HAL
open science

On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant François Golse, Thierry Paul, Mario Pulvirenti

To cite this version:

François Golse, Thierry Paul, Mario Pulvirenti. On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant. 2016. hal-01334365v3

HAL Id: hal-01334365
https://hal.science/hal-01334365v3
Preprint submitted on 16 Sep 2016 (v3), last revised 30 Jun 2018 (v6)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE DERIVATION OF THE HARTREE EQUATION IN THE MEAN FIELD LIMIT: UNIFORMITY IN THE PLANCK CONSTANT

FRANÇOIS GOLSE, THIERRY PAUL, AND MARIO PULVIRENTI

Abstract

In this paper the Hartree equation is derived from the N-body Schrödinger equation uniformly in the Planck constant in two different cases, specifically (a) for Töplitz initial data and Lipschitz interaction force, and (b) for analytic initial data and interaction potential, and over short time intervals, independent of the Planck constant. The convergence rates in these two cases are $1 / \log \log N$ and $1 / N$ respectively. The treatment of the second case is entirely self-contained and all the constants appearing in the final estimate are explicit. Moreover it provides a derivation of the Vlasov equation out of the N-body classical dynamics using hierarchies and not empirical measures.

Contents

2

1. Introduction
2. Quantum hierarchies, Töplitz operators, and Wigner and Husimi functions 4
3. The results 7
Part 1. Results with analytic data 10
4. Bounds on the solutions of the hierarchies 10
5. Comparison with Hartree 16
5.1. Comparing g_{n}^{N} to $g_{n}^{H H_{N}}$ 16
5.2. Comparing g_{n} and $g_{n}^{H H_{N}}$ 18
5.3. End of the proof of Theorem 3.2 19
6. Final remarks 20
Appendix A. Proof of Lemma 4.4 21
Part 2. Interpolation 23
7. \hbar-dependent bound 23
8. Proof of Theorem 3.1 26
References 29
[^0]
1. Introduction

We consider the evolution of a system of N quantum particles interacting through a (real-valued) two-body, even potential Φ, described by the Schrödinger equation

$$
i \hbar \partial_{t} \psi=H_{N} \psi,\left.\quad \psi\right|_{t=0}=\psi_{i n} \in \mathfrak{H}_{N}:=L^{2}\left(\mathbf{R}^{d}\right)^{\otimes N}
$$

where

$$
H_{N}=-\frac{1}{2} \hbar^{2} \sum_{k=1}^{N} \Delta_{x_{k}}+\frac{1}{2 N} \sum_{1 \leq k, l \leq N} \Phi\left(x_{k}-x_{l}\right)
$$

is the N-body Hamiltonian. With the notation

$$
\underline{x}_{N}:=\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbf{R}^{d}\right)^{N}
$$

the N-body Hamiltonian is recast as

$$
H_{N}=-\frac{1}{2} \hbar^{2} \Delta_{X_{N}}+V_{N}\left(X_{N}\right)
$$

where V_{N} is the N-body potential in the mean field scaling, i.e. with $1 / N$ coupling constant:

$$
V_{N}\left(\underline{x}_{N}\right):=\frac{1}{2 N} \sum_{1 \leq k, l \leq N} \Phi\left(x_{k}-x_{l}\right)
$$

Instead of the Schrödinger equation written in terms of wave functions, we shall rather consider the quantum evolution of density matrices. An N-body density matrix is an operator D_{N} such that

$$
0 \leq D_{N}=D_{N}^{*} \in \mathcal{L}\left(\mathfrak{H}_{N}\right), \quad \operatorname{trace}_{\mathfrak{H}_{N}}\left(D_{N}\right)=1
$$

(here $\mathcal{L}\left(\mathfrak{H}_{N}\right)$ denotes the set of bounded linear operators on \mathfrak{H}_{N}).
The evolution of the density matrix of a N-particle system is governed by the von Neumann equation

$$
\begin{equation*}
\partial_{t} D^{N}=\frac{1}{i \hbar}\left[H_{N}, D^{N}\right],\left.\quad D_{N}\right|_{t=0}=D_{N}^{i n} \tag{1}
\end{equation*}
$$

The density matrix D_{N} for a N-particle system described in terms of the N-particle wave function $\Psi_{N} \equiv \Psi_{N}\left(t, X_{N}\right)$ is the orthogonal projection in \mathfrak{H}_{N} on the one dimensional subspace $\mathbf{C} \Psi_{N}$. In other words, $D_{N}(t)$ is the integral operator on \mathfrak{H}_{N} with integral kernel $\Psi_{N}\left(t, X_{N}\right) \overline{\Psi_{N}\left(t, \underline{y}_{N}\right)}$. Up to multiplying the N-body wave function by a global phase factor, both formulations of the quantum dynamics of a N-particle system are equivalent.

