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Abstract—Spatially-sparse predictors are good models for
brain decoding: they give accurate predictions and their weight
maps are interpretable as they focus on a small number of
regions. However, the state of the art, based on total variation or
graph-net, is computationally costly. Here we introduce sparsity
in the local neighborhood of each voxel with social-sparsity, a
structured shrinkage operator. We find that, on brain imaging
classification problems, social-sparsity performs almost as well as
total-variation models and better than graph-net, for a fraction
of the computational cost. It also very clearly outlines predictive
regions. We give details of the model and the algorithm.

Index Terms—brain decoding, sparsity, spatial regularization

I. INTRODUCTION: SPATIAL SPARSITY IN DECODING

Machine learning can predict behavior or phenotype from
brain images. Across subjects, it can give indications on a
pathology or its progression, for instance capturing atrophy
patterns of Alzheimer-related cognitive decline from anatom-
ical imaging [1]. To study brain function, it has been used
extensively to predict some cognitive parameters associated
with the presented stimuli from functional brain images such
as functional Magnetic Resonance Imaging (fMRI) [2]. In
these applications, the number of samples is small (hundreds
or less), while the number of features is typical the number
of voxels in the brain, 50 000 or more. The estimation is ill-
posed, as there are much more parameters to estimate than the
number of samples, which calls for regularization.

In brain decoding, good prediction is important, but also
retrieving and understanding the aspects of brain images that
drive this prediction. Linear models, as linear support vector
machines (SVM), are often used because they work well in
the low-sample regime. An additional benefit of these models
is that their weights form brain maps [3]. However, suitable
regularization is necessary for these weights to retrieve well
the important regions [4], [5]. Sparse penalties select voxels
[6], [7], but only a subset of the important ones [4]. Spatial and
sparse penalties, using total variation (TV) [8] or graph-net [9],
help the decoder capture full regions [5]. TV and its variants
are state-of-the-art regularizers for brain images. In addition to
decoding [8], [10], [5], they have been used with great success
for applications as diverse as MR image reconstruction [11],
super-resolution [12], prediction from anatomical images [13],
and even regularization of spatial registration [14]. The main
drawback of spatial sparsity as in TV and related penalties is
its computational cost.

Here we introduce spatial sparsity based on “social spar-
sity”, a relaxed structured penalty with a simple closed-form

shrinkage operator. We first detail the mathematical underpin-
nings of the model and then perform decoding experiments
that show that the model is almost as accurate in prediction
as the TV-based state of the art and much faster.

Notations: Vectors are written in bold: x. Indexing vec-
tors is written as sub-scripts: xi. In an iterative scheme, the
iteration number is a sub-script in parenthesis: x(k).

II. METHODS: INTRODUCING SOCIAL SPARSITY

A. Spatial penalties for neuroimaging

A sparsity assumption on the decoders maps has been iden-
tified early as a means to select voxels relevant for decoding
[6], [7]. Sparsity has been used with great success in statistics,
signal processing, and machine learning. Indeed, it combines
good properties for prediction and denoising when the ground
truth is actually sparse [15]. Sparse models can be estimated
by adding to the data-fit term an `1 penalty for sparsity,
as in the famed Lasso. The Iterative Shrinkage/Thresholding
Algorithm (ISTA) is a common algorithm to solve the corre-
sponding minimization problem [16]. It alternates a gradient-
descent step for the data-fit energy and, for sparsity, a soft-
thresholding: a proximal operator which corresponds to the
Euclidean projection on some `1 ball:

`1 prox of w, scale λ : ∀i wi ← wi

(
1− λ

|wi|

)+
(1)

where the operation is applied element-wise –for every coor-
dinate wi of w– and (.)+ is the positive part. This operation
is reminiscent of element-wise thresholding: it sets to zero all
the entries of w that are smaller than λ in absolute value, and
shrinks by λ the remaining.

