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Isolated power systems need to generate all the electricity demand with their own renewable resources.
Among the latter, solar energy may account for a large share. However, solar energy is a fluctuating
source and the island power grid could present an unstable behavior with a high solar penetration.
Global Horizontal Solar Irradiance (GHI) forecasting is an important issue to increase solar energy pro
duction into electric power system. This study is focused in hourly GHI forecasting from 1 to 6 h ahead.
Several statistical models have been successfully tested in GHI forecasting, such us autoregressive (AR),
autoregressive moving average (ARMA) and Artificial Neural Networks (ANN). In this paper, ANN models
are designed to produce intra day solar forecasts using ground and exogenous data. Ground data were
obtained from twomeasurement stations in Gran Canaria Island. In order to improve the results obtained
with ground data, satellite GHI data (from Helioclim 3) as well as solar radiation and Total Cloud Cover
forecasts provided by the European Centre for Medium Range Weather Forecasts (ECMWF) are used as
additional inputs of the ANN model. It is shown that combining exogenous data (satellite and ECMWF
forecasts) with ground data further improves the accuracy of the intra day forecasts.
1. Introduction

According to the trend shown for renewable energy generation,
the proportion of these kinds of energies in the power system will
increase in the next years. Renewable energies show a fluctuating
generation profile because of their dependence on meteorological
conditions. Since grid operators need to keep under control these
variations, in order to accommodate the input/output balance of
the system, forecasting methods are necessary to improve the
coupling of renewable sources. This becomes an important issue
when facing the fact that photovoltaic and solar thermo electrical
plants are widely spread in most of the present power systems.

The output power of a PV plant is mainly correlated with the
global solar irradiance received on the plan of the modules. The
calculation of this received irradiance requires the knowledge of
r).
the direct and diffuse components of the solar irradiance. But in
many cases as in our study, no measurement of these two com
ponents exists. Thus, these two components are commonly derived
from the global horizontal irradiance (GHI) with decomposition
models [1e3]. When no assumption is done on the inclination of
the PV modules, the key factor becomes the GHI. So, in this work,
we will only focus on the forecasting of the GHI. Indeed, a reliable
Global Horizontal Irradiance (GHI) forecasting model is considered
as an important tool to avoid unstable behavior in the electrical
grid, maintaining the balance between demand and supply [4,5].

Isolated power systems, such as the one in Gran Canaria Island,
need to generate all the electricity demand solely with their own
resources. The island power grid could present an unstable
behavior if there is a large scale solar energy introduction. This is
aggravatedwhen a great variability in solar radiation conditions are
shown in the Canary Islands, caused by the diversity of the climatic
areas that emerge as a by product of the differences in its orog
raphy [6,7].

GHI forecasting has been developed in the last years using a



wide range of methods. Themost common forecasting models used
in this field are:

� Statistical models, models based on GHI time series prediction:
most common statistical models used in GHI forecasting are
linear models, such us autoregressive (AR) and autoregressive
moving average (ARMA), andmachine learning techniques, such
as Artificial Neural Networks (ANNs) [8].

� Forecasting using Ground based sky images: models based on
sky images obtained with 180� vision angle cameras. Sky images
lead to know cloud cover conditions for a few minutes ahead.

� Satellite imagesmodels. Geostationary satellites get atmosphere
images all around the Earth with temporal resolution less than
an hour. The high development occurred in the recent years in
satellite data retrieving makes this technique a very useful tool
to improve GHI forecasting [9,10].

� Numerical Weather Prediction models (NWP) based on physical
models for estimating atmosphere conditions, including clouds
formation and dissolution. Physical models are described with
differential equations solved with numerical methods. NWPs
models offer time horizons forecasting from few hours to 15
days ahead [4,11].

Depending on the forecasting time horizon and granularity,
forecasting results are used for different purposes and are based on
different input parameters [12,13]. Ground based sky images
models show high precision information about cloud cover condi
tions and movement for intra hourly forecasting horizons [14]. On
the other hand, forecasting models based on cloud motion vectors
derived from geostationary satellite images offer accurate results
for hourly prediction range up to 6 h ahead [9,10]. NWPs forecasting
precision varies depending on the selected time scale and the
geographic zone of the study. Heinemann [4] showed that
acquiring the radiation values for clear skies without deviation is
possible. NWPs models associated with a post processing method
using hourly ground measurements showed accurate results for
predictions from 6 h onwards [15].

