemmas. The first one provides uniform estimates on the extinction time τ " mintn ě 0 : Y n " Bu (17) where pY n q ně0 is a Markov chain with transition s K defined in (3).

Lemma 4.1 (Expectation of the extinction time). Assume H 1 and H 2 . Then (i) There exist N P N and δ 0 ą 0 such that for all x P E, s

K N px, tBuq ě δ 0 . (ii) sup xPE E x rτ s ă `8. Proof. (i) By H 1 the map x Þ Ñ s K N px, Bq " 1 ´KN 1pxq is continuous on E.
It then suffices to show that there exists N P N such that s K N px, Bq ą 0 for all x P E. Suppose to the contrary that for all N P N there exists x N P E such that s K N px N , Bq " 0. Hence s K k px N , Bq " 0 for all k ď N. By compactness of E, we can always assume (by replacing px N q by a subsequence) that

x N Ñ x ˚P E. Thus s K k px N , Bq N Ñ8 Ý ÝÝÝ Ñ s K k px ˚,
Bq " 0 for all k P N. This leads to a contradiction with assumption H 2 .

(ii) Let N and δ 0 be like in piq. By the Markov property, for all

k P N Px pτ ą kN q " E x " P Y pk´1qN pτ ą N q1 τ ąpk´1qN ı ď p1 ´δ0 qP x pτ ą pk ´1qN q. (18) 
Thus, for all k P N P x pτ ą kN q ď p1 ´δ0 q k and, consequently,

1 N E x rτ s ď 1 δ 0 `1.
Remark 4.2. Note that (18) leads in fact to the following statement: there exists λ ą 0 such that sup xPE Ere λτ s ă `8.

The following lemma is reminiscent of the approach developed in [START_REF] Ferrari | Existence of quasi-stationary distributions. A renewal dynamical approach[END_REF] for Markov chains on the positive integers killed at the origin and in [START_REF] Ben-Ari | Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure[END_REF] for diffusions killed on the boundary of a domain.

Lemma 4.3 (Invariant distributions and QSD). Assume H 1 . Then, (i) For every µ P PpEq, K µ is a Feller kernel and admits at least one invariant probability.

(ii) A probability µ ‹ is a QSD for K if and only if it is an invariant probability of K µ ‹ . (iii) Assume that for every µ, K µ has a unique invariant probability Π µ . Then µ Þ Ñ Π µ is continuous in PpEq (i.e for the topology of weak convergence) and then there exists µ ‹ P PpEq such that µ ‹ " Π µ ‹ or, equivalently, a QSD µ ‹ for K.

Proof. (i) The Feller property is obvious under H 1 and it is well known that a Feller Markov chain on a compact space has an invariant probability (since any weak limit of the sequence p 1 n ř n k"1 νK n µ q ně0 is an invariant probability).

(ii) Since δ " 1 ´K1, for every A P BpEq, we have

µ ‹ pAq " pµ ‹ K µ ‹ qpAq ô µ ‹ pAq " pµ ‹ KqpAq pµ ‹ Kq1 .
But, by definition µ ‹ is a QSD if and only if the right-hand side is satisfied for every A P BpEq.

(iii) Let pµ n q ně0 be a probability sequence converging to some µ in PpEq. Replacing pµ n q ně0 by a subsequence, we can always assume, by compactness of PpEq, that pΠ µn q ně0 converges to some ν. For every n ě 0 and f P CpE, Rq, we have Π µn pf q " Π µn pK µn f q " Π µn pKf q `Πµn pδqµ n pf q.

By H 1 , the maps Kf and δ are continuous and hence by letting n Ñ 8, one obtains νpf q " νpKf q `νpδqµpf q, namely ν is an invariant for K µ . By uniqueness ν " Π µ . This proves the continuity of the map µ Þ Ñ Π µ . Now, since PpEq is a convex compact subset of a locally convex topological space (the space of signed measures equipped with the weak* topology) every continuous mapping from PpEq into itself has a fixed point by Leray-Schauder-Tychonoff fixed point theorem.

For all µ P PpM q and t ě 0 we let P µ t denote the Markov kernel on E defined by

P µ t px, ¨q :" e ´t ÿ n t n n! K n µ px, ¨q. (19) 
It is classical (and easy to verify) that (a) pP µ t q tě0 is a semigroup (i.e P µ t`s f " P µ t P µ s f for all f P BpE, Rq); (b) Every invariant probability for K µ is invariant for P µ t ; (c) P µ t is Feller whenever K µ is (in particular under H 1 ). If pX µ n q ně0 is a Markov chain with transition K µ , pP µ t q tě0 denotes the semi-group of pX µ Nt q tě0 where pN t q tě0 is an independent Poisson process with intensity 1.

For any finite signed measure ν on M recall that the total variation norm of ν is defined as

}ν} TV " supt|νf | : f P BpE, Rq, }f } 8 ď 1u (20) 
" ν `pE q `ν´p Eq where ν " ν `´ν ´is the Hahn Jordan decomposition of ν. Let us recall that if P is a Markov kernel on M and α, β P PpEq, then }αP ´βP } TV ď }α ´β} TV [START_REF] Dudley | Real Analysis and Probability[END_REF] since }P f } 8 ď }f } 8 .

Lemma 4.4 (Uniform exponential ergodicity). Assume H 1 and H 2 . Then there exists 0 ă ε ă 1 such that for all α, β, µ P PpEq and t ě 0 }αP µ t ´βP µ t } TV ď p1 ´εq ttu }α ´β} TV . In particular, if Π µ denotes an invariant probability for K µ , }αP µ t ´Πµ } TV ď p1 ´εq ttu }α ´Πµ } TV . As a consequence, K µ has a unique invariant probability.

Proof. (i). Set P µ " P µ 1 . Let δ 0 ą 0 and N P N be given by Lemma 4.1 (i). It easily seen by induction that for all k ě 1 and f : E Þ Ñ r0, 8r measurable, K k µ f ě µpf qK k´1 δ. Thus,

P µ f ě 1 e µpf q N ÿ k"1 1 k! K k´1 δ ě 1 eN ! µpf q N ÿ k"1 K k´1 δ " 1 eN ! µpf qp1 ´KN 1q ě εµpf q (22) 
where ε "

1 eN ! δ 0 .
Let R µ be the kernel on E defined by @x P E, P µ px, .q " εµp.q `p1 ´εqR µ px, .q.

( 23 
)
Inequality ( 22) makes R µ a Markov kernel. Thus for all α, β P PpEq }αP µ ´βP µ } TV " p1 ´εq}αR µ ´βR µ } TV ď p1 ´εq}α ´β} TV , (where the last inequality follows from ( 21)) and, by induction, }αP n µ ´βP n µ } TV ď p1 ´εq n }α ´β} TV . Now, for all t ě 0 write t " n `r with n P N and 0 ď r ă 1. Then, }αP µ t ´βP µ t } TV " }αP µ r P n µ ´βP µ r P n µ } TV ď p1 ´εq n }αP µ r ´βP µ r } TV ď p1 ´εq n }α ´β} TV . As mentioned before, if Π µ is an invariant probability for K µ , Π µ is also an invariant probability for pP µ t q tě0 . The second inequality is thus obtained by setting β " Π µ and uniqueness of the invariant probability is a consequence of the convergence of pαP µ t q tě0 towards Π µ . (ii) For all µ P PpM q,

Π µ " µA pµAqp1q . ( 24 
)
(iii) The map µ Þ Ñ Π µ is Lipschitz continuous for the total variation distance.

Proof. (i) The inequality Apx, Eq ě 1 is obvious. For the second one, we remark that for all x P E Apx, Eq " ÿ ně0

K n px, Eq "

ÿ ně0 P x pτ ą nq " E x rτ s ď sup x E x pτ q ă 8
where the last inequality follows from Lemma 4.1.

(ii) For any f P BpE, Rq,

µAK µ pf q " µ ˜ÿ ně0 pK n`1 f `Kn δµpf qq ¸" ÿ ně0 µK n`1 f `µpf qµp ÿ ně0 K n pδqq. Since ř ně0 K n δpxq " ř ně0
`Kn px, Eq ´Kn`1 px, Eq ˘" Apx, Eq ´pApx, Eq ´1q " 1, it follows that pµAqK µ pf q " µpf q `ÿ ně1 µK n f " pµAqpf q.

As a consequence, µA is an invariant measure and it remains to divide by its mass to obtain an invariant probability.

(iii) It follows from (i) that }µA} TV ď }µ} TV }A} 8 and µA1 ě 1. Thus, reducing the fraction, it easily follows from (ii) that }Π µ ´Πν } TV ď 2}A} 8 }µ ´ν} TV .