However, on brain images, simple sparse models as with
the `1 penalty select a subset of the important voxels [4], [17],
[18]. Indeed as the information in a voxel is very correlated
to its neighbors, sparsity focuses on one representative in
a local neighborhood [4]. Improved penalties add a spatial
term to couple neighbors and create structured sparsity. Total-
variation (TV) imposes sparsity in the image gradients [8].
Coupled with sparsity in a TV-`1 penalty it recovers very well
the predictive brain regions [10], [5]. It is the state of the
art for brain decoding in terms of predictive power and of
interpretability of the decoder maps. The main drawback of
total variation is that it leads to very slow solvers. Indeed, it
cannot be formulated in terms of a thresholding-like operator.
Its proximal operator is computational costly as it couples all



the voxels. Another spatial penalty, related but faster, Graph-
net, imposes smoothness, rather than sparsity, on the image
gradients [9]. Because it is a differentiable penalty, it leads to
faster optimization, though it imposes less spatial structure.

The challenges of solving TV and related penalties arise
from their very strength: they impose sparsity not on the voxels
of the image, but on a representation capturing differences be-
tween voxels. This concept is an instance of analysis sparsity,
which leads to other penalties successful for predicting from
brain images [19]. Overlapping group sparsity is another anal-
ysis penalty which has been heavily used in image processing
[20]: rather than putting voxels to zeros, it penalizes a full
local neighborhood, using a penalty on blocks. As a voxel is
in several neighborhoods, these blocks are overlapping. This
overlap leads to an optimization problem that has the same
structure –and same cost– as that of TV-`1.

All these estimators, and related optimization problems, can
be solved with an ISTA algorithm, or its accelerated variant the
FISTA. In fact, these approaches are the best option in the case
of brain decoding [21] although the TV-`1 proximal operator
involves a costly sub-iteration. In the case of non-overlapping
blocks, group sparsity is simply `21 penalty applied on each
group, as in the famed group-lasso. The proximal operator is
closed-form and performs a soft-thresholding on each group
based on its Euclidean norm:

`21 prox
on group G : ∀i ∈ G wi ← wi

(
1− λ√∑

j∈G w
2
j

)+
(2)

for a coordinate wi in the group G. As with soft-thresholding
for the `1 penalty, the operation is applied element-wise for
all the groups and leads to fast optimizations.

B. Fast spatial structure with social sparsity

There is a large gap in computational cost between spar-
sity imposed on separate items, coordinates or groups, and
coupling the sparsity of a voxel to that of its neighbor, as
in overlapping group sparsity or penalties related to TV. We
introduce social sparsity [22] which is a tradeoff between the
two scenarios. It applies a soft-thresholding similar to group-
lasso, using the norm of a local neighborhood, but modifies
only the coordinate wi at the center of this neighborhood. In a
sense, social sparsity “forgets” overlaps across neighborhoods.
This makes solvers much faster, as we show in the following.

a) The social-sparsity operator: We focus here on the
most popular ”social-sparse” operator: the windowed group-
lasso. For each element wi, we associate a neighborhood N (i)
of coordinates. The shrinkage operator reads

S(w, λ)
social
shrinkage

: ∀i wi ← wi

(
1− λ√∑

j∈N (i) α
i
jw

2
j

)+
(3)

where the αij are weights representing the shape of the neigh-
borhood (the simplest choice being the rectangular window:
all αij are equal).