If $D_{i n}^{N}$ is factorized, that is of the form

$$
D_{i n}^{N}=D_{i n}^{\otimes N}
$$

where $D_{\text {in }}$ is a density matrix on $\mathfrak{H}:=L^{2}\left(\mathbf{R}^{d}\right)$, then $D^{N}(t)$ is in general not factorized for $t>0$. However, it is known that $D_{N}(t)$ has a "tendency to become factorized" for all $t>0$ as $N \rightarrow \infty$, i.e. in the mean field limit, for each $\hbar>0$.

The precise formulation of this "tendency to become factorized" involves the notion of marginal of a density operator.

For each $j=1, \ldots, N$, the j-particle marginal $D_{j}^{N}(t)$ of $D_{N}(t)$ is the unique operator on \mathfrak{H}_{j} such that, for all $A_{1}, \ldots, A_{j} \in \mathcal{L}(\mathfrak{H})$, one has

$$
\operatorname{trace}_{\mathfrak{H}_{N}}\left[D^{N}(t)\left(A_{1} \otimes \cdots \otimes A_{j} \otimes I_{\mathfrak{H}_{N-j}}\right)\right]=\operatorname{trace}_{\mathfrak{H}_{j}}\left[D_{j}^{N}(t)\left(A_{1} \otimes \cdots \otimes A_{j}\right)\right] .
$$

In terms of this notion of j-particle marginal, the tendency of $D_{N}(t)$ to become factorized is expressed as follows: for each $\hbar>0$ and each $t>0$, one has

$$
D_{j}^{N}(t) \rightarrow\left(D^{H}(t)\right)^{\otimes j} \quad \text { for all } j \geq 1 \text { in the limit as } N \rightarrow \infty
$$

(in some appropriate topology on the algebra of operators on \mathfrak{H}_{j}) where D^{H} is the solution of the Hartree equation

$$
\begin{equation*}
i \hbar \partial_{t} D^{H}(t)=\left[-\frac{1}{2} \hbar^{2} \Delta_{\mathbf{R}^{d}}+\Phi_{\rho^{H}(t)}, D^{H}(t)\right], \quad D^{H}(0)=D_{i n} \tag{2}
\end{equation*}
$$

Here

$$
\Phi_{\rho^{H}(t)}=\Phi \star \rho^{H}(t, \cdot),
$$

where

$$
\rho^{H}(t, x):=D^{H}(t, x, x)
$$

abusing the notation $D^{H}(t, x, y)$ to designate the integral kernel of the operator $D^{H}(t)$ on $\mathfrak{H}:=L^{2}\left(\mathbf{R}^{d}\right)$ and denoting by \star the convolution on \mathbf{R}^{d}.

This program has been carried out in a sequence of papers: see [19, 1] for bounded interaction potentials Φ, and in $[7,16]$ for interaction potentials that have a singularity at the origin, such as the Coulomb potential (see also [2]). See [3] for a more detailed discussion of this subject, supplemented with an extensive bibliography. In all these results the convergence rate as $N \rightarrow \infty$ deteriorates as $\hbar \rightarrow 0$.

The analogous result in the classical setting, where (1) and (2) are replaced respectively by the Liouville and the Vlasov equations, have been known for a long time: see $[14,4,6]$, where this limit has been established by different methods.

Since the Liouville and Vlasov equations are the classical limits of the Schrödinger and Hartree ones (see e.g. [12] for precise statements), this suggests that the mean field limit in quantum dynamics holds uniformly in \hbar, at least for some appropriate class of solutions.

This problem has been addressed in [15] where the mean field limit is estabished by means of a semiclassical expansion for which the term by term convergence can be established rigorously. The limit of the N-body quantum dynamics as $N \rightarrow \infty$ and $\hbar \rightarrow 0$ jointly, leading to the Vlasov equation, has been discussed in [13] (in the case of fermions and with an effective Planck constant $\hbar \sim N^{-1 / 3}$ and a convenient rescaling of time), and in [11]. (See also [8] for a uniform in \hbar estimate of some appropriate distance between the N-body and the Hartree dynamics, only for velocity dependent interaction potentials.)

