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STOCHASTIC APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS ON
COMPACT SPACES AND APPLICATIONS

MICHEL BENAIM, BERTRAND CLOEZ, FABIEN PANLOUP

ABSTRACT. In the continuity of a recent paper, dealing with finite Markov chains, this paper
proposes and analyzes a recursive algorithm for the approximation of the quasi-stationary distri-
bution of a general Markov chain living on a compact metric space killed in finite time. The idea
is to run the process until extinction and then to bring it back to life at a position randomly chosen
according to the (possibly weighted) empirical occupation measure of its past positions. General
conditions are given ensuring the convergence of this measure to the quasi-stationary distribution
of the chain. We then apply this method to the numerical approximation of the quasi-stationary
distribution of a diffusion process killed on the boundary of a compact set and to the estimation
of the spectral gap of irreducible Markov processes. Finally, the sharpness of the assumptions is
illustrated through the study of the algorithm in a non-irreducible setting.

Keywords. Quasi-stationary distributions ; stochastic approximation ; reinforced random walks ; random perturba-
tions of dynamical systems; extinction rate; spectral gap; Euler scheme.
AMS-MSC. 65C20; 60B12; 60J10, Secondary 34F05; 60J20; 60J60.

1. INTRODUCTION

Numerous models, in ecology and elsewhere, describe the temporal evolution of a system by a
Markov process which eventually gets killed in finite time. In population dynamics, for instance,
extinction in finite time is a typical effect of finite population sizes. However, when populations
are large, extinction usually occurs over very large time scales and the relevant phenomena are
given by the behavior of the process conditionally to its non-extinction.

More formally, let (&;);>0 be a Markov process with values in £ U {0} where 0 ¢ £ denotes
an absorbing point (typically, the extinction set or the complementary of a domain). Under
appropriate assumptions, there exists a distribution v on £ (possibly depending on the initial
distribution of &) such that

lim P(& € |6 # ) = v(). (1)

Such a distribution well describes the behavior of the process before extinction, and is necessary
(see e.g [34]]) a quasi-stationary distribution (QSD) in the sense that

Py (& € -|& # 0) = v(.).
We refer the reader to the survey paper [34] or the book [21] for general background and a
comprehensive introduction to the subject.
The simulation and numerical approximation of quasi-stationary distributions have received
a lot of attention in the recent years and led to the development and analysis of a class of particle
systems algorithms known in the literature as Fleming-Viot algorithms (see [14, 20} 22| 41]).
The principle of these algorithms is to run a large number of particles independently until one
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is killed and then to replace the killed particle by an offspring whose location is randomly (and
uniformly) chosen among the locations of the other (alive) particles. In the limit of an infinite
number of particles, the (spatial) empirical occupation measure of the particles approaches the
law of the process conditioned to never be absorbed. Combined with (I)), this gives a method for
estimating the QSD of the process.

Recently, , in the setting of finite state Markov chains, Benaim and Cloez [6] (see also [12])
analyzed and generalized an alternative approach introduced in [1]] in which the spatial occupa-
tion measure of a set of particles is replaced by the temporal occupation measure of a single
particle. Each time the particle is killed it is risen at a location randomly chosen according to its
temporal occupation measure. The details of the construction are recalled in Section [2]

The objective of this paper is twofold: on the one hand, we aim at extending the results of [6] to
the setting of Markov chains with values in a general space, being killed when leaving a compact
domain. On the other hand, we also explore various applications: we propose and investigate a
numerical procedure, based on an Euler discretization, for approximating QSD of diffusions and
we also focus on the estimation of the extinction rate that we apply as a way to get numerical
bounds for the spectral gap of Markov processes.

QOutline. The paper is organized as follows: In Section [2| we detail the general framework,
the hypotheses and state our main results. In Section [3] we first discuss our assumptions in
the simple case of finite Markov chains and then focus on the series of applications introduced
previously: numerical approximation of QSDs for diffusions (including theoretical results and
numerical tests), estimation of (bounds for) general spectral gap (we recover in particular the
curvature of the sphere). The sequel of the paper (Sections [] [5] [6] and [7) is mainly devoted
to the proofs and the details about their sequencing will be given at the end of Section 5] We
end the paper by some potential extensions of this work to some more general settings such as
non-compact domains or continuous-time reinforced strategies.

2. SETTING AND MAIN RESULTS

2.1. Notation and Setting. Let £ be a compact metric spaceE] equipped with its Borel o-field
B(E). Throughout, we let B(E, R) denote the set of real valued bounded measurable functions
on £ and C(E,R) < B(&,R) the subset of continuous functions. For all f € B(E,R) we let
[floo = supgeg |f(z)] and we let 1 denote the constant map = — 1. We let P(€) denote
the space of (Borel) probabilities over £ equipped with the topology of weak* convergence.
For all © € P(€) and f € B(E,R), or f nonnegative measurable, we write u(f) (or pf) for
§¢ fdp. Recall that i, — g in P(E) provided g, (f) — p(f) for all f € C(E,R), and that
(by compactness of £ and Prohorov Theorem), P(€) is a compact metric space (see e.g [23]
Chapter 11]).

A sub-Markovian kernel on £ is amap Q : £ x B(E) — [0, 1] such that for all x € &,
A — Q(x, A) is a nonzero measure (i.e Q(z,€) > 0) and for all A € B(E),z — Q(x, A) is
measurable. If furthermore Q(z, ) = 1 forall x € £, then Q is called a Markov (or Markovian)
kernel.

IFor comments about a possible extension to the non-compact case, see Section
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Let () be a sub-Markovian (respectively Markovian) kernel. For every f € B(E,R) and
we P(E), welet Qf and uQ respectively denote the map and measure defined by

Qf(x) = L f)Qr.dy) and uQ() = L w(dz)Qa, ).

If Qf € C(E,R) whenever f € C(E,R), then @ is said to be Feller. For all n € N, we let Q™
denote the sub-Markovian (respectively Markovian) kernel recursively defined by

Qi (. ) = j Q. Q" (. dy) and Q°(z, ) = .
£

A probability . € P(E) is called a quasi-stationary distribution (QSD) for @ if p and p@ are
proportional or equivalently if,

p— 1L
pQ1
The number
() == pQ1 @)

is called the extinction rate of p.
Note that when () is Markovian, a quasi stationary distribution is stationary (or invariant) in
the sense that 4 = p@Q. In this case O(u) = 1, otherwise ©(u) < 1.

From now on and throughout the remainder of the paper we assume given a Feller sub-
Markovian kernel K on &.

Let 0 ¢ & be a cemetery point. Associated to K is the Markov kernel K on £ U {0} defined,
forallz e £, A€ B(E), by

K(z,A) = K(z,A),
K(x,{0}) =1— K(x,&), and
K(0.{0}) = 1.
The kernel K can be understood as the transition kernel of a Markov chain (Y},),>0 on € U {0}
whose transitions in £ are given by K and which is "killed" when it leaves £.
Let d : £ — [0, 1] be the function defined by

0=1-K1.
That is, for every x € £,
d(z) = K(z,{0}) =1— K(x,E). 3)
For a given p1 € P(E€), we let K, denote the Markov kernel on £ defined by
Ky (0, A) = K(x, A) + 3(x)u(A)
forall z € £ and A € B(E). Equivalently, for every f € B(E,R),

Kuf(x) = Kf(x) + 6(x)p(f)-

The chain induced by K, behaves like (Y;,) until it is killed and then is redistributed in £
according to p. Note that K, inherits the Feller continuity from K. For the sequel, an important
feature of K, is that y is a QSD for K if and only it is invariant for K, (see Lemma [4.2] for
details).
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Let (€2, F,P) be a probability space equipped with a filtration {F,, },>0 (i.e an increasing fam-
ily of o-fields). We now consider an £-valued random process (X;,)n>0 defined on (2, F, P)
adapted to {F,,},>0 such that :

XO =€ 6,
and for every n = 0,
P(Xpt1 € dy|Fn) = Ku, (Xn, dy), 4)
where
_ k00X,
Bn=—Cn
k=0 "k

is a weighted occupation measure. Here (1n,,)n>0 is a sequence of positive numbers satisfying
certain conditions that will be specified below (see Hypothesis[2.T).

With the definition of K, this means that whenever the original process (Y7,),>0 is killed, it
is redistributed in £ according to its weighted empirical occupation measure 1,,. Note that such
a process is a type of reinforced random walk (see e.g [37]). It is reminiscent of interacting
particle systems algorithms used for the simulation of QSDs such as the so-called Fleming-
Viot algorithm (see [14, 20, 41] and [6 section 3]). However, while these latter algorithms
involve a large number of particles whose individual dynamics depend on the spatial occupation
measure of the particles, here there is a single particle whose dynamics depends on its temporal
occupation measure. From a simulation point of view, this is of potential interest, suggesting less
calculus (but more memory) and leading to a recursive method which avoids (at least in name)
the trade-off between the number of particles and the time horizon induced by Fleming-Viot
algorithm.

Set, for n > 0,

Tin

=
ZZ:() Nk
The occupation measure can then be computed recursively as follows:

Hn+1 = (1 - 'Yn-&-l):un + 'Yn+15Xn+1- 5)

Under appropriate irreducibility assumptions (see Hypothesis [2.2] below), K, admits a unique
invariant probability II,,. Owing to the above characterization of QSDs as fixed points of j —
I1,,, we choose to rewrite the evolution of (p,,) as:

HUn+1 = p + 'Yn-&-l(_un + Hun) + Yn+1€n (6)

where €, = 6x,,, — II,,,,. The process () is therefore a stochastic approximation algorithm
associated to the ordinary differential equation (ODE) (for which rigorous sense will be given in
Section [3)):

fo=—p+11L,. @)
The almost sure convergence of (u,) towards p* (the QSD of K) will then be achieved by
proving that :

(i) The asymptotic dynamics of (u,)n>0 matches with that of solutions of the above ODE:
more precisely, (un)n>0 is (at a different scale) an asymptotic pseudo-trajectory of the
ODE (in the sense of Benaim and Hirsch [7], see [5] for background).

(ii) The set Fix(IT) = {p € P(E), n = II,} reduces to p* and is a global attractor of the
ODE.
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This strategy was applied in [6] when £ is a finite set. However, the proofs in [6]], strongly
rely on finite dimensional arguments that cannot be applied in this more general setting and the
new proofs will require a careful study of the kernels family (K ,),,.

2.2. Main results. We first summarize the standing assumptions under which our main results
will be proved. We begin by the assumptions on (Y, )p>1-

Hypothesis 2.1 (Standing assumption on (,,)). The sequence (v, )n=0 appearing in equation
() is a non-increasing sequence such that

Z Yo =+00 and lim 7,In(n)=0. (8)
n—+00
n=0
The typical sequence is given by v, = n%rl, which corresponds to n,, = 1 for all n > 1.

Now, let us focus on the assumptions on the sub-Markovian kernel K. We say that a non-
empty set A € B(E) u {0} is accessible if forall x € £

DK™ (x, A) > 0.
n=1

It is called a weakﬂ small set if A < £ and there exists a probability measure ¥ on £ and € > 0
such that for all z € A

> K"z, dy) > e¥(dy). ©)

n=1
Hypothesis 2.2 (Standing assumptions on K).
e (Hy) K is Feller.
e (Hya) The cemetery point {0} is accessible.