The statistical method proposed in this paper is based on Arti
ficial Neural Network (ANN) for GHI hourly forecasting from1 to 6 h
ahead. ANNs are considered a very attractive method for GHI
forecasting because of their capacity to establish relationships be
tween an input and output datasets [8]. ANNs have been used for
solar radiation prediction using past ground measurements. Many
papers have described ANN accurate results for GHI predictions
with time horizons from few hours ahead, such as explained in
Ref. [16e19], to 24 h ahead daily irradiation forecasting [20,21].
Statistical models based on ANN offer the possibility to combine
historical GHI ground datawith other meteorological data. Rehman
[20] used air temperature and ground relative humidity for daily
irradiation forecasting. Kemmoku [22] designed an ANN to forecast
daily irradiation using atmospheric pressure and several meteo
rological parameters. Sfetsos & Coonick [23] used GHI ground data,
air temperature, wind velocity and pressure for solar irradiance
hourly forecasting. Moreover, several papers studied the influence
of sunshine duration, air temperature, relative humidity, latitude
and longitude to obtain GHI hourly and daily forecasting [18,24,25].

ANNs may even lead to more accurate GHI forecasts by
combining ground measurement time series analysis with exoge
nous data, such as ground irradiance derived from satellite images
and different NWPs data. In the last years, several studies used
different techniques such as autoregressive models (AR) [26e28],
artificial neural networks [29,30] and genetic algorithms for
choosing the relevant information from satellite derived data [28].

In this paper satellite derived and ground data are combined
with solar radiation and total cloud cover predicted by the
European Centre for Medium Range Weather Forecasts (ECMWF).
The satellite derived data is selected as in Ref. [30], using correla
tion analysis results. In this work, we used the Bayesian framework
[31] which improves ANNs learning process. In addition, the
Bayesian approach provides techniques to optimize the ANN ar
chitecture and to select the most relevant inputs [32,33].

The organization of this paper is as follows. In section 2, we
present the ground data, satellite derived data and ECMWF data
used in the present paper. The clear sky model is described in
Section 3 and we analized Ground data distribution in Section 4. In
Section 5, we detail the forecasting methods theory, in Section 6 we
explain the ANN architecture optimization and Section 7 is devoted
to the selection of the most relevant satellite inputs. In Section s8,
we show the error metrics used in this paper and in Section 9 we
detail the results of the different models and discuss the influence
of the different exogenous data to improve GHI forecasting. Finally,
Section 10 gives main remarks and conclusions.
2. Available data

The datasets used in the present study to build the forecasting
model include ground, satellite and numerical predicted data. All
the data will be converted into an hourly basis in order to compare
and contrast all the information in a coherent manner. The tem
poral availability for all type of data was restricted to the year 2005
because this is the only year in which ground and satellite data
overlaps: ground data have been processed up to the year 2005,
meanwhile the satellite data recollection started on the same year.

The application of the ANN models requires the division in
training and testing datasets. Therefore, due to the restriction of
only one year, we took the decision to select threeweeks of amonth
for training and one week for testing purposes since this study only
possess one year available. In this manner we can assure that
training and testing datasets share similarities regarding meteo
rological behaviors, while keeping a ratio of 75% training and 25%
testing [28].
2.1. Ground data set

Ground data are obtained from two measurement stations
located in Gran Canaria Island (Spain) and managed by the Canary
Islands Technology Institute (Instituto Tecnol�ogico de Canarias).
These stations are part of a network of 23 stations in the Canary
Islands, validated by the elaboration of a solar map of the zone
[6,34]. The selected stations are representative for the climatic di
vision present on this island [6,35]. This climatic contrast between
the northern region, with higher cloudiness, and the southern one,
with clearer days and less variability, is well known and produced
by the strong influence of the trade winds of the area.

The equipment used to acquire global solar horizontal irradi
ance (GHI) is a secondary standard pyranometer, the CMP 11 of
Kipp & Zonen, with 3% accuracy for daily sum of GHI. Data are
recorded for every 5 s, 1 min average and later assembled into an
hourly basis. In order to maintain enough quality of the data, all the
measurement data were treated with the SERI QC control software
[36,37]. This treatment consists on filtering values of radiation that
are negative or higher than the top of the atmosphere.

Furthermore, in global solar radiation forecasting, it is usual to
remove night data and anomalous readings from the equipment at
dawn and sunset, or other shadowing effects. Therefore, a filter
based on the solar zenith angle (SZA) was introduced to establish a
frontier of 80� for all data. This threshold is validated in the bibli
ography [38], and also concurs with the careful observations of the
shadow effect for each station.



Fig. 2. ECMWF grid for the domain.
2.2. Satellite derived data set

Satellite information used is this work was retrieved from the
Helioclim 3 database version 5 (HC3v5). All this information has
been processed by the Heliosat 2 method, where the images taken
from the Meteosat geostationary satellite network are converted
into solar radiation in the area of study [39,40].

