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Abstract. In the context of estimating material properties of porous walls based on
in-site measurements and identification method, this paper presents the concept of Optimal
Experiment Design (OED). It aims at searching the best experimental conditions in terms
of quantity and position of sensors and boundary conditions imposed to the material.
These optimal conditions ensure to provide the maximum accuracy of the identification
method and thus the estimated parameters. The search of the OED is done using the
Fisher information matrix and a priori knowledge on the parameters. The methodology
is applied for two cases. The first one deals with purely conductive heat transfer, while
the second one combines a strong coupling between heat and moisture transfer.

Key words and phrases: inverse problem; parameter estimation; Optimal Experiment
Design (OED); heat and moisture transfer; sensitivity functions

MSC: [2010] 35R30 (primary), 35K05, 80A20, 65M32 (secondary)
PACS: [2010] 44.05.+e (primary), 44.10.+i, 02.60.Cb, 02.70.Bf (secondary)

Key words and phrases. inverse problem; parameter estimation; Optimal Experiment Design (OED);
heat and moisture transfer; sensitivity functions.

∗ Corresponding author.



On the optimal experimental design 3 / 26

1. Introduction

Heating or cooling strategies for buildings are commonly based on numerical models
considering the physical phenomena occurring, which can be calibrated using on-site
measurements for estimating the properties of the materials constituting the walls in order
to reduce the discrepancies between model predictions and real performance.

Several experimental works at the scale of the wall can be reported from the literature.
Instrumented test cells, as ones presented in [5–8, 11, 16, 19, 20] provide measured dataset
as temperature and relative humidity at different points in the wall for given boundary
conditions. Some experiments at the scale of the whole-building are described in [4, 10].
These data can be used to estimate the properties (transport and capacity coefficients) of
the materials as reported for instance in [13, 22] for heat transfer and in [17, 24] for coupled
heat and moisture transfer.

The estimation of the material properties based on measurements and identification
methods is illustrated in Figure 1. For a given model, the experimental design defines the
inputs (boundary and initial conditions) and the type of sensors as well as their quantity and
location. From a measured field (generally called the observation), identification methods
are used to estimate the unknown parameters P of the model, i.e. the wall thermo-physical
properties.

The accuracy of the solution strongly depends on the experiment design. The choice
of the measurement devices and the inputs have consequences on the accuracy of the
parameter estimated. Furthermore, due to the correlation between the parameters, multiple
local solutions of the estimation problem exist. Hence, one can address the following
questions: what are the best experimental conditions to provide the best conditioning of
the identification method? In particular, how many sensors are necessary? Where are their
best location? What boundary and initial conditions should be imposed? Can we really
choose them?

These issues deal with searching the Optimal Experiment Design (OED) that enables to
identify the parameters P of a model with a maximum precision. A first objective of the
OED is to adjust the inputs in order to maximize the sensitivity of the output field u to
parameters P. A second objective is to find the optimum location and quantity of sensors.
The achievement of these objectives enables to determine conditions of the experiments
under which the identification of the parameters will have the maximum accuracy.

The search of the OED is based on quantifying the amount of information contained by
the observed field u exp. For this, Fisher information matrix is used [9, 23], considering
both the model sensitivity, the measurement devices and the parameter correlation. The
sensitivity of the output field u with respect to the model parameters P is calculated,
corresponding to the sensitivity of the cost function of the parameter estimation problem.
The higher the sensitivity is, the more information is available in the measurement data
and the more accurate is the identification of the parameters. Generally speaking, the
methodology of searching the ODE is important before starting any experiments aiming at



J. Berger, D. Dutykh & N. Mendes 4 / 26

Figure 1. Parameter estimation process.

solving estimation parameter problems. It allows choosing with a deterministic approach
the conditions of the experiments. Furthermore, it provides informations on the accuracy
of the solution of the estimation problems.

Several works can be reported on the investigation of the OED. In [1], the OED is planned
as a function of the quantity of sensors and their location, for the estimation of boundary
heat flux of non-linear heat transfer. In [9], the OED is searched for the estimation of
transport coefficient in convection-diffusion equation. In [14], the OED is analysed as a
function of the boundary heat flux for the identification of the radiative properties of the
material. In [12], the OED is investigated for thermal dispersion coefficients in porous media
as a function of the positions of the sensors. However, the application of OED theory for
non-linear heat and moisture transfer with application for the estimation of the properties
of a wall is relatively rare.