Assumptions H; and Ho imply the existence of a quasi-stationary distribution but are not
sufficient to ensure its uniqueness (see the example developed in Subsection [3.1)). For this, we
require the supplementary assumptions below

Hypothesis 2.3 (Additional assumptions on K).

o (Hs) There exists an open accessible weak small set U.
o (Hy) There exists a non increasing convex function C' : RT — R satisfying

o0
f C(s)ds = o (10)
0
such that
U(K™1)
e K@) ~

where VU is like in equation (9).

Roughly, the latter hypothesis stipulates that the rate at which the process dies is uniformly
controlled, in terms of the initial point. This is motivated by the recent work of Champagnat

2this is a mildly weaker definition than the usual definition of small or petite sets (see e.g [24} 35]])
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and Villemonais [16] in which it is proved that under mildly stronger versions of Hg (namely,
K'(x,) = eV for some [ independent of ') and H4 (namely C(t) = ¢ > 0) the conditioned law
K"(z,)
P,(Y,e-Y,e&)="—"——"2
(e )= )
converges, as n — 00, exponentially fast to a (unique) QSD. Here, Assumption H4 which
does not require the function s — C'(s) to be lower-bounded does certainly not guaranty the
exponential rate but is a sharper and almost necessary assumption for the uniqueness and the
attractiveness of the QSD (on this topic, see also Remark 2.4 below and Proposition [3.3)). More
precisely, it will be shown that under H3 and Hy, the semiflow induced by is globally
asymptotically stable (i.e Fix(II) has cardinal one and is a global attractor).

Remark 2.4 (Sufficient condition). A simple condition ensuring Hypothesis[2.3]is that, for some
1 > 1, constants c1, co > 0 and some ¥ € P(E)

a1 ¥(dy) < K'(z,dy) < a9 (dy). (11)
Indeed, under (T1)), for n > ¢,
(K" 1) > K" > ;U (K" 1)

while forn < £,1 > K"1 > K1 > ¢;. Hence C(t) = min <cl,cl> > 0. Note that (TT),
C2

which is usual in the literature (see e.g. [9, Theorem 3.2]), is satisfied if K ¢ admits a continuous
and positive density with respect to a positive reference measure.

Finally, note that in Hypotheses [2.2]and [2.3]there is no aperiodicity assumption on K.

We are now able to state our main general result about the convergence of the empirical
measure (i, )n>0 towards the QSD.

Theorem 2.5 (Convergence of the algorithm). Assume Hypotheses and Then, K
has a unique QSD 1* and the sequence (fin,)n=0 converges a.s. in P(E) towards p*.

In fact, the previous setting also leads to the convergence in distribution of the reinforced
random walk:

Theorem 2.6 (Convergence in distribution of (X,,)n>0). Suppose that the assumptions of The-
oremhold. Then, for any starting distribution o, (X,,)n>0 converges in distribution to |1*.

The two above results thus show that the algorithm both produces a way to approximate p*
and also to sample a random variable with this distribution. The convergence in law of (X,),>0
may appear surprising due to the lack of aperiodicity assumption for (Y},),>0. To overcome this
problem, we prove in fact that (X,,),>0 gets asymptotically this property.

The extinction rate O(u*), defined in (2)), can be estimated through the same procedure. For
this, we need to keep track of the times at which a "resurrection" occurs. We then construct (X,)
as follows. Let ((U,,, X,,)) be a process adapted to {F,,}, with U,, € £ U {0}, X, € £, satisfying
Xo=Up =z,

IED(Un+1 € dy|‘7:n> = K(Xna dy)
and

Xnt1 =Vor1lw, ;1 =0y + Un+1l(v, . c6)
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where (V},) is a sequence of independent variables such that V,,;1 ~ u,, conditionally on
0(Fn,Upy1). Clearly, (X,,) satisfies (4) and the times at which U,, = 0 are the "resurrection”
times (at which X, is redistributed).

Theorem 2.7 (Extinction rate estimation). Suppose that the assumptions of Theorem [2.5] are
satisfied. Then,

_ 1 & N .
O = - Z L, —a) Uma SNy BT
k=1
Proof. Since P(U,,4+1 = 0|.F,) = d(X,,) , we can decompose 0, as
~ M
On =— + ,un(a)
n
where (M,,) is the martingale defined by M,, = >’ (1, —a) — 6(Xr—1)). Since the incre-
ments of (M,,) are uniformly bounded and (M ),, < Cn, it follows from the strong law of large
numbers for martingales, that % — 0 a.s. as n — +00. On the other hand, i, (§) “=+%>
w*(8) =1 —O(u*) a.s. This ends the proof. O

3. EXAMPLES AND APPLICATIONS

3.1. Finite Markov Chains. In whole this subsection, we consider the simple situation where
£ is a finite set in order to discuss our main assumptions.

We use the notation

K(z,y) = K(z,{y}), VYax,yef.

We say that = leads to y, written x < y, if >} o K"(z,y) > 0. If A, B < £ we write
A — B whenever there exist z € A and y € B such that x — y.

Kernel K is called indecomposable if there exists xg € £ such that x < x for all x € £, and
irreducible if t — yforall z,y € €.

Note that Hypothesis Hj is automatically satisfied (endow £ with the discrete topology) and
that Hs is equivalent to indecomposability (choose U = {x¢} and ¥ = d,,). From now on, we
investigate separately the irreducible and non-irreducible cases.

Irreducible setting. When K is irreducible Hypothesis Hy4 holds with C'(n) = ¢ > 0. This
follows from the following lemma.

Lemma 3.1. There exists ¢ > 0 such that
K"1(z) = K"(x,€) = cK"(y,€) = ¢cK"1(y)
foralln € Nand x,y € € such that x — y.
Proof. Let ¢; = min{K (z,y) : K(x,y) > 0}. From the relation
K™2,E) = K" (2,&) = Y | K(z,y)K™(y,€)
y

it comes that
K"(z,€) =z anK"(y,€)

whenever K (i, y) > 0. This proves the result with ¢ = cllg‘. O

As a consequence, except for the rate of convergence, we retrieve of [6, Theorem 1.2] (see

also [1}[12] for the convergence result in the case ~,, = n}rl).
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Theorem 3.2. Suppose K is irreducible and K (x¢,E) < 1 for some xy € E. Then K has a
unique QSD p* and under Hypothesis (in) converges almost surely to (1.

Bottleneck effect and condition Hy4. Here we discuss an example demonstrating the necessity
of condition H4 for non irreducible chains. Note that this example can also be understood as a
benchmark of more general processes admitting several QSDs such as general indecomposable
Markov chains.
Suppose £ = &1 U E where £ and & are nonempty disjoint sets such that

(D) Va,ye & a—y;

(2) & = &y

(3) & + &

(4) & — 0, (thatis Jz € & K(x,€) < 1) and & 4> 0.
Let K; be the kernel K restricted to &;. That is

K; = (K(33> y))z,ye&--

Let 17 be the (unique) QSD of K; and ©; the associated extinction rate. Note that, by irre-
ducibility of K;, and Perron Frobenius Theorem, ©); is nothing but the spectral radius of K;.

We see 4] as an element of P(€) by identifying P(&;) with the set of . € P(E) supported by
&
As previously noticed, Hy, Ha and Hg are always true. However, assumption H4 might fail
to hold. More precisely, we have the following result.

Proposition 3.3 (Sharpness of Hy). Condition Hy holds if and only if ©1 < ©Oq. In this case
the unique QSD of K is j5 and, under hypothesis[2.1] ju, — pi5.

Proof. Fix xg € & and let ¥ = §,,, so that Hy, H and H3 hold. By Lemma [3.1] there exists
¢ > 0 such that U(K"1) = K"1(z¢) = cK"1(z) forall z € & and n > 0. Thus Hy is
equivalent to
Ve &, Kn1($0) = C(n)K”l(x) (12)
with C satisfying (I0). Let 77 = min{n >0 : Y, ¢ &} and 7o = min{n >0 :Y,, = d}. By
Lemma [3.T]applied to each of the kernel K;, and from the relation ©} = ;K 1¢,, we get that
forall z € &;
1
E@Z‘ =Py (1 > n) = cO} (13)
for some ¢ > 0. Thus for all x € &1,

]:P)I(TQ > n) = Ew [P(TQ > n]]:ﬁ)] = Ex [PYq (7‘2 >n— 7'1)]

< -E. [0 M 1r<n + 1ryon ]

Qlrm

by (13). Thus,

P$(7'2 > n) <

ol

S 1
52,05 (Ba(r > k = 1) = Pa(71 > k) + ~Pa(m > 1)
k=1

n—1

1 _ e _
= 295(62 t+ Z (05— 0 MPs(11 > k)
k=1
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1 B n—1 -
= -0y 1+ (1-02) ) 6;"Pu(mi > k)
k=1
Then, by again, we get

P, (12 > n) < 003 ') = O(P,, (12 > n))
when ©1 < ©5 and
Py(m2 >n) < 0(9371(1 +n)) = O(Pg (72 > n)(1+n))

when Oy = O;. This proves that holds with C(t) = C when ©; < ©9 and C(t) =
C/(1 + t) when ©1 = O. If now, ©; > O, it follows from Theorembelow that another
QSD p* # p5 exists, so that Hy fails.

]

For ©1 < O3, 3 is a global attractor of the dynamics induced by (7), but when ©; exceeds
©O2 a transcritical bifurcation occurs: p5 becomes a saddle point whose stable manifold is P(E2),
while there is another linearly stable point x* whose basin of attraction is P(E)\P(&2).

This behavior will be shown in section[7land combined with standard technics from stochastic
approximation, it will be used to prove the following result.

Theorem 3.4 (Behavior of the algorithm without Assumption Hy). Suppose ©1 > Os. Then
there is another QSD p* having full support (i.e p*(x) > 0 for all x € £). Under Hypothesis
21
(i) (fn)n=o converges, almost surely to py, € {5, 1*}.

(ii) If Xo € &2, Xy, € & for all n and po, = pi with probability one.

(iii) If X € &1, the event {uo, = p*} has positive probability.

() If >, [ 17—, (1 — ) < +c0, the event {IN € N : X,, € & foralln = N} has positive

probability, and on this event i, = p5.

Example 3.5 (Two points space). The previous results are in particular adapted to the case where

& ={i},i=1,2and
a 1—a
=5

with a,b e (0,1). Write p € P(€) as p = (,1 —x),0 < x < 1. Then

K o_ a 1—a
oL (1=b)z b+ (1-0b)(1—2x)
and the ODE (7)) writes
(1-"b)x
(1—a)+ (1=b)z
In this case, one can check that ©; = a and ©2 = b, u5 = d2 and when a > b, pu* =
‘11—:251 + i:‘g 2. In Figure (1} for a fixed value of b, we draw the phase portrait of the ODE (14))
in terms of a and especially the bifurcation which appears when a > b.

T=-—x+ (14)

Remark 3.6 (Open problem). Suppose v,, = %. Although 5 is a saddle point when ©; > O2,
Theorem [3.4]shows that the event 11, — 115 has positive probability when A > 1. A challenging
question would be to prove (or disprove) that this event has zero probability when A < 1. This
is reminiscent of the situation thoroughly analyzed for two-armed bandit problems in [29, 30].
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N . . L " I " N
0 0.1 0.2 03 A 0.4 05 0.6 0.7 0.8 0.9 1

FIGURE 1. Transcritical bifurcation associated to Equation (14); b = 1/3,
Continuous line: a — p5(1), dotted line: a — p*(1) .