THE LIMITING ODE

As mentioned before, the idea of the proof of Theorem 2.5 is to show that the long time behavior of pµ n q ně0 can be precisely related to the long term behavior of a deterministic dynamical system PpEq induced by the "ODE"

" 9 µ " ´µ `Πµ ." (25) 
The purpose of this section is to define rigorously this dynamical system and to investigate some of its asymptotic properties. Throughout the section, hypotheses H 1 and H 2 are implicitly assumed. Recall that PpEq is a compact metric space equipped with a distance metrizing the weak* convergence.

A semi-flow on PpEq is a continuous map Φ : R `ˆP pEq Ñ PpEq, pt, µq Þ Ñ Φ t pµq such that Φ 0 pµq " µ and Φ t`s pµq " Φ t ˝Φs pµq. We call such a semi-flow injective if each of the maps Φ t is injective.

A weak solution to [START_REF] Ferrari | Quasi stationary distributions and Fleming-Viot processes in countable spaces[END_REF] with initial condition µ P PpEq, is a continuous map ξ : R `Þ Ñ PpEq such that ξptqf " µf `ż t 0 p´ξpsqf `Πξpsq f qds for all f P CpEq and t ě 0.

We shall now show that there exists an injective semi-flow Φ on PpEq such that the trajectory t Ñ Φ t pµq is the unique weak solution to [START_REF] Ferrari | Quasi stationary distributions and Fleming-Viot processes in countable spaces[END_REF] with initial condition µ.

Let M s pEq be the space of finite signed measures on E equipped with the total variation norm } ¨}TV (defined by equation ( 20)). By a Riesz type theorem, M s pEq is a Banach space which can be identified with the dual space of CpE, Rq equipped with the uniform norm (see e.g [21, chapter 7]). In particular, the supremum in the definition of } ¨}TV can be taken over continuous functions. Proposition 4.5 (i) and the fact that K is Feller imply that ř K n f is normally convergent in CpE, Rq for any f P CpE, Rq. More precisely, ř ně0 }K n f } 8 ď }A} 8 }f } 8 and hence f Ñ Af is a bounded operator on CpE, Rq. Furthermore, its adjoint µ Ñ µA is bounded on M s pEq. Thus, by standard results on linear differential equations in Banach spaces, e tA is a well defined bounded operator and the mappings pt, f q Ñ e tA f and pt, µq Ñ µe tA are C 8 mappings satisfying the differential equations d dt pe tA f q " pe tA Af q " Ae tA f and d dt pµe tA q " µpe tA Aq " µAe tA .

For µ P PpM q and t ě 0 set g t " e tA 1 P CpEq, 

ż t 0 r Φ s pµqA1ds.
Note that, by Proposition 4.5 (i), 9 s µ ptq " r Φ t pµqA1 " µe tA A1 µe tA 1 ě 1 and hence s µ maps diffeomorphically R `onto itself. We let τ µ denote its inverse and

Φ t pµq " r Φ τµptq pµq (27) 
Proposition 5.1. The map Φ defined by ( 27) is an injective semi-flow on PpEq and for all µ P PpEq, t Þ Ñ Φ t pµq is the unique weak solution to [START_REF] Ferrari | Quasi stationary distributions and Fleming-Viot processes in countable spaces[END_REF] with initial condition µ. This easily implies that the maps pt, µq Ñ r Φ t pµq and pt, µq Ñ s µ ptq are continuous. The continuity of the latter combined with the relation s µn ˝τµn pt n q " t n implies that every limit point of tτ µn pt n qu equals τ µ ptq; but since τ µ ptq ď t (because s µ ptq ě t) the sequence tτ µn pt n qu is bounded and this proves the continuity of pt, µq Ñ τ µ ptq. Continuity of Φ follows.

Step 2 (Injectivity of Φ): Suppose Φ t pµq " Φ t pνq for some t ě 0, µ, ν P PpEq. Set τ " τ µ ptq and σ " τ ν ptq. Assume σ ě τ. Multiplying the equality r Φ τ pµq " r Φ σ pνq by e ´τ A shows that µ " r Φ σ´τ pνq. Thus t " s µ pτ q "

ż τ 0 r Φ s`σ´τ pνqA1ds " ż σ 0 r Φ s pνqA1ds ´ż σ´τ 0 r Φ s pνqA1ds " t ´sν pσ ´τ q
This implies that τ " σ, hence µ " ν.

Step 3 ( t Ñ Φ t pµq is a weak solution): The mappings t Ñ r µ t :" r Φ t pµq and t Ñ µ t :" Φ t pµq are C 8 from R `into M s pM q. Furthermore, 9 r µ t " r µ t A ´pr µ t A1q r µ t " 9 s µ ptqp´r µ t `ΠĂ µt q, so that 9 µ t " ´µt `Πµt and, in particular,

µ t f ´µ0 f " ż t 0 p´µ s f `Πµs f qds
for all f P CpEq.

Step 4 (Uniqueness and flow property): Let tµ t u and tν t u be two weak solutions of [START_REF] Ferrari | Quasi stationary distributions and Fleming-Viot processes in countable spaces[END_REF]. }µ t ´νt } TV ď e Lt }µ 0 ´ν0 } TV and hence there is at most one weak solution with initial condition µ 0 . This, combined with (ii) above shows that t Ñ Φ t pµq is the unique weak solution to [START_REF] Ferrari | Quasi stationary distributions and Fleming-Viot processes in countable spaces[END_REF]. The semi-flow property Φ t`s " Φ t ˝Φs follows directly from this uniqueness. 5.1. Attractors and attractor free sets. A set K Ă PpEq is called invariant under Φ (respectively positively invariant) if Φ t pKq " K (respectively Φ t pKq Ă Kq, for all t ě 0.

If K is compact and invariant, then by injectivity of Φ and compactness, each map Φ t maps homeomorphically K onto itself. In this case we set

Φ K t " Φ t | K for t ě 0 and Φ K t " pΦ ´t| K q ´1
for all t ď 0. It is not hard to check that Φ K : R ˆK Þ Ñ K is a flow, i.e. a continuous map such that Φ K t ˝ΦK s " Φ K t`s for all t, s P R. An attractor for Φ is a non empty compact invariant set A having a neighborhood U A (called a fundamental neighborhood) such that for every neighborhood V of A there exists t ě 0 such that s ě t ñ Φ s pU A q Ă V.

Equivalently, if d is a distance metrizing PpEq lim tÑ8 dpΦ t pµq, Aq " 0,

uniformly in µ P U A .
The basin of attraction of A is the set BaspAq consisting of points µ P PpEq such that lim tÑ8 dpΦ t pµq, Aq " 0.

Attractor A is called global if its basin is the full space PpEq. It is not hard to verify that there is always a (unique) global attractor for Φ given as

A " č tě0 Φ t pPpEqq.
If K denotes a compact invariant set, an attractor for Φ K is a non empty compact invariant set A Ă K having a neighborhood U A such that for every neighborhood V of A there exists t ě 0 such that s ě t ñ Φ s pU A X Kq Ă V.

If furthermore A ‰ K, A is called a proper attractor. K is called attractor free provided K is compact invariant and Φ K has no proper attractors. Attractor free sets coincide with internally chain transitive sets and characterize the limit sets of asymptotic pseudo trajectories (see [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF][START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]). Recall that the limit set of pµ n q is defined by

L " č ně0 tµ k | k ě nu.
In the present context, by Theorem 6.4 of Section 6, this implies that Theorem 5.2 (Characterisation of L). Under Hypotheses 2.2 and 2.1, the limit set of tµ n u is almost surely attractor free for Φ.

This theorem, combined with elementary properties of attractor free sets, gives the following (more tractable) result.

Corollary 5.3 (Limit set and attractors). Assume Hypotheses 2.2 and 2.1. Let L be the limit set of tµ n u. With probability one, (i) L is a compact connected invariant set. (ii) If A is an attractor and L X BaspAq ‰ H, then L Ă A. In particular, L is contained in the global attractor of Φ.

Note that in the two previous theorems, we do not assume Hypothesis 2.3. In particular, the previous result may be true in some settings with several QSDs. This flexibility is, for instance, used in the proof of Theorem 3.4.

Global Asymptotic Stability.

The flow Φ is called globally asymptotically stable if its global attractor reduces to a singleton tµ ‹ u. Observe that, in such a case, µ ‹ is necessarily the unique equilibrium of Φ, hence the unique QSD of K.

We shall give here sufficient conditions ensuring global asymptotic stability. The main idea is to relate the (nonlinear) dynamics of Φ to the (linear) Fokker-Planck equation of a nonhomogeneous Markov process on E. This idea is due to Champagnat and Villemonais in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] where it was successfully used to prove the exponential convergence of the conditioned laws and the exponential ergodicity of the Q-process for a general almost surely absorbed Markov process.

For all t ě 0 and s P R let R t,s be the bounded operator defined on CpEq by R t,s f " e pt´sqA pf g s q g t " e pt´sqA pf e sA 1q e tA 1

where g is defined by [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF]. It is easily checked 3 that R t,t " Id and R t,s ˝Rs,u " R t,u for all t, s ě 0 and u P R. Furthermore, for all t ě s ě 0 R t,s is a Markov operator. That is R t,s 1 " 1 and R t,s f ě 0 whenever f ě 0.