This article presents the methodology of searching the OED for experiments aiming at
solving estimation parameter problems. In the first section, the concept of OED is detailed
for an inverse problem of non-linear heat transfer. The computation of the model sensitivity
to the parameter is specified. The OED is sought as a function of the quantity and location
of sensors as well as the amplitude and the frequency of the heat flux at the material
boundaries. Then the OED for the estimation of hygrothermal properties considering
non-linear heat and moisture transfer is investigated. Finally, some main conclusions and
perspectives are outlined in the last Section.
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2. Optimal experiment design for non-linear heat transfer
problem

First, the methodology of searching the OED is detailed for an inverse problem of
non-linear heat transfer. A brief numerical example is given to illustrate the results.

2.1. Physical problem and mathematical formulation

The physical problem considers an experiment involving a multi-dimensional transient heat
conduction problem in domains x ∈ Ω = [0, 1] and t ∈ [0, τ ] . The initial temperature in
the body is supposed uniform. The surface of the boundary ΓD = {x = 1} is maintained
at the temperature uD. A time-harmonic heat flux q, of amplitude A and frequency ω, is
imposed at the surface of the body denoted by Γq {x = 0}. Therefore, the mathematical
formulation of the heat conduction problem can be written as:

c?
∂u

∂t?
− ∂

∂x?

(
k?(u)

∂

∂x?
u

)
= 0 , x? ∈ Ω, t? ∈ ]0 , τ ] , (2.1a)

u = uD x? ∈ ΓD , t > 0 , (2.1b)

k?(u)
∂u

∂x?
= A? sin(2πω?t?) x? ∈ Γq , t > 0 , (2.1c)

u = u0(x
?) x? ∈ Ω , t? = 0 , (2.1d)

k?(u) = (k?0 + k?1u) (2.1e)

where the following dimensionless quantities are introduced:

x? =
x

L
, u =

T

Tref
, uD =

TD
Tref

, u0 =
T0
Tref

, k?0 =
k0
kr
,

k?1 =
k1Tref
kref

, c? =
c

cref
, tref =

crefL
2

kref
, A? =

AL

krefTref
, ω? = ωtref

where T is the temperature, c the volumetric heat capacity, k0 the thermal conductivity and
k1 its dependency on temperature, L the linear dimension of the material, A the intensity
and ω the frequency of the flux imposed on surface Γq . Subscripts ref accounts for a
characteristic reference value, D for the Dirichlet boundary conditions, zero (0) for the
initial condition of the problem and superscript ? for dimensionless parameters.

The problem given by Eqs. (2.1)(a-e) is a direct problem when all the thermo-physical
properties, initial and boundary conditions, as well as the body geometry are known. Here,
we focus on the inverse problem consisting in estimating one or more parameters of the
material properties (as c, k0 and/or k1) using the mathematical model Eqs. (2.1)(a-e)
and a measured temperature data uexp obtained by N sensors placed in the material
at X = [xn ] , n ∈ {1, . . . , N}. The M unknown parameters are here denoted as vector



J. Berger, D. Dutykh & N. Mendes 6 / 26

P = [ pm ] , m ∈ {1, . . . ,M} . The solution of the inverse problem is done by the
minimisation of the cost function:

J [P ] = ||uexp − T (u (x, t,P)) ||2 (2.2)

where u is the solution of the transient heat conduction problem Eqs. (2.1)(a-e). uexp
are the data obtained by experiments. They are obtained by N sensors providing a time
discrete measure of the field at specified points within the material. T is the operator
allowing to compare the solution u at the same space-time points where observations uexp
are taken.

Several inverse problems can be associated to Eqs. (2.1)(a-e). Ones aim at estimating
one parameter: m = 1 and P = c, P = k0 or P = k1. Others aim at estimating a group
of m = 2 or m = 3 parameters. In this work, the optimal experiment design will be
investigated for both cases.

2.2. Optimal experiment design

Efficient computational algorithms for recovering parameters P have already been pro-
posed. Readers may refer to [15] for a primary overview of different methods. They are
based on the minimisation of the cost function J [P ]. For this, it is required to equate to
zero the derivatives of J [P ] with respect to each of the unknown parameters pm. Such
necessary condition for the minimisation of J [P ] can be represented by the sensitivity
function as:

Θm(x, t) =
∂J

∂pm
=

∂u

∂pm
, ∀m ∈ {1, . . . ,M} (2.3)

The sensitivity function Θm measures the sensitivity of the estimated field u with respect
to change in the parameter pm [1, 14, 15]. A small value of the magnitude of Θm indicates
that large changes in pm yield small changes in u. The estimation of parameter pm is
therefore difficult in such case. When the sensitivity coefficient Θm is small, the inverse
problem is ill-conditioned. If the sensitivity coefficients are linearly dependent, the inverse
problem is also ill-conditioned. Therefore, to get an optimal evaluation of parameters P,
it is desirable to have linearly-independent sensitivity functions Θm with large magnitude
for all parameters pm. These conditions ensure the best conditioning of the computational
algorithm to solve the inverse problem and thus the better accuracy of the estimated
parameter.

