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Equivalence of finite dimensional input-output models of solute

transport and diffusion in geosciences
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January 19, 2017

Abstract

We show that for a large class of finite dimensional input-output positive systems that represent

networks of transport and diffusion of solute in geological media, there exist equivalent multi-rate

mass transfer and multiple interacting continua representations, which are quite popular in geo-

sciences. Moreover, we provide explicit methods to construct these equivalent representations. The

proofs show that controllability property is playing a crucial role for obtaining equivalence. These

results contribute to our fundamental understanding on the effect of fine-scale geological structures

on the transfer and dispersion of solute, and, eventually, on their interaction with soil microbes and

minerals.
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1 Introduction

Underground media are characterized by their high surface to volume ratio and by their slow solute move-
ments that overall promote strong water-rock interactions [27, 29]. As a result, water quality strongly
evolves with the degradation of anthropogenic contaminants and the dissolution of some minerals. Chem-
ical reactivity is first determined by the residence time of solutes and the input/output behavior of the
system, as most reactions are slow and kinetically controlled [28, 22]. Especially important are exchanges
between high-flow zones where solutes are transported over long distances with marginal reactivity and
low-flow zones in which transport is limited by slow diffusion but reactivity is high because of large
residence time [18, 7]. It is for example the case in fractured media where solute velocity can reach
some meters per hour in highly transmissive fractures [11, 13] but remains orders of magnitude slower in
neighboring pores and smaller fractures giving rise to strong dispersive effects [14, 15]. More generally
wide variability of transfer times, high dispersion, and direct interactions between slow diffusion in small
pores and fast advection in much larger pores are ubiquitous in soils and aquifers [8]. They are also the
most characteristic features of underground transport as long as it remains conservative (non-reactive).
The dominance of these characteristic features up to some meters to hundreds of meters have prompted
the development of numerous simplified models starting from the double-porosity concept [31].

In double-porosity models, solutes move quickly by advection in a first homogeneous porosity with
a small volume representing focused fast-flow channels and slowly by diffusion in a second large homo-
geneous porosity. Exchanges between the two porosities is diffusion-like, i.e. directly proportional to
the differences in concentrations. Such models have been widely extended to account not only for one
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diffusive-like zone but for many of them with different structures and connections to the advective zone
[18, 26]. Such extensions are thought to model both the widely varying transfer times and the rich water-
rock interactions. The two most famous ones are the Multi-Rate Mass Transfer model (MRMT) [7, 18]
and Multiple INteracting Continua model (MINC). They are made up of an infinity of diffusive zones
deriving from analytic solutions of the diffusion equation in layered, cylindrical or spherical impervious
inclusions (MRMT) or in series (MINC). Between the single and infinite diffusive porosities of the dual-
porosity and these models, many intermediary models with finite numbers of diffusive porosities have
been effectively used and calibrated on synthetic, field, or experimental data showing their relevance and
usefulness [10, 2, 24, 32, 33].

Theoretical grounds are however missing to identify classes of equivalent porosity structures, effective
calibration capacity on accessible tracer test data, and influence of structure on conservative as well
as chemically reactive transport. One can then naturally wonder which representation suits the best
experimental data, and if the two particular MRMT and MINC models are not two restrictive structures.
This is exactly the problem we address in this work, from a theoretical approach based on linear algebra.

More precisely, we study the equivalence problem for a wide class of network structures and provide
necessary and sufficient conditions, making explicit the mathematical proofs. We stick to the framework
of stationary flows (in the mobile zone) and assume water saturation in the immobile zones. More
concretely, we consider a system of n compartments interconnected by diffusion, whose water volumes
Vi (i = 1 · · ·n) are assumed to be constant over the time. One reservoir is subject to an advection of a
solute. We shall called mobile zone this particular reservoir, and all the others n − 1 reservoirs will be
called immobile zones (see Fig. 1).
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Figure 1: Example of a network with one mobile zone

We aim at describing the time evolution of the concentrations Si (i = 1 · · ·n) of the solute in the n
tanks. The solute is injected in tank 1 with a water flow rate Q at a concentration Sin, and withdrawn
from the same tank 1 at the same water flow rate Q with a concentration Sout = S1. Thus, the tank 1
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plays the role of the mobile zone. We represent this system by a system of n ordinary equations:

Ṡ1 =
Q

V1
(Sin − S1) +

n
∑

j=2

d1j
V1

(Sj − S1)

...
...

Ṡi =
∑

j 6=i

dij
Vi

(Sj − Si)

...
...

where the parameters dij = dji (i 6= j) denote the diffusive exchange rates of solute between reservoirs i
and j. For sake of simplicity, we shall assume

Q

V1
= 1

which is always possible by a change of the time scale of the dynamics. In the following we adopt an
input-output setting in matrix form:

Ẋ = AX +Bu
y = CX

(1)

where X denotes the vector of the concentrations Si (i = 1 · · ·n), u the input that is u = Sin and y the
output y = Sout = S1. The column and row matrices B and C are as follows

B =











1
0
...
0











and C =
[

1 0 . . . 0
]

and the matrix A satisfies the following properties.

Assumptions 1.1. There exist matrices V and M such that

A = −BBt − V −1M

where V is a positive diagonal matrix and M is a symmetric matrix that fulfills

i. M is irreducible (i.e. the graph with nodes Pi, and edges
−−→
PiPj when Mij 6= 0 is strongly connected)

ii. Mii > 0 for any i

iii. Mij ≤ 0 for any i 6= j

iv.
∑

j Mij = 0 for any i

The diagonal terms of the matrix V represent the volumes of the n zones, and the off diagonal terms
Mi,j of the matrix M are the (opposite) of the diffusive exchange rate parameters between zones i and j
(equal to 0 if i is not directly connected to j). Properties i. and iv. are related to the connectivity of the
graph between zones and the mass conservation (i.e. Kirchoff’s law). One can proceed to the following
reconstruction of matrices V and M from a given matrix A that fulfills Assumptions 1.1.