The selected area contains the entire island of Gran Canaria as
well as a significant portion of sea at the north east, motivated by
the knowledge and influence of the trade winds in the Canary
Islands (see Fig. 1). This area is defined, in decimal degrees, by the
coordinates latitude [þ28.7500 to þ27.2500], and longitude
[ 16.0000 to 14.5000], resulting in a grid of 61 � 55 pixels of
information, where each pixel possesses a spatial resolution of
3 � 3 km2. The information provided consists of global horizontal
irradiation and irradiation on top of the atmosphere (ToA). All of
these parameters are handled inWh/m2with a temporal resolution
of 15 min, assembling then into an hourly manner in order to be in
accordance with the hourly ground data.

An initial assessment of the satellite information shows that the
relative Root Mean Square Error between these data and the
ground data is coherent. These estimations have an average 12.2%
rRMSE at C0_Pozo Izquierdo and 27.8% rRMSE at C1 Las Palmas.
Further assessment on the satellite data values indicates a consis
tency with the climatic behavior of the island, following a tendency
very similar to the ground data values [30].
2.3. ECMWF data set

In this work, we used the predicted data provided by the
ECMWF (European Centre for Medium Range Weather Forecast),
granted by the Laboratoire de Physique et Ing�enierie Math�ematique
pour l’Energie et l’environnement (PIMENT) from the Universit�e de
La R�eunion.

This information was selected for the island of Gran Canaria for
an area located from 27.5� to 28.5� of latitude north, and 15� to 16�

longitude west Fig. 2. For each pixel of the selected grid there is a
spatial resolution of 16� 16 km2 and 21vertical levels of resolution.
On the order hand, all the data concerning the ECMWF for the year
2005 comes within 3 h intervals, therefore an interpolation of the
Fig. 1. Geographic distribution of satellite-derived data obtained from HC3v5 for Gran
Canaria Island. Courtesy of MINES ParisTech/ARMINES.
values into an hourly basis was necessary to compare data sets. This
was achieved using a method that takes into account the conser
vation of the solar energy [41].

This ECMWF extraction provides a lot of information for a great
number ofmeteorological variables, but in this studywe only extracted
the following variables described by Latitude, Longitude and Time:

� Total Cloud Cover (TCC), with values between 0 and 1 using a
cloud index,

� Surface Solar Radiation Downwards (SSRD), for accumulative
values of J/m2 within two instants.
3. Data transformation: use of the clear sky index

In order to work with statistical models, all datasets have to be
transformed into stationary time series, which mean that auto
correlation structures are constant over time [42]. The approach
used in this work was the Clear Sky index (k*), extensively applied
in the bibliography [13,15], in order to remove the seasonal and
daily trend from the hourly time series. This index is obtained by
applying the following formula:

k� Ig
Ics

(1)

where Ig is the hourly measured GHI and Ics is the hourly irradiance
computed by a clear sky model for a determined location and time.

Many Clear Sky models have been proposed depending on the
different climatic parameters used as inputs [43,44]. This survey is
based on the Bird model [45], which is well known to provide ac
curate results with only a few meteorological inputs [46]: Aerosol
Optical Depths (AOD500 mm and AOD380 mm), water vapour and
Ozone atmospheric content. AODs and water vapour column were
obtained fromAERONET network [47].We obtained data from 2008
to 2014 in order to calculate a climatological annual mean of the
atmospheric parameters for all the years. On the order hand, the
Ozone was retrieved from the World Ozone Monitoring Mapping
provided by the Canadian Government [48] and also aggregated in
an annual mean.

An evaluation of the Bird Clear Sky model was made for two
measurement stations in Gran Canaria Island: C0 Pozo Izquierdo



[27.8175 ºN, 15.4244 ºE, 47 m] and C1 Las Palmas [28.1108
ºN, 15.4269 ºE, 17 m]. The assessment of the accuracy of the Bird
clear sky model was calculated with the Ineichen method [49],
allowing the detection of clear sky hours from the ground dataset in
order to compare them with the values given by the clear sky
model. This accuracy is quantified by the relative Root Mean Square
Error (% rRMSE). The results of the Bird method for the selected
locations are listed in Table 1.

The model accuracy for the number of clear sky hours found for
each site is around 4% rRMSE. These errors are in the same order as
those obtained through theMcClearmodel, which uses AOD, Ozone
and water vapour from MACC project [50]. This means that the
variability of these atmospheric input parameters can be consid
ered as negligible for the case of Gran Canaria and climatological
annual mean values are enough.