To shorten notation we set R t " R t,0 .

The flow r Φ and the family tR t u tě0 are linked by the relation r Φ t pδ x q " δ x R t for all t ě 0 and x P E. However, note that for an arbitrary µ P PpEq r Φ t pµq and µR t are not equal. Indeed, recall that µR t f " ş E R t f pxqµpdxq. Lemma 5.4. Let d ω be any distance on PpEq metrizing the weak* convergence. Assume that

∆ t :" sup x,yPE d ω pδ x R t , δ y R t q Ñ 0 as t Ñ 8.
Then Φ is globally asymptotically stable.

Proof. By compactness of E the condition ∆ t Ñ 0 is independent of the choice of d ω . We can then assume that d FM is the Fortet-Mourier distance (see e.g [START_REF] Dudley | Real Analysis and Probability[END_REF][START_REF] Rachev | The methods of distances in the theory of probability and statistics[END_REF]) given as

d ω pµ, νq " supt|µf ´νf | : }f } 8 `Lippf q ď 1u. ( 28 
)
where Lippf q stands for sup x‰y |f pxq´f pyq| dpx,yq . Since This shows that tνR t u tě0 is a Cauchy sequence in PpEq. Then νR t Ñ µ ‹ for some µ ‹ and for all µ P PpEq d ω pµR t , µ ‹ q ď ∆ t .

|µR t f ´νR t f | " | ż pR t pxq ´Rt f pyqqdµpxqdνpyq| ď sup x,

Now, for all

f P CpEq | r Φ t pµqf ´µ‹ f | " ˇˇˇµ ppR t f ´µ‹ f qg t q µg t ˇˇˇď }R t f ´µ‹ f } 8 " sup x |δ x R t f ´µ‹ f |.
Therefore d ω p r Φ t pµq, µ ‹ q ď ∆ t and

d ω pΦ t pµq, µ ‹ q ď ∆ τµptq ď sup ! ∆ s : s ě t }A} 8
) 3 One can also note that Rt,s is the resolvent of the linear differential equation on CpEq 9

u " 1 g t pApugtq ṕAuqgtq. This explains the unusual order for the indices of R (w.r.t. the standard notation of in-homogeneous Markov processes).

where the last inequality follows from the fact that 9 s µ ptq ď }A} 8 . This proves that tµ ‹ u is a global attractor for Φ.

Recall that g t pxq " e tA 1 (see equation ( 26)). Lemma 5.5. Assume H 1 , H 2 , H 3 . Assume furthermore that

ÿ n Ψpg n q }g n } 8 " 8
where Ψ is the probability measure given by [START_REF] Bieniek | Extinction of Fleming-Viot-type particle systems with strong drift[END_REF]. Then Φ is globally asymptotically stable.

Proof. We first assume that U " E in condition H 3 . That is Apx, dyq ě Ψpdyq for all x P E.

Then, for all f ě 0 and n P N

R n`1,n f " e A pf g n q e A g n ě Apf g n q e }A}8 }g n } 8 ě Ψpf g n q e }A}8 }g n } 8 .
Let Ψ n P PpEq be defined as Ψ n pf q " Ψpf gnq Ψpgnq . We get R n`1,n px, ¨q ě n Ψ n p¨q with n " e ´}A}8 Ψpgnq }gn}8 . Thus, reasoning exactly like in the proof of Lemma 4.4, for all µ, ν P PpEq µR n`1,n ´νR n`1,n TV ď p1 ´ n q µ ´ν TV and, consequently,

δ x R n`1 ´δy R n`1 TV ď 2 n ź k"0 p1 ´ k q.
The condition ř n n " 8 then implies that δ x R n`1 ´δy R n`1 TV Ñ 0 uniformly in x, y as t Ñ 8. In particular, the assumption, hence the conclusion, of Lemma 5.4 is satisfied.

To conclude the proof it remains to show that there is no loss of generality in assuming that U " E in H 3 . By Feller continuity, and Portmanteau's theorem, for all n P N and δ ą 0 the set U pn, δq " tx P E : K n px, U q ą δu is open. Thus by H 3 and compactness of E, there exist δ ą 0 and n 1 , . . . , n k P N such that

E " k ď i"1 U pn i , δq.
Let now x P E. Then x P U pn i , δq for some i and

Apx, dyq ě ÿ ně0 K n i `npx, dyq " ż U K n i px, dzqApz, dyq ě δΨpdyq.
The next proposition shows that under H 1 , H 2 , H 3 and H 4 , the assumptions of the preceding lemma are satisfied. Proposition 5.6 (Convergence of Φ). Assume H 1 , H 2 , H 3 and H 4 . Then the assumptions of Lemma 5.5 are satisfied. In particular, Φ is globally asymptotically stable.

Proof. By Lemma 4.1 (i) there exists N P N ˚and Θ ă 1 such that K N px, Eq ď Θ for all x P E. Let pZ n q ně1 be a sequence of i.i.d random variables on N having a geometric distribution, PpZ n " kq " Θ k p1 ´Θq, k ě 0. Let pU n q be a sequence of i.i.d random variables on t0, . . . , N ´1u having a uniform distribution,

PpU n " kq " 1 N , k " 0, . . . , N ´1,
and let pN t q tě0 be a standard Poisson process with parameter 1. We assume that pZ n q ně1 , pU n q ně1 , pN t q tě0 are mutually independent. By independence we get that

E « K ř N t i"1 pN Z i `Ui q Θ ř N t i"1 Z i ff " ÿ ně0 t n n! e ´tE " K N Z 1 `U1 Θ Z 1  n " ÿ ně0 t n n! e ´t ˜p1 ´Θq N ÿ kě0 ÿ r"0,...,N ´1 K N k`r ¸n " e ´te t p1´Θq N A .
To shorten notation, set s " t p1´Θq N . Then, for all x P E Ψpg s q " Ψpe sA 1q " e t E « ΨpK

ř N t i"1 pN Z i `Ui q 1q Θ ř N t i"1 Z i ff ě e t E « C ˜Nt ÿ i"1 pN Z i `Ui q K ř N t i"1 pN Z i `Ui q 1pxq Θ ř N t i"1 Z i ¸ff
where the last inequality comes from hypothesis H 4 . For all n P N, k " pk i q P N N ˚and r " pr i q P t0, . . . , N ´1u N ˚set F pn, k, rq " K

ř n i"1 pN k i `ri q 1pxq Θ ř n i"1 k i and Gpn, k, rq " C ˜n ÿ i"1
pN k i `ri q and hence, the preceding inequality can be rewritten as,

Ψpg s q ě e t E rGpN t , Z, U qF pN t , Z, U qs . Write pn, k, rq ď pn 1 , k 1 , r 1 q when n ď n 1 , k i ď k 1 i and r i ď r 1 i . The relations K N px,Eq
Θ ď 1 and Kpx, Eq ď 1 on one hand, and the monotonicity of C on the other hand, imply that F pn, k, rq ď F pn 1 , k 1 , r 1 q and Gpn, k, rq ď Gpn 1 , k 1 , r 1 q whenever pn, k, rq ď pn 1 , k 1 , r 1 q Then, by tensorisation of the classical FKG inequality, and Jensen inequality, we get that Ψpg s q ě e t E rGpN t , Z, U qs E rF pN t , Z, U qs

ě e t C ˆt N 1 ´Θ `N ´1 2 ˙E rF pN t , Z, U qs " C ˆt N 1 ´Θ `N ´1 2 ˙gs pxq.

That is

Ψpg s q ě C ˆN 2 p1 ´Θq 2 s `N ´1 2 ˙gs pxq,
so that the assumptions of Lemma 5.5 are fulfilled.

ASYMPTOTIC PSEUDO-TRAJECTORY

Our aim is now to prove that pµ n q ně0 , correctly normalized, is an asymptotic pseudo-trajectory of the flow Φ defined by [START_REF] Gong | Killed diffusions and their conditioning[END_REF].

6.1. Background. To prove that our procedure has asymptotically the dynamics of an ODE, we first need to embed it in a continuous-time process at an appropriate scale. Let us add some notation to explain this point. For n ě 0 and t ě 0, set τ n " ř n k"1 γ k and mptq " suptk ě 0, t ě τ k u. Let pp µ t q tě0 , ps µ t q tě0 , ps t q tě0 , ps γ t q tě0 defined for all n ě 0 and s P r0, γ n`1 q by

p µ τn`s " ˆ1 ´s γ n`1 ˙µn `s γ n`1 µ n`1 , s µ τn`s " µ n ,
s τn`s " n and s γpτ n `sq " γ n . With this notation, Equation ( 8) can be written as follows:

p µ t " µ 0 `ż t 0 hps µ s qds `ż t 0 s s ds
with hpµq " ´µ `Πµ . The aim of this section is now to show that p µ is a pseudo-trajectory of Φ defined in [START_REF] Gong | Killed diffusions and their conditioning[END_REF]. Let d ω be a metric on P whose topology corresponds to the convergence in law (as for instance the Fortet-Mourier distance defined in (28)). A continuous map ζ : R `Ñ P is called an asymptotic pseudo-trajectory for Φ if @ T ą 0, lim tÑ8 ˆsup 0ďsďT d ω pζpt `sq, Φps, ζptqqq ˙" 0.