More recently, a new approach based on the quantization of the quadratic MongeKantorovich (or Wasserstein) distance, analogous to the one used in [6], has been introduced in $[9,10]$. It provides an estimate of the convergence rate in the mean field limit $(N \rightarrow \infty)$ of the N-body quantum dynamics as $\hbar \rightarrow 0$ ou bien in $O\left(\frac{1}{N}+\hbar\right)$ that is uniform in \hbar.

In the present paper, we complete the results recalled above on the mean field limit of the N-body quantum dynamics leading to the Hartree equation with two different theorems. Both statements estimate some distance between the solutions of (1) and of (2) as $N \rightarrow \infty$ uniformly in $\hbar \in[0,1]$, without assuming that $\hbar \rightarrow 0$.

First, by some kind of interpolation between the convergence rate obtained in [9] and the "standard" convergence rate from $[19,1]$ for $\hbar>0$ fixed, we establish a $O(1 / \log \log N)$ convergence rate for the mean field $(N \rightarrow \infty)$ limit of the quantum N-body problem leading to the Hartree equation, uniformly in $\hbar \in[0,1]$. This estimate is formulated in terms of a Monge-Kantorovich type distance analogous
to Dobrushin's in [6], and holds true for initial data which are Töplitz operators (recalled in the next section).

Our second result will establish the convergence in a much stronger topology using analytic norms together with the formalism of Wigner functions, a tool particularly well adapted to the transition from quantum to classical dynamics. Using this approach requires strong analytic assumptions on both the potential and the initial data. The advantage of this result over the previous one is a faster convergence rate, of order $O(1 / N)$, much more satisfying than $O(1 / \log \log N)$ from the physical point of view. Keeping in mind that the total number of nucleons in the universe is estimated to be of the order of 10^{80}, an $O(1 / \log \log N)$ convergence rate may be satisfying from the mathematical point of view, but is of little practical interest.

2. Quantum hierarchies, Töplitz operators, and Wigner and Husimi functions

First we recall the formalism of BBGKY hierarchies in the quantum context.
Let \mathfrak{S}_{N} be the group of permutations of the set $\{1, \ldots, N\}$. For each $\sigma \in \mathfrak{S}_{N}$ and each $\underline{x}_{N}=\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbf{R}^{d}\right)^{N}$, we denote

$$
U_{\sigma} \Psi_{N}\left(\underline{x}_{N}\right):=\Psi\left(\sigma \cdot \underline{x}_{N}\right), \quad \text { with } \sigma \cdot \underline{x}_{N}:=\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right) .
$$

Everywhere in this paper, it is assumed that the N particles under consideration are indistinguishable, meaning that, for each $t \geq 0$, one has

$$
\begin{equation*}
U_{\sigma} D^{N}(t) U_{\sigma}^{*}=D^{N}(t) \quad \text { for all } \sigma \in \mathfrak{S}_{N} \tag{3}
\end{equation*}
$$

A straightforward computation shows that this condition is verified provided that

$$
U_{\sigma} D_{i n}^{N} U_{\sigma}^{*}=D_{i n}^{N} \quad \text { for all } \sigma \in \mathfrak{S}_{N}
$$

Multiplying both sides of (1) by $B_{j} \otimes I_{\mathfrak{H}_{N-j}}$, with $B_{j} \in \mathcal{L}\left(\mathfrak{H}_{j}\right)$ such that $\left[\Delta_{\left(\mathbf{R}^{d}\right)^{j}}, B_{j}\right] \in \mathcal{L}\left(\mathfrak{H}_{j}\right)$, one arrives at the following system of coupled equations satisfied by the sequence of marginals $D_{j}^{N}(t)$ of the N-particle density $D^{N}(t)$:

$$
\begin{equation*}
i \hbar \partial_{t} D_{j}^{N}=\left[-\frac{1}{2} \hbar^{2} \Delta_{\left(\mathbf{R}^{d}\right)^{j}}, D_{j}^{N}\right]+\frac{1}{N} \mathcal{T}_{j} D_{j}^{N}+\frac{N-j}{N} \mathcal{C}_{j+1} D_{j+1}^{N} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{T}_{j} D_{j}^{N}=\left[\frac{1}{2} \sum_{l \neq r=1}^{j} \Phi\left(x_{l}-x_{r}\right), D_{j}^{N}\right] \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{C}_{j+1} D_{j+1}^{N}=\left(\left[\sum_{l=1}^{j} \Phi\left(x_{l}-x_{j+1}\right), D_{j+1}^{N}\right]\right)_{j} \tag{6}
\end{equation*}
$$

where the subscript j is ment for taking the j th marginal as in Section 1 and where we have set

$$
D_{j}^{N}=0 \quad \text { for all } j>N
$$

In the limit $N \rightarrow \infty$ and for each j kept fixed, one expects that D_{j}^{N} converges in some sense to D_{j} satisfying the infinite sequence of equations, formal limit of (4) as $N \rightarrow \infty$,

$$
\begin{equation*}
i \hbar \partial_{t} D_{j}=\left[-\frac{1}{2} \hbar^{2} \Delta_{\left(\mathbf{R}^{d}\right)^{j}}, D_{j}\right]+\mathcal{C}_{j+1} D_{j+1}, \quad j \geq 1 \tag{7}
\end{equation*}
$$

One easily checks that $t \mapsto\left\{F(t)^{\otimes j}\right\}_{j=1 \ldots \infty}$ is a solution of the infinite hierarchy (7) if $t \mapsto F(t)$ is a solution of (2).

To each trace class operator F defined on $\mathfrak{H}_{N}=L^{2}\left(\left(\mathbf{R}^{d}\right)^{N}\right)$ with integral kernel $F\left(\underline{x}_{N}, \underline{y}_{N}\right)$, we associate its Wigner function $W_{\hbar}[F]$ defined on the underlying phase space $\left(T^{\star} \mathbf{R}^{d}\right)^{N}=\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{N}$ by the formula

$$
\begin{equation*}
W_{\hbar}[F]\left(\underline{x}_{N} ; \underline{v}_{N}\right):=\frac{1}{(2 \pi)^{d N}} \int_{\left(\mathbf{R}^{d}\right)^{N}} F\left(\underline{x}_{N}+\frac{1}{2} \hbar \underline{y}_{N}, \underline{x}_{N}-\frac{1}{2} \hbar \underline{y}_{N}\right) e^{i \underline{v}_{N} \cdot \underline{y}_{N}} d \underline{y}_{N} \tag{8}
\end{equation*}
$$

Notice that $W_{\hbar}[F]$ exists for each trace class operator F and for each $\hbar>0$, since

$$
W_{\hbar}[F]\left(\underline{x}_{N} ; \underline{v}_{N}\right)=\left(\frac{2}{\hbar}\right)^{N d} \operatorname{trace}\left[F M\left(\underline{x}_{N}, \underline{v}_{N}\right)\right],
$$

where $M\left(\underline{x}_{N}, \underline{v}_{N}\right)$ is the unitary operator on $L^{2}\left(\left(\mathbf{R}^{d}\right)^{N}\right)$ defined by

$$
M\left(\underline{x}_{N}, \underline{v}_{N}\right): f(X) \mapsto f\left(2 \underline{x}_{N}-X\right) e^{-2 i \underline{v}_{N} \cdot\left(X-\underline{x}_{N}\right) / \hbar} .
$$

By a straightforward computation

$$
F\left(\underline{x}_{N}, \underline{y}_{N}\right)=\int_{\left(\mathbf{R}^{d}\right)^{N}} W_{\hbar}[F]\left(\frac{1}{2}\left(\underline{x}_{N}+\underline{y}_{N}\right) ; \underline{v}_{N}\right) e^{-i \underline{v}_{N} \cdot\left(\underline{x}_{N}-\underline{y}_{N}\right) / \hbar} d \underline{v}_{N} .
$$

In particular

$$
F\left(\underline{x}_{N}, \underline{x}_{N}\right)=\int_{\left(\mathbf{R}^{d}\right)^{N}} W_{\hbar}[F]\left(\underline{x}_{N} ; \underline{v}_{N}\right) d \underline{v}_{N}
$$

so that

$$
\operatorname{trace}[F]=\int_{\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{N}} W_{\hbar}[F]\left(\underline{x}_{N} ; \underline{v}_{N}\right) d \underline{x}_{N} d \underline{v}_{N} .
$$