This result does not indicate any difference between southern
and northern stations, while the number of clear sky hours is
clearly higher in Pozo Izquierdo (southern), which is consistent
with the behavior in the climate of the island. On the other hand,
the variability of each site is given by the method proposed by Hoff
and Perez [51], with the standard deviation of the change in the
clear sky index, were southern station also takes a lower value
compared with northern one, maintaining the coherence with the
known climate patterns in the area of study.
Fig. 3. Distribution of days in the plane k� � stdðDk�Þ of ground dataset for station C1
Las Palmas (up) and station C0-Pozo Izquierdo (down). Intraday mean is divided in A

(0 < k� < 0.5), B (0.5 < k� < 0.9) and C (0.9 < k� ) days. Daytype variability is divided in I
(0< stdðDk�Þ<0.05) great variability, II (0.05< stdðDk�Þ<0.15) and III (0.15< stdðDk�Þ) a
steady one.
3.1. Ground data analysis

In order to characterize ground data of each locationwe decided
to classify days in all the available data by mean of intraday clear
sky index average, Eq (2), and intraday variability, Eq (3) and (4), as
explained in Ref. [26,52]. With these two parameters we could
clearly classify the days in nine different frames, see Fig. 3. We
divided intraday means into A, B and C days, where A is the heavy
clouded type and C data type is the clearer one. In the other hand,
the classification by roman numbers I, II and III follow the vari
ability, where a I day stands for a stable variability and a type III
describes a great variability through the day. By this distribution an
example of a stable and clear day will fit into a type CIII.

k�
PHd

t 1k
*ðtÞ

Hd
(2)

Dk�ðtÞ k�ðt þ 1Þ k�ðtÞ (3)

stdðDk�Þ
PHd

t 1

�
Dk�ðtÞ Dk�

�2

Hd

vuuuut (4)
Table 1
Measurement stations characteristics, Bird model inputs and performance.

Data provider
GHI time step
Period of record
Average pressure (Pa)
Ozone Columns (cm) Average
H20 Columns (cm) Average
AOD 500 nm Average
AOD 380 nm Average
Ba (Asymmetric factor)
Clear sky model accuracy hourly data Model

Number of hour of clear sky (Ineichen
rRMSE

Site variability [51]
All the data represented in Fig. 3 and on Table 2 show great
coherence with the empirical observations of the weather of Gran
Canaria Island. There are clearer days in the southern part (C0),
C0 Pozo Izquierdo C1 Las Palmas

ITC ITC
1 min 1 min
2.003 2.005 2.002 Jan/Jun 2.003 Jul/Dec 2.004 2.005
101202 101202
0.3 0.3
1.815 1.815
0.159 0.159
0.184 0.184
0.84 0.84
Bird Bird

) 3224 1660
3.97% 3.98%
0.1411 0.1752



Table 2
Distribution of day type categories in Gran Canaria.

C0 Pozo Izquierdo C1 Las Palmas

Total A (0 < k* < 0.5) 27 7.78% 58 16.86%

A I (0< stdðDk*Þ<0.05) 3 2

A II (0.05< stdðDk*Þ<0.15) 9 26

A III (0.15< stdðDk*Þ) 15 30

Total B (0.5 < k* < 0.9) 154 44.38% 234 68.02%

B I (0< stdðDk*Þ<0.05) 3 1

B II (0.05< stdðDk*Þ<0.15) 62 78

B III (0.15< stdðDk*Þ) 89 155
Total C (0.9 < s) 166 47.84% 52 15.12%
C I (0< stdðDk*Þ<0.05) 71 13

C II (0.05< stdðDk*Þ<0.15) 83 32

C III (0.15< stdðDk*Þ) 12 7
with 166 days in type C, than the northern one (C1), with 234
falling in the type B class.
4. Forecasting models description

The solar radiation parameter used by the statistical models
proposed in this work is the clear sky index. Indeed, the general
function used to relate input and output datasets is as follows:

ck*ðt þ hÞ F
�
k*GðtÞ; …; k*Gðt iÞ; k*Ex1ðtÞ ;…; k*Ex1ðt jÞ;…;

k*ExnðtÞ;…; k*Exnðt jÞ
�

(5)

Whereck*ðt þ hÞ is the clear sky index predicted for time horizon
h, from h 1 to h 6 hwith hourly granularity, k*Gðt iÞ is clear sky
index from the ground dataset at the location of interest for ‘i’ past
values and k*Exnðt jÞ corresponds to the different exogenous clear
sky indices (inferred from satellite or ECMWF data) for past values.
One the most important decision to take into account by the
modeler is the number of inputs for the model. The forecasting
model may obtain less accurate results if the ANN architecture is
unnecessarily complex because of irrelevant inputs.

