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Equivalence of finite dimensional input-output
models of solute transport and diffusion in

geosciences
A. RAPAPORT, A. ROJAS-PALMA, J.R. DE DREUZY and H. RAMÍREZ C.

Abstract—We show that for a large class of finite dimen-
sional input-output positive systems that represent networks
of transport and diffusion of solute in geological media, there
exist equivalent multi-rate mass transfer and multiple interacting
continua representations, which are quite popular in geosciences.
Moreover, we provide explicit methods to construct these equiv-
alent representations. The proofs show that controllability prop-
erty is playing a crucial role. These results contribute to our
fundamental understanding on the effect of fine-scale geological
structures on the transfer and dispersion of solute.

Index Terms—Equivalent mass transfer models, positive linear
systems, controllability.

I. INTRODUCTION

Underground media are characterized by their high surface
to volume ratio and by their slow solute movements that
overall promote strong water-rock interactions [26], [28]. As a
result, water quality strongly evolves with the degradation of
anthropogenic contaminants and the dissolution of some min-
erals. Chemical reactivity is first determined by the residence
time of solutes and the input/output behavior of the system,
as most reactions are slow and kinetically controlled [27],
[21]. Especially important are exchanges between high-flow
zones where solutes are transported over long distances with
marginal reactivity and low-flow zones in which transport is
limited by slow diffusion but reactivity is high because of large
residence time [18], [7]. It is for example the case in fractured
media where solute velocity can reach some meters per hour in
highly transmissive fractures [11], [13] but remains orders of
magnitude slower in neighboring pores and smaller fractures
giving rise to strong dispersive effects [14], [15]. More gen-
erally wide variability of transfer times, high dispersion, and
direct interactions between slow diffusion in small pores and
fast advection in much larger pores are ubiquitous in soils and
aquifers [8]. The dominance of these characteristic features
up to some meters to hundreds of meters have prompted the
development of numerous simplified models starting from the
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double-porosity concept [30]. In these models, solutes move
quickly by advection in a first porosity with a small volume
representing fast-flow channels and slowly by diffusion in a
second large homogeneous porosity. Exchanges between the
two porosities is diffusion-like. Such models have been widely
extended to account not only for one diffusive-like zone but
for many of them with different structures and connections to
the advective zone [18], [25]. Such extensions are thought
to model both the widely varying transfer times and the
rich water-rock interactions. The two most famous ones are
the Multi-Rate Mass Transfer model (MRMT) [7], [18] and
Multiple INteracting Continua model (MINC) [25]. They are
made up of an infinity of diffusive zones deriving from analytic
solutions of the diffusion equation in layered, cylindrical or
spherical impervious inclusions (MRMT) or in series (MINC).
Between dual-porosity and these models, many intermediary
models of finite dimension have been effectively used and
calibrated on synthetic, field, or experimental data showing
their relevance and usefulness [10], [2], [23], [31], [32].
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Figure 1. Example of a network with one mobile zone (in grey) and several
immobile zones.

Theoretical grounds are however missing to identify classes
of equivalent porosity structures, effective calibration capacity
on accessible tracer test data, and influence of structure on
conservative as well as chemically reactive transport. One can
wonder if MRMT and MINC models are not too restrictive to
represent real structures. In this work we study the equivalence
problem for a wide class of network structures and pro-
vide necessary and sufficient conditions, making explicit the
mathematical proofs. We stick to the framework of stationary
flows (in the mobile zone) and assume water saturation in the
immobile zones. We consider a system of n compartments
interconnected by diffusion (see Fig. 1) whose water volumes
Vi (i = 1, · · · , n) are assumed to be constant over the time.
One reservoir, that we label with the indice 1, is subject to
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an advection of a solute injected at a concentration Sin with
a water flow rate Q, and withdrawn from the same tank 1 at
the same water flow rate Q with a concentration Sout. We call
mobile zone this particular reservoir and all the others n − 1
reservoirs are called immobile zones. The concentrations Si
(i = 1, · · · , n) of the solute in the n tanks are given by the
system of n ordinary equations:

Ṡ1 =
Q

V1
(Sin − S1) +

n∑
j=2

d1j

V1
(Sj − S1)

Ṡi =
∑
j 6=i

dij
Vi

(Sj − Si) i = 2, · · · , n

where the parameters dij = dji (i 6= j) denote the diffusive
exchange rates of solute between reservoirs i and j. We assume
that the network of reservoirs is connected, i.e. the graph with
nodes Pi and edges

−−→
PiPj when dij 6= 0 is strongly connected.