Lemma 1.1. Let A fulfills Assumptions 1.1. For any i = 2 · · ·n, there exists a permutation π of
{1, · · · , n} and an integer l < n such that Aπ(j),π(j+1) 6= 0 (j = 1 · · · l) with π(1) = 1 and π(l + 1) = i.
Define then the numbers

Vπ(j+1) = Vπ(j)

Aπ(j+1)π(j)

Aπ(j)π(j+1)
j = 1 · · · l (2)

with V1 = 1. Then V is the diagonal matrix with V1, · · · , Vn as diagonal entries, and M = −V (A+BBt).
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Proof. Under Assumptions 1.1, there exists for any i 6= 1 a path from node 1 to i in the direct graph
associated to the matrix A, visiting nodes only once, for which one can associate a permutation π such
that π(1) = 1, π(l + 1) = i with Aπ(j)π(j+1) 6= 0 for j = 1 · · · l, where l < n is the path length.
Furthermore, one has (by Assumptions 1.1)

Aπ(j)π(j+1)

Vπ(j)
=

Aπ(j+1)π(j)

Vπ(j+1)
, j = 1, · · · , l.

One can then determine recursively the volumes Vπ(1) · · ·Vπ(l+1) with the expression (2) from Vπ(1) = V1

that can be chosen equal to 1. From the diagonal matrix V whose diagonal entries are the (non-null)
volumes V1 · · ·Vn, one can then reconstruct the matrix M = −V (A+BBt).

MatricesA that fulfill Assumption 1.1 are compartmental matrices, that have been extensively studied
in the literature (see for instance [20, 30]). In the present work, we focus on properties for the specific
structure of compartmental matrices that we consider. We first define in Section 4 the two particular
structures denoted MRMT and MINC, and give some of their properties. In Sections 5 and 6 we state
and prove our main results about the equivalence of any network structure with these two particular
structures, under Assumption 1.1 and an additional condition about the controllability. Section 7 discuss
the crucial role played by this controllability assumption to obtain the equivalence. Finally, we draw
conclusions with insights for geosciences.

2 Notations and preliminary results

For sake of simplicity, we introduce the following notations

• for any vector X ∈ R
n and matrix Z ∈ Mn,n(R), we denote

X̃ = [Xi]i=2···n , Z̃ = [Zij ] i=2···n
j=2···n

.

• diag (X) denotes the diagonal matrix whose diagonal elements are the entries of the vector X

• we denote by Vand (x1, · · · , xm) the (square) Vandermonde matrix

Vand (x1, · · · , xm) =







1 x1 · · · xm−1
1

...
...

...
...

1 xm · · · xm−1
m







• we define the vector in R
n 1 =







1
...
1






.

Lemma 2.1. Under Assumptions 1.1, the domain R
n
+ is invariant by the dynamics for any non-negative

control u.

Proof. Take a vector X that is on the boundary of Rn
+ and set I = {i ∈ 1 · · ·n |Xi = 0}. At such a

vector, one has

Ẋi =
∑

j /∈

Ai,jXj +Biu , i ∈ I

Notice that the matrix A is Metzler (that is all its non-diagonal terms are non-negative) and B is a
non-negative vector. Consequently one has

Ẋi ≥ 0 , i ∈ I

which proves that any forward trajectory cannot leave the non-negative cone.
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Remark 2.1. Under Assumptions 1.1, the linear system (1) is positive in the sense that for any non-
negative initial state and non negative control u(·), state and output are non-negative for any positive
time (see [12]).

Lemma 2.2. Under Assumptions 1.1, the matrix M̃ is symmetric definite positive.

Proof. The matrix M̃ is symmetric and consequently it is diagonalizable with real eigenvalues. Its
diagonal terms are positive and off-diagonal negative or equal to zero. Furthermore one as

M̃ii = Mi+1,i+1 = −
∑

j 6=i+1

Mi+1,j = −
∑

j 6=i

M̃i,j −Mi+1,1 ≥ −
∑

j 6=i

M̃i,j

The matrix M̃ is thus (weakly) diagonally dominant. As each irreducible block of the matrix M̃ has to
be connected to the mobile zone (otherwise the matrix A won’t be irreducible), we deduce that at least
one line of each block has to be strictly diagonally dominant. Then, each block is irreducibly diagonally
dominant and thus invertible by Taussky Theorem (see [19, 6.2.27]). Finally, the eigenvalues of the
matrix M̃ belong to the Gershgorin discs

G(M̃) =
⋃

i







λ ∈ R | |λ− M̃i,i| ≤
∑

j 6=i

|M̃i,j |







and we deduce that each eigenvalues λ̃i of M̃ are positive. The matrix M̃ is thus symmetric definite
positive.

Lemma 2.3. Under Assumptions 1.1, the matrix A is non singular. Furthermore, the dynamics admits
the unique equilibrium 1u, for any constant control u

Proof. Let X be a vector such that AX = 0. Then, one has BBtX = −V −1MX or equivalently

MX = −V1X1B .

Let us decompose the matrix M as follows

M =

[

M11 L

L′ M̃

]

where L is a row vector of length n− 1. Then equality MX = −V1X1B amounts to write

{

M11X1 + LX̃ = −V1X1

L′X1 + M̃X̃ = 0

M̃ being invertible (Lemma 2.2), one can write X̃ = −M̃−1L′X1 and thus X1 has to fulfill

(M11 − LM̃−1L′)X1 = −V1X1

From Assumptions 1.1, one has M1 = 0 which gives

{

M11 + L1̃ = 0

L′ + M̃ 1̃ = 0

that implies M11 − LM̃−1L′ = 0. We conclude that one should have X1 = 0 and then X̃ = 0, that is
X = 0. The matrix A is thus invertible.