The dataset for the training process consists in pairs of input
output vectors with ‘p’ number of patterns, P fXi; yigpi . The gen
eral function F is established during the training process. In this
work, Xi matrix contains ground radiation data, satellite derived
radiation data and ECMWF predicted parameters, while yi vector
contains ground solar irradiance for the forecasting time horizon.
Clear sky index is the parameter used during the training and testing
process, however, results discussed in section 6 will be in terms of
global solar irradiances, obtained from Eq. (1) as bIg ck�$Ics.
4.1. Naive models

In the literature, it is common practice to compare results ob
tained by the proposed models against some naïve or reference
models in order to discuss the improvement. In this study, we have
worked with one naïve model and a climatological one. The naïve
model is the so called Smart Persistence (Smart Pers) model [53].
The latter onlyworks with ground historical radiation data from the
location of interest, using clear sky index series. It consists in
forecasting clear sky index for each time horizon ‘h’ as the mean of
the ‘h’ previous clear sky values [54]. Smart persistence model is
defined by Eq. (6).

ck*�t þ h
�

mean
�
k*ðtÞ;…; k*

�
t h

��
(6)
4.2. Climatological model

The climatological model [14], which is based on the historical
mean (see Eq. (7)), provides a constant forecasting whatever the
horizon is:

ck*ðt þ hÞ mean
�
k*ðtÞ�historical mean (7)
4.3. Forecasting ANN based model

Artificial Neural Networks (ANNs) are statistical methods
capable to establish a relation between an input and output data
sets. ANNs are composed by several individual units, called neu
rons, and connected by weights. These neurons received
information from an external parameter or another neuron. During
the training process the associated weights are modified to obtain
the optimal weight distribution. Usually, each neuron applies an
activation function to calculate the correspondent output. In this
paper the function applied is the hyperbolic tangent function:

f ðxÞ tanhðxÞ ex e�x

ex þ e�x (8)

One of the most common ANN model used in engineering ap
plications is based on the Multilayer Perceptron (MLP). The MLP
consists in one layer of inputs, one hidden layer made of several
non linear neurons and one output layer with no feedback or
lateral connections between them. The output layer is made of one
neuron with an identity activation function (see Eq. (9)).

ck*ðt þ hÞ a0 þ
Xh
j 1

aj$f

"
b0;j þ

Xp
i 1

bi;j$ k
*ðt iÞ

#
(9)

The optimal weights are computed optimizing a cost function.
The most common function is the average of square difference
between the network output ck*ðt þ hÞ and the desired output,
target set ‘k*’ (see Eq. (10)). Firstly, a random weight set is estab
lished and then, during the training process, are optimized by
minimizing a cost function by backpropagation algorithm. The
backpropagation training algorithm used to minimize E(w) is the
scale conjugate gradient.

EðwÞ 1
2

XN
i 1

ck*ðt þ hÞ k*i

!2

(10)

To improve the accuracy of the model, one of the most impor
tant issues is the network architecture. Too complex ANNsmay lead
to a good approximation of the training dataset, but poor results
when a new test dataset is used (this problem is called overfitting).
It is generally recommended to control the model complexity in
order to achieve good generalization results [8,32]. Several model
complexity control techniques exist and in this paper a Bayesian
regularization framework is proposed [17,31,55]. The Bayesian
approach considers a probability density function over the weight
space and introduces new hyperparameters a and b to control
model complexity. The optimal values correspond to the maximum
of the probability density function optimizing the following cost
function, Eq. (11).

SðwÞ b

2

XN
i 1

ck*ðt þ hÞ k*i

!2

þ a

2

Xm
i 1

w2
i (11)

As described in Lauret, 2006 [17], to find the optimal hyper
parameters a and b and the optimal weight vector wMPwe followed



an iterative procedure. At the beginning, weights are randomly
initialized using a Gaussian distribution and the hyperparameters
use small values. The optimal weights sets are computed using the
standard scale conjugant gradient algorithm, minimizing S(w).
Once we obtained the first optimized weights set, hyperparameters
are obtained using the Bayesian Framework numerical imple
mentation. These steps are repeated until the regularized error is
equal to half the number of data points, S(w) N/2.
Fig. 5. Logev information using 6 h ground measurement lag data and satellite data as
inputs in ANNS at station C0 Pozo Izquierdo for time horizon h 3 h.
5. ANN architecture optimization

In this study, the NETLAB toolbox developed in Matlab was used
for ANNs computation [56]. We focused on improving ANNs fore
casting results combining ground data and exogenous data as
inputs.

ANN model complexity decision is one of the most important
problems to study in ANNs forecasting. In this paper, we focus on
number of inputs and hidden units. Techniques such as Master
optimization [57] or genetic algorithm [29] can be used to optimize
the ANN models. However, in this work, based on our experience
[32], we chose to use the Bayesian technique.

The Bayesian framework also offers different possibilities to
study the model architecture. Automatic Relevance Determination
(ARD) technique assigns a different regularization coefficient to
each input and allows determining the most relevant inputs during
the training process [32,33]. ARD information of six inputs was
studied in order to choose the most relevant for GHI forecasting.
The best result for all time horizons and both stations was obtained
using 6 inputs of ground measurements inputs. Fig. 4 shows an
example with a high relevance for all six inputs in C0 station.