It is possible to define the experimental design in order to reach these conditions. The
issue is to find the optimal quantity of sensors N◦, their optimal location X◦, the optimal
amplitude A◦ and the optimal frequency ω◦ of the flux imposed at the surface Γq. To search
this optimal experiment design, we introduce the following measurement plan:

π = {N, X, A, ω} (2.4)
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In analysis of optimal experiment for inverse problems, a quality index describing the
accuracy of recovering the unknown parameter P is theD−optimum criterion [1, 2, 9, 14, 23]:

Ψ = det [F (π) ] (2.5)

where F (π) is the normalized Fisher information matrix [9, 23]:

F (π) =
1

N
[ Φij ] , ∀(i, j) ∈ {1, . . . ,M}2 (2.6a)

Φij =
N∑
n=1

ˆ τ

0

σ2Θi(xn, t)Θj(xn, t)dt (2.6b)

where σ is the variance of the error of measuring uexp, considered in this work as a constant
equal for all the measurement points.

The matrix F (π) characterises the total sensitivity of the system as a function of
measurement plan π Eqs. (2.4). The search of the OED aims at finding a measurement
plan π? for which the objective function Eq. (2.5) reaches the maximum value:

π◦ = {N◦, X◦, A◦, ω◦} = arg max
π

Ψ (2.7)

The solution of this problem is built by successive iterations done on the measurement
plan π :
Step 1. For a fixed value of the measurement plan π = {N, X, A, ω}, the direct problem
defined byEqs. (2.1)(a-e) is computed. In this work, it is solved by using a finite-difference
standard discretizations. An embedded adaptive in time Runge-Kutta scheme combined
with central spatial discretization is used. It is adaptive and embedded to estimate local
error with little extra cost.

Given the solution u of the direct problem 2.1(a-e) for a fixed value of the measurement
plan, the next step consists in computing Θm = ∂u

∂pm
by solving the sensitivity problem

associated to parameter pm :

c
∂Θm

∂t
− ∂

∂x

(
k
∂

∂x
Θm

)
= − ∂c

∂pm

∂u

∂t
+

∂u

∂x

∂

∂pm

(
∂k

∂x

)
+

∂k

∂pm

∂2u

∂xx
x ∈ Ω , t > 0 ,

(2.8a)
Θm = 0 x ∈ Γd , t > 0 ,

(2.8b)

k
∂Θm

∂x
=

∂u

∂x

∂k

∂pm
x ∈ Γq , t > 0 ,

(2.8c)
Θm = 0 x ∈ Ω , t = 0 ,

(2.8d)
k = (k0 + k1 u) (2.8e)

The sensitivity problem Eqs. (2.8) is also solved using an embedded adaptive in time
Runge-Kutta scheme combined with central spatial discretization. It is important to
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note that the resolution of the sensitivity problem (2.8)(a-e) requires a priori knowledge
about the unknown parameters P .
Step 2. The Fisher matrix (2.6)(a,b) and the D−optimum criterion (2.5) are calculated.
The iterations continue to Step 1, for other fixed values of the measurement plan π .

2.3. Numerical example

Current section illustrates the search of optimum experiment design for problem Eqs.
(2.1) considering u0 = uD = 1 . The dimension less properties of the material are equal
to c? = 10.9 , k?0 = 1, k?1 = 0.12 . The final simulation time of the experiment is fixed
to τ = 28.3 .

From a physical point of view, the numerical values correspond to a material of length
Lr = 0.1 m. The thermal properties were chosen from a the wood fibre: c = 3.92 · 105

J/m3/K, k0 = 0.118 W/m/K and k1 = 5 · 10−4 W/m/K2 . The initial temperature of
the material is considered uniform at T0 = Tref = 293.15 K. The temperature at the
boundary ΓD is maintained at TD = Tref = 293.15 K. The characteristic time of the
problem is tref = 3050 s. Thus, the total time of the experiments corresponds to 24h. A
schematic view of the problem is given in Figure 2(a).