Note that this definition makes an explicit reference to d ω but is in fact purely topological (see [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]Theorem 3.2]). In our setting, the asymptotic pseudo-trajectory property can be obtained by the following characterization: Theorem 6.1 (Asymptotic pseudo-trajectories). The following assertions are equivalent.

(1) The function p µ is (almost surely) an asymptotic pseudo-trajectory for Φ. (2) For all continuous and bounded f and T ą 0,

lim tÑ8 sup 0ďsďT | ż t`s t s u f du| " 0 a.s. ( 30 
)
Proof. This is a consequence of [START_REF] Benaïm | Self-interacting diffusions[END_REF]Proposition 3.5].

The previous theorem is one of the main differences with the previous article [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF]. Indeed, in finite state space, the topology of the total variation distance is not stronger than the weak topology.

As in [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF] and older works on reinforced random walks (see references therein), we now need some properties of solutions of Poisson equations to prove that (30) holds. However, in contrast with the finite-space setting of [START_REF] Benaïm | A stochastic approximation approach to quasi-stationary distributions on finite spaces[END_REF], the associated bounds are intricate. 

The existence of a solution g " Q µ f to this equation and the smoothness of µ Þ Ñ Q µ f play an important role for the study of our algorithm. These properties are stated in Lemma 6.3. Before, we need to establish the following technical lemma: Lemma 6.2 (Lipschitz property of µ Ñ K j µ ). For every µ, ν P PpEq and j P N, we have

sup αPPpEq }αK j µ ´αK j ν } TV ď 2 j }µ ´ν} TV , ( 32 
)
and for every bounded function f then

sup xPE }K j µ pf q ´Kj ν pf q} 8 ď 2 j }f } 8 }µ ´ν} TV .
Proof. By the definition of the total variation, the second part follows from the first one. We thus only focus on the first statement. For every j P N, one sets κ j pµ, νq " sup αPP }αK j µ ´αK j ν } TV .

We have κ 0 pµ, νq " 0 and since K µ p.q " Kp.q `δp.qµ and αpδq ď 1, κ 1 pµ, νq " sup αPP }αK µ ´αK ν } TV " }αpδqpµ ´νq} TV ď }µ ´ν} TV .

Furthermore, for every j ě 0, }αpK µ q j`1 ´αpK ν q j`1 } TV " }αpK `δµqpK µ q j ´αpK `δνqpK ν q j } TV " }αKpK j µ ´Kj ν q `αpδqµpK µ q j ´αpδqνpK ν q j } TV ď }αKK j µ ´αKK j ν } TV `}αpδqµpK µ q j ´αpδqνpK µ q j } TV `}αpδqνpK µ q j ´αpδqνpK ν q j } TV ď κ j pµ, νq `}µ ´ν} TV `κj pµ, νq " 2κ j pµ, νq `}µ ´ν} TV .

Note that for the last inequality, we again used that αpδq ď 1 and that for every probabilities α, β and every transition kernel P , }αP ´βP } TV ď }α ´β} TV . An induction of the previous inequality then leads to: @j P N, κ j pµ, νq ď 2 j }µ ´ν} TV This yields [START_REF] Lemaire | On some non asymptotic bounds for the Euler scheme[END_REF]. Lemma 6.3 (Poisson equation). Assume Hypothesis 2.2. Let µ P PpEq. Let pP µ t q tě0 be defined by [START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF]. Then, for any measurable function f : E Ñ R, the Poisson equation (31) admits a solution denoted by Q µ f and defined by

Q µ f pxq " ż `8 0 pP µ t f pxq ´Πµ pf qqdt, (33) 
Furthermore, (i) for every µ P PpEq, }Q µ f } 8 ď C}f } 8 .

(ii) for every µ, α P PpEq, |αQ µ f | ď C}f } 8 }α ´Πµ } TV .

(iii) for every µ P PpEq and measurable f :

E Ñ R, }Q µ f ´Qν f } 8 ď C 2 }f } 8 }µ ´ν} TV .
(iv) for every µ, α P PpEq, }αQ µ ´αQ ν } TV ď C 2 }µ ´ν} TV .

Note that our work is closely related to [START_REF] Benaïm | Self-interacting diffusions[END_REF] which also investigates the pseudo-trajectory property of a measure-valued sequence. Nevertheless, the scheme of the proof for the smoothness of the Poisson solutions is significantly different. Indeed, in contrast with [8, Lemma 5.1], which is proved using classical functional results (such as the Bakry-Emery criterion), the above lemma (especially piiiq and pivq) is obtained using a refinement of the ergodicity result provided by Lemma 4.4.

Proof. First, by Lemma 4.4, the integral in ( 33) is well defined. Then, coming back to the definition of pP µ t q tě0 (see [START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF]), one can readily check that pP µ t q tě0 has infinitesimal generator L µ defined on continuous functions f : E Ñ R by L µ f " pK µ ´Iqf . Without loss of generality, one can assume that Π µ pf q " 0. Then, by the Dynkin formula and the commutation and linearity properties, it follows that @x P E, @t ě 0, P µ t f pxq " f pxq `Lµ

ż t 0 P µ s f pxqds.
Letting t go to 8 and using again Lemma 4.4 (to ensure the convergence of the right and left hand sides), we deduce that it is a solution to the Poisson equation.

Statements piq and piiq are also straightforward consequences of Lemma 4.4. Thus, in the sequel of the proof, we only focus on the "Lipschitz" properties piiiq and pivq. Without loss of generality, we assume in the sequel that }f } 8 ď 1. By [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF], for every t ě 0 pα ´βqP µ t " p1 ´εq ttu pαP µ t´ttu ´βP µ t´ttu qR ttu µ [START_REF] Meyn | Stability of Markovian processes. III. Foster-Lyapunov criteria for continuoustime processes[END_REF] where, with the notation of Lemma 4.4, R µ is given by

R µ " 1 p1 ´εq ˜e´1 ÿ jě0 1 j! K j µ ´εµ ¸(35)
The kernels K j µ are Lipschitz continuous with respect to the total variation norm, uniformly in α P PpEq, as it can be checked in Lemma 6.2 above. Set

Ξ n pµ, νq " sup αPPpEq }αR n µ ´αR n ν } TV .
From ( 35) and (32), we have

Ξ 1 pµ, νq ď e p1 ´εq }µ ´ν} TV . Now, Ξ n`1 pµ, νq ď sup αPPpEq }pαR n µ qR µ ´pαR n µ qR ν } TV `sup αPPpEq }pαR n µ qR ν ´pαR n ν qR ν } TV ď Ξ 1 pµ, νq `Ξn pµ, νq,
where for the second term, we used that for some laws α and β and for a transition kernel P , }αP ´βP } TV ď }α ´β} TV . By induction, it follows that

Ξ n pµ, νq ď ne p1 ´εq }µ ´ν} TV .
As a consequence, there exists a constant C such that

}R n µ f ´Rn ν f } 8 ď Cn}µ ´ν} TV .
and for every α P PpEq,

|αpR µ q n f ´αpR ν q n f | ď Cn}µ ´ν} TV . ( 36 
)
Let us now prove that µ Ñ Q µ f pxq is Lipschitz continuous. From the definition of Q µ and from (34), we have

Q µ f pxq ´Qν f pxq " `8 ÿ n"0 p1 ´εq n ż 1 0 `pδ x ´Πµ qP µ r R n µ f ´pδ x ´Πν qP ν r R n ν f ˘dr.
Now, for every n ě 0 and r P r0, 1q,

ˇˇpδ x ´Πµ qP µ r R n µ f ´pδ x ´Πν qP ν r R n ν f ˇď |δ x pP µ r ´P ν r qR n µ f | `|pΠ µ P µ r ´Πν P ν r qR n ν f | `|δ x P ν r pR n µ f ´Rn ν f q| `|Π ν P ν r pR n µ f ´Rn ν f q|
The two last terms can be controlled by [START_REF] Oçafrain | Non-failable approximation method for conditioned distributions[END_REF] with α " δ x P ν r and α " Π ν P ν r " Π ν respectively. For the second one, one can deduce a bound from Proposition 4.5 piiiq and the fact that sup }g}8ď1 }R n µ g} 8 ď 1. Finally for the first one, using Lemma 6.2 and (19), we have

|δ x pP µ r ´P ν r qR n µ f | ď e ´r ÿ jě0 r j j! }δ x K j µ ´δx K j ν }
TV ď e r }µ ´ν} TV . One deduces that, for some constants C 1 , C 2 ą 0,

|Q µ f pxq ´Qν f pxq| ď `8 ÿ n"0 p1 ´εq n r2Cn}µ ´ν} TV `C1 }µ ´ν} TV s ď C 2 }µ ´ν} TV .
Since the Lipschitz constant C 2 does not depend on x, the statements piiiq and pivq easily follow.