For sake of simplicity, we shall assume Q/V1 = 1, which is
always possible by a change of the time scale of the dynamics.
Let us adopt an input-output setting in matrix form:

Ẋ = AX +Bu
y = CX

(1)

where X denotes the vector of the concentrations Si (i =
1, · · · , n), u = Sin the input and y = Sout the output. The
column and row matrices B and C are as follows

Bt = C =
[

1 0 . . . 0
]

Conversely, we consider an input-output system given in the
matrix form (1) without the knowledge of the volumes Vi
and diffusion parameters dij . This typically happens when the
matrix A is identified from experimental measurements of flux
and concentrations at different physical locations. We show
in Lemma 1.1 that the matrix A has to fulfill the following
properties. In Section II, we shall see that how the properties
of matrix A allow to reconstruct Vi and dij (Lemma 2.3).

Assumptions 1.1: There exist matrices V and M such that

A = −BBt − V −1M

where V is a positive diagonal matrix and M is a symmetric
matrix with entries Mi,j , i, j = 1, . . . , n, that fulfills

i. M is irreducible
ii. Mi,i > 0 for any i

iii. Mi,j ≤ 0 for any i 6= j
iv.
∑
jMi,j = 0 for any i

Lemma 1.1: The matrix A associated to a connected net-
work of reservoirs with the first tank as mobile zone (and with
Q/V1 = 1) fulfills Assumption 1.1.

Proof: The matrix BBt has only one non null term at the
first line and first column which represents the advection rate
Q/V1 = 1 at the first tank. The diagonal terms of the matrix
V represent the volumes of the n reservoirs, therefore V is a
positive diagonal matrix. Condition i. is equivalent to require
that the network is connected. The off-diagonal terms Mi,j

of the matrix M are the opposite of the diffusive exchange
rate parameters dij between reservoirs i and j (equal to 0

if i is not directly connected to j), which provides condition
iii. The diagonal terms Mi,i of the matrix M are the sum
of the diffusive terms dij for the reservoirs j connected to i,
providing therefore condition ii. and iv.

Matrices A that fulfill Assumption 1.1 are compartmental
matrices, that have been extensively studied in the literature
[20], [29], [22]. In the present work, we focus on two specific
structures, MRMT and MINC defined in Section III after
giving notation in Section II. Proofs of equivalence of any
network structure that fulfills Assumption 1.1 with an MRMT
or MINC structure are given in Sections IV and V. Section
VI discusses these constructions on two examples. Finally, we
draw conclusions with insights for geosciences.

II. NOTATIONS AND PRELIMINARY RESULTS

For sake of simplicity, we introduce the following notations
for X ∈ Rn and Z ∈Mn,n(R)

X̃ = [Xi]i=2,··· ,n , Z̃ = [Zi,j ] i=2,··· ,n
j=2,··· ,n

diag (X) denotes the diagonal matrix whose diagonal el-
ements are the entries of the vector X . We denote by
Vand (x1, · · · , xm) the (square) Vandermonde matrix and by
1 the vector in Rn whose entries are equal to 1.

Under Assumptions 1.1, the linear system (1) is positive
in the sense that for any non-negative initial state and non
negative control u(·), state and output are non-negative for
any positive time (see [12]). We denote by CA,B and OA,C
the controllability and observability matrices of the system (1).

Lemma 2.1: Under Assumptions 1.1, the symmetric sub-
matrix M̃ is definite positive.

Proof: The matrix M̃ is symmetric and consequently it
is diagonalizable with real eigenvalues. Its diagonal terms are
positive and off-diagonal negative or equal to zero. Further-
more one as

M̃i,i = Mi+1,i+1 = −
∑
j 6=i+1

Mi+1,j

= −
∑
j 6=i

M̃i,j −Mi+1,1 ≥ −
∑
j 6=i

M̃i,j

The matrix M̃ is thus (weakly) diagonally dominant. As each
irreducible block of the matrix M̃ has to be connected to the
mobile zone (otherwise the matrix A won’t be irreducible), we
deduce that at least one line of each block has to be strictly
diagonally dominant. Then, each block is irreducibly diago-
nally dominant and thus invertible by Taussky Theorem (see
[19, 6.2.27]). Finally, the usual argument based on Gershgorin
discs give the positivity of the eigenvalues.

Lemma 2.2: Under Assumptions 1.1, the matrix A is non
singular. Furthermore, the dynamics admits the unique equi-
librium 1u, for any constant control u.

Proof: Let X be a vector such that AX = 0. Then, one
has BBtX = −V −1MX or equivalently MX = −V1X1B.
Let us decompose the matrix M as follows

M =

[
M11 L

L′ M̃

]
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where L is a row vector of length n−1. Then equality MX =
−V1X1B amounts to write{

M11X1 + LX̃ = −V1X1

L′X1 + M̃X̃ = 0

M̃ being invertible (Lemma 2.1), one can write X̃ =
−M̃−1L′X1 and thus X1 has to fulfill

(M11 − LM̃−1L′)X1 = −V1X1

From Assumptions 1.1, one has M1 = 0 which gives{
M11 + L1̃ = 0

L′ + M̃ 1̃ = 0

that implies M11−LM̃−1L′ = 0. We conclude that one should
have X1 = 0 and then X̃ = 0, that is X = 0. The matrix A
is thus invertible.