Finally, the system admits an unique equilibrium X⋆ = −A−1Bu for any constant control u. As
Assumptions 1.1 imply the equality A1 = −B, we deduce that the equilibrium is given by X⋆ = 1u.
Lemma 2.4. Under Assumptions 1.1, the sub-matrix Ã is diagonalizable with real negative eigenvalues.
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Proof. Notice first that the matrix Ã can be written as Ã = −Ṽ −1M̃ . The matrix Ṽ being diagonal
with positive diagonal terms, one can consider its square root Ṽ 1/2, defined as a diagonal matrix with
√

Ṽi terms on the diagonal, and its inverse Ṽ −1/2. Then, one has

Ṽ 1/2ÃṼ −1/2 = −Ṽ −1/2M̃Ṽ −1/2

which is symmetric. So Ã is similar to a symmetric matrix, and thus diagonalizable. Let λ be an
eigenvalue of Ã. There exist an eigenvector X 6= 0 such that

ÃX = λX ⇒ X ′Ṽ (ÃX) = λX ′Ṽ X ⇔ X ′M̃X = −λX ′Ṽ X

As M̃ is definite positive (Lemma 2.2) as well as Ṽ , we conclude that λ has to be negative.

3 About controllability and observability

We recall the usual definitions of controllability and observability of single-input single-output systems
(A,B,C) of dimension n (see for instance [21]).

Definitions 3.1.

• The controllability matrix associated to the pair (A,B) is given by

CA,B = [B,AB, · · · , An−1B]

• The observability matrix associated to the pair (A,C) is given by

OA,C =











C
CA
...

CAn−1











• A system Ẋ = AX + Bu is said to be controllable when rk (CA,B) = n, and observable for
y = CX when rk (OA,C) = n.

• To a given triplet (A,B,C), we associate the linear operator FA,B,C : L2(R+,R) 7→ L2(R+,R) that

is defined as y(·) = FA,B,C [u(·)] with y(·) = CX(·) where X(·) is solution of Ẋ = AX +Bu(·) for
the initial condition X(0) = 0. We say that a triplet (A,B,C) is a minimal representation if
among all the triplets (A†, B†, C†) such that FA†,B†,C† = FA,B,C, the dimension of A is minimal.

We recall a well known result of the literature on linear input-output systems [21, 2.4.6].

Theorem 3.1. (Kalman) A representation (A,B,C) is minimal if and only if the pairs (A,B) and
(A,C) are respectively controllable and observable.

The particular structures of the matrices A, B and C that we consider allow to show the following
property.

Lemma 3.1. Under Assumptions 1.1, (A,B) controllable is equivalent to (A,C) observable.

Proof. Notice first that one has

V AV −1 = −BBt −MV −1 = (−BBt − V −1M)′ = A′

and by recursion
V AkV −1 = (A′)k

Then, one can write

O′
A,C = [B,A′B, (A′)2B, · · · ] = V [V −1B,AV −1B,A2V −1B, · · · ]
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But one has
V −1B = V −1

1 B

Thus
V1O

′
A,C = V [B,AB,A2B, · · · ] = V CA,B

and we conclude
rk (OA,C) = rk (CA,B).

We also recall a nice result about tridiagonalization of single-input single-output systems, from [16,
Lemma 2.2].

Proposition 3.1. Let T be an invertible transformation, then one has

T−1AT =























⋆ y2
0

x2
. . .

. . .

. . .
. . .

. . .

. . .
. . . yn

0
xn ⋆























, T−1B =

















x1

0
...
...
0

















, CT =
[

y1 0 · · · · · · 0
]

with xi 6= 0 and yi 6= 0 (i = 1 · n) if and only if

T−1CA,B =

















c1 ⋆ · · · ⋆
. . .

. . .
...

. . . ⋆

0
cn

















and OA,CT =













o1
0

⋆
. . .

...
. . .

. . .

⋆ · · · ⋆ on













with ci 6= 0, oi 6= 0 (i = 1 · n) . Furthermore, one has x1 = c1, y1 = o1, xi+1 = ci+1/ci, yi+1 = oi+1/oi
(i = 1 · · ·n− 1).

4 TheMulti-Rate Mass Transfer and Multiple INteracting Con-

tinua configurations

We consider two particular structures of networks whose (A,B,C) representations fulfill Assumption 1.1.

Definition 4.1. A matrix A that fulfills Assumptions 1.1 and such that the sub-matrix

Ã = [Aij ] i=2···n
j=2···n

is diagonal is called a MRMT (multi-rate mass transfer) matrix.

MRMT matrices correspond to particular arrow structure of the matrix A:

A =





























− Q
V1

−
∑

i
d1i

V1

d12

V1

· · · · · · · · · d1n

V1

d12

V2

− d12

V2

0 · · · · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

d1n

Vn
0 · · · · · · 0 − d1n

Vn





























or star connections f the immobile part of depth one, where all the immobile zones are connected to the
mobile one (see Fig. 2).
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Figure 2: Example of a MRMT network

Definition 4.2. A matrix A that fulfills Assumptions 1.1 and which is tridiagonal is called a MINC
(Multiple INteracting Continua) matrix.

MINC matrices correspond to particular structure:

A =





























Q
V1

− d12

V1

d12

V1

d12

V2

− d12+d23

V2

d23

V2 0
. . .

. . .
. . .

0
. . .

. . .
. . .

dn−1,n

Vn
−

dn−1,n

Vn





























where the immobile parts are connected in series, of length n− 1, one of them being connected to the
mobile zone (see Fig. 3).
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Figure 3: Example of a MINC network

In the following, we give properties on eigenvalues for MRMT matrices only, because it is easier to be
proved for this particular structure. In the next section, we shall show that MINC and MRMT structures
are indeed equivalent, and as a consequence eigenvalues of MINC matrices fulfill the same properties.

Lemma 4.1. A MRMT matrix is Hurwitz (i.e. all the real parts of its eigenvalues are negative).

8



Proof. Take a number

γ > max

(

Q

V1
+
∑

i

d1i
V1

,
d12
V2

, · · · ,
d1n
Vn

)

.