More generally one easily shows that

$$
\operatorname{trace}\left(F_{1} F_{2}\right)=(2 \pi \hbar)^{d N} \int_{\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{N}} W_{\hbar}\left[F_{1}\right]\left(\underline{x}_{N} ; \underline{v}_{N}\right) W_{\hbar}\left[F_{2}\right]\left(\underline{x}_{N} ; \underline{v}_{N}\right) d \underline{x}_{N} d \underline{v}_{N}
$$

From this identity, writing again $\underline{x}_{N}=\left(x_{1}, \ldots, x_{N}\right)$ and $\underline{v}_{N}=\left(v_{1}, \ldots, v_{N}\right)$, one easily deduces that

$$
\begin{aligned}
W_{\hbar}\left[F_{j}\right]\left(\underline{x}_{j} ; \underline{v}_{j}\right) & =\int_{\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{N-j}} W_{\hbar}[F]\left(\underline{x}_{N} ; \underline{v}_{N}\right) d x_{j+1} d v_{j+1} \ldots d x_{n} d v_{N} \\
& =\left(W_{\hbar}[F]\right)_{j}\left(\underline{x}_{j} ; \underline{v}_{j}\right)
\end{aligned}
$$

where we denote by f_{j} the j th marginal of the function or meausre f. A straightforward computation shows that $t \mapsto D^{N}(t)$ is a solution of (1) if and only if $t \mapsto W_{\hbar}\left[D^{N}\right](t, \cdot, \cdot)=f^{N}(t)$ is a solution of the following equation, referred to as the "Wigner equation"

$$
=\int_{\left(\mathbf{R}^{d}\right)^{N}} \widehat{\widehat{V}_{N}}\left(\underline{z}_{N}\right) e^{\left.i \underline{z}_{N} \cdot \underline{v}_{N} \underline{v}_{N} \cdot \nabla_{\underline{x}_{N}}\right) f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}\right)} \begin{align*}
& f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}-\frac{1}{2} \hbar \underline{z}_{N}\right)-f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}+\frac{1}{2} \hbar \underline{z}_{N}\right) \\
i \hbar & \underline{z}_{N} \tag{9}
\end{align*}
$$

where $\widehat{V_{N}}$ designates the Fourier transform of V_{N}, normalized as follows

$$
\widehat{V_{N}}\left(\underline{v}_{N}\right)=\frac{1}{(2 \pi)^{d N}} \int_{\left(\mathbf{R}^{d}\right)^{N}} V_{N}\left(\underline{x}_{N}\right) e^{-i \underline{v}_{N} \cdot \underline{x}_{N}} d \underline{x}_{N}
$$

In the limit as $\hbar \rightarrow 0$, the Wigner equation reduces formally to the Liouville equation, since

$$
\begin{array}{r}
\int_{\left(\mathbf{R}^{d}\right)^{N}} \widehat{V_{N}}\left(Z_{N}\right) e^{i Z_{N} \cdot \underline{x}_{N}} \frac{f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}-\frac{1}{2} \hbar Z_{N}\right)-f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}+\frac{1}{2} \hbar Z_{N}\right)}{i \hbar} d Z_{N} \\
\rightarrow \int_{\left(\mathbf{R}^{d}\right)^{N}} \widehat{V_{N}}\left(Z_{N}\right) e^{i Z_{N} \cdot \underline{x}_{N}} i Z_{N} \cdot \nabla_{\underline{v}_{N}} f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}\right) d Z_{N} \\
=\nabla V_{N}\left(\underline{x}_{N}\right) \cdot \nabla_{\underline{v}_{N}} f^{N}\left(t, \underline{x}_{N} ; \underline{v}_{N}\right)
\end{array}
$$

See Proposition II. 1 in [12] for a rigorous discussion on the argument.
The Husimi transform of a density matrix F on $\mathfrak{H}:=L^{2}\left(\mathbf{R}^{d}\right)$ is defined as

$$
\widetilde{W}_{\hbar}[F](q ; p):=(2 \pi \hbar)^{-d}\langle p, q| F|p, q\rangle \geq 0,
$$

where

$$
|p, q\rangle(x):=(\pi \hbar)^{-d / 4} e^{-(x-q)^{2} / 2 \hbar} e^{i p \cdot x / \hbar}
$$