Finally, the system admits an unique equilibrium X? =
−A−1Bu for any constant control u. As Assumptions 1.1
imply the equality A1 = −B, we deduce that the equilibrium
is given by X? = 1u.

Lemma 2.3: The matrices V and M can be determined
from the matrix A as V = diag (−BtA−1) and M =
−V (A+BBt).

Proof: One has M = −V A − BBt. As the matrix M
satisfies 1tM = 0, one obtains 1tV A+ 1

tBBt = 0. Remark
that the number 1tB is equal to 1 and as A is invertible by
Lemma 2.2, one obtains 1tV = −BtA−1. The expressions of
V and M follow.

Lemma 2.4: Under Assumptions 1.1, the sub-matrix Ã is
diagonalizable with real negative eigenvalues.

Proof: Notice first that the matrix Ã can be written as
Ã = −Ṽ −1M̃ . The matrix Ṽ being diagonal with positive
diagonal terms, one can consider its square root Ṽ 1/2, defined
as a diagonal matrix with

√
Ṽi terms on the diagonal, and its

inverse Ṽ −1/2. Then, one has

Ṽ 1/2ÃṼ −1/2 = −Ṽ −1/2M̃Ṽ −1/2

which is symmetric. So Ã is similar to a symmetric matrix,
and thus diagonalizable. Let λ be an eigenvalue of Ã. There
exist an eigenvector X 6= 0 such that

ÃX = λX ⇒ X ′Ṽ (ÃX) = λX ′Ṽ X ⇔ X ′M̃X = −λX ′Ṽ X

As M̃ is definite positive (Lemma 2.1) as well as Ṽ , we
conclude that λ has to be negative.

Lemma 2.5: Under Assumptions 1.1, (A,B) controllable is
equivalent to (A,C) observable.

Proof: Notice first that one has

V AV −1 = −BBt −MV −1 = (−BBt − V −1M)′ = A′

and by recursion V AkV −1 = (A′)k. Then, one can write

O′A,C = [B,A′B, · · · , (A′)n−1B]
= V [V −1B,AV −1B, · · · , An−1V −1B].

But one has V −1B = V −1
1 B. Thus

V1O′A,C = V [B,AB, · · · , An−1B] = V CA,B
and we conclude rk (OA,C) = rk (CA,B).

III. THE MINC AND MRMT CONFIGURATIONS

A matrix A that fulfills Assumptions 1.1 and such that
the sub-matrix Ã is diagonal is called a MRMT (Multi-Rate
Mass Transfer) [18] matrix. It represents a star connection
of the immobile zones. A tridiagonal matrix A that fulfills
Assumptions 1.1 is called a MINC (Multiple INteracting
Continua) [25] matrix. It represents a serial connection of the
immobile zones.

Lemma 3.1: A MRMT matrix is Hurwitz.
Proof: Take a number

γ > max

(
Q

V1
+
∑
i

d1i

V1
,
d12

V2
, · · · , d1n

Vn

)
.

Then the matrix γI+A is an irreducible non-negative matrix.
From Perron-Frobenius Theorem [6, Th 1.4], r = ρ(γI + A)
is a single eigenvalue of γI + A and there exists a positive
eigenvector associated to this eigenvalue. That amounts to
claim that there exists a positive eigenvector X of the matrix
A for a single (real) eigenvalue λ = r−γ, and furthermore that
any other eigenvalue µ of A is such that −r < γ+Re (µ) < r.
This implies that one has Re (µ) < λ. From the particular
structure of MRMT matrix, such a vector X has to fulfill the
equalities

− Q
V1

+

n∑
i=2

d1i

V1
(Xi −X1) = λX1

d1i(X1 −Xi) = λViXi (i = 2, · · · , n)

from which one obtains

− Q
V1

= λ

(
X1 +

n∑
i=2

Vi
V1
Xi

)
.

The vector X being positive, we deduce that λ is negative.

Remark 3.1: As 1u is an equilibrium of the system (1)
for any constant control u, we deduce that 1u is a globally
exponentially stable of the dynamics (1).

Lemma 3.2: For a minimal representation (A,B,C) where
A is MRMT, the eigenvalues of the matrix Ã are distinct.