An interesting interpretation of this operator, is that it can be
seen as a fast approximation of the group-lasso with overlaps

Algorithm 1: FISTA: social sparsity to estimate w

input : Initialization w(0) ∈ Rp, penalization amount λ,
L-Lipschitz gradient of loss ∇F

v(1) ← w(0), k ← 1, t(0) ← 0;
while ‖w(k) −w(k−1)‖∞ > tol‖w(k)‖∞ do

k ← k + 1, tk ← 1
2

(
1 +

√
1 + 4t2(k−1)

)
;

w(k) ← S
(
v(k) − 1

L∇F (v(k)),
λ
L

)
S given by (3);

v(k) ← w(k) +
t(k−1)−1
t(k)

(w(k) −w(k−1));

as presented in [23]. Indeed, it can be shown that the social-
sparse operator is equivalent to applying a regular group-lasso
operator in a high dimensional space where all the variables
are duplicated in order to form independent groups (there are
as many groups as variables). Then the result is projected back
in the original space following an oblique projection [22]. In
practice, similar performances are obtained without the cost
encountered by the group-lasso with overlaps.

b) Choice of the neighborhood: Coupling neighboring
voxels is crucial, as demonstrated by the success of spatial
penalties in brain imaging. However the spatial extent of that
coupling should be small in brain imaging. Indeed, the typical
scale used to smooth fMRI data is of 6 mm, for 3 mm voxels.
Similarly, anatomical images, with voxels of 1 mm, are often
smoothed with a kernel of 2 mm. We use as a neighborhood
N (i) of a voxel i its 6 immediate neighbors. To let the
behavior of a group be driven more by its central voxel, we
set the relative weights α of the 6 other voxels to .7.

c) A FISTA solver: The social-sparsity shrinkage S is
not the proximal operator of a known penalty. Yet, it has
been shown to yield good estimations in proximal optimization
schemes [22]. We use a FISTA, an accelerated variant of ISTA,
as for TV-`1 [21], [19]. The brain-imaging data fit appears via
a loss L : w ∈ Rp → R, the gradient of which should be
Lipschitz-continuous. Typically, the logistic loss is used for
classification problems and the squared loss for regression.
For completeness we detail the scheme in Algorithm 1.

d) Parameter selection: We set the regularization param-
eter λ by nested cross-validation, using the same strategies as
can be used in Graph-net or TV-`1 to speed up computation
[24]. We do 8 folds. For each fold, we scan the λ parameter
from large values to small values, with warm start of the solver.
As the model is similar to an `1 penalty but with additional
constraints, values of λ that lead pure `1 models to be fully
sparse will also give fully sparse social-sparsity models. Hence
we start our path at λmax, the largest λ giving non-empty `1
model1. We visit 5 values on a logarithmic scale from λmax to
1
20λmax. As in Graph-net or TV-`1 solvers [24], we do early
stopping of the optimizer on the left-out prediction error during

1 λmax = ‖XTy‖∞ for lasso, and λmax = 1
n
‖XTỹ‖∞ for `1 logistic,

where ỹ is the weighted output vector: ỹi =
n+

n
for samples in the positive

class, and ỹi =
n−

n
for samples in the negative class, with n the number of

samples, n+ (resp. n−) the number in the positive (resp. negative) class.



parameter selection. The final coefficients are the average of
the coefficient for the optimal λ on each of the 8 folds.

Finally, as it can be done with graph-net and TV-`1, we use
univariate feature screening, retaining 20% of the features. The
motivation for this screening is that sparse models are highly
likely to put the corresponding features to zero [24].

III. EXPERIMENTS: ACCURACY AND RUN TIME

Datasets: We study social sparsity on publicly-available
datasets for two applications: intra-subject brain-decoding
from fMRI, and inter-subject prediction from voxel-based
morphometry (VBM).

For fMRI brain decoding, we use a standard visual-object
recognition dataset [2]. We perform on all 5 subjects intra-
subject 2-class decoding of 14 pairs of stimuli of varying dif-
ficulties (listed on Figure 1). To measure prediction accuracy,
we perform cross-validation, leaving out 2 of the 12 sessions.

For VBM inter-subject prediction, we use the OASIS
anatomical imaging dataset [25]. We predict gender and use a
cross-validation of random splits of 20% of the subjects.

Experimental settings: On all classification tasks, we fit
a model with a logistic loss and measure prediction accuracy
as well as wall time in ten iterations of cross-validation.