Here and in the sequel, we use the Dirac bra-ket notation whenever convenient:

$$
\langle p, q| F|p, q\rangle:=(|p, q\rangle, F|p, q\rangle)_{L^{2}\left(\mathbf{R}^{d}\right)}
$$

and $|p, q\rangle\langle p, q|$ is the orthogonal projector on $|p, q\rangle$. At variance with the Wigner function, there is no explicit "reconstruction" formula for F out of $\widetilde{W}_{\hbar}[F]$. Observe that the Husimi function captures only the diagonal part of the matrix elements of F on the (over)complete basis $\left\{|p, q\rangle \mid(p, q) \in \mathbf{R}^{2 d}\right\}$. Yet $\widetilde{W}_{\hbar}[F]$ determines all the numbers $\left\langle p^{\prime}, q^{\prime}\right| F|p, q\rangle$ as $p, q, p^{\prime}, q^{\prime}$ run through \mathbf{R}^{d}, and therefore F itself. Indeed, denoting $z:=q+i p$ and $z^{\prime}=q^{\prime}+i p^{\prime}$, a straightforward computation shows that

$$
e^{\left(|q|^{2}+\left|q^{\prime}\right|^{2}\right) / 2 \hbar}\left\langle p^{\prime}, q^{\prime}\right| F|p, q\rangle=f\left(\frac{1}{2}\left(z+\overline{z^{\prime}}\right) ; \frac{1}{2} i\left(\overline{z^{\prime}}-z\right)\right)
$$

where f is an entire function on $\mathbf{C}^{2 d}$. Knowing $\widetilde{W}_{\hbar}[F](q, p)$ for all $q, p \in \mathbf{R}^{d}$ is equivalent to knowing $f\left(\frac{1}{2}\left(z+\overline{z^{\prime}}\right) ; \frac{1}{2} i\left(\overline{z^{\prime}}-z\right)\right)$ for $z=z^{\prime}$, which is in turn equivalent to knowing the restriction of f to $\mathbf{R}^{2 d} \subset \mathbf{C}^{2 d}$. Since f is holomorphic on $\mathbf{C}^{2 d}$, knowing the restriction of f to $\mathbf{R}^{2 d}$ determines f uniquely. Therefore, the knowledge of $\tilde{W}_{\hbar}[F]$ determines F uniquely.

The Husimi function is sometime called a mollification of the Wigner function because of the following straightforward formula

$$
\widetilde{W}_{\hbar}[F](q ; p)=e^{\hbar \frac{\Delta_{q, p}}{4}} W_{\hbar}[F](q ; p)
$$

In particular, both the Wigner and the Husimi function of a \hbar-dependent family of density matrices have the same limit (if any) as $\hbar \rightarrow 0$ in the sense of distributions. Finally, we recall the definition of Töplitz operators used in [9]. For each positive Borel measure μ on $\mathbf{R}^{d} \times \mathbf{R}^{d}$, the Töplitz operator with symbol μ is

$$
\mathrm{OP}_{\hbar}^{T}[\mu]:=\frac{1}{(2 \pi \hbar)^{d}} \int_{\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)}|p, q\rangle\langle p, q| \mu(d p d q)
$$

For instance $\mathrm{OP}_{\hbar}^{T}[1]=I_{\mathfrak{H}}$, where 1 designates the Lebesgue measure on $\mathbf{R}^{d} \times \mathbf{R}^{d}$. Elementary computations show that

$$
W_{\hbar}\left[\mathrm{OP}_{\hbar}^{T}[\mu]\right]=e^{\hbar \Delta_{q, p} / 4} \mu, \quad \widetilde{W}_{\hbar}\left[\mathrm{OP}_{\hbar}^{T}[\mu]\right]=e^{\hbar \Delta_{q, p} / 2} \mu
$$

Therefore $\operatorname{trace}\left(\mathrm{OP}_{\hbar}^{T}[\mu]\right)=\int_{\mathbf{R}^{2 d}} d \mu$ and probability measures give rise to physical states (positive operators of trace one) through Töplitz quantization.

The paper is organized as follows. The two main results of this article, Theorems 3.1 and 3.2 , are presented in the next section. The proofs are self-contained (with the exception of the use of the main result of [9] in the proof of Theorem 3.1) and given respectively in Part 2 and Part 1. We have chosen this order of presentation since part of the material if the proof of Theorem 3.2 is used in the proof of Theorem 3.1.