Then the matrix γI +A is an irreducible non-negative matrix. From Perron-Frobenius Theorem (see [6,
Th 1.4]), r = ρ(γI +A) is a single eigenvalue of γI +A and there exists a positive eigenvector associated
to this eigenvalue. That amounts to claim that there exists a positive eigenvector X of the matrix A for
a single (real) eigenvalue λ = r − γ, and furthermore that any other eigenvalue µ of A is such that

−r < γ + Re (µ) < r ⇒ Re (µ) < λ .

From the particular structure of MRMT matrix, such a vector X has to fulfill the equalities

−
Q

V1
+

n
∑

i=2

d1i
V1

(Xi −X1) = λX1

d1i(X1 −Xi) = λViXi (i = 2 · · ·n)

from which one obtains

−
Q

V1
= λ

(

X1 +

n
∑

i=2

Vi

V1
Xi

)

.

The vector X being positive, we deduce that λ is negative.

As 1u is an equilibrium of the system (1) for any constant control u, this Lemma allows then to claim
the following result.

Lemma 4.2. For any constant control u, 1u is a globally exponentially stable of the dynamics (1).

Finally, we characterize the minimal MRMT representations as follows.

Lemma 4.3. For a minimal representation (A,B,C) where A is MRMT, the eigenvalues of the matrix
Ã are distinct.

Proof. The eigenvalues of Ã for the MRMT structure are λi = −d1i/Vi (i = 2 · · ·n). If there exist i 6= j
in {2, · · · , n} such that λi = λj = λ, one can consider the variable

Sij =
Vi

Vi + Vj
Si +

Vj

Vi + Vj
Sj

instead of Si, Sj and write equivalently the dynamics in dimension n− 1:

Ṡ1 =
Q

V1
(Sin − S1) +

∑

k≥2,k 6=i,j

d1k
V1

(Sk − S1) +
d1ij
Vij

(Sij − S1)

...
...

Ṡk =
d1k
Vk

(S1 − Sk) k ∈ {2, · · · , n} \ {i, j}

...
...

Ṡij =
d1ij
Vij

(S1 − Sij)

with Vij = Vi + Vj and d1ij = −(Vi + Vj)λ, which show that (A,B,C) is not minimal.

In the coming sections, we address the equivalence problem of any network structure that fulfill As-
sumption 1.1 with either a MRMT or a MINC structure. There are many known ways to diagonalize
the sub-matrix Ã or tridiagonalize the whole matrix A to obtain matrices similar to A with an arrow
or tridiagonal structure. The remarkable feature we prove is that there exist such transformations that
preserve the signs of the entries of the matrices (i.e. Assumption 1.1 is also fulfilled in the new coordi-
nates) so that the equivalent networks have a physical interpretation.

For a system (A,B,C) that fulfills Assumption 1.1, we adress in the two coming Sections the problem
of finding equivalent MRMT or MINC structure (which are two other positive realizations [5, 25, 4] of
the input-output system).
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5 Equivalence with MRMT structure

We first give sufficient conditions to obtain the equivalence with MRMT.

Proposition 5.1. Under Assumption 1.1, take an invertible matrix P such that P−1ÃP = ∆, where ∆
is diagonal. If all the entries of the vector P−11̃ are non-null and the eigenvalues of Ã are distinct, the
matrix

R =

[

1 0
0 −P∆−1diag (P−1A(2 : n, 1))

]

is invertible and such that R−1AR is a MRMT matrix.

Proof. Take a general matrix A that fulfills Assumption 1.1. From Lemma 2.4, Ã is diagonalizable with
P such that P−1ÃP = ∆ where ∆ is a diagonal matrix. Let G be the diagonal matrix

G = −∆−1diag (P−1A(2 : n, 1))

and define R̃ = PG.
Notice that one has A1 = −B from Assumptions 1.1. The n − 1 lines of this equality gives A(2 :
n, 1) + Ã1̃ = 0 and one can write

P−1A(2 : n, 1) + P−1Ã1̃ = 0

⇔ P−1A(2 : n, 1) + P−1ÃPP−11̃ = 0

⇔ P−1A(2 : n, 1) + ∆P−11̃ = 0

Thus having all the entries of the vector P−1A(2 : n, 1) non-null is equivalent to have all the entries of
the vector P−11̃ non null.

All the entries of the vector P−1A(2 : n, 1) being non-null, R̃ is invertible and one has

R̃−1ÃR̃ = G−1P−1ÃPG = G−1∆G = ∆.

One can then consider the matrix R ∈ Mn,n defined as

R =

[

1 0

0 R̃

]

with R−1 =

[

1 0

0 R̃−1

]

One has

R−1AR =





A11 A(1, 2 : n)R̃

R̃−1A(2 : n, 1) ∆





We show now that the matrix R−1AR fulfills Assumptions 1.1.

One has straightforwardly
R−1AR = −BtB −R−1V −1MR .

As the irreducibility of the matrix V −1M is preserved by the change of coordinates given by X 7→ R−1X ,
Property i. is fulfilled.

The diagonal terms of −(R−1AR + BBt) are −A11 − 1 (which is positive) and the diagonal of −∆
which is also positive. Property ii. is thus satisfied.

We have now to prove that column R̃−1A(2 : n, 1) and row A(1, 2 : n)R̃ are positive to show Property
iii. From the definition of the matrix G, one has

∆ = −G−1diag (P−1A(2 : n, 1)) = −diag (R̃−1A(2 : n, 1))

and thus one has
R̃−1A(2 : n, 1) = −∆1̃
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As the diagonal terms of ∆ are negative, we deduce that the vector R̃−1A(2 : n, 1) is positive. As the
matrix VA is symmetric, one can write V11A(1, 2 : n) = A(2 : n, 1)′Ṽ and then

(

V11A(1, 2 : n)R̃
)′

= R̃′Ṽ A(2 : n, 1) = −R̃′Ṽ R̃∆1̃
Notice that the matrix R̃′Ṽ R̃ can be written T ′T with T = Ṽ 1/2R̃, and that the matrix T diagonalizes
the matrix S = Ṽ 1/2ÃṼ −1/2:

T−1ST = R̃−1ÃR̃ = ∆

The matrix S being symmetric, it is also diagonalizable with a unitary matrix U such that U ′SU = ∆.
As the eigenvalues of Ã are distinct, their eigenspaces are one-dimensional and consequently the columns
of any matrix that diagonalizes S into ∆ have to be proportional to corresponding eigenvectors. So the
matrix T is of the form UD where D is a non-singular diagonal matrix. This implies that the matrix
R̃′Ṽ R̃ is equal to D2, which is a positive diagonal matrix. As −∆1̃ is a positive vector, we deduce that
the entries of A(1, 2 : n)R̃ are positive.