As mentioned in previous section, the OED is sought as a function of the quantity
of sensors N , their location X, the amplitude A and frequency ω of the flux imposed
at the surface Γq . For the current numerical application, we consider a maximum of
N = 4 possible sensors. Their location varies from X = [ 0 ] for N = 1 and
X = [ 0 0.25 0.5 0.75 ] for N = 4 as shown in Figure 2(a). For the amplitude A, 5
values are considered in the interval [ 0.2, 1 ] with a regular mesh of 0.2 . The minimal value
of A corresponds to a physical heat flux of 70 W/m2. For the frequency, 30 values have
been taken in the interval [ 10−3, 1 ] . The extreme values of the heat flux are illustrated in
Figure 2(b).

2.3.1 Estimation of one single parameter

Considering previous description of the numerical example, we first focus on the search
of the OED for solving an inverse problem (IP) for one parameter. Thus P equals to c, k0
or k1. Figures 3(a-c) show the variation of the criterion Ψ as a function of the amplitude
A and the frequency ω of the heat flux. For each of the inverse problems, the criterion is
maximum for a low frequency and for a large amplitude as presented in Figure 6. Numerical
values of the OED π◦ are given in Table 1. In terms of physical numerical values, the
OED is reached for a heat flux of amplitude 350 W/m2 and a period of 17.3 h, 60.6 h and
53.5 h for estimating parameter c, k0 or k1, respectively.

The effect of the numbers of sensors and their positions is given in Figures 4(a-c) for a
fixed amplitude. Adding new sensors is not necessary to recover one parameter (c, k0 or k1).
One sensor is sufficient to get an OED. It can be noticed that the optimal parameter ω◦

does not vary with the quantity of sensors. This sensor has to be located on the boundary
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t
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Figure 2. Schematic view of experimental design (a) and the extreme values of
the heat flux (b).

receiving the heat flux. Indeed, the boundary Γq is where the sensitivity coefficient of the
parameter has the largest magnitude as shown in Figures 5(a-c) correspondingly.

2.3.2 Estimation of several parameters

Now we focus on a single experiment design for estimating all 3 parametersP = (c, k0, k1)
simultaneously. Figure 3(d) gives the variation of the criterion Ψ as a function of the
amplitude A and the frequency ω of the heat flux. The optimum experiment design is
reached for a low frequency and a large amplitude as reported in Table 1. A heat flux
with a sinusoidal period of 25.2 h provides the OED. Figure 3(d) shows the variation of
the criterion Ψ as a function of the quantity of sensors and their location. A single sensor
located on the surface Γq ≡ {x = 0} where the sensitivity coefficients of the parameters
have the largest amplitude. It can be noticed in Figure 3(d) that the sensitivity coefficients
are linearly-independent. It provides a good conditioning of the computational algorithm
for solving the inverse problem of parameters P = (c, k0, k1). Nevertheless, it can be
noted that the sensitivity of parameter k1 has a low magnitude. The solution of the inverse
problem might not give an accurate estimation for this parameter. To deal with this issue,
the amplitude A◦ of the heat flux can be increased.
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Figure 3. D−optimum criterion Ψ as a function of A and ω for the 4 different
inverse problems (N = N◦ = 1).

3. Optimal experiment design for non-linear heat and mois-
ture transfer

In previous section, the concept of optimal experiment design was detailed for an inverse
problem of non-linear heat transfer. In this section, the approach goes further by studying
optimal experiment design for inverse problems to estimate transport and storage coefficients
of heat and moisture transfer.
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Figure 4. D−optimum criterion Ψ as a function of N , X and ω for the 4
different inverse problems (A = A◦ = 1).
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Figure 5. Sensitivity coefficient of parameters for the four different inverse
problems (N = N◦ = 1).

3.1. Physical problem and mathematical formulation

The physical problem concerns a 1−dimensional coupled heat and moisture transfer
through a wall based on [3, 17, 18, 21]:

c10
∂T

∂t
− ∂

∂x

(
d1
∂T

∂x

)
− (Lv − clT )

∂

∂x

(
d2
∂Pv
∂x

)
= 0 (3.1a)

∂w

∂t
− ∂

∂x

(
d2
∂Pv
∂x

)
= 0 , (3.1b)
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Inverse problem max(Ψ)
Optimal experimental design π◦

A◦ [-] A◦

[W/m2]
1
ω◦ [-] 1

ω◦ [h] N◦ X◦

P = c
1.4×
10−2 1 350 20.4 17.3 1 0

P = k0 8.6 1 350 71.6 60.6 1 0

P = k1 3.23 1 350 63.2 53.5 1 0

P =
(c, k0, k1)

9.1×
10−3 1 350 29.7 25.2 1 0

Table 1. Value of the maximum D−optimum criterion for each inverse problem.

t
0 5 10 15 20 25

A
?
si
n
(2
:
!