Proof: The eigenvalues of Ã for the MRMT structure
are λi = −d1i/Vi (i = 2, · · · , n). If there exist i 6= j in
{2, · · · , n} such that λi = λj = λ, we consider the variable
Sij (which does not correspond to a physical concentration)

Sij =
Vi

Vi + Vj
Si +

Vj
Vi + Vj

Sj

instead of Si, Sj and write equivalently the dynamics in
dimension n− 1:

Ṡ1 =
Q

V1
(Sin − S1) +

∑
k≥2,k 6=i,j

d1k

V1
(Sk − S1) +

d1ij

Vij
(Sij − S1)

Ṡk =
d1k

Vk
(S1 − Sk) k ∈ {2, · · · , n} \ {i, j}

Ṡij =
d1ij

Vij
(S1 − Sij)

with Vij = Vi +Vj and d1ij = −(Vi +Vj)λ, which show that
(A,B,C) is not minimal.
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In the coming section, we show that any representation that
fulfill Assumption 1.1 is equivalent to a MRMT or MINC
structure (which are two other positive realizations [5], [24],
[4] of the input-output system). Therefore the MINC matrices
inherit of the same properties given in Lemmas 3.1 and 3.2.
There are many known ways to diagonalize the sub-matrix Ã
or tridiagonalize the whole matrix A to obtain matrices similar
to A with an arrow or tridiagonal structure. The remarkable
feature we prove is that there exist such transformations
that preserve the signs of the entries of the matrices (i.e.
Assumption 1.1 is also fulfilled in the new coordinates) so
that the equivalent networks have a physical interpretation. In
the coming section we first show the equivalence with MRMT
and in the following section the equivalence of MRMT with
MINC.

IV. EQUIVALENCE WITH MRMT STRUCTURE

In Proposition 4.1 below we give sufficient conditions for
the equivalence, and then show in Proposition 4.2 that it is
necessarily fulfilled when the system is controllable.

Proposition 4.1: Under Assumption 1.1, take an invertible
matrix P such that P−1ÃP = ∆, where ∆ is diagonal. If all
the entries of the vector P−1

1̃ are non-null and the eigenvalues
of Ã are distinct, the matrix

R =

[
1 0
0 −P∆−1diag (P−1A(2 : n, 1))

]
is invertible and such that R−1AR is a MRMT matrix.

Proof: Take a general matrix A that fulfills Assumption
1.1. From Lemma 2.4, Ã is diagonalizable with P such that
P−1ÃP = ∆ where ∆ is a diagonal matrix. Let G be the
diagonal matrix

G = −∆−1diag (P−1A(2 : n, 1))

and define R̃ = PG. Notice that one has A1 = −B from
Assumptions 1.1. The n− 1 lines of this equality gives A(2 :
n, 1) + Ã1̃ = 0 and one can write

P−1A(2 : n, 1) + P−1Ã1̃ = 0

⇔ P−1A(2 : n, 1) + P−1ÃPP−1
1̃ = 0

⇔ P−1A(2 : n, 1) + ∆P−1
1̃ = 0

Thus having all the entries of the vector P−1A(2 : n, 1) non-
null is equivalent to have all the entries of the vector P−1

1̃

non null. Then R̃ is invertible and one has

R̃−1ÃR̃ = G−1P−1ÃPG = G−1∆G = ∆.

One can then consider the matrix R ∈Mn,n defined as

R =

[
1 0

0 R̃

]
with R−1 =

[
1 0

0 R̃−1

]
One has

R−1AR =

 A11 A(1, 2 : n)R̃

R̃−1A(2 : n, 1) ∆



We show now that the matrix R−1AR fulfills Assumptions
1.1. One has straightforwardly

R−1AR = −BtB −R−1V −1MR .

As the irreducibility of the matrix V −1M is preserved by
the change of coordinates given by X 7→ R−1X , Property
i. is fulfilled. The diagonal terms of −(R−1AR + BBt) are
−A11 − 1 (which is positive) and the diagonal of −∆ which
is also positive. Property ii. is thus satisfied. We have now to
prove that column R̃−1A(2 : n, 1) and row A(1, 2 : n)R̃ are
positive to show Property iii. From the definition of the matrix
G, one has

∆ = −G−1diag (P−1A(2 : n, 1)) = −diag (R̃−1A(2 : n, 1))

and thus one has

R̃−1A(2 : n, 1) = −∆1̃

As the diagonal terms of ∆ are negative, we deduce that
the vector R̃−1A(2 : n, 1) is positive. As the matrix VA is
symmetric, one can write V11A(1, 2 : n) = A(2 : n, 1)′Ṽ and
then(

V11A(1, 2 : n)R̃
)′

= R̃′Ṽ A(2 : n, 1) = −R̃′Ṽ R̃∆1̃

Notice that the matrix R̃′Ṽ R̃ can be written T ′T with T =
Ṽ 1/2R̃, and that the matrix T diagonalizes the matrix S =
Ṽ 1/2ÃṼ −1/2:

T−1ST = R̃−1ÃR̃ = ∆

The matrix S being symmetric, it is also diagonalizable with
a unitary matrix U such that U ′SU = ∆. As the eigenvalues
of Ã are distinct, their eigenspaces are one-dimensional and
consequently the columns of any matrix that diagonalizes S
into ∆ have to be proportional to corresponding eigenvectors.
So the matrix T is of the form UD where D is a non-singular
diagonal matrix. This implies that the matrix R̃′Ṽ R̃ is equal
to D2, which is a positive diagonal matrix. As −∆1̃ is a
positive vector, we deduce that the entries of A(1, 2 : n)R̃ are
positive. Remark that 1̃ is necessarily an eigenvector of R̃−1

(or R̃) for the eigenvalue 1: as one has A1 = −B, one has
also A(2 : n, 1) = −Ã1̃ and then

R̃−1
1̃ = −R̃−1Ã−1A(2 : n, 1) = −∆−1R̃−1A(2 : n, 1)

= −∆−1diag (R̃−1A(2 : n, 1))1̃ = 1̃

Finally, one has

(R−1AR+BBt)1 = R−1A1 +B = −R−1B +B = 0

which proves that Property iv. is verified.

Proposition 4.2: Under Assumptions 1.1, the entries of the
vector P−1

1̃ are non null for any P such that P−1ÃP = ∆
with ∆ diagonal, when the pair (A,B) is controllable. Fur-
thermore, the eigenvalues of Ã are distinct.

Proof: From Lemma 2.4, Ã is diagonalizable with P such
that P−1ÃP = ∆ where ∆ is a diagonal matrix. Posit X =
P−1

1̃. One has

P−1ÃkP = ∆k =⇒ P−1Ãk1̃ = ∆kX , k = 1, · · ·
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This implies

P−1
[
1̃, Ã1̃, · · · , Ãn−1

1̃

]
= diag (X)V and(λ1, · · · , λn)

or equivalently

P−1CÃ,1̃ = diag (X)V and(λ1, · · · , λn−1)

We deduce that when CÃ,1̃ is full rank, diag (X) and
V and(λ1, · · · , λn−1) are non-singular, that is all the entries
of X are non-null and the eigenvalues λ1, · · · , λn−1 are
distinct. We show now that the controllability of the pair
(A,B) implies that the pair (Ã, 1̃) is also controllable.

From the property A1 = −B, one can write

A =

[
A11 L

−Ã1̃ Ã

]
where L is a row vector of length n− 1. Then one has

A1 =

[
−1
0̃

]
, A2

1 =

[
−A11

Ã1̃

]
,

A3
1 =

[
−A2

11 + LÃ1̃

A11Ã1̃ + Ã2
1

]
that are of the form

Ak1 =

[
αk
Pk

]
with Pk = Ãk−1

1 +
∑
j≤k−2

βk,jÃ
j
1 ,

for k = 2, 3. By recursion, one obtains

Pk+1 = −αkÃ1̃ + Ãk1 +
∑
j≤k−2

βk,jÃ
j+1

1

= Ãk1 +
∑
j≤k−1

βk+1,jÃ
j
1

for k = 2, · · · . Then, one can write

−CA,B = CA,A1 =

[
α1 α2 · · · αn
0̃ P2 · · · Pn

]
from which one deduces

rk (CA,B) = n ⇒ rk (P2, · · · , Pn) = n− 1

⇒ rk (Ã1, · · · Ãn−1
1) = n− 1

One can also write [Ã1, · · · Ãn−1
1] = ÃCÃ,1̃ and as Ã is

invertible (Lemma 2.4), we finally obtain that CÃ,1̃ is full rank.

V. EQUIVALENCE WITH MINC STRUCTURE

As we have shown in Sec. IV that a system (1) that fulfills
Assumption 1.1 with (A,B) controllable is equivalent to a
MRMT structure, we consider such systems only, that is

A =

[
A11 A(1, 2 : n)

A(2 : n, 1) ∆

]
where ∆ is a diagonal matrix (of size n − 1) with distinct
negative eigenvalues. We denote by V the associated diagonal
matrix given by Lemma 2.3. We shall use the tridiagonaliza-
tion Lanczos algorithm [17]: for a symmetric matrix S and a
unit vector q1, consider the sequence πk = (βk, qk, rk) as

• β0 = 0, q0 = 0, r0 = q1,
• if βk 6= 0, define qk+1 = rk/βk, αk+1 = q′k+1Sqk+1,
rk+1 = (S − αk+1I)qk+1 − βkqk and βk+1 = ||rk+1||.

Lemma 5.1: The Lanczos algorithm applied to the matrix
∆ with q1 = A(2 : n, 1)/||A(2 : n, 1)|| provides an orthogonal
unitary matrix Q = [q1 · · · qn−1] such that Q′∆Q is symmetric
tridiagonal with positive terms on the sub- (or super-) diagonal.