Notice that 1̃ is necessarily an eigenvector of R̃−1 (or R̃) for the eigenvalue 1: as one has A1 = −B,
one has also A(2 : n, 1) = −Ã1̃ and then

R̃−11̃ = −R̃−1Ã−1A(2 : n, 1) = −∆−1R̃−1A(2 : n, 1) = −∆−1diag (R̃−1A(2 : n, 1))1̃ = 1̃
Finally, one has

(R−1AR+BBt)1 = R−1A1+B = −R−1B +B = 0

which proves that Property iv. is verified.

We come back to the condition required by Proposition 5.1 and show that it is necessarily fulfilled for
minimal representations (we recall from Lemma 3.1 that controllability implies a minimal representation
in our framework).

Proposition 5.2. Under Assumptions 1.1, the entries of the vector P−11̃ are non null for any P such
that P−1ÃP = ∆ with ∆ diagonal, when the pair (A,B) is controllable. Furthermore, the eigenvalues of
Ã are distinct.

Proof. From Lemma 2.4, Ã is diagonalizable with P such that P−1ÃP = ∆ where ∆ is a diagonal
matrix. Posit X = P−11̃ . One has

P−1ÃkP = ∆k =⇒ P−1Ãk1̃ = ∆kX , k = 1, · · ·

This implies

P−1
[1̃ , Ã1̃ , · · · , Ãn−11̃] = diag (X)V and(λ1, · · · , λn)

or equivalently
P−1CÃ,1̃ = diag (X)V and(λ1, · · · , λn−1)

We deduce that when CÃ,1̃ is full rank, diag (X) and V and(λ1, · · · , λn−1) are non-singular, that is all
the entries of X are non-null and the eigenvalues λ1, · · · , λn−1 are distinct. We show now that the
controllability of the pair (A,B) implies that the pair (Ã, 1̃) is also controllable.

From the property A1 = −B, one can write

A =

[

A11 L

−Ã1̃ Ã

]

where L is a row vector of length n− 1. Then one has

A1 =

[

−1
0̃

]

, A21 =

[

−A11

Ã1̃ ]

, A31 =

[

−A2
11 + LÃ1̃

A11Ã1̃ + Ã21 ]
11



that are of the form

Ak1 =

[

αk

Pk

]

with Pk = Ãk−11+ ∑

j≤k−2

βkjÃ
j1 , for k = 2, 3

By recursion, one obtains

Pk+1 = −αkÃ1̃ + Ãk1+ ∑

j≤k−2

βkjÃ
j+11 = Ãk1+ ∑

j≤k−1

βk+1,jÃ
j1 , for k = 2, · · ·

Then, one can write

−CA,B = CA,A1 =

[

α1 α2 · · · αn

0̃ P2 · · · Pn

]

from which one deduces

rk (CA,B) = n ⇒ rk (P2, · · · , Pn) = n− 1 ⇒ rk (Ã1, · · · Ãn−11) = n− 1

One can also write [Ã1, · · · Ãn−11] = ÃCÃ,1̃ and as Ã is invertible (Lemma 2.4), we finally obtain that
CÃ,1̃ is full rank.

Finally, Propositions 5.1 and 5.2 lead to the main result of this section.

Theorem 5.1. Any minimal representation (A,B,C) that fulfills Assumptions 1.1 is equivalent to a
MRMT structure.

6 Equivalence with MINC structure

Take a matrix A that fulfills Assumption 1.1 and such that that pair (A,B) is controllable. As we have
already shown that such representation (A,B,C) is minimal and equivalent to a MRMT configuration,
we can assume without any loss of generality that the matrix A has the structure

A =

[

A11 A(1, 2 : n)

A(2 : n, 1) ∆

]

where ∆ is a square diagonal matrix (of size n− 1) with distinct negative eigenvalues. We denote by V
the diagonal matrix of the volumes associated to the matrix A with V1 = 1, as given by Lemma 1.1 We
shall consider a tridiagonalization of this matrix. For this purpose, we recall the Lanczos algorithm.

Definition 6.1. (Lanczos algorithm) Let S be a symmetric matrix of size m and q1 be a vector of norm
equal to one. One defines the sequence πk = (βk, qk, rk) as follows

• β0 = 0, q0 = 0, r0 = q1,

• if βk 6= 0, define qk+1 = rk/βk, αk+1 = q′k+1Sqk+1, rk+1 = (S − αk+1I)qk+1 − βkqk and βk+1 =
||rk+1||.

One can straightforwardly check that the vectors qk provided by this algorithm are orthogonal and of
norm equal to one. The algorithm stops for k < m (“breakdown”) or k = m. A non-breakdown condition
for this algorithm is given in [17, Th 10.1.1]:

Proposition 6.1. When rk (CS,q1) = m, the sequence πk is defined up to k = m, and the matrix
Q = [q1 · · · qm] verifies

Q′AQ =























α1 β1
0

β1
. . .

. . .

. . .
. . .

. . .

. . .
. . . βm−1

0
βm−1 αm























where the numbers βi (i = 1 · · ·m) are positive.
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Lemma 6.1. The Lanczos algorithm applied to the matrix ∆ with q1 = A(2 : n, 1)/||A(2 : n, 1)|| provides
an orthogonal unitary matrix Q such that Q′∆Q is symmetric tridiagonal with positive terms on the sub-
(or super-) diagonal.