?
t)

-1

-0.5

0

0.5

1

P=c
P=k0
P=k1
P=(c,k0,k1)

Figure 6. Optimal heat flux for the four different inverse problems (N = 1).

with w the water content, Pv the vapour pressure, T the temperature, d2 the vapour
permeability, c10 the volumetric thermal capacity, d1 the thermal conductivity, cl the
specific heat capacity of water and Lv the latent heat evaporation. As this study remains



J. Berger, D. Dutykh & N. Mendes 14 / 26

in the hygroscopic range of the material, the liquid transport is not presently taken into
account.

The following assumptions are adopted on the properties of the material. The volumetric
moisture content is assumed as a first-degree polynomial of the vapour pressure. The vapour
permeability and the thermal conductivity are taken as a first-degree polynomial of the
volumetric moisture content:

w

w0

= c20 +
c21
w0

Pv (3.2a)

d2 = d20 + d21
w

w0

(3.2b)

k = d10 + d11
w

w0

. (3.2c)

Based on these equations, the experimental set-up considers a material with uniform
initial temperature and vapour pressure. At t > 0 , sinusoidal heat and vapour flux are
imposed at boundary Γq = {x = 0} , while the temperature and vapour pressure are
maintained constant at the other boundary ΓD = {x = 1} . The unscaled problem can
be formulated as:

c?10
∂u

∂t?
− ∂

∂x?

(
d?1
∂u

∂x?

)
− (Ko1 −Ko2)Lu

∂

∂x?

(
d?2
∂v

∂x?

)
= 0 x? ∈ Ω, t? ∈ ]0, τ ]

(3.3a)

c?21
∂v

∂t?
− Lu

∂

∂x?

(
d?2

∂v

∂x?

)
= 0 x? ∈ Ω , t? ∈ ]0, τ ]

(3.3b)

− d?1
∂u

∂x?
= A?1 sin(2πω?1t

?) x? ∈ Γq , t
? ∈ ]0, τ ]

(3.3c)

− d?2
∂v

∂x?
= A?2 sin(2πω?2t

?) x? ∈ Γq , t
? ∈ ]0, τ ]

(3.3d)

u = uD , v = vD x? ∈ ΓD , t
? ∈ ]0, τ ]

(3.3e)
u = u0(x) , v = v0(x) x? ∈ Ω, t? = 0

(3.3f)
d?1 = d?10 + d?11 (c20 + c?21v) (3.3g)
d?2 = d?20 + d?21 (c20 + c?21v) (3.3h)
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with following dimension less ratios:

u =
T

Tref
v =

Pv
Pref

u0 =
T0
Tref

v0 =
Pv,0
Pref

uD =
TD
Tref

vD =
Pv,D
Pref

Ko1 =
Lvc2,ref
c1,ref

Pref
Tref

Ko2 =
cLc2,ref
c1,ref

Pref

Lu =
d2,refc1,ref
c2,refd1,ref

d?10 =
d10
d1,ref

d?11 =
d11
d1,ref

d?20 =
d20
d2,ref

d?21 =
d21
d2,ref

c?10 =
c10
c1,ref

c?21 =
c21
c2,ref

c2,ref =
w0

Pref

A?1 =
A1L

d1,refTref
A?2 =

A2L

d2,refPref
ω?1 = ω1tref ω?2 = ω2tref

t? =
t

tref
x? =

x

L
tref =

c1,refL
2

d1,ref

where Ko is the Kossovitch number, Lu states for the Luikov number, L is the dimension
of the material, tref the characteristic time of the problem, A and ω the amplitude and
intensity of the heat and vapour flux. Subscripts ref accounts for a reference value, D for
the Dirichlet boundary conditions, 0 for the initial condition of the problem, 1 for the
heat transfer, 2 for the vapour transfer and superscript ? for dimensionless parameters.