6.3. Asymptotic Pseudo-trajectories. Theorem 6.4. Under Hypotheses 2.1 and 2.2 pp µ t q tě0 is an asymptotic pseudo-trajectory of Φ as defined by [START_REF] Gong | Killed diffusions and their conditioning[END_REF].

Remark 6.5. Since the limit of precompact asymptotic pseudo trajectories is internally chain transitive (see [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF], [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]), this theorem implies Theorem 5. 

ε k pf q ˇˇˇˇ" 0.
Here,

ε n pf q " γ n`1 pf pX n`1 q ´Πµn pf qq " γ n`1 pQ µn f pX n`1 q ´Kµn Q µn f pX n`1 qq .
We decompose this term as follows:

ε n pf q " γ n`1 ∆M n`1 pf q `∆R n`1 pf q `γn`1 ∆D n`1 pf q (37) 
with

∆M n`1 pf q " Q µn f pX n`1 q ´Kµn Q µn f pX n q ∆R n`1 pf q " pγ n`1 ´γn qK µn Q µn f pX n q ``γ n K µn Q µn f pX n q ´γn`1 K µ n`1 Q µ n`1 f pX n`1 q ∆D n`1 pf q " `Kµ n`1 Q µ n`1 f pX n`1 q ´Kµn Q µn f pX n`1 q ˘.
First, let us focus on ∆R n`1 . Using for the first part that pγ n q ně0 is decreasing and that px, µq Þ Ñ K µ Q µ f pxq is (uniformly) bounded (Lemma 6.3 (i)), and a telescoping argument for the second part yields for any positive integer m:

ˇˇˇˇm ÿ k"n ∆R k pf q ˇˇˇˇď Cγ n .
Second p∆M k q is a sequence of pF n q-martingale increments. From Lemma 6.3, ∆M n pf q is bounded (and thus subgaussian). As a consequence, using that lim nÑ`8 γ n logpnq " 0, one can adapt the arguments of [5, Proposition 4.4] (based on exponential martingales) to obtain that

lim sup nÑ`8 max jďm ˇˇˇˇn `j ÿ k"n γ k ∆M k pf q ˇˇˇˇ" 0.
Finally, for the last term, one uses that µ Þ Ñ K µ and µ Þ Ñ Q µ are Lipschitz continuous. More precisely, using Lemma 6.3 (i), (iii) and Lemma 6.2, we see that there exists C ą 0 such that

ˇˇK µ n`1 Q µ n`1 f pX n`1 q ´Kµn Q µn f pX n`1 q ˇď ˇˇK µ n`1 Q µ n`1 f pX n`1 q ´Kµ n`1 Q µn f pX n`1 q ˇǨ µ n`1 Q µn f pX n`1 q ´Kµn Q µn f pX n`1 q ˇď}Q µ n`1 f ´Qµn f } 8 `› › pK µ n`1 ´Kµn qpQ µn f q › › 8 ďC}f } 8 }µ n`1 ´µn } TV ďC}f } 8 γ n`1 ,
where for the last line, we simply used [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]. This ends the proof.

PROOF OF THE MAIN RESULTS

7.1. Proof of Theorem 2.5. By Proposition 5.6, tµ ‹ u is a global attractor for Φ. The result then follows from Corollary 5.3.

7.2. Proof of Theorem 2.6. Let us assume for the moment that there exist C ą 0 and ρ P p0, 1q such that for any starting distribution α,

@n ě 0, }αK n µ ‹ ´µ‹ } TV ď Cρ n . ( 38 
)
With this assumption, µ ‹ is a global attractor for the discrete time dynamical system on P induced by the map µ Þ Ñ µK µ ‹ . Let ν n be the law of X n , for n ě 0; namely ν n pAq " PpX n P Aq, for every Borel set A. To prove that ν n Ñ µ ‹ , it is then enough to prove that the sequence pν n q ně0 is an asymptotic pseudo-trajectory of this dynamics; namely that d ω pν n K µ ‹ , ν n`1 q Ñ 0. Indeed, the limit set of a bounded asymptotic pseudo-trajectory is contained in every global attractor (see e.g [5, Theorem 6.9] or [5, Theorem 6.10].) So, let us firstly show that for every continuous and bounded function f ,

lim nÑ8 pν n`1 pf q ´νn K µ ‹ f q " 0. ( 39 
)
By definition of the algorithm, for every n ě 0, E rf pX n`1 q | F n s " K µn f pX n q " Kf pX n q `µn pf qδpX n q Taking the expectation, we find ν n`1 pf q " ν n Kpf q `Erµ n pf qδpX n qs " ν n K µ ‹ pf q `Erpµ n pf q ´µ‹ qpf qqδpX n qs.

But by Theorem 2.5 and dominated convergence theorem,

lim nÑ8
Erpµ n ´µ‹ qpf qδpX n qs " 0, and hence (39) holds.

We are now free to choose any metric on P embedded with the weak topology. Let pf k q kě0 be a sequence of C 8 functions dense in the space of continuous and bounded (by 1) functions (with respect to the uniform convergence). Consider the distance d ω defined by

d ω pµ, νq " ÿ kě0 1 2 k |µpf k q ´νpf k q|.
It is well known that d ω is a metric on P which induces the convergence in law. From [START_REF] Pinsky | Positive harmonic functions and diffusion[END_REF] and dominated convergence Theorem, we have that d ω pν n K µ ‹ , ν n`1 q Ñ 0.

It remains to prove inequality [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF]. The proof is similar to Lemma 4.4. Indeed, by Lemma 4.1, there exists N ě 0 and δ 0 such that for all x P E such that s K N px, Bq ě δ 0 . Using that µ ‹ K µ ‹ " θ ‹ µ ‹ , we have K N µ ‹ " K N `s K N p¨, Bqµ ‹ and hence the following lower-bound holds: inf xPE K N µ ‹ px, ¨q ě δ 0 µ ‹ p¨q. It then implies bound [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF] with the same argument as that of Lemma 4.4.

Remark 7.1 (Periodicity). Note that the previous argument shows in particular that the uniform ergodicity of K µ ‹ is preserved in a non-aperiodic setting. This is the reason why the convergence in distribution of pX n q ně1 also holds in this case. Lemma 7.2. Suppose Θ 1 ą Θ 2 . Then (i) PpE 2 q is positively invariant under Φ and Φ|PpE 2 q is globally asymptotically stable with attractor tµ ‹ 2 u. (ii) There exists another equilibrium for Φ (i.e another QSD for K) µ ‹ having full support (i.e µ ‹ pxq ą 0 for all x P E). Furthermore tµ ‹ u is an attractor whose basin of attraction is PpEqzPpE 2 q.

Proof. (i) It easily follows from the assumption E 2 ãÑ E 1 , and from the definitions of K µ and Π µ that PpE 2 q is positively invariant under Φ. By irreducibility of K 2 , Lemma 3.1 and Proposition 5.6, µ ‹ 2 is then a global attractor for Φ|PpE 2 q. (ii) Let d i be the cardinal of E i and d " d 1 `d2 . Identifying BpE i , Rq (respectively BpE, Rq ) with column vectors of R d i (respectively R d ) and MpE i q (respectively MpEq) with row vectors of R d i (respectively R d ), K can be written as a d ˆd block triangular matrix

K " ˆK1 K 12 0 K 2 ˙,
where for each i " 1, 2, K i is a d i ˆdi irreducible matrix. Let E l Θ 1 and E r Θ 1 be the left and right eigenspaces associated to Θ 1 . That is E l Θ 1 " tµ P MpEq : µK " Θ 1 µu and E r Θ 1 " tf P BpE, Rq : Kf " Θ 1 f u. We claim that E l Θ 1 " Rµ ‹ (40) for some µ ‹ P PpEq having full support (i.e µpxq ą 0 for all x); and E r Θ 1 " Rf ˚(41) for some f ˚P BpE, R `q satisfying f ˚pxq ą 0 ô x P E 1 , and µ ‹ pf ˚q " 1.

Actually, by irreducibility of K 1 and the Perron Frobenius Theorem (for irreducible matrices), Θ 1 is a simple eigenvalue of K 1 and there exists g P BpE 1 , Rq :" R d 1 with positive entries such that K 1 g " Θ 1 g. Θ 1 being strictly larger than the spectral radius Θ 2 of K 2 , Θ 1 is not an eigenvalue of K 2 . Thus, it is also simple for K and (41) holds with f ˚defined by f ˚pxq " gpxq for x P E 1 and f ˚pxq " 0 for x P E 2 .