Proof. As the matrix ∆ is diagonal, one has

C∆,q1 = Vand (λ1, · · · , λn−1)diag (q1)

where λi (i = 1 · · ·n − 1) are the diagonal elements of ∆. Furthermore, as Assumptions 1.1 imply the
equality A1 = −B, one has

q1 = −
1

√

∑n−1
i=1 λi







λ1

...
λn−1







As λi are all distinct and non null, q1 is a non null vector and the matrices Vand (λ1, · · · , λn−1), diag (q1)
are full rank. Therefore C∆,q1 is full rank and Proposition 6.1 can be used.

Let us recall the well known Cholesky decomposition of symmetric matrix.

Theorem 6.1. Let S be a symmetric definite positive matrix. Then, there exists an unique upper
triangular matrix U with positive diagonal entries such that S = U ′U .

We are ready now to explicit a tridiagonalization of the matrix A with positive entries on the sub-
and super-diagonals.

Proposition 6.2. Let A be a MRMT matrix such that (A,B) is controllable. Let Q be the orthogonal
matrix given by the Lanczos algorithm applied to ∆ with q1 = A(2 : n, 1)/||A(2 : n, 1)||. Let U be
the upper triangular matrix with positive diagonal entries given by the Cholesky decomposition of the
symmetric matrix Q′Ṽ Q. Then the matrix

T =

[

1 0
0 QU−1

]

is such that T−1AT is symmetric tridiagonal with positive entries on the sub- (or super-)diagonal.

Proof. Lemma 6.1 provides the existence of the matrix Q such that Q′∆Q is tridiagonal with positive
terms on the sub- and super-diagonal. For convenience, we define the matrices

P =

[

1 0
0 Q

]

and W =

[

1 0
0 U

]

.

Clearly, P is orthogonal,W is upper triangular with positive diagonal, and one has T = PW−1. Consider
the matrix

P ′AP =

[

A11 A(1, 2 : n)Q

Q′A(2 : n, 1) Q′∆Q

]

.

For the particular choice of the first column of Q, one has

Q′A(2 : n, 1) =
1

||A(2 : n, 1)||











1
0
...
0











and Q′∆Q is triangular with positive sub-diagonal. Therefore, P ′AP is an upper Hessenberg matrix
with positive entries on its sub-diagonal. Consider then

P ′CA,B = P ′
[

B AB A2B · · ·
]

=
[

P ′B (P ′AP )P ′B (P ′A2P )P ′B · · ·
]
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Notice that one has P ′B = B and obtains recursively

P ′B =

















h1

0
...
...
0

















, (P ′AP )B =





















⋆
h2

0
...
...
0





















, (P ′A2P )B =



















⋆
⋆
h3

0
...
0



















, · · ·

where the number hi are positive. Therefore, the matrix P ′CA,B is upper triangular with positive
diagonal, as the matrix W . Then T−1CA,B = WP ′CA,B is also upper triangular with positive entries on
its diagonal. Proposition 3.1 implies that T−1AT is tridiagonal with positive entries on its sub-diagonal.
Let us show that T−1AT is also symmetric. One has

T−1AT =

[

A11 A(1, 2 : n)QU−1

UQ′A(2 : n, 1) UQ′∆QU−1

]

As the matrix V A is symmetric by Assumption 1.1, one can write
(

A(1, 2 : n)QU−1
)′

= 1
V1

(U−1)′Q′Ṽ A(2 : n, 1)

= 1
V1

(U−1)′U ′UQ′A(2 : n, 1)

= 1
V1

UQ′A(2 : n, 1)

and as we have chosen V1 = 1 we obtain
(

A(1, 2 : n)QU−1
)′

= UQ′A(2 : n, 1). Consider now the

sub-matrix UQ′∆QU−1. Notice first that the decomposition Q′Ṽ Q = U ′U implies the equalities U ′ =
Q′Ṽ QU−1 and (U−1)′ = UQ′Ṽ −1Q. Then on can write

(

UQ′∆QU−1
)′

= (U−1)′Q′∆QU ′

= (UQ′Ṽ −1Q)Q′∆Q(Q′Ṽ QU−1)

= UQ′Ṽ −1∆Ṽ QU−1

= UQ′∆QU−1

The matrix T provided by Proposition 6.2 possesses the following property.

Proposition 6.3. The vector X = T−11, where the matrix T is provided by Proposition 6.2, is positive.

Proof. The matrices A+BB′ and T−1AT +BB′ have non-negative entries outside their main diagonals.
So there exists a number γ > 0 such that I + 1

γ (A + BB′) and I + 1
γ (T

−1AT + BB′) are non-negative
matrices.

By Assumption 1.1, one has A1 = −B, which implies the property
(

I +
1

γ
(A+BB′)

) 1 = 1 .

Thus I + 1
γ (A + BB′) is a stochastic matrix, and we know that its maximal eigenvalue is 1 (see for

instance [6, Th 5.3]). As I + 1
γ (A+BB′) and I + 1

γ (T
−1AT +BB′) are similar:

T−1

(

I +
1

γ
(T−1AT +BB′)

)

T = I +
1

γ
(A+BB′),

the maximal eigenvalue of I + 1
γ (T

−1AT + BB′) is also 1. Furthermore, as A + BB′ is irreducible by

Assumption 1.1, I + 1
γ (T

−1AT +BB′) is also irreducible. The property A1 = −B implies
(

I +
1

γ
(T−1AT +BB′)

)

X = X +
1

γ
(T−1A1+B) = X +

1

γ
(−T−1B +B) = X.

SoX is an eigenvector of I+ 1
γ (T

−1AT+BB′) for its maximal eigenvalue 1. Finally, notice thatX = T−11
implies that the first entry of X is equal to 1. Then, by Perron-Frobenius Theorem (for non-negative
irreducible matrices, see for instance [6, Th 1.4])), we conclude that X is a positive vector.
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We give now our main result concerning the MINC equivalence.