Remark 3.7 (Conditioned dynamics). Note that by mimicking the proof of Lemma later,
one is also able to compute the limit of the conditioned dynamics:

: . K"(y,-)

s By(Yo € Yo € &) = lim Z2705

where v = p5 if ©1 < Ogo0ry € & and v = p* when ©1 > O3 and y € &;. Furthermore,

at least for Example [3.5] before, it is worth noting that the convergence is not exponential when
01 = O,.

Remark 3.8 (Fleming-Viot algorithm). Theorem shows that, with positive probability, our
algorithm asymptotically matches with the behavior of the dynamics conditioned to the non-
absorption. Surprisingly, this is not the case for the discrete-time (or continuous-time) Fleming-
Viot particle system (see [6, Section 3], for the definition) which always converges to y5. Actu-
ally, let us recall that this algorithm has two parameters: the (current) time ¢ > 0 and the number
of particles N > 1. When the number of particles goes to infinity, it is known that the empirical
measure (induced by the particles at a fixed time) converges to the laws conditioned to not be
extincted; see for instance [20, 41]] in the continuous-time setting. However, if we keep constant
the number of particles and let first the time ¢ tend to infinity then, one obtains the convergence
to p5 in place of p*. This comes from the fact that, the state where all the particles are in & is
absorbing and attainable. In this case, the commutation of the limits established in [6, Section
3] fails. Finally, note that the study of the rate of convergence of Fleming-Viot processes in a
two-points space is investigated in [19]].

:V7

3.2. Approximation of QSD of diffusions. A potential application of this work is to generate
a way to simulate QSD of continuous-time Markov dynamics. To this end, the natural idea is to
apply the procedure to a discretized version (Euler scheme in the sequel) of the process. Here,
we focus on the case of non-degenerate diffusions (&;)¢>o in R? killed when leaving a bounded
connected open set D. More precisely, let ({;);>0 be the unique solution to the d-dimensional
SDE

d& = b(&)dt + o(&)dWy, & € D,

where b and o : R% — Mg 4 are defined on R? with values in R% and Mg 4. One assumes below
that the diffusion is uniformly elliptic and that b and & belong to C%(R¢) (see Remark[3.10).
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For a given step h > 0, we denote by (£/")¢=0, the stepwise constant Euler scheme defined by
§o=yeD,

VneN, &, =& + (&) + o (&) Winsyn — Wan),

and for all t € [nh, (n + 1)h), &} = €. Under the ellipticity assumptions on the diffusion,
the Markov chain (Y;, := §Zh)n satisfies the assumptions of Theorem (with & = D) (in
particular (1)) and thus admits a unique QSD that we denote by /.7 .

This QSD can be approximated through the procedure defined above and the natural question
is: does (117,), converge to 1 when h — 0, where p* denotes the unique QSD of (&;):>0 killed
when leaving D ? A positive answer is given below.

Theorem 3.9 (Euler scheme approximation). Assume that (&)=o is a uniformly elliptic dif-
fusion and that D is a bounded domain (i.e. connected open set) with C3-boundary. Then,
((&t)t=0, 0D) admits a uniqgue QSD and (i} ) >0 converges weakly to p* when h — 0.

Remark 3.10 (Smoothness assumptions). The uniqueness of u* is given by Theorem 5.5 of
Chapter 3 in [38]]. Also note that in the proof of the above theorem, one makes use of some
results of [27] about the discretization of killed diffusions. The C*-assumption on b and o is
adapted to the setting of these papers but could be probably relaxed in our context.

We propose to illustrate the previous results by some simulations. We consider an Ornstein-

Uhlenbeck process
d&y = =&dt +dBy, t=0
killed outside an interval [a, b] and thus compute the sequence (1"),,~1 with step h.

We will assume that ¢ = 0 and b = 3. In Figure 2} we represent on the left the approximated
density of u!* (obtained by a convolution with a Gaussian kernel) for a fixed value of h and dif-
ferent values of n. Then, on the right, n is fixed (n = 107) and & decreases to 0. Unfortunately,
even though the convergence in n seems to be fast, the convergence of y} towards p* is very
slow: the discretization of the problem underestimates the probability to be killed between two
discretization times. The slow convergence means in fact that this probability decreases slowly
to 0 with h.

However, it is now well-known that, under some conditions on the domain and/or on the dimen-
sion, it is possible to compute a sharp estimation of this probability. More precisely, let (£/');
denote the refined continuous-time Euler scheme Ej;h = ¢hy and for all t € [nh, (n + 1)h),

& = &+ (E = n)b(ER) + o (&) (Wi = Wa).

It can be shown that

t—nh
L ((gzl)te[nh,(n—&-l)hﬂggh = l'agzanrl)h = y) =L <m + h (y—m) + U(gkh)B?)

where for a given 7 > 0, BT denotes the Brownian Bridge on the interval [0, 7] defined by:
BtT =W — %WT. In dimension 1, the law of the infimum and the supremum of the Brownian
Bridge can be computed (see [27] for details and a discussion about higher dimension). One has
for every z > max(x, y),

' 2
Pl su T+ —:U+)\BT><2 =1—ex (—z—x z— )
Qm%< (v - ) ) p (g -2z )
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FIGURE 2. Left: Approximated density of (u!) with h = 0.01 and
n = 5.10%,10°,10° (green, blue, red) Right: Comparison of u} for h =
0.05,0.01, 0.001, (red, orange, blue) with u* (red, dotted-line)

Thus, this means that at each step n, if §,, 1), € D, one can compute, with the help of the above
properties, a Bernoulli random variable V' with parameter

p = P(3t € (nh, (n+ 1)h), &8 € DCJ&,y = T, ¢me1yn = y) (IfV =1, the particle is killed).

This refined algorithm has been tested numerically and illustrated in Figure 3]

FIGURE 3. Approximation of ;; with the Brownian Bridge method for i =
0.1 (blue) compared with the reference density (red, dotted-line)
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Remark 3.11. Here, the effect of the Brownian Bridge method is only considered from a numer-
ical viewpoint. The theoretical consequences on the rate of convergence are outside of the scope
of this paper. Also remark that in order to get only one asymptotic for the algorithm, it would be
natural to replace the constant step h by a decreasing sequence as in |31, 136]. Once again, such
a theoretical extension is left to a future work.

3.3. Spectral gap estimate. Recall that a QSD p is an eigenvector of the transition kernel and
that the extinction rate ©(u) corresponds to the associated eigenvalue. Using the discretiza-
tion argument introduced in the last subsection, Theorem thus gives a way to approximate
eigenelements of elliptic operators with Dirichlet-type boundary condition. In this section, we
show that it can be also used to estimate the first non trivial eigenvalue of non-absorbed pro-
cesses.

Namely, we focus on a potential application of our results to the estimation of a bound of
the spectral gap of geometrically ergodic Markov chains. Once again, it could also be extended
to the spectral gap of continuous-time Markov processes such as diffusion processes through
the discretization introduced previously. Let us consider a geometrically ergodic Markov chain

(Zpn)n=0, namely, a process satisfying
¥n >0, |£(Za) — v < Cp, (15)

for some C' > 0 and p € (0,1). A way to bound its rate of convergence is to build a coalescent
coupling (Z}, Z2),,=0, whose marginals have different starting distributions, (one of them being
the invariant measure of (Z,),>0) but evolve under the same dynamics as (Z,,)n>0 (see for
instance [[17, 33]] and [18, Chapter 5]). We set

Ta =inf{n>0| 2} =Z* =inf{n > 0] (Z},22) e A},

where A := {(z,z),x € E} with E denoting the state space of (Z,,),>0. It is classical back-
ground that

1L(Zy) — |tv < P(Ta > n).

But, by construction, T is the first time when (Z!, Z?2) is absorbed by the diagonal A. Thus,
if the coupling is Markovian, i.e. if (Z}, Z2) is a Markov chain, the rate of convergence corre-
sponds to the extinction rate and our method could thus be considered as a way to bound this
rate.

Furthermore, let us point out that in many situations, it is possible to exhibit explicit Markovian
couplings which are optimal (see for instance [17]] or [[18, Chapter 9]). Optimal here means that
P(Ta > n) decays exponentially fast, at rate p*, where p* is defined by
In(|£(Z,) —
in(") — tansup P UEZ) = 7lrv).

n—o0 n

For a large class of diffusions processes, such an optimal Markovian construction can be achieved
through the help of the mirror coupling (see e.g. [17] or [25]). Using the Euler discretization
introduced before, this can thus provide some ways to obtain some numerical bounds for the
spectral gap of diffusions which could in turn be used to bound the rate of convergence to equi-
librium (in Wassertein distance) of the diffusion. Due to the links between spectral gap and
geometry, it can also yield some bounds on the Ricci curvature of smooth Riemannian mani-
folds or discrete spaces (see e.g. [28,142]).
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We propose below an illustration with the Brownian motion on the sphere with radius R in R?
with d = 3. In this case, the spectral gap A; is known and is equal to \; = %% (The Brownian
motion being up to a factor 2, the Laplace-Beltrami operator, this result can be deduced from

e.g. [2, p.214]). In this illustration, we simulate simply (an approximation of) the Brownian
motion on the sphere by the following algorithm

Z} + VhUp 41 16)
| ZY + VhUn4|

where (U, )n>1 is a sequence of 4.i.d. random variables with distribution A/(0, I3). To compute
the mirror coupling, it is then enough, given two initial conditions z; and 2z on the sphere (which
are generated after each offspring) to compute the evolution of (Z2) by a reflection of the one of
(Z}) with respect to the hyperplan H = {z € R, 2 - (21 — z) = 0}. In Figure 4] we show that
we are able to obtain an approximation of the spectral gap with our algorithm. We compute the
algorithm for several values of R and draw the path of the approximation of \; after N = 10°
iterations with & = 0.01 (so that the “absolute” time is equal to 7" = 1000).

1 _
Zn+1 -

w
TTT L LA

M
m

+ L ]

200 400 600 800 1000 1200

FIGURE 4. Approximation of A\ = % induced by the mirror coupling for the

Brownian motion on the sphere for R = 1, R = vV2and R = 2, N = 10°,
h =0.01

Remark 3.12 (Spherical Brownian motion). Through the Stroock representation, the Brownian
motion on the sphere Sy_1 can be achieved as the unique solution of the SDE

d
4 o od—1
dxi = Z(éi’j — X; X)) aw] — TXt’aht, i=1,2,3.

=1

The convergence of the discretization (16) when h — 0 towards the solution of the associated
martingale problem can be obtained by simple computations.
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Remark 3.13 (Compactness and the diagonal set). It is worth noting that even though the state
space E of (Z,)n>0 is assumed to be compact, this is usually not the case for £ = E*\A. This
implies that, except in the discrete case, the theoretical convergence of the procedure induced by
the Markov chain (Z}, Z2) absorbed in A, can not be directly deduced from our main theorems.
To overcome this problem, one way is to study the stability of the extinction rate to an approx-
imation of the absorption space. More precisely, set A, = E*\{|lz — y| < %} and denote
by pm, the associated extinction rate. In the diffusion setting, [40, Proposition 3.3] shows that
under reasonable assumptions, p,, — p as m goes to infinity (where p denotes the extinction
rate related to A). Then, let us denote by pp, y, r, the estimator related to Theorem where h
is the Euler sheme step, m the approximation of the diagonal and n the number of iterations of
our algorithm. Under the assumptions of [40, Proposition 3.3] and of Theorem[2.7] it could be
shown that
o A sy Phmin = £

Outline of the proofs. In Section ] we begin by some preliminaries: the starting point is to
show that the QSD is a fixed point for the application i +— II,, (on P(€)) where I1,, denotes the
invariant distribution of K, (see Lemma[.2|below). Then, in order to give a rigorous sense to
the ODE (7)), we prove that this application is Lipschitz continuous for the total variation norm
(Proposition [f.4) by taking advantage of the exponential ergodicity of the kernel transition K,
and the control of the exit time 7 (see Lemma [4.1] and Lemma [4.3]). In Section [5] we define
the solution of the ODE and prove its global asymptotic stability. In Section [§] we then show
that (a scaled version of) (1, )n>0 is an asymptotic pseudo-trajectory for the ODE. The proofs of
Theorems [2.5|and [2.6] are finally achieved at the beginning of Section[7] In this section, we also
prove the main results of Section 3: Theorems [3.4and[3.9] We end the paper by some possible
extensions of our present work.