Proof: We recall from [17, Th 10.1.1] that when CS,q1
is full rank, πk is defined up to nS = size(S) and the
orthonormal matrix Q = [q1 · · · qnS

] is such that Q′AQ is
symmetric tridiagonal with positive terms on the sub-diagonal.
As the matrix ∆ is diagonal, one has

C∆,q1 = Vand (λ1, · · · , λn−1)diag (q1)

where λi (i = 1, · · · , n− 1) are the diagonal elements of ∆.
Furthermore, as Assumptions 1.1 imply the equality A1 =
−B, one has

qt1 = − 1√∑n−1λi

i=1

[
λ1 · · · λn−1

]
As λi are all distinct and non null, q1 is a non null vector
and the matrices Vand (λ1, · · · , λn−1), diag (q1) are full rank.
Therefore C∆,q1 is full rank.

Proposition 5.1: Let A be a MRMT matrix such that
(A,B) is controllable. Let Q be the orthogonal matrix given
by the Lanczos algorithm applied to ∆ with q1 = A(2 :
n, 1)/||A(2 : n, 1)||. Let U be the upper triangular matrix with
positive diagonal entries given by the Cholesky decomposition
of the symmetric matrix Q′Ṽ Q. Then the matrix

T =

[
1 0
0 QU−1

]
is such that T−1AT is symmetric tridiagonal with positive
entries on the sub- (or super-)diagonal.

Proof: Lemma 5.1 provides the existence of the matrix Q
such that Q′∆Q is tridiagonal with positive terms on the sub-
and super-diagonal. For convenience, we define the matrices

P =

[
1 0
0 Q

]
and W =

[
1 0
0 U

]
.

Clearly, P is orthogonal, W is upper triangular with positive
diagonal, and one has T = PW−1. Consider the matrix

P ′AP =

[
A11 A(1, 2 : n)Q

Q′A(2 : n, 1) Q′∆Q

]
.

For the particular choice of the first column of Q, one has

Q′A(2 : n, 1) =
B

||A(2 : n, 1)||

and Q′∆Q is triangular with positive sub-diagonal. Therefore,
P ′AP is an upper Hessenberg matrix with positive entries on
its sub-diagonal. Consider then

P ′CA,B = P ′[B,AB,A2B, · · · ]

= [P ′B, (P ′AP )P ′B, (P ′A2P )P ′B, · · · ]
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Notice that one has P ′B = B and obtains recursively

(P ′AP )B = [?, h2, 0 , · · · · · · , 0]t

(P ′A2P )B = [?, ? , h3, 0 , · · · , 0]t

...

where the numbers hi are positive. P ′CA,B is thus upper
triangular with positive diagonal, as the matrix W . Then
T−1CA,B = WP ′CA,B is also upper triangular with positive
entries on its diagonal. We then use a result about tridiago-
nalization of SISO systems [16, Lemma 2.2] that ensures that
T−1AT is tridiagonal with positive entries on its sub-diagonal.
Let us show that T−1AT is also symmetric. One has

T−1AT =

[
A11 A(1, 2 : n)QU−1

UQ′A(2 : n, 1) UQ′∆QU−1

]
As the matrix V A is symmetric by Assumption 1.1, one can
write(

A(1, 2 : n)QU−1
)′

= 1
V1

(U−1)′Q′Ṽ A(2 : n, 1)

= 1
V1

(U−1)′U ′UQ′A(2 : n, 1)

= 1
V1
UQ′A(2 : n, 1)

and as we have chosen V1 = 1 we obtain(
A(1, 2 : n)QU−1

)′
= UQ′A(2 : n, 1). Consider now the

sub-matrix UQ′∆QU−1. Notice first that the decomposition
Q′Ṽ Q = U ′U implies the equalities U ′ = Q′Ṽ QU−1 and
(U−1)′ = UQ′Ṽ −1Q. Then on can write(

UQ′∆QU−1
)′

= (U−1)′Q′∆QU ′

= (UQ′Ṽ −1Q)Q′∆Q(Q′Ṽ QU−1)

= UQ′Ṽ −1∆Ṽ QU−1

= UQ′∆QU−1

Proposition 5.2: The vector X = T−1
1, where the matrix

T is provided by Proposition 5.1, is positive.
Proof: The matrices A+BB′ and T−1AT +BB′ have

non-negative entries outside their main diagonals. So there
exists a number γ > 0 such that I + 1

γ (A + BB′) and
I + 1

γ (T−1AT +BB′) are non-negative matrices.
By Assumption 1.1, one has A1 = −B, which implies the

property (
I +

1

γ
(A+BB′)

)
1 = 1 .