Again by the Perron Frobenius theorem (but this time for non irreducible matrices) there exists µ ‹ P PpEq X E l Θ 1 , so that, by simplicity of Θ 1 , (40) holds. It remains to check that µ ‹ has full support. First, observe that µ ‹ cannot be supported by E 2 for otherwise µ ‹ would be a left eigenvector of K 2 and Θ 1 an eigenvalue of K 2 . Thus there exists x P E 1 such that µ ‹ pxq ą 0, but since x ãÑ y, then for all yP E, we have µ ‹ pyq ą 0.

Replacing f ˚by f μ‹ pf ˚q we can always assume that µ ‹ pf ˚q " 1.

This ends the proof of the claim. Let pf ˚qK " tν P MpEq : νpf ˚q " 0u. It follows from what precedes that the splitting

MpEq " Rµ ‹ ' pf ˚qK
is invariant by the map ν Þ Ñ νK, hence also by ν Þ Ñ νA, and ν Þ Ñ νe tA . Let A K denote the operator on pf ˚qK defined by

νA K " νA ´1 1 ´Θ1 ν.
For all µ P PpEqzPpE 2 q, µpf ˚q ‰ 0 and µ decomposes as µ " µpf ˚qµ ‹ `r µ with r µ " µ ´µpf ˚qµ ‹ P pf ˚qK . Therefore where λ " a `ib is an eigenvalue of K distinct from Θ 1 . In particular, a ă Θ 1 ă 1. Then,

µe tA " µpf ˚qe t 1´Θ 1 µ ‹ `
RepΛq " 1 ´a p1 ´aq 2 `b2 ´1 1 ´Θ1 ď 1 1 ´a ´1 1 ´Θ1 ă 0.
The fact that all eigenvalues of A K have negative real part implies that }e tA } Ñ 0 as t Ñ 8. This proves that lim tÑ8 r Φ t pµq " µ ‹ and that for every compact set K Ă PpEqzPpE 2 q the convergence is uniform in µ P K (because µ Þ Ñ µpf ˚q is separated from zero on such a compact). This shows that µ ‹ is an attractor for r Φ whose basin is PpEqzPpE 2 q. Proceeding like in the end of the proof of Lemma 5.4 we conclude that the same is true for Φ.

We now pass to the proof of Theorem 3.4. (i) Let L be the limit set of tµ n u. If L Ă PpE 2 q, then L " tµ ‹ 2 u because L is compact invariant and, by Lemma 7.2 (i), tµ ‹ 2 u is the only compact invariant subset of PpE 2 q. If LXPpEqzPpE 2 q ‰ H, then by Lemma 7.2 (ii) and Corollary 5.3, L " tµ ‹ u.

(ii) If X 0 P E 2 , then µ 0 " δ X 0 P PpE 2 q and, by the definition of pX n q (see equation ( 5)), pX n q lives in E 2 . This implies that µ n Ñ µ ‹ 2 by assertion (i). (iii) If X 0 P E 1 , the point µ ‹ is straightforwardly attainable (in the sense of [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]Definition 7.1]) and then, by [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]Theorem 7.3], we have

P ´lim nÑ8 µ n " µ ‹ ¯ą 0.
(iv) Let us now prove the last point of Theorem 3.4 using an ad hoc argument under the additional assumption:

ÿ ně0 n ź i"0 p1 ´γi q ă `8. ( 42 
)
If X 0 P E 2 there is nothing to prove. We then suppose that X 0 " x P E 1 . Clearly there exists n 0 ě 1 such that X n 0 P E 2 with positive probability. Using the estimate [START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF], the definition of pX n q and the recursive formula [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] we get that for all n ą n 0 :

PpX n`1 P E 1 |F n q ď p1 ´cΘ 2 qµ n pE 1 q almost surely on the event tX n P E 2 u and

µ n pE 1 q " µ n 0 pE 1 q n ź i"n 0 `1p1 ´γi q ď n ź i"n 0 `1p1 ´γi q almost surely on the event tX n 0 , X n 0 `1, . . . , X n P E 2 u. Therefore PpX n 0 , X n 0 `1, . . . , X n`1 P E 2 q " E ´PpX n`1 P E 2 |F n q1 tXn 0 ,X n 0 `1,...,XnPE 2 u ě ˜1 ´p1 ´cΘ 2 q n ź i"n 0
`1p1 ´γi q ¸P pX n 0 , X n 0 `1, . . . , X n P E 2 q ; and, consequently,

P p@n ě n 0 X n P E 2 q ě ź něn 0 `1 ˜1 ´p1 ´cΘ 2 q n ź i"n 0 `1p1 ´γi q ¸PpX n 0 P E 2 q.
The right hand side of the previous bound is positive if and only if (42) holds. 7.4. Proof of Theorem 3.9. We begin by recalling a classical lemma about the L 2 -control of the distance between the Euler scheme and the diffusion (see e.g. [START_REF] Bouleau | Numerical methods for stochastic processes[END_REF]Theorem B.1.4] for a very close statement). Lemma 7.3. Assume that b and σ are Lipschitz continuous functions. Then, for every positive T , there exists a constant CpT q such that for every starting point

x of R d , E x « sup tPr0,T s |ξ h t ´ξt | 2 ff ď CpT qp1 `|x| 2 qh.
We continue with some uniform controls of the exit time of D. For a given set A and a path w : R `Þ Ñ R d , we denote by τ A pwq the exit time of A defined by: τ A pwq " inftt ą 0, wptq P A c u. Lemma 7.4. Assume that b and σ are Lispchitz continuous functions and that σσ ˚ě ρ 0 I d . Then, (i) Let δ ą 0 and set D δ " tx P R d , dpx, Dq ď δu. For each t 0 ą 0, we have sup xPD P x pτ D δ pξq ą t 0 q ă 1.

(ii) There exist some compact subsets K and r K of D such that K Ă r K and such that there exist some positive t 0 , t 1 , such that for all h ą 0, @x P D, P x ´ξt 0 P K, τ D pξ h q ą t 0 ¯ą 0 and inf xPK P x pξ t 1 P K and @t P r0, t 1 s, ξ t P r Kq ą 0.

Proof. piq Using the fact that for every t 0 ą 0, sup sPr0,t 0 s |ξ x s ´ξx 0 s | Ñ 0 in probability when x Ñ x 0 , one deduces from the dominated convergence theorem that x Þ Ñ P x pτ D δ pξq ą t 0 q is continuous on s D. As a consequence, it is enough to show that for every x P D, P x pτ D δ pξq ą t 0 q ă 1. This last point is a consequence of the ellipticity condition.

piiq Let us begin by the first statement. Let t 0 ą 0. Since the Euler scheme is stepwise constant, it is enough to show that P x pξ h rt 0 {hsh P K, ξ h h P D, P t0, . . . , rt 0 {hsuq ą 0. This follows easily from the fact that, under the ellipticity condition, the transition kernel of the discrete Euler scheme is a (uniformly) non-degenerated Gaussian with bounded bias (on compact sets).

For the second statement, let x 0 P D, K " s Bpx 0 , rq and r K " s Bpx 0 , 2rq where r " 1 4 dpx 0 , BDq. For every x P K, let ψ x,x 0 : r0, 1s Ñ R denote the function defined by ψ x,x 0 ptq " tx 0 `p1´tqx, t P r0, 1s. Let t 1 ą 0. Since ψ x,x 0 is C 1 and sup xPK,tPr0,1s |B t ψ x,x 0 | ă `8, it is well-known (see e.g. [START_REF] Bass | Diffusions and elliptic operators[END_REF]Theorem 8.5]) that for all ε ą 0, there exists a positive c ε such that @x P K, P x p sup tPr0,t 1 s |ξ t ´ψx,x 0 ptq| ď εq ě c ε .

Taking ε " r 2 , the result follows.

Proof of Theorem 3.9. First, let us remark that by the ellipticity condition, we have for every starting point x of D, τ D pξ h q " τ s D pξ h q a.s. Actually, as mentioned before, LpY h k`1 |Y h k " xq is a non-degenerate Gaussian random variable, which implies that PpY h k`1 P BD|Y h k P Dq " 0. Furthermore, if x P BD, τ s D pξ h q " 0. Then, if one denotes by µ ‹ h the unique QSD of Y h killed when leaving s D, it follows that µ ‹ h pBDq " 0. Without loss of generality, one can thus work with D instead of s D in the sequel.