4. PRELIMINARIES

We begin the proof by a series of preliminary lemmas. The first one provides uniform esti-
mates on the extinction time
T=min{n >0:Y, =0} a7

Lemma 4.1 (Expectation of the extinction time). Assume Hy and Ho. Then
(i) There exist N € N and 5o > 0 such that for all x € &, K™ (x,{0}) = do.
(ii)
sup E,[7] < 4o0.
ze€
Proof. (i) By Hy the map z — K (x,0) = 1 — KN1(x) is continuous on &. It then suffices
to show that there exists N € N such that KV (z, 82 > 0 for all z € £. Suppose to the contrary
that for all N € N there exists xy € & such that KV (zy,d) = 0. Hence K*(zx,0) = 0 for
all k£ < N. By compactness of £, we can always assume (by replacing () by a subsequence)
that zy — 2* € £. Thus K* (2, 0) A=, KF¥(x*,0) = 0 for all k € N. A contradiction with
assumption Hs.
(ii) Let N and d be like in (7). By the Markov property, for all k € N*

P,(r > kN) = E, [PYWW(T > N)1T>(k,1)N] < (1 - 8)Pu(r > (k— 1)N)
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Thus, forall k e N
P, (1 > kN) < (1 — &))"

and, consequently,

Lemma 4.2 (Invariant distributions and QSD). Assume Hy. Then,
(i) Forevery p € P(E), K, is a Feller kernel and admits at least one invariant probability.
(ii) A probability i~ is a QSD for K if and only if it is an invariant probability of K,;».
(iii) Assume that for every u, K, has a unique invariant probability 11,,. Then p — 11,
is continuous in P(E) (i.e for the topology of weak convergence) and then there exists
p* € P(E) such that p* = I1,+ or, equivalently, a QSD p* for K.

Proof. (i) The Feller property is obvious under H; and it is well known that a Feller Markov
chain on a compact space has an invariant probability (since any weak limit of the sequence
(% 2 k=1 YK} )n=0 is an invariant probability).

(ii) Since § = 1 — K1, for every A € B(£), we have

(W K)(A)

(A) = (W K«)(A (A) = ——=.
() = (e )(A) <t (4) = ST

But, by definition p* is a QSD if and only if the right-hand side is satisfied for every A € B(E).
(iii) Let (un)n=0 be a probability sequence converging to some 4 in P(&). Replacing 1y, )n>0
by a subsequence, we can always assume, by compactness of P (&), that (I, ),>0 converges to
some v. For every n > 0 and f € C(E,R), we have

W, (f) = Wy, (Kp,, ) = Wy, (K f) + I, (8) pn ()

By H;, the maps K f and ¢ are continuous so that by letting n — 0, one obtains

v(f) = v(Kf) +v(6)ulf),

namely v is an invariant for K. By uniqueness v = 1I,. This proves the continuity of the map
p— II,,. Now, since P(€) is a convex compact subset of a locally convex topological space (the
space of signed measures equipped with the weak* topology) every continuous mapping from
P(E) into itself has a fixed point by Leray-Schauder-Tychonoff fixed point theorem.

O

For all 1 € P(M) and t > 0 we let P}* denote the Markov kernel on £ defined by
o
P (w,) i= e 3, K@), (18)
n

It is classical (and easy to verify) that
(@) (P}')i=0 is a semigroup (i.e P/, f = P}'P!f forall f € B(E,R));
(b) Every invariant probability for K, is invariant for P/';
(c) P!"is Feller whenever K 1 1s (in particular under Hy).
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If (X}')n>0 is a Markov chain with transition K,, (P/);>0 denotes the semi-group of (X}, )¢=0
where (Ny);>0 is an independent Poisson process with intensity 1.
For any finite signed measure v on M recall that the total variation norm of v is defined as

[vlrv = sup{|vf| : feB(ER),|flo<1} (19)
= vH(E)+v(€)

where v = v — v~ is the Hahn Jordan decomposition of v. Let us recall that if P is a Markov
kernel on M and «, 3 € P(£), then

[P — BP|rv < ||ac — SBlTv (20)
since [P floo < [ f]oo-

Lemma 4.3 (Uniform exponential ergodicity). Assume Hy and Ho. Then there exists 0 < ¢ < 1
such that for all o, B, p € P(E) andt = 0

laPy = BP v < (1 - E)M loe = Bzv.
In particular, if 11,, denotes an invariant probability for K,

laP! =T,y < (1 = &) a — T, 7v.
As a consequence, K,, has a unique invariant probability.

Proof. (i). Set P, = P{'. Let ) > 0 and N € N be given by Lemma [4.1](i). It easily seen by
induction that for all k > 1 and f : £ — [0, o[ measurable,

Kjif = p(f)KM's.

Thus,
1 N1 1 N
P,f>=- iy L P — Kk1s
uf 2 o) 25 D 2
1 N
= m#(f)(l - K1) = en(f) 2D
where
&= eN1Y

Let I, be the kernel on & defined by
Vee&, Pux,.)=cp(.)+ (1 —-¢e)Ryu(z,.). (22)
Inequality makes R,, a Markov kernel. Thus for all a, 3 € P(€)

laPy = BPullrv = (1 —e)|aR, — BRulrv < (1 — £)|a = Brv,
(where the last inequality follows from (20))) and, by induction,
laPy = BP|rv < (1 —¢&)"|a = Blrv.
Now, forallt > O writet = n + r withn € Nand 0 < r < 1. Then,
|aPf — BP{|rv = |aP!' P — BP! Pty
< (L=g)"|aPt — BPl|rv < (1 —&)"|a — Brv.
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As mentioned before, if 11, is an invariant probability for K, II,, is also an invariant probability
for (P}')i=0. The second inequality is thus obtained by setting 5 = II,, and uniqueness of the
invariant probability is a consequence of the convergence of (aP/")¢o towards II,,. O

4.1. Explicit form for IT,,. Let us denote by A the transition kernel on £ defined by

Alz,) = > K™(x,.)

n=0
and set
[ Al = sup{|Afllw : f€BER),[flo <1}
Remark that
[ Al = Szlel‘lg) A(z, &) € [0, ].

Proposition 4.4. Assume Hy and Ha. Then:
(i) Forall x € &,

1< Az, €)= Al(z) = Eo[r] < | Al < .

(ii) Forall pe P(M),
wA
I, =———- 23
T AD 2

(iii) The map i — 11, is Lipschitz continuous for the total variation distance.

Proof. (i) The inequality A(x,&) > 1 is obvious. For the second one, we remark that for all
xef

A, &) = Y K™2,E) = ). Pa(r > n) = Bu[7] < SUp B, () < o0

n=0 n=0

where the last inequality follows from Lemma[4.1]
(ii) For any f € B(E,R),

PAK,(f) = p (Z (K" f + K”M(f))) = Y K" 4 u(fp( )] K™(6)).
n=0 n=0 n=0
Since Y00 K"6(x) = Y50 K"(#,&) — K" (2,8) = A(z,€) — (A(z,&) — 1) = 1, it
follows that

(WA KL(f) = n(f) + D nK"f = (nA)(f).

n=1

As a consequence, (.4 is an invariant measure and it remains to divide by its mass to obtain an
invariant probability.

(iii) It follows from (i) that || A| v < |p|rv|Al and A1 > 1. Thus, reducing the fraction,
it easily follows from (ii) that |II, — II, |rv < 2||A]w |t — v|1v- O
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5. THE LIMITING ODE

As mentioned before, the idea of the proof of Theorem [2.5]is to show that, the long time be-
havior of (14, )n>0 can be precisely related to the long term behavior of a deterministic dynamical
system P (&) induced by the "ODE"

44[[11: _M+HM~” (24)

The purpose of this section is to define rigorously this dynamical system and to investigate some
of its asymptotic properties.

Throughout the section, hypotheses H1 and Hy are implicitly assumed. Recall that P(E€) is
a compact metric space equipped with a distance metrizing the weak* convergence.

A semi-flow on P(£) is a continuous map

o R x P(E) - P(E),

(t, ) = ®4(p)
such that
Do (p) = pand @yys(p) = Py o Oy(p).
We call such a semi-flow injective if each of the maps ®; is injective.
A weak solution to with initial condition p € P(E), is a continuous map £ : RT — P(&)

such that
t

§0f = uf + f (—&(s)f + Tg(s) f)ds

0
forall feC(€)andt = 0.

We shall now show that there exists an injective semi-flow ® on P (&) such that the trajectory
t — ®4(u) is the unique weak solution to with initial condition .

Let M (&) be the space of finite signed measures on £ equipped with the total variation norm
| - |lrv (defined by equation (19)). By a Riesz type theorem, M, (&) is a Banach space which
can be identified with the dual space of C(€,R) equipped with the uniform norm (see e.g [23}
chapter 7]). In particular, the supremum in the definition of | - |y can be taken over continuous
functions.

Proposition (i) and the fact that K is Feller imply that >. K" f is normally convergent in
C(&,R) forany f € C(€,R). More precisely, >, o [ K" flloo < [ Al flloo so that f — Afisa
bounded operator on C (&, R). Furthermore, its adjoint i — .4 is bounded on M (E). Thus, by
standard results on linear differential equations in Banach spaces, e is a well defined bounded
operator and the mappings (¢, f) — e f and (¢, 1) — pe'” are C* mappings satisfying the
differential equations

C(H) = (HAf) = AcAf
and
9 (ne) = (4 A) = pAe
For pn € P(M) and ¢ > 0 set
g =M1 ec(é), (25)
B = 1 e pie),

gt
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and .
sult) = J B, (1) Alds.
0
Note that, by Proposition(i), Su(t) = Py ()AL = “5;?;411 > 1, so that s, maps diffeomor-
phically R* onto itself. We let 7,, denote its inverse and
Py (p) = @1, 1) (1) (26)

Proposition 5.1. The map ® defined by (26) is an injective semi-flow on P(E) and for all
weP(E),t— Di(n) is the unique weak solution to with initial condition p.