Thus I+ 1
γ (A+BB′) is a stochastic matrix, and we know that

its maximal eigenvalue is 1 [6, Th 5.3]. As I + 1
γ (A+BB′)

and I + 1
γ (T−1AT +BB′) are similar:

T−1

(
I +

1

γ
(T−1AT +BB′)

)
T = I +

1

γ
(A+BB′),

the maximal eigenvalue of I + 1
γ (T−1AT + BB′) is also 1.

Furthermore, as A + BB′ is irreducible by Assumption 1.1,
I+ 1

γ (T−1AT +BB′) is also irreducible. The property A1 =
−B implies(

I +
1

γ
(T−1AT +BB′)

)
X = X +

1

γ
(T−1A1 +B)

= X +
1

γ
(−T−1B +B) = X

So X is an eigenvector of I + 1
γ (T−1AT + BB′) for its

maximal eigenvalue 1. Finally, notice that X = T−1
1 implies

that the first entry of X is equal to 1. Then, by Perron-
Frobenius Theorem [6, Th 1.4], we conclude that X is a
positive vector.

Proposition 5.3: Let A be a MRMT matrix such that
(A,B) is controllable and R = Tdiag (T−1

1), where T
is provided by Proposition 5.1. Then (R−1AR,B,C) is an
equivalent representation where R−1AR is a MINC matrix.

Proof: Let X = T−1
1 and Ā = R−1AR. Define

V̄ = diag (X)2 and M̄ = −V̄ (Ā + BB′). As A + BB′ is
irreducible by Assumption 1.1, the similar matrix Ā + BB′

is also irreducible, as well as M̄ because V is a diagonal
invertible matrix. By Proposition 5.1, T−1AT is a symmetric
tridiagonal matrix with positive terms on the sub- or super-
diagonal. By Proposition 5.2, X is a positive vector, and
thus Ā = diag (X)−1(T−1AT )diag (X) is also a tridiago-
nal matrix with the same signs outside the diagonal. Thus,
M̄ is a tridiagonal matrix with negative terms on sub- or
super-diagonal. Moreover, one has B̄ = R−1B = B and
C̄ = CR = C. Finally, to show that (Ā, B̄, C̄) is a MINC
representation, we have to prove that M̄ is symmetric with
M̄1 = 0. One has

M̄ = −diag (X)2(diag (X)−1T−1ATdiag (X) +BB′)
= −diag (X)T−1ATdiag (X)−X2

1 .BB
′.

where X1 = 1. The matrix M̄ is thus symmetric. One has also

M̄1 = −diag (X)T−1ATdiag (X)1−BB′1
= −diag (X)T−1ATX −B
= −diag (X)T−1AT (T−1

1)−B
= −diag (X)T−1A1−B
= diag (X)T−1B −B
= diag (X)B −B = 0

Remark 5.1: One can easily show that the volumes matrix
V̄ of an equivalent representation can be determined as V̄ =
RtV R, where R is the transformation matrix.

VI. EXAMPLES AND DISCUSSION

We first give an example that illustrates the necessity of the
controllability property for the equivalence construction. We
present a second example that shows that MRMT or MINC
forms can be efficient ways to obtain reduced models.

Consider a network of 4 tanks with V1 = 1, V2 = 1, V3 = 2,
V4 = 3 and d12 = 1, d13 = 2, d14 = 3, d23 = 3, d24 = 3:

A =


−7 1 2 3

1 −7 3 3
1 3

2 − 5
2 0

1 1 0 −2


At the first look, this structure does not exhibit any special
property or symmetry that could make believe that it is non
minimal. One has Ã1̃ = −1̃ but here A satisfies A(2 : 4, 1) =
1̃. Consequently the vector A(2 : 4, 1) is an eigenvector of the
matrix Ã for the eigenvalue −1. If the multiplicity of −1 was
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more than 1, then λ = −9.5 should be an eigenvalue of Ã, as
the trace of Ã is −11.5. But an eigenvector X of Ã fulfills

−7X1 + 3X2 + 3X3 = λX1

1.5X1 − 2.5X2 = λX2

X1 − 2X3 = λX3

one should have (λ+ 7)X1 − 3X2 − 3X3 = 0 with

X2 =
1.5

λ+ 2.5
X1 , X3 =

1

λ+ 2
X1 (and X1 6= 0)

which is not possible for λ = −9.5. Then, any matrix P
that diagonalizes Ã should have one column proportional to
the eigenvector 1̃, which amounts to have P−1

1̃ with exactly
one non-null entry. Thus one cannot apply Proposition 4.1 to
obtain an equivalent MRMT system of the same dimension.
The pair (A,B) is indeed non controllable, even though the
matrix Ã has distinct eigenvalues, as one has