We compare social sparsity to graph-net and TV-`1, as
implemented in the Nilearn library, as well as the most
commonly-used decoder, a linear SVM with 20% univariate
feature selection. To fully replicate common practice we use
the default C = 1 for the SVM, rather than cross-validation.
All models, including social-sparsity, are implement in Python,
using scikit-learn for the SVM [26]. The graph-net and TV-`1
implementation use the same feature-selection and path strate-
gies as our social-sparsity solver to speed up computation. An
important detail for computation time is the stopping criteria
of the algorithms. We use the same for Graph-net, TV-`1, and
social sparsity: a 10−4 cutoff on the relative maximum change
on the weights w (see Alg. 1).

IV. RESULTS: STRIKING A GOOD TRADEOFF

Experiments outline a tradeoff between prediction accuracy
and computation time. Fig. 1 displays the relative prediction
accuracy and run time. TV-`1 predicts best on average over the
various classification tasks. However, it is followed closely
by social sparsity which outperforms graph-net2. The SVM
performs much worse than the spatial sparsity, aside from the
VBM data where we find that all models perform similarly.

In terms of run time, we find that graph-net is on average
4 times faster than TV-`1, but social sparsity is 3 times faster
than graph-net. The SVM-based decoder is 20 times faster
than social sparsity, ie 240 times faster than TV-`1.

Finally, an important aspect of the brain decoders is whether
they segment well the brain regions that support the decoding.
Such a question is hard to validate, yet there is evidence that
TV-`1 is a good approach [5]. Fig. 2 displays the decoder maps
for the object-recognition tasks. For these tasks, we expect

2All differences are significant in a Wilcoxon rank test.
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Fig. 1. Prediction accuracy and computation time for different classifica-
tion tasks from brain images: 14 on the Haxby dataset, and gender prediction
on OASIS. Values are displayed relative to the mean over 4 classifiers: TV-
`1, graph-net, social sparsity, and a linear SVM with 20% univariate feature
selection. Each subject of the Haxby study gives one data point.

prediction to be driven by the functional areas of the visual
cortex [27]. Indeed, the maps outline regions in known visual
areas. The graph-net maps are much more scattered and less
structured than the others. Conversely, the social sparsity maps
are sparser and outline a smaller number of clusters.

V. CONCLUSION: BE SOCIAL

Brain decoders benefit strongly from spatial sparsity that
helps them narrow on regions important for prediction. Total
variation is a powerful and principled solution, but it comes
with a hefty computational cost. Social sparsity can be used to
introduce penalties on local neighborhoods in the image. It is
more heuristic, as it does not minimize a known convex cost.
We find empirically that it performs very slightly less well
that TV-`1 in terms of prediction accuracy, but is more than
ten times faster. The corresponding decoder maps are more
sparse and focus on a smaller number of regions than TV-`1.
Social sparsity outperforms graph-net, the faster contender to
TV-`1, on speed, accuracy, and interpretability. We have found
that it strikes a very interesting balance for brain decoding:
much faster and almost as good for prediction as TV-`1. A full
social-sparsity model-fit with hyper-parameter selection takes
only 20 times longer than a simple SVM with default hyper-
parameters. With social-sparsity, spatially-structured brain de-
coders are fast: typically 30 s with parameter selection on a
2 GHz i7 CPU.
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Fig. 2. Decoder maps for the object-classification task – Top: weight maps for the face-versus-house task. Overall, the maps segment the right and left
parahippocampal place area (PPA), a well-known place-specific regions, although the left PPA is weak in TV-`1, spotty in graph-net, and absent in social
sparsity. Bottom: outlines at 0.01 of the other tasks. Beyond the PPA, several known functional regions stand out such as primary or secondary visual areas
around the prestriate cortex as well as regions in the lateral occipital cortex, responding to structured objects [27]. Note that the graph-net outlines display
scattered small regions even thought the value of the contours is chosen at 0.01, well above numerical noise.
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