Proof. Step 1 (Continuity of ®) : Let u,, — pin P(€) and ¢,, — t. Then for all f € C(E)
€A f = peA | < pne'™ A f = pne f| + et f = petAf|

< e = el fllo + e £ — e £1.
The second term goes to zero because 1, — 1 and the first one by strong continuity of ¢ — e*A.
This easily implies that the maps (¢, 1) — ®;(u) and (£, 1) — s,(t) are continuous. This
latter continuity combined with the relation s, o 7,,(t,) = t, implies that every limit point
of {7, (tn)} equals 7,(¢); but since 7,(t) < t (because s,(t) > t) the sequence {7, (t,)} is
bounded and this proves the continuity of (¢, u) — 7,(t). Continuity of ® follows.
Step 2 (Injectivity of ®): Suppose ®;(p1) = ®¢(v) for some t = 0, u, v € P(E). Set 7 = 7,(t)

and 0 = 7,(t). Assume o > 7. Multiplying the equality &)T(u) = ®,(v) by e~ ™ shows that
= ®y_-(v). Thus
T (o o—T
f=su(r) = J Byror(v) Alds — f B, (v) Alds — J B, (1) Alds
0 0 0

=t—sy(c—71)
This implies that 7 = o, hence p = v.
Step 3 (t — ®,(y) is a weak solution): The mappings ¢ — Jiy := ®;(u) and t — 1 := B4(p)
are C* from R* into M (M ). Furthermore,
fie = fir A — (FeAL) e = 8, (8) (—fie + I1g;).
so that
frr = —pt + 1,
and, in particular,

t
mfmf=L(uJ+Hmﬁ%

forall f e C(€).

Step 4 (Uniqueness and flow property): Let {u;} and {1} be two weak solutions of . By
separability of C(E), |p — villtv = sup ey [pef — i f| for some countable set . < C(£). This
shows that ¢ — |u; — 14|ty is measurable, as a countable supremum of continuous functions.
Thus, by Lipschitz continuity of 1 +— 1I,, with respect to the total variation distance (see Lemma

4.4) we get that

t
Uu—whv<ﬁm—whv+LJMu—%hwk
0
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for some L > 0. Hence, by the measurable version of Gronwall’s inequality ([26, Theorem 5.1
of the Appendix])

I — vellry < e po — volrv,
so that there is at most one weak solution with initial condition pg. This, combined with (ii)
above shows that ¢ — ®;(u) is the unique weak solution to . The semi-flow property
Py = Py o O, follows directly from this uniqueness. O

5.1. Attractors and attractor free sets. A set L < P(E) is called invariant under ® (respec-
tively positively invariant) if ®,(K) = I (respectively ®,(K) < K), forall ¢ > 0.

If K is compact and invariant, then by injectivity of ® and compactness, each map ®; maps
homeomorphically X onto itself. In this case we set

OF = @y
fort > 0 and
OF = (@)

for all t < 0. It is not hard to check that ®* : R x K — K is a flow. That is a continuous map
such that ) o X = @ﬁs forall ¢,s € R.

An attractor for ® is a non empty compact invariant set A having a neighborhood U4 (called
a fundamental neighborhood) such that for every neighborhood V' of A there exists ¢ > 0 such
that

s=t= D0,(Uy) c V.

Equivalently, if d is a distance metrizing P (&)

tlgg) d(q)t(:u)v A) =0,

uniformly in p € Uy.

The basin of attraction of A is the set Bas(A) consisting of points 1 € P(E) such that
limt_,oo d(‘bt(/},), A) = 0.

Attractor A is called global if its basin is the full space P(&). It is not hard to verify that there
is always a (unique) global attractor for ® given as

A=[)2uP(&)).
=0

If K denotes a compact invariant set, an attractor for ®* is a non empty compact invariant set
A < K having a neighborhood U4 such that for every neighborhood V' of A there exists ¢t > 0
such that

sz2t=®,(UsnK)cV.

If furthermore A # K, A is called a proper attractor.

K is called attractor free provided K is compact invariant and ®* has no proper attractors.
Attractor free sets coincide with internally chain transitive sets and characterize the limit sets of
asymptotic pseudo trajectories (see [, 5]). Recall that the limit set of (u,,) is defined by

L=){mk=n}.
n=0
In the present context, by Theorem [6.4] of Section|[6] this implies that

Theorem 5.2 (Characterisation of L). Under Hypotheses and the limit set of {u,} is
almost surely attractor free for .
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This theorem, combined with elementary properties of attractor free sets, gives the following
(more tractable) result.

Corollary 5.3 (Limit set and attractors). Assume Hypotheses[2.2]and Let L be the limit set
of {n}. With probability one,

(i) L is a compact connected invariant set.
(ii) If A is an attractor and L n Bas(A) # J, then L < A. In particular, L is contained in
the global attractor of .

Note that in the two previous theorems, we do not assume Hypothesis [2.3] In particular, the
previous result may be true in some settings with several QSDs. This flexibility is, for instance,
used in the proof of Theorem [3.4]

5.2. Global Asymptotic Stability. The flow ® is called globally asymptotically stable if its
global attractor reduces to a singleton {y*}. Observe that, in such a case, p* is necessary the
unique equilibrium of ®, hence the unique QSD of K.

We shall give here sufficient conditions ensuring global asymptotic stability. The main idea
is to relate the (nonlinear) dynamics of ® to the (linear) Fokker-Planck equation of a nonhomo-
geneous Markov process on £. This idea is due to Champagnat and Villemonais in [16] where
it was successfully used to prove the exponential convergence of the conditioned laws and the
exponential ergodicity of the (Q-process for a general almost surely absorbed Markov process.

Forall t > 0 and s € R let R, s be the bounded operator defined on C(£) by

e(t—s)A(fgs) e(t_S)A(fCSAl)

Rt,Sf = g = €t‘A]_

where g is defined by (23). It is easily checke(ﬂ that R;; = Id and R; s 0o Rs, = Ry, for all
t,s = 0 and u € R. Furthermore, for all t > s > 0 R; 5 is a Markov operator. Thatis R; ;1 =1
and R; s f > 0 whenever f > 0.

To shorten notation we set
Ry = Ryp.
The flow ® and the family {Rt}4=>0 are linked by the relation
$4(6,) = 6, Ry

forall t > 0 and z € £. However, note that for an arbitrary p € P(€) ®,(u) and R, are not
equal. Indeed, recall that R, f = § Ry f () p(dx).

Lemma 5.4. Let d,, be any distance on P(E) metrizing the weak* convergence. Assume that

Ay := sup dy, (0, Ry, 0yR) — 0

z,ye€

ast — oo. Then ® is globally asymptotically stable.

30ne can also note that Ry, is the resolvant of the linear differential equation on C(€) @ = g%(A(ugt) —

(Au)ge). This explains the unusual order for the indices of R (w.r.t. the standard notations of in-homogeneous
Markov processes).
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Proof. By compactness of £ the condition A; — 0 is independent of the choice of d,,. We can
then assume that dgy is the Fortet-Mourier distance (see e.g [23,139]) given as

dw(p,v) = supf|pf — vf| | fle + Lip(f) <1} 27)
where Lip(f) stands for sup, ., W.
Since
[uRif — VR f| = |j(Rt(fL') — Rif(y))dp(x)dv(y)| < sup. |Ref () — Rif(y)l,
T,Ye
it follows from that
Ay = sup dy(pRe, vRy). (28)
w,veP(M)

Fix v € P(£). Then
sup dy (VRi+s,VRt)) = sup dy,(VRiys¢)Re, VR) < Ay

=0 520
This shows that {vR;};>¢ is a Cauchy sequence in P(€). Then vR; — p* for some p* and for
all u e P(E)
do (R, p*) < Ay
Now, for all f € C(£)

() f — i f| = | LTS = 1 )gr)

<|Ref — 1 flloo = sup 0z Ref — 1 f.

20
Therefore d,, (P (1), 1*) < Ay and
* t
Ao (Pe(p)s 1) < Ap (1) < sup {As s> 7}
[ Alloo
where the last inequality follows from the fact that 5,(¢) < ||.A|«. This proves that {y*} is a
global attractor for ®. O

Recall that g;(x) = 1 (see equation ).

Lemma 5.5. Assume Hy,Ho, Hs. Assume furthermore that
U(gn)

= gnllo

where U is the probability measure given by (9). Then ® is globally asymptotically stable.

Proof. We first assume that U = £ in condition Hg. That is A(z,dy) = e¥(dy) forall z € &.
Then, forall f > 0andn e N

A

€ n A n v n
Rooinf — ,(4fg ) S HAH(fg ) S HAH(fg )

eAgn el legnlleo ~  elAl=]gne

Let ¥,, € P(€) be defined as ¥,,(f) = %. We get

Rn+1,n($a ) = En\I’n()

with €, = ee~ 4l F;Elg“’zz . Thus, reasoning exactly like in the proof of Lemma forall u,v e
P(€)

” NRn-&-l,n - VRn+1,n ”TV< (1 - En) ” =V HTV
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and, consequently,
n
| 60 Rnt1 = 6y R v 2] [(1 —en).
k=0

The condition ), €, = oo then implies that || 6, R,+1 — dyRy41 |[rv— 0 uniformly in x, y as
t — 0. In particular, the assumption, hence the conclusion, of Lemma 18 satisfied.

To conclude the proof it remains to show that there is no loss of generality in assuming that
U = £ in Hg. By Feller continuity, and Portmanteau’s theorem, for all n € N and § > 0 the set

Un,d) ={xe&: K"(z,U) > ¢}

is open. Thus by H3 and compactness of £, there exist 6 > 0 and nq, ..., n; € N such that

k
€=U,
i=1
Let now = € £. Then x € U(n;, d) for some i and

Al dy) > ) K" (x, dy) = L K™ (2, d2) Az, dy) > €50 (dy).

n=0

0

The next proposition shows that under Hy, Ho, H3 and Hy, the assumptions of the preceding
lemma are satisfied.

Proposition 5.6 (Convergence of ®). Assume Hq, Ho, Hs and Hy. Then the assumptions of
Lemmal5.5]are satisfied. In particular, ® is globally asymptotically stable.

Proof. By Lemma[4.1](i) there exists N € N* and © < 1 such that
KN(z,£) < ©

for all x € €. Let (Z,,)n>1 be a sequence of i.i.d random variable on N having a geometric
distribution,

P(Z, =k)=0%1-0), k=0.

Let (Uy,) be a sequence of i.i.d random variables on {0, . .., N —1} having a uniform distribution,
1
P(U, =k) = N’ k=0,...,N—1,

and let (V)0 be a standard Poisson process with parameter 1. We assume that (Z,)n>1, (Un)n>1, (Vi )t=0
are mutually independent.
By independence we get that

Kzﬁ\gl(NZi"—Ui) Ak _ KNZ1+U1 n
i v P Ve

= Z ﬁe*t <(1 —9) Z Z KNk+r>n _ eftet%ft.
n! N

n=0 k=07r=0,...,N—1
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To shorten notation, set s = t( 9) . Then, forall z € £

(K (NZ'+UL'>1)]

_ sA _t
U(gs) = V(e™'1) = e'E [ @ZNt 7

N, Ny ) )
t KZZ: (NZ,JrUl)]_
e (Z(Nzi + U= (””’))]

> e'E

N.
i=1 O Zi

where the last inequality comes from hypothesis Hy4.
Foralln e N,k = (k) e NV andr = (1) € {0,..., N — 1}V set
KX (Nkitri) 1 ()
@Z?:l k;

F(n,k,r) =

and

G(n,k,r) = (Z (Nk; +rl>
i=1

so that, the preceding inequality rewrites,

¥(g)) > CE[G(N. ZU)F (N, Z.U)].
Write (n,k,r) < (n/,k’,r") when n < n',k; < k} and r; < r}. The relations % < 1and
K (z,&) < 1 on one hand, and the monoton1c1ty of C on the other hand, imply that

F(n,k,r) < F(n/,K',1)
and
G(n,k,r) < G(n', X, 1)

whenever (n,k,r) < (n/,k’,r’) Then, by tensorisation of the classical FKG inequality, and
Jensen inequality, we get that

U(gs) > E[G(N,, Z,U)|E[F (N, Z,U)]

N N-1 N N-1
t —
>ec<t1_@+ 5 >E[F(Nt,Z,U)]—O<t1_@+ 5 >gs(m).