Let K h denote the sub-Markovian kernel related to the discrete-time Euler scheme killed when it leaves D. Namely, for every bounded Borelian function f : R d Ñ R, K h f pxq " Erf px `hbpxq `?hσpxqZq1 tx`hbpxq`?hσpxqZPDu s where Z " N p0, I d q. Let ρ h denote the extinction rate related to µ ‹ h . We have ż

K h f pxqµ ‹ h pdxq " ρ h µ ‹ h pf q. ( 43 
)
Setting λ h " logpρ h q{h, it easily follows from an induction that for every positive t, for every bounded measurable function f

: D Ñ R, E µ ‹ h rf pξ h t q1 τ D pξ h qąt s " C h ptq expp´λ h tqµ ‹ h pf q (44)
where C h ptq " expp t h ´t t h uq. The aim is now to first show that pµ ‹ h q h is tight on the open set D and then, to prove that every weak limit µ (for the weak topology induced by the usual topology on D) is a QSD. The convergence will follow from the uniqueness of µ ‹ given in Theorem 5.5 of [START_REF] Pinsky | Positive harmonic functions and diffusion[END_REF]Chapter 3]. This task is divided in three steps:

Step 1 (Bounds for λ h ): We prove that there exist some positive λ min , λ max and h 0 such that for any h P p0, h 0 q, λ h defined in (44) satisfies λ min ď λ h ď λ max . Let us begin by the lower-bound. For every x P D and δ ą 0,

P x pτ D pξ h q ą t 0 q ď P x ptτ D δ pξq ą t 0 u Y t sup tPr0,t 0 s |ξ h ´ξ| ě δuq ď P x pτ D δ pξq ą t 0 q `Px ˜sup tPr0,t 0 s |ξ h ´ξ| ě δ ¸.
By Lemma 7.4(i) and Lemma 7.3, one easily deduces that for h small enough, a :" sup xPD P x pτ D pξ h q ą t 0 q ă 1.

Recalling that ξ h is stepwise constant, note that t 0 can be replaced by t h 0 " tt 0 {huh in the previous inequality. Then, P x pτ D pξ h q ą kt h 0 q " P x pτ D pξ h q ą kt h 0 |τ D pξ h q ą pk ´1qt h 0 qP x pτ D pξ h q ą pk ´1qt h 0 q ď aP x pτ D pξ h q ą pk ´1qt h 0 q.

By induction, it follows that there exists h 0 P p0, t 0 q such that for every t ą 0 and h P p0, h 0 q, P x pτ D pξ h q ą tq ď a tt{t h 0 u ď C expp´λ min tq with λ min " ´logpaq{pt 0 ´h0 q. Since the right-hand side does not depend on x, one deduces that P µ ‹ h pτ D pξ h q ą tq ď C expp´λ min tq. Since this inequality holds for every t (with C not depending on t), it follows from (44) that λ min ă λ h (using that Cptq ď e). This yields the lower-bound. As concerns the upper-bound, one first deduces from Lemmas 7.3 and 7.4(ii) that there exists a compact subset K of D such that there exist some positive t 0 , t 1 , h 0 and ε, such that for every x P D, and h P p0, h 0 q, P x pξ h t 0 P K, τ D pξ h q ą t 0 q ą 0 and inf yPK P y pξ h t 1 P K and @t P r0, t 1 s, ξ h t P Dq ě ε.

(45)

Once again, using the fact that ξ h is stepwise constant, one sets t h 0 " tt 0 {huh and t h 1 " tt 1 {huh. We have P x pτ D pξ h q ą tq ě P x pξ h t h 0 ` t h 1 P K, P t0, . . . , N h ptqu, τ D pξ h q ą tq with N h ptq " inft , t h 0 ` t h 1 ą tu. Using the Markov property and an induction, it follows from (45) that, for h small enough, for every t ą t h 0 , for every x P D,

P x pτ D pξ h q ą tq ě P x pξ h t 0 P K, τ D pξ h q ą t 0 qε N h ptq ě CP x pξ h t 0 P K, τ D pξ h q ą t 0 q exp ˆlogpεq 2t 1 t ˙,
where in the last inequality, we used that for h small enough

N h ptq " Z t ´th 0 t h 1 ^`1 ě t t h 1 ´th 0 t h 1 ě t 2t 1 ´δ, δ ą 0.
Set λ max " ´logpεq 2t 1 . Since P x pξ h t 0 P K, τ D pξ h q ą t 0 q ą 0 for every x P D, it follows from what precedes that for every t ą t 0 , P µ h pτ D pξ h q ą tq ě c expp´λ max tq, where c is a positive constant (which does not depend on t). By (44), one can conclude that λ h ă λ max (using that Cptq ě 1).

Step 2 (Tightness of pµ ‹ h q): We show that pµ ‹ h q hPp0,h 0 s is tight on D. For δ ą 0, set B δ :" tx P D, dpx, BDq ď δu. We need to prove that for every ε ą 0, there exists δ ε ą 0 such that for every h P p0, h 0 q, µ ‹ h pB δε q ď ε. First, by (44) (applied with t " 1) and Step 1,

µ ‹ h pB δ q ď E µ ‹ h " 1 tξ h 1 PB δ uXtτ D pξ h qą1u ı ď P µ ‹ h pξ h 1 P B δ q.
But, under the ellipticity condition, Lpξ h 1 |ξ h 0 " xq admits a density p h 1 px, .q w.r.t. the Lebesgue measure λ d and by [32, Theorem 2.1] (for instance),

sup x,x 1 p h 1 px, x 1 q ď C
where C does not depend on h. As a consequence, for every x P D, P µ ‹ h pξ h 1 P B δ q ď ż p h 1 px, x 1 qλ d pdx 1 q ď Cλ d pB δ q.

The tightness follows.

Step 3 (Identification of the limit): Let pµ ‹ hn q n denote a convergent subsequence to µ. One wants to show that µ " µ ‹ (where µ ‹ stands for the unique QSD of the diffusion killed when leaving D). To this end, it remains to show that there exists λ ą 0 such that for any positive t and any bounded continuous function f : D Ñ R, E µ rf pξ t q1 τ D pξqąt s " expp´λtqµpf q.

(46)

With standard arguments, one can check that this is enough to prove this statement when f is C 2 with compact support in D.

Let us consider Equation (44). First, up to a potential extraction, one can deduce from Step 1 that λ hn Ñ λ P R. By the weak convergence of pµ ‹ hn q n , it follows that the right-hand side of (44) satisfies:

C h ptq expp´λ h tqµ ‹ h pf q Ñ expp´λtqµpf q.

(47) Second, by [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF] Equality (46) follows by plugging the above convergence and (47) into (44).

8. EXTENSIONS 8.1. Non-compact case: Processes coming down from infinity. In the main results, we chose to restrain our considerations to compact spaces. When E is only locally compact, the results of this paper could be extended to the class of processes which come down from infinity (CDFI), i.e. which have the ability to come back to a compact set in a bounded time with a uniformly lowerbounded probability (for more details, see e.g. [START_REF] Bansaye | Speed of coming down from infinity for birth and death processes[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF][START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF]). First, note that (CDFI)-condition is a usual and sharp assumption which ensures uniqueness of the QSD in the locally compact setting. Second, the (CDFI)-condition is in particular ensured if E is locally compact and if there exists a map V , such that tV ď Cu is compact for every C ą 0 and M :" sup xPE KV pxq is finite. Also, let us remark that P :" tµ P PpEq, µpV q ď M u is compact for the weak convergence topology (owing to the coercivity condition on V ) and is invariant under the action of the kernel K. Then, on this subspace P, the main arguments of the proof of the main results could be adapted to obtain the convergence of the algorithm.

8.2. Non-compact space: the minimal QSD. In Theorem 3.4, we have seen that when a process admits several QSDs, our algorithm may select all of its QSDs with positive probabilities. When (CDFI)-condition fails in the non-compact setting (think for instance about the real Ornstein-Uhlenbeck process killed when leaving R `), uniqueness generally fails and one can not expect the algorithm to select only one QSD. However, if the aim is to approximate the so-called minimal QSD, namely the one associated to the minimal eigenvalue and appearing in the Yaglom limit, then, one can use a compact approximation method in the spirit of [START_REF] Villemonais | Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift[END_REF]. More precisely, consider for instance a diffusion process pξ t q tě0 on R d killed when leaving an unbounded domain D and denote by µ ‹ the related minimal QSD (when exists). Let also pK n q ně1 be an increasing sequence of compact spaces such that Ť ně1 K n " D. Then, under some nondegeneracy assumptions (see e.g. Theorem 3.9), the QSD µ ‹ n related to K n is unique for every n and by [START_REF] Villemonais | Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift[END_REF]Theorem 3.1], lim nÑ`8 µ ‹ n " µ ‹ . Then, using our algorithm for an approximation of µ ‹ n would lead to an approximation of µ ‹ for n large enough.