Once the number of ground lags inputs is fixed, Bayesian
framework is used for choosing the number of hidden units by
computing the probability of each model (evidence of the model)
[30]. The highest evidence of the model is used to select the best
option for each station and time horizon [8,31,58]. Most of results
show low number units as we can see in Fig. 5 for station C0 and
time horizon 3 h. However the difference between %rRMSE and %
rMAE for the testing dataset in each experiment were not so
pronounced.

To avoid overfitting we used %rRMSE and %rMAE obtained on
test datasets to decide the final result. Bayesian framework has
Fig. 4. ARD results using 6 h ground measurement lag data as inputs in ANNs at station
C0 Pozo Izquierdo for time horizon h 3 h.
been widely used and tested for forecasting [32] obtaining very
good results to avoid overfitting. In this case, Fig. 6 shows the final
result obtained for training and testing datasets forecasting using
classic ANN training and Fig. 7 shows the results obtained with
Bayesian Framework, where overfitting problem is not present.
6. Selection of the satellite data inputs

ANNs have been trained using different combination of input
data. Every ANNs forecast hourly GHI with six past ground clear sky
data as inputs. The exogenous data added to the ground clear sky
data are solar radiation data derived from Helioclim 3 and solar
radiation and total cloud cover (TCC) predictions from ECMWF.
Finally, in addition to the Smart persistence and climatology
models, the ANNmodels computed and compared in this paper are
the following:

� ANN model with only past ground data as inputs (denoted
herein NN).

� ANN model with past ground data and satellite data as inputs
(denoted herein NN þ SAT).

� ANN model with ground data and ECMWF radiation data as
inputs (denoted herein NN þ ECMWF).

� ANN model with ground data, satellite data and ECMWF radia
tion data as inputs (denoted herein NN þ ECMWF þ SAT).

One of the most important decisions is to select the best satellite
information to improve GHI hourly forecasting. We considered a
maximum number of 30 satellite derived radiation data based on
the calculation explained by Mazorra et al. [30]. In order to study
weather conditions in Gran Canaria Island and establish the best
satellite pixels between whole gridded data at the different sta
tions, we computed the Pearson correlation between satellite and
ground data [27,28]. The huge amount of satellite derived data
makes the computation difficult, so we applied a median filter for
each 3 � 3 satellite pixels. Consequently, a Super pixel was created
computing GHI median value of every 3 � 3 group of pixels, Fig. 8.

In each station the correlation between ground data at t 0
and each satellite derived pixel with time lags from the same
temporal period to a maximum of 3 h earlier, Eq. (12), was
computed. In that way we establish a relation between gridded



Fig. 6. Measured data vs Forecasted data for the training (left) and testing (right) datasets using classic ANN for station C0.

Fig. 7. Measured data vs Forecasted data for the training (left) and testing (right) datasets using Bayesian Framework for station C0.

Fig. 8. Superpixel (3 � 3) selection at station C1-Las Palmas using Test-1 for time-lagged correlation images, t 0, 1, 2 & 3 h. Black area shows selected superpixels. Each pixel
represents the intercorrelation with k* between ground measurement and each satellite pixel.



Table 4
%rRMSE for testing dataset at station C0 Pozo Izquierdo for different time horizons
(in bold the best result).

Model 1 h 2 h 3 h 4 h 5 h 6 h

SMART-PERS 17.03 22.95 25.80 26.60 26.05 25.54
CLI 26.72 26.73 26.74 26.76 26.78 26.79
NN 16.24 20.88 23.04 23.41 24.25 23.94
NN þ ECMWF 15.91 20.79 21.67 21.53 22.10 22.26
NN þ SAT 15.39 19.26 20.90 21.39 21.60 22.21
NN þ ECMWF þ SAT 15.47 19.55 20.35 21.16 21.89 22.17

Table 5
%SKILL for testing dataset at station C0 Pozo Izquierdo for different time horizons
(in bold the best result).

Model 1 h 2 h 3 h 4 h 5 h 6 h

SMART-PERS 0.00 2.65 6.53 14.06 19.68 21.76
CLI �56.94 �13.38 3.09 13.53 17.46 17.91
NN 4.68 11.51 16.54 24.32 25.15 26.51
NN þ ECMWF 6.62 11.86 21.49 30.38 31.78 31.68
NN þ SAT 9.67 18.38 24.29 30.85 33.31 31.84
NN þ ECMWF þ SAT 9.16 17.08 26.27 31.62 32.51 32.06

Table 6
RMSE for testing dataset at station C1 Las Palmas for different time horizons (in
bold the best result).

Model 1 h 2 h 3 h 4 h 5 h 6 h

SMART-PERS 118.95 169.11 190.69 195.34 190.21 182.18
CLI 163.64 163.70 163.78 163.86 163.95 164.03
NN 110.63 143.89 157.06 162.11 162.09 162.88
NN þ ECMWF 110.32 139.15 148.96 149.10 148.03 148.30
NN þ SAT 105.34 136.59 147.31 151.94 156.71 157.03
NN þ ECMWF þ SAT 104.75 134.37 142.82 145.41 147.31 147.88

Table 7
%rRMSE for testing dataset at station C1 Las Palmas for different time horizons (in
bold the best result).