That is

2 _
¥ > C (gt Ty ) oela)

so that the assumptions of Lemma [5.5] are fulfilled.

6. ASYMPTOTIC PSEUDO-TRAJECTORY

Our aim is now to prove that (1, ), >0, correctly normalized, is an asymptotic pseudo-trajectory
of the flow ® defined by (26).
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6.1. Background. To prove that our procedure has asymptotically the dynamics of an ODE, we
first need to embed it in a continuous-time process at the good scale. Let us add some notations
to explain this point. Forn > 0 and ¢t > 0, set 7, = Y./, v, and m(t) = sup{k = 0,¢ > 73,}.
Let (fit)t=0, (fit)t=0, (€)1=0, (3¢)t=0 defined for all n = 0 and s € [0, v,+1) by

R s s _
Hrp+s = <1 - > n + Hn+1s Hrp+s = Hn,
Tn+1 Tn+1

€r,+s = €n and Y(7, + s) = ~y,. With these notations, Equation (6) can be written as follows:

t t
e = po + J h(jis)ds + J €sds
0

0

with h(p) = —p+11,,. The aim of this section is now to show that /i is a pseudo-trajectory of ®
defined in (26). Let d,, be a metric on P whose the topology corresponds to the convergence in
law (as for instance the Fortet-Mourier distance defined in (27)). A continuous map ¢ : Ry — P
is called an asymptotic pseudo-trajectory for & if

VT >0, tlim < sup dw(C(t—i—s),@(s,C(t)))) =0.
% \0<s<T

Note that this definition makes an explicit reference to d,, but is in fact purely topological (see
[S, Theorem 3.2]). In our setting, the asymptotic pseudo-trajectory property can be obtained by
the following characterization:

Theorem 6.1 (Asymptotic pseudo-trajectories). The following assertions are equivalent.

(1) The function [i is (almost surely) an asymptotic pseudo-trajectory for ®.
(2) For all continuous and bounded f and T > 0,

t+s
lim sup | J Eufdul =0 a.s. (29)
20 0gs<T Jt
Proof. This is a consequence of [8, Proposition 3.5]. O

The previous theorem is one of the main differences with the previous article [6]. Indeed,
in finite state space, the topology of the total variation distance is not stronger than the weak
topology.

As in [6] and older works on reinforced random walks (see references therein), we now need
some properties of solutions of Poisson equations to prove that holds. However, in contrast
with the finite-space setting of [|6], the associated bounds are intrincate.

6.2. Poisson Equation related to K,. For a fixed p and a given function f : £ — R, let us
consider the Poisson equation

f=1uf = (I —Ky)g. (30)
The existence of a solution g = @, f to this equation and the smoothness of ;i — @, f play an
important role for the study of our algorithm. We have the following result:

Lemma 6.2 (Poisson equation). Assume Hypothesis[2.2] Let ju € P(E). Let (P}')1>0 be defined
by (I8). Then, for any measurable function f : € — R, the Poisson equation (30) admits a
solution denoted by Q),, f and defined by

+00

Qui(x) = f (P f(x) — TL,(f))dt, 31)

0



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 27

Furthermore,

(i) for every p, |Qufleo < C|f]co-

(ii) for every p,a € P(E), |aQuf| < O f]oof o — | zv-.
(iii) for every € P(E), f, |Quf — Quflow < Cof fllollp — virv
(iv) for every p,ace P(E),, [|[aQy — aQu|rv < Co|pn — v|7v

Note that our work is closely related to [8]] which also investigates the pseudo-trajectory prop-
erty of a measure-valued sequence. Nevertheless, the scheme of proof for the smoothness of the
Poisson solutions really differs. Indeed, in contrast with [|8, Lemma 5.1], which is proved using
classical functional results (such as the Bakry-Emery criterion), the above lemma (especially
(¢ii) and (iv)) is obtained using a refinement of the ergodicity result provided by Lemma[4.3]

Proof. First, by Lemma [4.3] the integral in (31 is well defined. Then, coming back to the
definition of (P/*);>¢ (see (I8)), one can readily check that (P}*);> has infinitesimal generator
L,, defined on continuous functions f : &€ — R by L,f = (K, — I)f. Without loss of
generality, one can assume that IT,(f) = 0. Then, by the Dynkin formula and the commutation
and linearity properties, it follows that

Vee & V=0, Plf(a) = f(r)+ Ly f P f(x)ds.
0

Letting ¢ go to co and using again Lemma [4.3] (to ensure the convergence of the right and left
hand sides), we deduce that it is a solution to the Poisson equation.

Statements () and (i) are also straightforward consequences of Lemma Thus, in the
sequel of the proof, we only focus on the "Lipschitz" properties (i¢i) and (iv).

Without loss of generality, we assume in the sequel that | f|o, < 1. By (22), for every ¢ = 0

(a = B)Ff = (1 —e)(aP , — BF) )R] (32)
where, with the notations of Lemma[4.3] R, is given by
Ry=— <e—1 > L - e,u> (33)
uw = X
(1—¢) sat

The Kernels K ﬂ are Lipschitz continuous with respect to the total variation norm, uniformly in
a € P(€), as it can be checked in Lemma [6.3|below. Set

En(p,v) = sup HaRZ —aR}|rv.
aeP(E)

From (33) and (33), we have

—_ (&
=180) < gyl v

Now,

Znei(i,v) < sup |(@R])R, — (@RDR, v + sup |(aRDR, — (@R Ryl
aeP(€) aeP (&)

< El(:uvy) + En(Mﬂ/)a
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where for the second term, we used that for some laws « and 8 and for a kernel transition P,
|aP — BP|rv < |a — B||tv. By an induction, it follows that

(1-9)

As a consequence, there exists a constant C' such that

IRy f — R} flloo < Cllpp— viry.

Enlp,v) < Il = vlrv.

and for every a € P (&),
|(R)"f = a(R)" | < Cnfp = v|rv. 34)

Let us now prove that ;1 — @, f () is Lipschitz continuous. From the definition of ¢, and from
(32), we have
+00 1

Qui(®) = Qui(s) = Y (1—e)" L (8¢ — TL)PURYf — (6, — TL,)PYRYS) dr.
n=0

Now, for every n > 0 and r € [0, 1),
(52 - H#)P#RZ]C - (693 - HV>P7"VRZf

< [0 (P = PR S| + (W, Py — 1L PY) Ry f |
+ 0B (R f — Ry )| + [ILPY (R, f — Ry f))

The two last terms can be controlled by (34) with o = 0,P” and a = II, P = II, respec-

tively. For the second one, one can deduce a bound from Proposition (#4i) and the fact that
sup | R};g]e < 1. Finally for the first one, using Lemmabelow and (T8)), we have

lgllo<1

) I , .

|6, (P = PORLfI < €7 ) =0 K}, — 6K v < €| —v|rv
>0

. One deduces that, for some constants C, Cy > 0,

+o0

Quf(x) = Quf(z)| < D (1 —&)" [2Cn|u— Vv + Cillp — vltv] < Call— v]rv.

n=0

Since the Lipschitz constant C does not depend on x, the statements (i77) and (iv) easily follow.
O

Lemma 6.3 (Lipschitz property of u — K l{ ). Forevery yu,v e P(€)and j € N, we have

sup oK) — aK)|rv <27 |u— v, (35)
aeP(€)

and for every bounded function f then

sup IK3.() = KL (Pl < 2] fllooll e = Vv
TE
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Proof. By the definition of the total variation, the second part follows from the first one. We
thus only focus on the first statement. For every j € N, one sets

kj(p,v) = sup HaKZ — oK |y.
aeP

We have ko (p, ) = 0 and since K,(.) = K(.) + 6(.)p and () < 1,
Fa(p,v) = sup ak, — akyfrv = @) (i = v)lrv < i = vy,
ae

Furthermore, for every j > 0,
la(£)7 = a(B Y iy = [a(E +6p)(Ky) — a(K +6v)(K,) v
= |aK (K}, — KJ) + a(@)u(Ku) — a(@)v(Ky) v
< aK K}, — aKK]|rv + [a(8)p(Ky) — a(@)v(Ky) v
+ a(0)v (K — ald)v(E,) v
< Kj(p,v) + [ = vty + w5 (p,v) = 265 (0, v) + |1 = vy

Note that for the last inequality, we again used that «(d) < 1 and that for every probabilities
a, 8 and every kernel transition P, ||aP — SP|rv < ||o — B|rv. An induction of the previous
inequality then leads to:

VjEN, /ij(/i,V) gszu—VHTV
This yields (33). U

6.3. Asymptotic Pseudo-trajectories.

Theorem 6.4. Under Hypotheses 2.1\ and |2.2| ([it)¢=0 is an asymptotic pseudo-trajectory of ®
as defined by (26)).

Remark 6.5. Limit of precompact asymptotic pseudo trajectories being internally chain transi-
tive (see [7], [5]), this theorem implies Theorem [5.2] hence Corollary [5.3]

Proof. By Theorem it is enough to show that for any bounded continuous function f, for

any 7' > 0,
t+s
limsup sup f €s(f)ds| =0
t—+0 se[0,7] |Jt
which in turn is equivalent to, for every m > 0
n+j
lim sup max € =0.
e 310
Here,
en(f) = (f (Xny1) =T, () = (Qpun f (Xnt1) = Ky Qun f (Xn41)) -

We decompose this term as follows:

en(f) = Y 1AMp1(f) + ARpi1(f) + Y 1ADn 1 (f) (36)
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with

AMnH(f) = Qunf(XnH) - KunQunf(Xn)

ARnJrl(f) = ('Yn+1 - ’Yn)KunQunf(Xn) + ('YnKunQunf(Xn) - 7n+1Kun+1Qun+1f(Xn+1))

AD”'H(f) = (KMnHQunﬂ f(Xn+1) - KMnQunf(Xn+1)) .

First, let us focus on AR, ;1. Using for the first part that (-, ),,>0 is decreasing and that (z, ) —
K,Q, f(x) is (uniformly) bounded (Lemma (i), and a telescoping argument for the second
part yields for any positive integer m:

< Cvp.