Proposition 6.4. Let A be a MRMT matrix such that (A,B) is controllable and R = Tdiag (T−11),
where T is provided by Proposition 6.2. Then (R−1AR,B,C) is an equivalent representation where
R−1AR is a MINC matrix.

Proof. Let X = T−11 and Ā = R−1AR. Define V̄ = diag (X)2 and M̄ = −V̄ (Ā+BB′). As A+BB′ is
irreducible by Assumption 1.1, the similar matrix Ā + BB′ is also irreducible, as well as M̄ because V
is a diagonal invertible matrix.

By Proposition 6.2, T−1AT is a symmetric tridiagonal matrix with positive terms on the sub- or
super-diagonal. By Proposition 6.3, X is a positive vector, and thus Ā = diag (X)−1(T−1AT )diag (X)
is also a tridiagonal matrix with the same signs outside the diagonal. Thus, M̄ is a tridiagonal matrix
with negative terms on sub- or super-diagonal. Moreover, one has

M̄ = −diag (X)2(diag (X)−1T−1ATdiag (X) + BB′) = −diag (X)T−1ATdiag (X)−X2
1 .BB′.

where X1 = 1. The matrix M̄ is thus symmetric. One has

M̄1 = −diag (X)T−1ATdiag (X)1−BB′1
= −diag (X)T−1ATX −B
= −diag (X)T−1AT (T−11)−B
= −diag (X)T−1A1−B
= diag (X)T−1B −B
= diag (X)B −B
= 0

The matrix M̄ thus fulfills Assumption 1.1 and is tridiagonal: Ā is then a MINC matrix. Finally, one
has B̄ = R−1B = B and C̄ = CR = C.

Finally, Theorem 5.1 and Proposition 6.4 lead to the following result.

Theorem 6.2. Any minimal representation (A,B,C) that fulfills Assumptions 1.1 is equivalent to a
MINC structure.

7 Examples and discussion

Theorems 5.1 and 6.2 show that whatever is the network structure, it is always possible to represent
its input-output map with either a MRMT star or a MINC series structure. But from a state-space
representation (1), it requires the system to be controllable (or minimal). We begin by an example that
illustrates the necessity of the controllability assumption to make the equivalence constructions given in
Sections 5, 6 work.

7.1 Example 1

Consider a network of four reservoirs of volumes (see Fig. 4)

V1 = 1 , V2 = 1 , V3 = 2 , V4 = 3

with the diffusive exchange rate coefficients:

d12 = 1 , d13 = 2 , d14 = 3 , d23 = 3 , d24 = 3

which lead to the dynamics
Ṡ1 = −7S1 + S2 + 2S3 + 3S4 + u

Ṡ2 = S1 − 7S2 + 3S3 + 3S4

Ṡ3 = S1 +
3
2S2 −

5
2S3

Ṡ4 = S1 + S2 − 2S4
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with the matrix

A =









−7 1 2 3
1 −7 3 3
1 3

2 − 5
2 0

1 1 0 −2









At the first look, this structure does not exhibit any special property or symmetry that could make
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Figure 4: Structure of the example

believe that it is non minimal. By construction one has Ã1̃ = −1̃ but the particular matrix A that we
consider satisfies A(2 : 4, 1) = 1̃ . Consequently the vector A(2 : 4, 1) is an eigenvector of the matrix Ã
for the eigenvalue −1. If the multiplicity of −1 was more than 1, then λ = −9.5 should be an eigenvalue
of Ã, as the trace of Ã is −11.5. But an eigenvector X of Ã fulfills

−7X1 + 3X2 + 3X3 = λX1

1.5X1 − 2.5X2 = λX2

X1 − 2X3 = λX3

one should have

(λ+ 7)X1 − 3X2 − 3X3 = 0 with X2 =
1.5

λ+ 2.5
X1 , X3 =

1

λ+ 2
X1 (and X1 6= 0)

which is not possible for λ = −9.5. Then, any matrix P that diagonalizes Ã should have one column
proportional to the eigenvector 1̃ , which amounts to have the vector P−11̃ with exactly one non-null
entry. Thus one cannot apply Proposition 5.1 and transform the system in a equivalent MRMT structure
of the same dimension.

One can check that the pair (A,B) is indeed non controllable, even though the matrix Ã has distinct
eigenvalues, as one has

AB =









−7
1
1
1









, A2B =









55
−8
−8
−8









= −B − 8AB

from which one deduce rk (CA,B) = 2. Indeed, the system admits a minimal representation of dimension
2 that can be found by gathering the immobile zones in one of volume V̄ = V2 + V3 + V4 = 6 and solute
concentration

S̄ =
V2S2 + V3S3 + V4S4

V̄
=

S2 + 2S3 + 3S4

6

One can check that variables (S1, S̄) are solutions of the dynamics

Ṡ1 = −7S1 + 6S̄ + u
˙̄S = S1 − S̄

that gives an equivalent representation (in MRMT or MINC form) with a diffusive exchange rate d̄ = 6
(see Fig. 5).
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Figure 5: Simplified equivalent structure of the example

7.2 Example 2

Consider a network with one mobile zone and four immobile zones of identical volumes Vi = 1 (i = 1 · · · 5),
as depicted on Figure 6 with the following diffusive exchange rates

d12 = 1 , d13 = 2 , d34 = 1 , d35 = 3 , d45 = 1 .
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d   =134

d   =213

d   =112

u y

V  =12

1

3 4
V  =1 V  =1

V  =1
5

V  =1

Figure 6: Example of a network with one mobile and four immobile zones

The structure of this network is neither MRMT nor MINC, and its corresponding matrix A is

A =













−3 1 1 0 0
1 −1 0 0 0
1 0 −3 1 1
0 0 1 −2 1
0 0 1 1 −2













.