Model 1 h 2 h 3 h 4 h 5 h 6 h

SMART-PERS 27.42 38.98 43.96 45.03 43.85 42.00
CLI 37.72 37.74 37.76 37.77 37.79 37.81
NN 25.50 33.17 36.21 37.37 37.37 37.55
NN þ ECMWF 25.43 32.08 34.34 34.37 34.12 34.19
NN þ SAT 24.28 31.49 33.96 35.03 36.13 36.20
NN þ ECMWF þ SAT 24.15 30.98 32.92 33.52 33.96 34.09

Table 8
%SKILL for testing dataset at station C1 Las Palmas for different time horizons (in
bold the best result).

Model 1 h 2 h 3 h 4 h 5 h 6 h

SMART-PERS 0.00 �1.24 2.29 8.46 15.35 20.16
CLI �37.57 1.99 16.08 23.21 27.04 28.11
NN 7.16 14.02 19.63 24.04 27.80 28.51
NN þ ECMWF 7.42 16.85 23.78 30.14 34.06 34.91
pixels for different time lags and the ground data for the present
moment. Therefore, we have information about incoming events
from the surroundings.

Ck*ði; jÞh corr
�
k�
groundðtÞ;k�

satelliteðt hÞ
�

for h

0; 1; 2& 3 (12)

Thus, ANNs inputs represent the surrounding pixels with
highest relate with ground station data for different time lags. As
explained in Ref. [30], the distribution of pixels in the different
time lagged images is according to the number of correlation
values over 0.5 in each station [28]. To decide the best selection of
pixel, we computed six different tests during the training process.
As explained in Ref. [30], the distribution of pixels in the different
time lagged images is according to the number of correlation
values over 0.5 in each station [28]. For each station, four tests were
calculated using the annual correlation results and two more test
used a different distribution every quarterly group of images. The
best was selected using the lowest %rRMSE and %rMAE for the
testing dataset.

7. Performance error metrics

In order to evaluate the performance of each method, we used
two standard error metrics widely used in the solar forecasting
community: the Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE) [59,60]. Dividing both absolute error by the
average of the hourly GHI datawe compute their relative metrics (%
rRMSE and %rMAE). In this paper, to study the quality of the fore
casting methods, we provide the relative errors. To compare the
relative improvement of the different models with respect to the
persistence simple model, we calculate the forecast skill parameter
[61].

RMSE
1
N

XN
i 1

�
GHIforecast;i GHImeasured;i

�2vuut (13)

MAE
1
N

					XN
i 1

�
GHIforecast;i GHImeasured;i

�					 (14)

SKILLð%Þ 1
RMSEmethod

RMSEpersistence

!
� 100 (15)

8. Forecasting results

Once we decided the optimal satellite derived pixels, the
different ANN performance results were compared. Tables 3e8
present the forecast performance for both station in terms of %
rRMSE, RMSE and %SKILL from time horizon 1 to 6 using annual
Table 3
RMSE for testing dataset at station C0 Pozo Izquierdo for different time horizons
(in bold the best result).

Model 1 h 2 h 3 h 4 h 5 h 6 h

SMART-PERS 92.47 124.64 140.10 144.44 141.50 138.69
CLI 145.13 145.17 145.25 145.33 145.42 145.50
NN 88.20 113.39 125.13 127.12 131.68 130.03
NN þ ECMWF 86.40 112.93 117.70 116.94 120.01 120.88
NN þ SAT 83.58 104.58 113.51 116.15 117.31 120.60
NN þ ECMWF þ SAT 84.00 106.17 110.51 114.93 118.89 120.43

NN þ SAT 11.44 18.23 24.52 28.80 30.26 31.18
NN þ ECMWF þ SAT 11.94 19.55 26.81 31.86 34.44 35.19
testing data set. Each row corresponds to the forecasting methods
used in this paper. In all cases, forecasting models show worse %
rRMSE error as time horizon increases. The Smart Persistence in
creases from 15%rRMSE in ‘h 1’ to 26%rRMSE in ‘h 6’ at C0 station,
while at C1 station error results oscillate between 27% and 42%. On
the other hand, all models based on ANNs architecture lead to error
results around 22% at C0 and 34% at C1 for time horizon ‘h 6’.
Different error results, almost 12% difference for ‘h 6’, have been



observed between northern and southern stations. This result is
consistence with cloud formation processes explained and observed
in the north. Furthermore, it is also observed a dichotomy between
the improvements of non linear methods depending on the station
and sky conditions. At station C0, ANNmodels showan improvement
between 1.5% and 4% with Smart Persistence model for ‘h 1’ and
‘h 6’. While at C1, ANN models lead to a gain from 3% to 6%.