D1 ARK(f)
k=n

Second (AMjp) is a sequence of (F,)-martingale increments.From Lemma AM,(f) is
bounded (and thus subgaussian). As a consequence, using that lim,,_, o 7, log(n) = 0, one
can adapt the arguments of [S, Proposition 4.4] (based on exponential martingales) to obtain that

n+j

lim sup max 2 Y AM(f)| = 0.
k=n

n—+o JSM

Finally, for the last term, one uses that 1 — K, and p — @, are Lipschitz continuous. More
precisely, using Lemma[6.2](i), (iii) and Lemma|[6.3] we see that there exists C' > 0 such that

‘KlthQltnﬂf(Xn-&-l) - KMnQ,unf(Xn-&-l)’

< |Kun+1Qun+1f(Xn+1) - Kun+1Qunf(Xn+l)|
+ ’Kun+1QM7Lf(X’VL+1) - KM’VLQM7Lf(Xn+1)‘

<[Qunir f = Quu flo
+ ||(Kun+1 - Kun)(Qunf)Hoo

<O flloollpn+1 — pn|rv

<C|flloovn+1,

where for the last line, we simply used (3)). This ends the proof. O

7. PROOF OF THE MAIN RESULTS

7.1. Proof of Theorem[2.5, By Proposition[5.6] {1.*} is a global attractor for ®. The result then
follows from Corollary [5.3]

7.2. Proof of Theorem[2.6) Let us assume for the moment that there exist C' > O and p € (0, 1)
such that for any starting distribution «,

Vn =0, ek —p*rv < Cp™ (37

With this assumption, p* is a global attractor for the discrete time dynamical system on P
induced by the map po — pK+. Let v, be the law of X, for n > 0; namely v, (A) = P(X,, €
A), for every Borel set A. To prove that v, — p*, it is then enough to prove that the sequence
(Vn)n=0 is an asymptotic pseudo-trajectory of this dynamics; namely that d, (v, K+, Vpy1) —
0. Indeed, the limit set of a bounded asymptotic pseudo-trajectory is contained in every global
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attractor (see e.g [S, Theorem 6.9] or [5, Theorem 6.10].) So, let us firstly show that for every
continuous and bounded function f,

Tim (Vg1 (f) = va Ky f) = 0. (38)
By definition of the algorithm, for every n > 0,

E [f(Xn+1) ’ fn] = K,unf(Xn) = Kf<Xn) + Nn(f)é(Xn)
Taking the expectation, we find

vn1(f) = vn K (f) + Elpn(f)6(Xn)] = vndux (f) + E[(1n (F) — 17) ()0 (X0)]-

But by Theorem [2.5]and dominated convergence theorem,
Tim E[(n — %) ())5(X0)] = 0,

so that (38) holds.

We are now free to choose any metric on P embedded with the weak topology. Let (fx)x>0
be a sequence of C'® functions dense in the space of continuous and bounded (by 1) functions
(with respect to the uniform convergence). Consider the distance d,, defined by

Aol v) = ) gl = (il

k=0

It is well known that d,, is a metric on P which induces the convergence in law. From (38) and
dominated convergence Theorem, we have that d, (v, K+, vy 41) — 0.

It remains to prove inequality (37). The proof is similar to Lemma[4.3] Indeed, by Lemma
there exists N > 0 and & such that for all z € £ such that K~ (z,0) > &y. Using that
WK, = 0,p*, we have

N N | N «
Kpy=K"+K"(,0u

so that the following lower-bound holds: inf,c¢ K ZX (x,+) = dou*(+). It then implies bound
with the same argument as that of Lemma[4.3]

Remark 7.1 (Periodicity). Note that the previous argument shows in particular that the uniform
ergodicity of K« is preserved in a non-aperiodic setting. This is the reason why the convergence
in distribution of (X, )n>1 also holds in this case.

7.3. Proof of Theorem 3.4, The proof relies on the following lemma.

Lemma 7.2. Suppose ©1 > Oy. Then

(i) P(&2) is positively invariant under ® and ®|P (&) is globally asymptotically stable
with attractor {5}.

(ii) There exists another equilibrium for ® (i.e another QSD for K) p* having full support
(i.e u*(x) > Oforall x € £). Furthermore {p*} is an attractor whose basin of attraction

is P(E)\P(&2).

Proof. (i) It easily follows from the assumption &> 4= &1, and from the definitions of K, and IT,,
that P(&2) is positively invariant under ®. By irreducibility of K, Lemma and Proposition
w5 is then a global attractor for ®|P(E7).
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(ii) Let d; be the cardinal of &; and d = d; + ds. Identifying B(&;, R) (respectively B(E,R) )
with column vectors of R% (respectively R%) and M (&) (respectively M(E)) with row vectors
of R% (respectively R?), K can be written as a d x d block triangular matrix

[ K1 Ko
= (0 %)
where for each i = 1,2, K; is a d; x d; irreducible matrix.
Let Eél and Eg . be the left and right eigenspaces associated to ;. That is

Eg, = {ne M(): pK = 11}

and
Egl ={feB(ER): Kf=0;f}.
We claim that

E, =Ry (39)
for some p* € P(€) having full support (i.e u(x) > 0 for all x); and
Eg, =Rf* (40)

for some f* € B(E,R™) satisfying
[f(x) >0« ze&,

and p*(f*) = 1.

Actually, by irreducibility of K; and Perron Frobenius Theorem (for irreducible matrices),
O, is a simple eigenvalue of K and there exists g € B(E,R) := R% with positive entries
such that K1g = ©1g. ©1 being strictly larger than the spectral radius ©2 of K5, O is not an
eigenvalue of K. Thus, it is also simple for K and holds with f* defined by f*(z) = g(x)
forz € & and f*(x) = 0 for z € &,.

Again by Perron Frobenius theorem (but this time for non irreducible matrices) there exists
e PE)n Eél, so that, by simplicity of O, holds. It remains to check that p* has
full support. First, observe that 1* cannot be supported by & for otherwise p* would be a left
eigenvector of Ko and ©; an eigenvalue of K5. Thus there exists x € &£ such that p*(x) > 0,
but since z < y, then for all ye £, we have p*(y) > 0.

Replacing f* by %;*) we can always assume that

p(fF) = 1.
This ends the proof of the claim.
Let (f*)* = {v e M(E): v(f*) = 0}. It follows from what precedes that the splitting

M(E) =Rp* @ (f*)*

is invariant by the map v — v K, hence also by v — v.A, and v — ve!A. Let A denote the

operator on (f*)* defined by

1
J‘— —
vA- =vA 1_®1y.

For all p € P(E)\P(E2), u(f*) # 0 and p decomposes as p = u(f*)u* + g with i =
p— p(f*)u* e (f*)*. Therefore

t —t [
pett = p(f*)eT=S et = p(f*)eten (M* ’ (l}*)ew)
]
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and

N MetA /J/* 4 %etAL
i) = petAl 1 B gtAly
p(f*)
Now, remark that any eigenvalue A of AL writes
1 1
A = _
1-X2 1—-6;
where A = a + b is an eigenvalue of K distinct from ©;. In particular, a < ©; < 1. Then,

1—a 1 - 1 1 -
(1—a)2+b2 1-0; 1-a 1-6
The fact that all eigenvalues of A have negative real part implies that ||e*4| — 0 as t — o0.

This proves that limy_,.o ®4(1) = p* and that for every compact set K < P(E)\P(&,) the
convergence is uniform in p € C (because p — p(f*) is bounded below from zero on such a

compact). This shows that ;* is an attractor for ® whose basin is P(E)\P(&2). Proceeding like
in the end of the proof of Lemma[5.4] we conclude that the same is true for ®. U

Re(A) = 0.

We now pass to the proof of Theorem [3.4]
(i) Let L be the limit set of {p,,}. If L < P(&2), then L = {u5} because L is compact invariant
and, by Lemma([7.2)(i), {43} is the only compact invariant subset of P(€2). If LnP(E)\P(E2) #

&, then by Lemma(7.2] (ii) and Corollary[5.3] L = {z*}.

(i) If Xo € &, then py = dx, € P(&2) and, by the definition of (X,,) (see equation (),
(Xp) lives in &;. This implies that p,, — p3 by assertion ().

(iii) If Xo € &1, the point p* is straightforwardly attainable (in the sense of [5, Definition
7.1]) and then, by [5, Theorem 7.3], we have

P(Jgrgounzu)>0.

(iv) Let us now prove the last point of Theorem [3.4] using an ad hoc argument under the
additional assumption:
n
ST =) < +oo. 1)
n>0i=0
If Xy € &> there is nothing to prove. We then suppose that Xy = = € &;. Clearly there exists

no = 1 such that X, € & with positive probability. Using the estimate (13), the definition of
(X,,) and the recursive formula (5 we get that for all n > ng:

P(Xn+1 € &1|Fn) < (1 — cO2)un(&1)
almost surely on the event {X,, € £} and

n n

pn(E1) = pn(€) [ =)< J] =)

i=ng+1 i=ng+1

almost surely on the event
{Xnoa Xn0+17 s aXn € 52}
Therefore

P(Xngs Xng+15-- - Xns1 € &) =K (P(Xnﬂ € 52!]'71)1{Xn0,xn0+1,...,xne52})
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n

> (1—(1—0@2) 11 (1—7,-))]P’(XnO,XnOH,...,XneEg);

i=ng+1
and, consequently,

n

P(¥n>ngXne)> |[] <1 —(1-cOy) [] (- %)> P(X,, € &).

n=ng+1 i=ng+1

The right hand side of the previous bound is finally positive if and only if (1)) holds.

7.4. Proof of Theorem We begin by recalling a classical lemma about the L2-control of
the distance between the Euler scheme and the diffusion (see e.g. [13]).

Lemma 7.3. Assume that b and o are Lispchitz continuous functions. Then, for every positive
T, there exists a constant C(T') such that for every starting point = of RY,

E, | sup [& —&[*| < C(T)(L + [z]*)h.

te[0,T]

We continue with some uniform controls of the exit time of D. For a given set A and a path
w: Ry +— R? we denote by 74 (w) the exit time of A defined by:

TA(w) = inf{t > 0, w(t) € A°}.
Lemma 7.4. Assume that b and o are Lispchitz continuous functions and that co* = polg.
Then,
(i) Let § > 0 and set Ds = {x € R%, d(x, D) < 6}. For each ty > 0, we have

sup Py (7p;(§) > to) < 1.
zeD

(ii) There exist some compact sets K and K of D such that K c K and such that there exist some
positive tg, t1, such that for all h > 0,

VzeD, P, (gto e K, mp(eh) > to) >0

and
in’fC P, (&, € KandVt € [0,t1],& € K) > 0.
e

Proof. (i) Using that for every to > 0, sup,eo4,] 1€5 — £5°| — 0 in probability when z — o,
one deduces from the dominated convergence theorem that z — P, (7p,(§) > o) is continuous
on D. As a consequence, it is enough to show that for every x € D, P,.(7p, (§) > to) < 1. This
last point is a consequence of the ellipticity condition.

(73) Let us begin by the first statement. Let ¢y > 0. Since the Euler scheme is stepwise constant,
it is enough to show that Px(fﬁo/h]h e K,&h e Dt e {0,...,[to/h]}) > 0. This follows
easily from the fact that, under the ellipticity condition, the transition kernel of the discrete
Euler scheme is a (uniformly) non-degenerated Gaussian with bounded bias (on compact sets).
For the second statement, let 29 € D, K = B(xo,r) and K = B(xo, 2r) where r = 1d(zo, D).
Forevery x € IC, let ™0 : [0, 1] — R denote the function defined by ¥)**°(t) = txo+(1—t)z,



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 35

t € [0,1]. Let t; > 0. Since 9™ is C! and that SUPgei tefo1] |04 ™°| < 400, it is classical
background (see e.g. [4, Theorem 8.5]) that for all € > 0, there exists a positive c. such that

Vo € ’C, ]P)ac( sup |£t - wx,xo (t)| < 5) = Ce.
te[0,t1]

Taking € = %, the result follows.

r
2’
]

Proof of Theorem First, let us remark that by the ellipticity condition, we have for every
starting point z of D, 7p(£") = 75(¢") a.s. Actually, as mentioned before, £(Y}", ||V} = )
is a non-degenerate Gaussian random variable, which implies that P(Y}", | € dD|Y € D) = 0.
Furthermore, if x € 0D, 75(£") = 0. Then, if one denotes by 1, the unique QSD of Y killed
when leaving D, it follows that p (0D) = 0. Without loss of generality, one can thus work with
D instead of D in the sequel.