One can easily compute the controllability matrix

CA,B =













1 −4 21 −129 906
0 1 −5 26 −155
0 2 −20 182 −1614
0 0 2 −18 136
0 0 6 −82 856
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and check that it is full rank (computing for instance det(CA,B) = −896). Then, the constructions of
Sections 5 and 6 give the following equivalent MRMT and MINC matrices:

AMRMT =













−4 0.3256267 0.1692779 1 1.5050954
8.1710298 −8.1710298 0 0 0
3.3115831 0 −3.3115831 0 0

1 0 0 −1 0
0.5173871 0 0 0 −0.5173871













,

AMINC =













−4 3 0 0 0
1.6666667 −5 3.3333333 0 0

0 3.6 −4.1333333 0.5333333 0
0 0 2.4666667 −2.9207207 0.4540541
0 0 0 0.9459459 −0.9459459













.

We have checked numerically that each matrix A, AMRMT and AMINC give the same co-prime transfer
function

T (z) =
14 + 47z + 45z2 + 13z3 + z4

14 + 117z + 187z2 + 92z3 + 17z4 + z5
.

Differently to the original network, the magnitude of the values of volumes and diffusive exchange
rates are significantly different among compartments, opening the door of possible model reduction
dropping some compartments.

i. For the equivalent MRMT structure, one obtains

V1 = 1 , V2 = 0.0398514 , V3 = 0.0511169 , V4 = 1 , V5 = 2.9090317

with
d12 = 0.3256267 , d13 = 0.1692779 , d14 = 1, d15 = 1.5050954

and notices that zones 2 and 3 are of relatively small volumes (compared to the total volume of
the system which is equal to 5) and connected to the mobile zone with relatively small diffusive
parameters. Then, one may expect to have a good approximation with a reduced MRMT model
dropping zones 2 and 3. Keeping the volumes V1, V4, V5 with the parameters d14, d15, one obtains
the the 3 compartments MRMT matrix

ÃMRMT =





−3.5050954 1 1.5050954
1 −1 0
0 0.5173871 −0.5173871





with the corresponding transfer function

T̃MRMT (z) =
0.5173871+ 1.5173871z+ z2

0.5173871+ 4.8359736z+ 5.0224825z2 + z3
.

ii. For the equivalent MINC structure, one obtains

V1 = 1 , V2 = 1.8 , V3 = 1.6666667 , V4 = 0.3603604 , V5 = 0.1729730

with
d12 = 3 , d23 = 6 , d34 = 0.8888889, d45 = 0.1636231 .

Here, one notices that the two last volumes are relatively small and connected with relatively small
diffusion terms. Keeping the volumes V1, V2, V3 with the parameters d12, d23, one obtains the the
3 compartments MINC matrix

ÃMINC =





−4 3 0
1.6666667 −5 3.3333333

0 3.6 −3.6





with the corresponding transfer function

T̃MINC(z) =
6 + 8.6z + z2

6 + 35.4z + 12.6z2 + z3
.
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The Nyquist plots of the transfer functions T , T̃MRMT and T̃MINC are reported on Figure 7, showing
the quality of the approximation with only three compartments derived from the MRMT or MINC
representations. There exist many reduction methods in the literature, but a reduction through MRMT
or MINC has the advantage to obtain easily reduced models with a physical meaning.

Im

Re 1.2

-0.0422

-0.00671

-2.34

2.34

0.00671

0.0422

0.5

-0.5
0

Figure 7: Nyquist diagrams (black: original system, blue: reduced MRMT, green: reduced MINC)

Remark 7.1. For a positive linear system (A,B), let A+
0 (A,B) be the attainability set from the 0-

state with non-negative controls. The system being positive, one has A+
0 (A,B) ⊂ R

n
+ and for any state

X ∈ A+
0 (A,B), the state Z = R−1X for the equivalent MRMT or MINC structure is also non-negative,

but for a state X ∈ R
n
+ \ A+

0 (A,B), the equivalent state Z = R−1X is not necessarily non-negative
(as the coefficients of the matrix R−1 are not necessarily non-negative). Consequently, one can have an
equivalent input-output representation in MRMT form but with negative concentrations for such states of
the system. Physically, this means that the compartments network has not been filled from a substrate-free
state with a control u(·).This observation might be relevant from a geophysical view point.

8 Conclusion

We have shown that any general network structure is equivalent to a “star” structure (MRMT) or a
“series” structure (MINC), that are commonly considered in geosciences to represent soil porosity in
mass transfers. In this way, we reconcile these two different approaches, showing that they are indeed
equivalent. Practically, this means that when the structure is unknown, or partially known, one can use
equivalently the most convenient structure to identify the parameters or use some a priory knowledge.

In this work we have also shown the crucial role played the controllability property of a given mass
transfer structure. Although there is no particular control issue in the input-output representations of
mass transfers, controllability is a necessary condition to obtain equivalence with the multi-rate mass
transfer (MRMT) structures of depth one, introduced by Haggerty and Gorelick in 1995 [18], or the
multiple interacting continua structure (MINC). This condition is related to the minimal representation
of linear systems, that is not necessarily fulfilled for such structures even for non-singular irreducible
network matrices with distinct eigenvalues.

Although the objective of the present work is to show the exact equivalence of systems, we have shown
on examples that MRMT and MINC representations could allow a simple and efficient way to obtain
reduced models with a good approximation. Further investigations about such reduction techniques will
be the matter of a coming work.

From a geosciences view point, this analysis shows the existence of both identifiable and non-
identifiable porosity structures from input-output data. Input-output signals are typical of conservative
tracer tests where non-reactive tracers are injected in an upstream well and analyzed in a downstream
well [13]. Identifiable structures could thus be calibrated on tracer tests [1]. The porosity structure
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identified is however not unique as demonstrated on the example in Section 7, meaning that a porosity
structure cannot be fully characterized by a tracer test. This is an advantage rather than a drawback
for this class of models as the porosity structure should support both conservative and reactive trans-
port [10, 9]. Reactive transport does not only depend on the input/output concentrations but also on
the concentrations within the diffusion porosities, i.e. from the full state of the system. In a broader
perspective, some further characteristics of the porosity structure might be revealed by reactive tracers
used in combination with conservative tracers.
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