3.2. Optimal experiment design

The OED is sought as a function of the quantity of sensors N and their locations X and
as a function of the frequencies (ω1, ω2) of the heat and vapour flux. According to the
results of Section 2.3 and to our numerical investigations, a monotonous increase of the
sensitivity of the system were observed with the amplitude (A1, A2) of the flux. Therefore,
these parameters were considered as fixed. Thus, the OED aims at finding the measurement
plan π◦ for which the criterion Eqs. (2.5) reaches a maximum value:

π◦ = {N◦, X◦, ω◦
1, ω

◦
2} = arg max

π
Ψ . (3.4)

Parameters Lv, cL are physical constants given for the problem. Therefore, considering
Eqs. (3.3), a number of 7 parameters can be estimated by the resolution of inverse problems:
(c?10, d

?
10, d

?
11, c

?
20, c

?
21, d

?
20, d

?
21) . It can focus on the definition of an experiment for the

estimation of one single parameter or several parameters. It might be noted that parameters
(c?20, c

?
21, d

?
20, d

?
21) can be identified by inverse problems considering field u, v or both (u, v)
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as observation. The thermal properties (c?10, d
?
10, d

?
11) can only be estimated using the

observation of u .
All in all, 20 experiments can be defined as:
(1) 15 for the estimation of a single parameters among c?10, d?10, d?11, c?20, c?21, d?20 or d?21,
(2) 1 for the estimation of the thermal properties (c?10, d

?
10, d

?
11),

(3) 3 for the estimation of the moisture properties (c?20, c
?
21, d

?
20, d

?
21),

(4) 1 for the estimation of the hygrothermal properties (hg) (c?10, d
?
10, d

?
11, c

?
20, c

?
21, d

?
20, d

?
21) .

Following notation is adopted: IP(p) [u ] states for an experiment defined for the estimation
of parameter p using field u as the observation. The 20 experiments are recalled in Table 2.
The same methodology as presented in Section 2 is used. The fifteen sensitivity functions
are computed for calculating the criterion (3.4).

3.3. Numerical example

The following numerical values are considered for numerical application. The domain Ω is
defined as Ω = [ 0, 1 ] , considering the wall thickness of the material as the characteristic
length of the problem Lr = 0.1 m. The total time simulation of the experiments is
τ = 6× 103 , corresponding to a physical simulation of 40 days. The initial and prescribed
conditions equal to uD = u0 = 1 and vD = v0 = 0.5 . The reference temperature and
vapour pressure are taken as Tref = 293.15 K and Pv, ref = 2337 Pa, respectively. The
amplitude of the heat and vapour flux are A?1 = 1.7× 10−2 and A?2 = 1.7 , equivalent to
600 W/m2 and 1.2× 10−7 kg/m3/s.

The dimension less parameters are:

Lu = 2.5× 10−4 Ko1 = 2.1× 10−1 Ko2 = 2.5× 10−2 d?10 = 5× 10−2 d?11 = 5× 10−3

d?20 = 1 d?21 = 0.4 c?10 = 1 c?20 = 2 c?21 = 6

The properties corresponds to a wood fibre material [3, 17]. They are given in its physical
dimension in Appendix A.

The OED is sought as a function of the number of the sensors N . It varies from N = 1 ,
located at X = [ 0 ], to N = 3 , located at X = [ 0 0.2 0.4 ] . The OED is also
investigated as a function of the frequencies (ω?1, ω

?
2) of the flux. For each frequency, 20

values are taken in the interval [ 1× 10−5; 1.5× 10−3 ]. The minimal and maximal values
correspond to a flux having a physical period of 495 days and 3.3 days, respectively.

As mentioned in Section 2.2, the computation of the solution of the optimal experiment
plan is done by successive iterations for the whole grid of the measurement plan π =
{N, X, ω1, ω2} .

3.3.1 Estimation of one single parameter

In the current section, the OED is sought for inverse problems to estimate one single
parameter among c?10, d?10, d?11, c?20, c?21, d?20 or d?21. The results of the ODE are given in
Table 2 for the physical values and in Figure 9(b) for the dimensionless values.
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The criterion Ψ varies actively with the frequencies (ω?1, ω
?
2) for inverse problem of

parameter c?10, as shown in Figure 7(a). The ODE is reached for a period for the heat and
vapour flux of 27.2 days.

On the other hand, Figures 7(b) and 7(c) illustrate that the criterion varies mostly with
the frequency ω?1 for inverse problem of parameter d?10 and d?11. The ODE is reached for a
period for the heat of 78.1 days. Furthermore, the magnitude of Ψ is really higher than zero,
ensuring a good conditioning to solve inverse problems. As observed in previous section
concerning non linear heat transfer (Section 2.3), the period of the heat flux is smaller for
the ODE of the thermal capacity than for the thermal conductivity.