Let K" denote the submarkovian kernel related to the discrete-time Euler scheme killed when
it leaves D: for every bounded borelian function f : R — R,

th(x) = ]E[f(x + hb(x) + \/EO-(‘T)Z)1{x+hb($)+\/ﬁa(z)ZeD}]

where Z ~ N(0, I4). Let p;, denote the extinction rate related to y: we have

| " @) = o (1), (“2)

Setting Ay, = log(pp)/h, it easily follows from an induction that for every positive ¢, for every
bounded measurable function f : D — R,

By [ (681, (rye] = Ch(t) exp(—=Ant)pf,(f) (43)

where Cj(t) = exp(+ — | £]).

The aim is now to first show that (7 )y, is tight on the open set D and then, to prove that
every weak limit p (for the weak topology induced by the usual topology on D) is a QSD. The
convergence will follow from the uniqueness of p* given in Theorem 5.5 of [38, Chapter 3].
This task is divided in three steps:

Step 1 (Bounds for A\p): We prove that there exist some positive Apin, Amax and hg such
that for any h € (0, hg), A, defined in (43) satisfies Apin < A < Amax. Let us begin by the
lower-bound. For every z € D and § > 0,

Po(1p(£") > to) < Po({7p,(€) > to} v {ts[glt)] €" — €| = 4})

< Pu(7p;(€) > to) + P ( sup [¢" —¢| > 5) :

te[0,to0]
By Lemma([7.4(i) and Lemma[7.3] one easily deduces that for i small enough,

a = supP,(rp (") > ty) < 1.
zeD
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Reminding that £" is stepwise constant, note that £y can be replaced by t} = |to/h|h in the
previous inequality. Then,

Pa(7p(€") > ktg) = Pu(rp(§") > ktg|mp(§") > (k= Dtg)P(rn(€") > (k — 1)tg)
< aPy(tp(Eh) > (k — )th).
By an induction, it follows that there exists hg € (0, to) such that forevery ¢ > 0 and h € (0, hg),
P, (tp(€") > t) < a8 < C exp(—Amint)

with Apin = —log(a)/(tg — ho). Since the right-hand side does not depend on x, one deduces
that P, (7p(&") > t) < Cexp(—Amint). Since this inequality holds for every ¢ (with C not
depending on ?), it follows from {@3)) that A, < Ap (using that C(t) < e). This yields the
lower-bound. As concerns the upper-bound, one first deduces from Lemmas and [7.4{ii) that

there exists a compact set JC of D such that there exist some positive tg, t1, hg and €, such that
for every z € D, and h € (0, ho), P, (&) € K, 7p(£") > t9) > 0 and

inf P, (¢! € KandVt € [0,1],& € D) > e. (44)
ye

Once again, in order to manage the fact that £" is stepwise constant, one sets t§ = |to/h|h and
th = |t1/h|h. We have

Po(7p(§") > 1) > Pa(&h g € K, L {0, Nu()}, 7p(€") > 1)

with Nj,(t) = inf{¢, t} + ¢t} > t}. Using the Markov property and an induction, it follows from
that, for h small enough, for every ¢ > tf, for every z € D,

P, (1p(€") > t) = Pu(E! € K, p(e") > to)eNn®

> CP, (¢ € KC, 7 (€") > to) exp <1°g(6) t) :

2tq

where in the last inequality, we used that for & small enough

t— 1ty tooty ot
Nh(t):{ OJ > —Y>__ _§5 §>0.
th th 72y
Set Apax = _loi(la)‘ Since P (] € K, 7p(£") > tg) > 0 for every z € D, it follows from what

precedes that for every t > ¢,

P, (Tp(€") > 1) = cexp(—Amaxt),
where c¢ is a positive constant (which does not depend on ¢). By (@3], one can conclude that
Ah < Amax (using that C'(t) = 1).

Step 2 (Tightness of (u})): We show that (11} ) he (0,4, is tight on D. For § > 0, set Bs :=
{x € D,d(x,0D) < ¢}. We need to prove that for every € > 0, there exists 0. > 0 such that for
every h € (0, ho), p1y, (Bs.) < e. First, by @3) (applied with ¢ = 1) and Step 1,

1y (Bs) < By [1{§?€Ba}ﬂ{m(§h)>1}] <Pur (f? € Bs).
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But, under the ellipticity condition, £(£}[&8 = ) admits a density p/(z,.) w.r.t. the Lebesgue
measure \g and by [32, Theorem 2.1] (for instance),

sup pj (z,2') < C

z,x’

where C does not depend on h. As a consequence, for every x € D,

g (€h € By) < | pl(a.a)Ada') < ONu(By).

The tightness follows.

Step 3 (Identification of the limit): Let (uzn)n denote a convergent subsequence to y. One
wants to show that ;4 = p* (where p* stands for the unique QSD of the diffusion killed when
leaving D). To this end, it remains to show that there exists A > 0 such that for any positive ¢
and any bounded continuous function f : D — R,

Eulf(&)1rpe)>t] = exp(=At)u(f). (45)

With standard arguments, one can check that this is enough to prove this statement when f is C2
with compact support in D.

Let us consider Equation (43)). First, up to a potential extraction, one can deduce from Step
1 that \,,, — X\ € R. By the weak convergence of ( u};n)n, it follows that the right-hand side of

(43) satisfies:
Ci(8) exp(—Aut) i (f) = exp(~AE)u(f). (46)
Second, by [27] (Theorem 2.4 and remarks of Section 6 therein about the hypothesis of this

theorem), there exists a constant C'; (¢) such that for all x € D,

B[ £ (&)1, eny=i) — Bal£(&)1rpe)=e]| < CrC1(t)Vh.

It follows that

sup EalF(EM L (ehyot) — EalF(E) Lrp(e)=]] 2= 0.

As a consequence,

Lf(gt) mp (€M) ] = M;L [f(ét)lTD(£)>t] 129, 0.

Now, by a dominated convergence argument (using that sup (g 4 |€X — £20] — 0 in probability
when x — x0), one remarks that z — E.[f (&)1, (e)>¢] is (bounded) continuous on D. As a
consequence, E%n [f(§) 11, )>t) = Eulf (€)1, (e)>¢] so that

uhn[f(é} )1 (ehn)>t] P20 B[ (€010 (e)>1)-

Equality {@3) follows by plugging the above convergence and (46)) into (43).
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8. EXTENSIONS

8.1. Non-compact case: Processes coming down infinity. In the main results, we chose to
restrain our purpose to compact spaces. When & is only locally compact, the results of this
paper could be extended to the class of processes which come down from infinity (CDFI), i.e.
which have the ability to come back to a compact set in a bounded time with a uniformly lower-
bounded probability (for more details, see e.g. [13, 15, [21]]). First, note that (CDFI)-condition is a
usual and sharp assumption which ensures uniqueness of the QSD in the locally compact setting.
Second, the (CDFI)-condition is in particular ensured if £ is locally compact and if there exists
amap V, such that {V < C} is compact for every C' > 0 and M := sup,.s KV () is finite.
Also, let us remark that P := {u € P(E), u(V) < M} is compact for the weak convergence
topology (owing to the coercivity condition on V') and is invariant under the action of the kernel
K. Then, on this subspace P, the main arguments of the proof of the main results could be
adapted to obtain the convergence of the algorithm.

8.2. Non-compact space: the minimal QSD. In Theorem [3.4] we have seen that when a pro-
cess admits several QSDs, our algorithm may select all of its QSDs with positive probabili-
ties. When (CDFI)-condition fails in the non-compact setting (think for instance to the real
Ornstein-Uhlenbeck process killed when leaving R ), uniqueness generally fails and one can
not expect the algorithm to select only one QSD. However, if the aim is to approximate the
so-called minimal QSD, namely the one associated to the minimal eigenvalue and appearing in
the Yaglom limit, then, one can use a compact approximation method in the spirit of [40]]. More
precisely, consider for instance a diffusion process (£;);=o on R? killed when leaving an un-
bounded domain D and denote by p* the related minimal QSD (when exists). Let also (K, ),>1
be an increasing sequence of compact spaces such that | _J,,~, K, = D. Then, under some non-
degeneracy assumptions (see e.g. Theorem3.9), the QSD i, related to K, is unique for every n
and by [40, Theorem 3.1], lim,,_, + o, 7, = p*. Then, using our algorithm for an approximation
of p would lead to an approximation of p* for n large enough.

8.3. Continous-time algorithm. In view of the approximation of the QSD of a diffusion pro-
cess (&)¢=0 on a bounded domain D satisfying the assumptions of Theorem it may be of
interest to study the convergence of a continuous-time equivalent of our algorithm (instead of
considering an Euler scheme with constant step). Of course, without discretization, such a prob-
lem is mainly theoretical but it is worth noting that the difficulties mentioned below should be
very similar if one investigated an algorithm with decreasing step (on this topic, see also Remark
B.T1)., The continuous-time algorithm is defined as follows:

let z € D and (X});>0 be as (&)¢>0 with initial condition & = x;

let 7! =inf{t > 0| X} ¢ D}, forall t < 7! we set X; = X};

Let s = % S(t) dx,ds be the occupation measure of X;

Let U be random variable distributed as p..1 (conditionally on .1, defined classically);
weset &1 = U,

the process evolves then as before starting from U'.

We denote by (Tk) x>1 the sequence of jumping times. At the n'' time, it jumps uniformly
over all the past and not only on [7", 77 *1]. This sequence of stopping times is increasing and
almost surely converges to some 7% € (0, 400]. The process (X)¢>0 is well defined until the
time 7. It is not trivial that 7 = o0 because the process (X;);>o can be closer and closer to
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the boundary and the inter-jumping times then becoming shorter and shorter. Nonetheless, we
have

Lemma 8.1 (Non-explosion of the continuous-time algorithm). Under the assumptions of The-
orem[3.9, we have 7% = 4+ a.s.

The proof is given below. This type of problem is reminiscent of the Fleming-Viot parti-
cle system [10\ [11} 41]. However, the comparison stops here because as our procedure is not
"Markovian", their proofs can not be adapted.

Proof of Lemma[8.1] Let x € D be the starting point of (X;)¢>0. Fix ¢ > ¢ > 0 such that
d(xz,0D)>e. Let (Bt)t=0 a Brownian motion, z in the ball B(x, §) of center = and radius §. We
let (£7):=0 be the solution of

and
Tepe = _inf inf{t>0]& ¢ B(z.c)}.
2€B(z,d)

)

The variable 7. 5, is almost-surely positive. On {7 < +o0}, we have, forevery t € [71, 7%),
7- ’5’
(B, 0)) = 252

As a consequence on {7 < +c0}, the process (X )¢>0 jumps infinitely often in B(z, §). But if
it starts from a point z € B(x, ), its absorption time can be bounded from below by a random
variable o (independent from the past) such that o has the same law as 7. 5 ... In application, we

have
> Yo

n=1
on {7%° < 400}, where (0,,)n>1 is a sequence of i.i.d. random variable distributed as 7. 5 ;. As
they are positive the strong law of large numbers ensures that )} _, 0, = 400 almost surely
and then P(7%° < +0) = 0. O
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