Models with exogenous data improve on ANN models based
only on ground data (NN) for all cases and at both stations. Figs. 9
and 10 show the influence of satellite radiation data and ECMWF
radiation and TCC data in terms of %rRMSE for both stations.

At station C0, NN þ SAT obtain the best results for the first 3 h
ahead compared to NN þ ECMWF (improvement over 1%). This
results are consistent with the fact that satellite data comes from
time lags from ‘h 0’ to ‘h 3’ hours. In the last 3 h, NNþ ECMWF
is similar to the satellite data (NN þ SAT). The combination of both
exogenous data, NN þ ECMWF þ SAT, leads to the best error results
in terms of %rRMSE in general.
Fig. 9. %rRMSE for testing dataset at station C0 Pozo Izquierdo for different t

Fig. 10. %rRMSE for testing dataset at station C1-Las Palmas for different tim
At station C1, as well as C0, satellite data achieve better
results for the first 3 h, while ECMWF improve almost 2% sat
ellite data for ‘h 6’. The combination of both exogenous data
(Satellite and ECMWF) leads to the best error results for all time
horizons.

Tables 5 and 8 present the %SKILL for all time horizons in both
stations. Even if in southern stations, the results with
ANN þ ECMWF þ SAT are much better than in the north, the SKILL
parameter shows very similar results for both areas. Furthermore,
the SKILL forecast increases with time horizon, which means that
the more far ahead in time, the better results we get with
ANN þ ECMWF þ SAT method compared with persistence model.
Moreover, Figs.11 and 12 show the results for both stations in terms
of %SKILL. It is easily observed that in station C0 the satellite data
offer the best results for the first 3 h, while both models obtained
very similar results for the last 3 h. In station C1, NN þ SAT model
obtain the best results from ‘h 1’ to ‘h 3’while NN þ ECMWF is
the best model from ‘h 4’ to ‘h 6’. For both stations, overall, the
ime horizons using ANN models with satellite and ECMWF radiation data.

e horizons using ANN models with satellite and ECMWF radiation data.



Fig. 11. %SKILL for testing dataset at station C0 Pozo Izquierdo for different time horizons using ANN models with satellite and ECMWF radiation data.

Fig. 12. %SKILL for testing dataset at station C1-Las Palmas for different time horizons using ANN models with satellite and ECMWF radiation data.
best model is the combination of both inputs, ECMWF and satellite
data, NN þ ECMWF þ SAT.

As a consequence, the model recommended for the whole Gran
Canaria Island is NN þ ECMWF þ SAT. This model improves NN
model (only with ground data) from 1% for ‘h 1’ to almost 2% for
‘h 6’ at station C0 and around 1.5% for ‘h 1’ to almost 3.5% for
‘h 6’ at station C1.

9. Conclusions

This work proposes to combine ground measurements with
exogenous inputs provided by satellite and NWP data in order to
improve intra day solar forecasting.

In order to explain the influence of each exogenous data on
forecasts, satellite data and data from ECMWF were first studied
separately and in combination. At Station C0, for the first 3 h
forecast, inputting satellite data (NN þ SAT) obtained better results
compared to inputting data from ECMWF (NN þ ECMWF). How
ever, in the last 3 h, similar results were obtained by including
ECMWF data. In this case, the best results were obtained by
combining both models (NN þ ECMWF þ SAT) as compared with
NN. In Station C1, this same effect is more clearly observable. In the
first 3 h, the best model is the one that uses satellite data
(NNþ SAT) and in the last hours the best model is the ECMWF data
model (NN þ ECMWF). Similarly, the best results were obtained by
combining these models (NN þ ECMWF þ SAT). The conclusion is
that, in general combining exogenous satellite data and ECMWF
data provides the best forecast results for both stations.

We would recommend working with the NN þ ECMWF þ SAT
model on the entire island. With this model, at the C0 Pozo
Izquierdo station, %rRMSE increases with the forecast horizon
from 15.47% for ‘h 1’ to 22.17% for ‘h 6’, and for C1 Las Palmas, it
fluctuated between 24.15% and 34.09%.

More work has to be done in order to cope with all meteoro
logical situations. For instance, with more training data or by
implementing a specific procedure (random sampling of the
training cases), one can create a model ensemble that may be able
to cope with the different meteorological conditions.



Lastly, future lines of research should carry out a more effective
selection of satellite pixels. Similarly, wind and humidity would
give us very important information about solar radiation behavior.
We propose carrying out a detailed study of wind and humidity in
the various layers of the atmosphere in order to determine which
layer offers the best results and relates these information with
satellite pixels.
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