In Figure 10, the sensitivity functions of parameters d?10 is given for experimental conditions
π where Ψ reaches its minimal value and for the ODE conditions. In Figure 10(a), the
magnitude of the sensitivity function is really small (at an order of 10× 10−3) explaining
why the criterion Ψ is minimum for these conditions. In Figure 10(b), it can be noticed the
sensitivity function is maximal on the boundary Γq = {x = 0} . It emphasizes why the
criterion Ψ is maximal for a single sensor settled at this boundary.

For inverse problems of the vapour properties, c?20, c?21, d?20 or d?21, the ODE is not very
sensitive to the frequency of the heat flux as reported in Figures 7(d), 7(e), 7(f) and 8(a). It
can be noted that the criterion Ψ is higher when dealing with inverse problem considering
fields (u, v) as observations. The computational algorithm to solve the inverse problem is
better conditioned. The period of the ODE vapour flux is 9.5 and 12.3 days for inverse
problems of d?20 and c?21. Inverse problems of d?21 and c?20 have the same period of the ODE
vapour flux (27.2 days).

It might be recalled that this analysis has been done for a fixed and constant error mea-
surement, equals for the temperature and vapour pressure sensors. Indeed, this hypothesis
can be revisited in practical applications. Furthermore, if only one field is available to
estimate the vapour properties (u or v), it is required to use the field v as observation and
prioritize the accuracy for those sensors. The criterion Φ and the sensitivity is highest for
the field v as shown in Figures 11(a) and 11(b).

For all inverse problems, a single sensor located at x = 0 is sufficient for the ODE as
shown in Table 2. The surface receiving the heat and vapour flux is where the sensitivity of
the parameters is the higher as illustrated in Figures 11(a) and 11(b) for the parameter c21 .

3.3.2 Estimation of several parameters

The optimal experiment design is now sought for inverse problems to estimate sev-
eral parameters: the thermo-physical properties (c?10, d

?
10, d

?
11), the moisture properties

(c?20, c
?
21, d

?
20, d

?
21) and the hygrothermal (hg) coefficients (c?10, d

?
10, d

?
11, c

?
20, c

?
21, d

?
20, d

?
21) .

Five inverse problems are considered for the estimation of these parameters as reported in
Table 2.

For the estimation of the hygrothermal properties, Figure 8(b) shows that the criterion Ψ
varies mostly with frequency ω?1 . The criterion is very close to zero (an order of O(10−9)).
The computational algorithm for the solution of the inverse problem might be ill conditioned.
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The results of the inverse problem might not be accurate. A way to circumvent the problem
is to increase the precision of the sensors and the amplitude of the heat and vapour fluxes.

According to Table 2, the vapour properties might be estimated using both fields (u, v) .
If it is not possible, the field v would give a more accurate estimation than field u . The
criterion varies mostly with the frequency ω?1 of the heat flux, Figure 8(c). The ODE is
reached for a period of 35.4 and 16 days for the heat and vapour fluxes respectively.

For the thermal properties, the criterion varies with both heat and vapour flux frequencies,
as reported in Figure 8(d). A period of 16 days for both fluxes yields the ODE.

The variation of the criterion with the quantity of sensors is given in Figure 12. A single
sensor is sufficient for the ODE of all inverse problems except for the estimation of the
hygrothermal properties. In such case, the ODE is achieved for 2 sensors, located at x = 0
and x = 0.2 m.

4. Conclusion

In the context of estimating material properties, using in-site measurements of wall in
test cells or real buildings combined with identification methods, this study explored the
concept of optimal experiment design (OED). It aimed at searching the best experimental
conditions in terms of quantity and location of sensors and flux imposed to the material.
These conditions ensure to provide the best accuracy of the identification method and thus
the estimated parameter. The search of the OED was done using the Fisher information
matrix, quantifying the amount of information contained in the observed field.

Two cases were illustrated. The first one deals with an inverse problem of non-linear
heat transfer to estimate the thermal properties (storage and transport coefficients). The
experiment considers a uniform initial temperature. The material is submitted to a fixed
prescribed temperature on one side and a sinusoidal flux on the other, for 24 hours. The
ODE yields in using one single temperature sensor located at the surface receiving the flux.
The flux should have an intensity of 350 W/m2 and periods of 17.3 h, 60.6 h, 53.5 h and
25.2 h for inverse problems to estimate, respectively, the thermal capacity, the thermal
conductivity, the temperature dependent conductivity and all parameters.