AB =


−7

1
1
1

 , A2B =


55
−8
−8
−8

 = −B − 8AB

from which one deduce rk (CA,B) = 2. This system admits a
minimal representation of dimension 2 that can be found by
gathering the immobile zones in one of volume V̄ = V2 +
V3 + V4 = 6 and solute concentration

S̄ =
V2S2 + V3S3 + V4S4

V̄
=
S2 + 2S3 + 3S4

6

One can check that (S1, S̄) are solutions of the system

Ṡ1 = −7S1 + 6S̄ + u
˙̄S = S1 − S̄

Consider now the network of 5 unitary volumes with

A =


−3 1 1 0 0
1 −1 0 0 0
1 0 −3 1 1
0 0 1 −2 1
0 0 1 1 −2

 .
One can check that the pair (A,B) is controllable. Then,
the constructions of Sections IV and V give the following
equivalent MRMT and MINC matrices:

AMRMT '


−4 0.33 0.17 1 1.5
8.2 −8.2 0 0 0
3.3 0 −3.3 0 0
1 0 0 −1 0

0.52 0 0 0 −0.52

 ,

AMINC '


−4 3 0 0 0
1.7 −5 3.3 0 0
0 3.6 −4.1 0.53 0
0 0 2.5 −2.9 0.45
0 0 0 0.95 −0.95

 .
Differently to that original network, the magnitude of the val-
ues of volumes and diffusive exchange rates are significantly

different among compartments, opening the door of possible
model reduction dropping some compartments.

For the equivalent MRMT structure, one obtains V1 = 1,
V2 ' 0.04, V3 ' 0.05, V4 = 1, V5 ' 2.9, d12 ' 0.33,
d13 ' 0.17, d14 = 1, d15 ' 1.5, and notices that zones 2
and 3 are of relatively small volumes (compared to the total
volume of the system which is equal to 5) and connected to the
mobile zone with relatively small diffusive parameters. Then,
one may expect to have a good approximation with a reduced
MRMT model dropping zones 2 and 3. Keeping the volumes
V1, V4, V5 with the parameters d14, d15, one obtains the 3
compartments MRMT matrix

ÃMRMT '

 −3.5 1 1.5
1 −1 0
0 0.5 −0.5

 .
For the equivalent MINC structure, one obtains V1 = 1,

V2 ' 1.8, V3 ' 1.7, V4 ' 0.36, V5 ' 0.17, d12 = 3, d23 =
6, d34 ' 0.89, d45 ' 0.16. Here, one notices that the two
last volumes are relatively small and connected with relatively
small diffusion terms. Keeping the volumes V1, V2, V3 with
the parameters d12, d23, one obtains the reduced model

ÃMINC '

 −4 3 0
1.67 −5 3.33

0 3.6 −3.6

 .
The Nyquist diagrams associated to the original model A

and the reduced ÃMRMT , ÃMINC are reported on Fig. 2,
showing the quality of the approximation with only three
compartments derived from the MRMT or MINC represen-
tations. There exist many reduction methods in the literature,
but a reduction through MRMT or MINC has the advantage
to obtain easily reduced models with a physical meaning.

Im

Re 1.2

-0.0422

-0.00671

-2.34

2.34

0.00671

0.0422

0.5

-0.5
0

Figure 2. Nyquist diagrams for A (black), ÃMRMT (blue), ÃMINC (green)

VII. CONCLUSION

We have shown that a general network structure admits
equivalent “star” (MRMT) or “series” (MINC) structures, that
are commonly considered in geosciences to represent soil
porosity in mass transfers. In this way, we reconcile these two
approaches. Practically, this means that when the structure is
unknown, or partially known, one can use equivalently the
most convenient structure to identify the parameters or use
some a priori knowledge. We have also shown the crucial role
played by the controllability property of the model. Although
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there is no particular control issue in the representations
of mass transfers, controllability is a necessary condition to
obtain equivalence with the multi-rate mass transfer (MRMT)
structures of depth one, introduced by Haggerty and Gorelick
in 1995 [18], or the multiple interacting continua structure
(MINC) [25]. This condition is related to the minimal repre-
sentation, that is not necessarily fulfilled for such structures
even for non-singular irreducible network matrices with dis-
tinct eigenvalues. Examples of equivalent MRMT and MINC
representations have shown that it provides also a simple and
efficient technique to obtain reduced models.

From a geosciences view point, this analysis shows the
existence of both identifiable and non-identifiable porosity
structures from data. Input-output signals are typical of con-
servative tracer tests where non-reactive tracers are injected
in an upstream well and analyzed in a downstream well [13].
Identifiable structures could thus be calibrated on tracer tests
[1]. The identified structure is however not unique as shown
on examples, meaning that a porosity structure cannot be fully
characterized by a tracer test. This is an advantage rather
than a drawback as the porosity structure should support both
conservative and reactive transport [10], [9].
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