8.3. Continuous-time algorithm. In view of the approximation of the QSD of a diffusion process pξ t q tě0 on a bounded domain D satisfying the assumptions of Theorem 3.9, it may be of interest to study the convergence of a continuous-time equivalent of our algorithm (instead of considering an Euler scheme with constant step). Of course, without discretization, such a problem is mainly theoretical but it is worth noting that the difficulties mentioned below should be very similar if one investigated an algorithm with decreasing step (on this topic, see also Remark 3.11).The continuous-time algorithm is defined as follows:

' let x P D and pX 1 t q tě0 be as pξ t q tě0 with initial condition ξ 0 " x; ' let τ 1 " inftt ě 0 | X 1 t R Du, for all t ă τ 1 we set X t " X 1 t ; ' Let µ t " 1 t ş t 0 δ Xs ds be the occupation measure of X; ' Let U be a random variable distributed as µ τ 1 (conditionally on the stopping time σ-field F τ 1 ); ' we set X τ 1 " U ; ' the process then evolves as above starting from U . We denote by pτ k q kě1 the sequence of jumping times. At the n th time, the process jumps uniformly over the positions from all its past and not only from rτ n , τ n`1 s. This sequence of stopping times is increasing and almost surely converges to some τ 8 P p0, `8s. The process pX t q tě0 is well defined until the time τ 8 . It is not trivial that τ 8 " 8 because the process pX t q tě0 can be arbitrarily close to the boundary and the times between jumps become arbitrarily short. Nonetheless, we have Lemma 8.1 (Non-explosion of the continuous-time algorithm). Under the assumptions of Theorem 3.9, we have τ 8 " `8 a.s.

The proof is given below. This type of problem is reminiscent of the Fleming-Viot particle system [START_REF] Bieniek | Non-extinction of a Fleming-Viot particle model[END_REF][START_REF] Bieniek | Extinction of Fleming-Viot-type particle systems with strong drift[END_REF][START_REF] Villemonais | General approximation method for the distribution of Markov processes conditioned not to be killed[END_REF]. However, the comparison stops here because our procedure is not "Markovian" and their proofs can not be adapted.

Proof of Lemma 8.1. Let x P D be the starting point of pX t q tě0 . Fix ε ą 0 such that dpx, BDqąε and choose 0 ă δ ă ε. Let pB t q tě0 a Brownian motion and choose z in the ball Bpx, δq of center x and radius δ. We let pξ z t q tě0 be the solution of dξ z t " bpξ z t qdt `σpξ z t qdB t , ξ z 0 " z, and τ ε,δ,x " inf zPBpx,δq inftt ě 0 | ξ z t R Bpx, εqu.

The variable τ ε,δ,x is almost-surely positive. On tτ 8 ă `8u, we have, for every t P rτ 1 , τ 8 q, µ t pBpx, δqq ě τ ε,δ,x τ 8 .

As a consequence on tτ 8 ă `8u, the process pX t q tě0 jumps infinitely often in Bpx, δq. But if it starts from a point z P Bpx, δq, its absorption time can be bounded from below by a random variable σ (independent from the past) such that σ has the same law as τ ε,δ,x . Hence, we have

τ 8 ě ÿ ně1 σ n ,
on tτ 8 ă `8u, where pσ n q ně1 is a sequence of i.i.d. random variable distributed as τ ε,δ,x . As they are positive, the strong law of large numbers ensures that ř ně0 σ n " `8 almost surely and then Ppτ 8 ă `8q " 0.

  Qf pxq " ż E f pyqQpx, dyq and µQp¨q " ż E µpdxqQpx, ¨q.

FIGURE 1 .

 1 FIGURE 1. Transcritical bifurcation associated to Equation (16); b " 1{3, Continuous line: a Þ Ñ µ ‹ 2 p1q, dotted line: a Þ Ñ µ ‹ p1q .

9 FIGURE 3 .

 93 FIGURE 3. Approximation of µ ‹h with the Brownian Bridge method for h " 0.1 (blue) compared with the reference density (red, dotted-line)

Proof. Step 1 (

 1 Continuity of Φ) : Let µ n Ñ µ in PpEq and t n Ñ t. Then for all f P CpEq |µ n e tnA f ´µe tA f | ď |µ n e tnA f ´µn e tA f | `|µ n e tA f ´µe tA f | ď }e tnA ´etA } 8 }f } 8 `|µ n e tA f ´µe tA f |. The second term goes to zero because µ n Ñ µ and the first one by strong continuity of t Þ Ñ e tA .

6. 2 .

 2 Poisson Equation related to K µ . For a fixed µ and a given function f : E Ñ R, let us consider the Poisson equation f ´Πµ f " pI ´Kµ qg.

7. 3 .

 3 Proof of Theorem 3.4. The proof relies on the following lemma.

previously noticed, H 1 , H 2 and H 3 are

  always true. However, assumption H 4 might fail to hold. More precisely, we have the following result.

	Proposition 3.3 (Sharpness of H 4 ). Condition H 4 holds if and only if Θ 1 ď Θ 2 . In this case
	the unique QSD of K is µ ‹ 2 and, under Hypothesis 2.1 µ n Ñ µ ‹ 2 .

hence H 4 fails.

  OpP x 0 pτ 2 ą nqp1 `nqq when Θ 2 " Θ 1 . This proves that (14) holds with Cptq " C when Θ 1 ă Θ 2 and Cptq " C{p1 `tq when Θ 1 " Θ 2 . If now Θ 1 ą Θ 2 , it follows from Theorem 3.4 below that another QSD µ ‹ ‰ µ ‹ 2 exists,

			kqq
	Then, by (15) again, we get	
	P x pτ 2 ą nq ď OpΘ n´1 2	q " OpP x 0 pτ 2 ą nqq
	when Θ 1 ă Θ 2 and	
	P x pτ 2 ą nq ď OpΘ n´1 2	p1 `nqq "

  4.1. Explicit form for Π µ . Let us denote by A the transition kernel on E defined by

	Apx, .q "	ÿ	K n px, .q
		ně0	
	and set		
	}A} Remark that		
	}A} 8 " sup		

8 " supt}Af } 8 : f P BpE, Rq, }f } 8 ď 1u. xPE Apx, Eq P r0, 8s. Proposition 4.5. Assume H 1 and H 2 . Then: (i) For all x P E, 1 ď Apx, Eq" A1pxq " E x rτ s ď }A} 8 ă 8.

  By separability of CpEq, }µ t ´νt } TV " sup f PH |µ t f ´νt f | for some countable set H Ă CpEq. This shows that t Ñ }µ t ´νt } TV is measurable, as a countable supremum of continuous functions.

Thus, by Lipschitz continuity of µ Þ Ñ Π µ with respect to the total variation distance (see Lemma 4.5) we get that }µ t ´νt } TV ď }µ 0 ´ν0 } TV `L ż t 0 }µ s ´νs } TV ds for some L ą 0. Hence, by the measurable version of Gronwall's inequality ([23, Theorem 5.1 of the Appendix])

  2, hence Corollary 5.3.

	Proof. By Theorem 6.1, it is enough to show that for any bounded continuous function f , for
	any T ą 0,				
	lim sup	sup	ˇˇˇż	t`s	s s pf qds ˇˇˇ" 0
	tÑ`8	sPr0,T s		t
	which in turn is equivalent to, for every m ě 0
					ˇˇˇˇn `j
					ÿ
	lim sup nÑ`8	max jďm	k"n

  r µe tA " µpf ˚qe

						t 1´Θ 1 ˆµ‹ `r µ µpf	˚q e tA K	ȧnd
	r Φ t pµq :"	µe tA µe tA 1	"	µ ‹ `r µ µpf ˚q e tA K 1 `r µ µpf ˚q e tA K 1	.
	Now, remark that any eigenvalue Λ of A K writes
	Λ "	1	1 ´λ	´1 1 ´Θ1

  (Theorem 2.4 and remarks of Section 6 therein about the hypothesis of this theorem), there exists a constant C 1 ptq such that for all x P D,|E x rf pξ h t q1 τ D pξ h qąt s ´Ex rf pξ t q1 τ D pξqąt s| ď C f C 1 ptq D pξ h qąt s ´Ex rf pξ t q1 τ D pξqąt s| E µ ‹ h rf pξ h t q1 τ D pξ h qąt s ´Eµ ‹ h rf pξ t q1 τ D pξqąt sNow, by a dominated convergence argument (using that sup sPr0,ts |ξx s ´ξx 0 s | Ñ 0 in probability when x Ñ x 0 ), one remarks that x Þ Ñ E x rf pξ t q1 τ D pξqąt sis (bounded) continuous on D. As a consequence, E µ ‹ hn rf pξ t q1 τ D pξqąt s Ñ E µ rf pξ t q1 τ D pξqąt s so that E µ ‹ hn rf pξ hn t q1 τ D pξ hn qąt s

		?	h.
	It follows that	
	sup xPD	|E x rf pξ h t q1 τ hÑ0 Ý ÝÝ Ñ 0.
	As a consequence,	
		hÑ0 Ý ÝÝ Ñ 0.

hÑ0

Ý ÝÝ Ñ E µ rf pξ t q1 τ D pξqąt s.

For comments about a possible extension to the non-compact case, see Section 8

this is a mildly weaker definition than the usual definition of small or petite sets (see e.g[22, 

34])
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