The second application concerned experiments for inverse problems of non-linear heat and
moisture transfer to estimate the hygrothermal properties of the material. The experiment
is similar to the first case study. Uniform initial distribution of temperature and vapour
pressure were considered. It is submitted to harmonic heat and vapour fluxes at one side
and prescribed temperature and vapour pressure values at the other. The experiment is
done for a period of 40 days. The achievement of the ODE was explored for different inverse
problems, aiming at estimating one or several parameters. As the equation considered
are weakly coupled, the thermal properties can only be determined using the temperature.
The accuracy of the identification method does not depend on the vapour flux. For the
vapour properties, results have shown that the estimation will be more accurate using
the temperature and vapour pressure as observations. Furthermore, the accuracy actively
depends on the period of the vapour flux. Single sensor has to be located at the side where
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Inverse problem max {Ψ}
Optimal experimental design π?

2π

ω◦
1

(days)

2π

ω◦
2

(days)
N◦

IP(c10)[u] 6.03 27.2 27.2 1

IP(d10)[u] 288 78.1 20.9 1

IP(d11)[u] 181 78.1 101.7 1

IP(d20)[u] 0.53 7.3 7.3 1

IP(d20)[v] 0.99 60 9.5 1

IP(d20)[u, v] 1.53 9.5 9.5 1

IP(d21)[u] 133 78.1 27.2 1

IP(d21)[v] 140 9.5 27.2 1

IP(d21)[u, v] 276 78.1 27.2 1

IP(c20)[u] 0.02 20.9 20.9 1

IP(c20)[v] 0.03 9.5 27.2 1

IP(c20)[u, v] 0.05 27.2 27.2 1

IP(c21)[u] 0.004 35.4 20.9 1

IP(c21)[v] 0.014 78.1 12.3 1

IP(c21)[u, v] 0.017 78.1 12.3 1

IP(hg)[u, v]
4.5×
10−9 27.2 12.3 2

IP(c20, c21, d20, d21)[u] 0.001 60.0 20.9 1

IP(c20, c21, d20, d21)[v] 0.15 12.3 27.2 1

IP(c20, c21, d20, d21)[u, v] 0.2 35.4 16 1

IP(c10, d10, d11)[u] 137 16 16 1

Table 2. Value of the maximum D-optimum criterion for each inverse problem.
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Figure 7. D−optimum criterion Ψ as a function of the frequencies (ω1, ω2) .
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Figure 8. D−optimum criterion Ψ as a function of the frequencies (ω1, ω2) .

the flux is imposed. For inverse problems to estimate all the hygrothermal properties, two
sensors improve the accuracy accuracy.

This contribution explored the concept of optimal experiment design for application in
building physics for estimating the hygrothermal properties of materials. The methodology
of searching the ODE is important before starting any experiment aiming at solving
estimation parameter problems. With a priori values of the unknown parameters, the
sensitivity functions and the optimum criterion can be computed. Results allow choosing
by means of deterministic approach the conditions of the experiments. A good design of
experiments avoids installing unnecessary sensors. In the case of coupled phenomena, as
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Figure 9. Frequencies (ω?◦1 , ω
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2 ) of the ODE.

(a) (b)

Figure 10. Sensitivity coefficient of parameter k0 for experimental conditions π
where Ψ reaches its minimal value (a) (2πω1

= 3.3 days, 2π
ω2

= 495 days, N = 3)
and for the ODE conditions (b) ( 2πω◦

1
= 78.1 days, 2π

ω◦
2

= 20.9 days, N◦ = 1).

heat and moisture transfer, considering sensor accuracies, it enables to choose and select
the field that must be monitored. It also improves the accuracy of the solution of the
estimation problems.

Future work will have to explore the application of the OED to real experimental data.
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(a) (b)

Figure 11. Sensitivity coefficient of parameter c21 for the ODE conditions of
IP(c21)[u, v] .
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Figure 12. D−optimum criterion Ψ as a function of the quantity of sensors N .
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Property Value
d10 [W/m/K] 0.5

d11 [W/m/K/Pa] 0.05

d20 [s] 2.5× 10−11

d21 [s/Pa] 1× 10−11

c11 [J/m3/K] 4× 105

c20 [-] 2

c21 [s2/m2] 2.5× 10−2

Physical constant Value
Lv [J/kg] 2.5× 106

cL [J/kg] 1000

Table 3. Hygrothermal properties of the material.
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A. Hygrothermal properties

The hygrothermal properties of the material used in Section 3.3 are given in Table 3.
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