3. The results

Our first uniform convergence result puts little regularity constraint on the interaction potential V. As a result, we obtain a convergence rate in some weak topology, which is most conveniently expressed in terms of a Monge-Kantorovich, or Wasserstein distance, associated to the cost function $\left(z, z^{\prime}\right) \mapsto \min \left(1,\left|z-z^{\prime}\right|\right)$ on $\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j}$, for $j \geq 1$.

Specifically, let μ, ν be Borel probability measures on $\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j}$, and let $\Pi(\mu, \nu)$ be the set of probability measures on $\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j} \times\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j}$ whose first and second marginals are μ and ν respectively. Define

$$
\begin{equation*}
\operatorname{dist}_{1}(\mu, \nu):=\inf _{\pi \in \Pi(\mu, \nu)} \iint_{\left(\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j}\right)^{2}} \min \left(1,\left|z-z^{\prime}\right|\right) \pi\left(d z d z^{\prime}\right) \tag{10}
\end{equation*}
$$

for each pair of Borel probability measures μ, ν on $\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j}$.
Theorem 3.1. Assume that the interaction potential Φ is a real-valued, even differentiable function defined on \mathbf{R}^{d} with Lipschitz continuous gradient, and let $\Lambda:=3+4 \operatorname{Lip}(\nabla \Phi)^{2}$. Let $F^{\text {in }}$ be a Töplitz operator, and let F be the solution of the Hartree equation (2) with initial data $F^{i n}$. On the other hand, for each $N \geq 1$, let F^{N} be the solution of (1) with initial data $\left(F^{i n}\right)^{\otimes N}$, and F_{j}^{N} its j-particle marginal for each $j=1, \ldots, N$. Then, for each fixed integer $j \geq 1$, and each $T>0$, one has ${ }^{1}$

$$
\begin{equation*}
\operatorname{dist}_{1}\left(\widetilde{W}_{F_{j}^{N}(t)}, \widetilde{W}_{F(t)^{\otimes j}}\right)^{2} \lesssim \frac{64(\log 2) d T\|\Phi\|_{L^{\infty}}\left(1+j e^{\Lambda T}\right)}{\log \log N} \tag{11}
\end{equation*}
$$

for all $t \in[0, T]$ and all $\hbar \in[0,1]$ in the limit as $N \rightarrow \infty$.
Note that dist ${ }_{1}$ is the distance used by Dobrushin in [6]. For each $\phi \in C_{b}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$, denote by $L_{1}(\phi)$ the Lipschitz constant of ϕ for the distance $\left(z, z^{\prime}\right) \mapsto \min \left(1,\left|z-z^{\prime}\right|\right)$, i.e.

$$
L_{1}(\phi):=\sup _{z \neq z^{\prime}} \frac{\left|\phi(z)-\phi\left(z^{\prime}\right)\right|}{\min \left(1,\left|z-z^{\prime}\right|\right)} .
$$

By Monge-Kantorovich duality one has

$$
\operatorname{dist}_{1}(\mu, \nu)=\sup _{L_{1}(\phi) \leq 1}\left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} \phi(z) \mu(d z)-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} \phi(z) \nu(d z)\right| .
$$

Hence the distance dist ${ }_{1}$ induces on the set of Borel probability measures on $\mathbf{R}^{d} \times \mathbf{R}^{d}$ a topology that is equivalent to the restriction of the Sobolev $W^{-1,1}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ metric. Since density matrices on $\mathfrak{H}:=L^{2}\left(\mathbf{R}^{d}\right)$ are determined by their Husimi functions as recalled in the previous section, the expression

$$
\left(D_{1}, D_{2}\right) \mapsto \operatorname{dist}_{1}\left(\widetilde{W}_{\hbar}\left[D_{1}\right], \widetilde{W}_{\hbar}\left[D_{2}\right]\right)
$$

[^1]defines a distance on the set of density matrices. This distance obviously depends on \hbar through the Husimi functions. However, if D_{1}^{\hbar} and D_{2}^{\hbar} are \hbar-dependent density operators such that
$$
\widetilde{W}_{\hbar}\left[D_{1}^{\hbar}\right] \rightarrow \mu_{1} \text { and } \widetilde{W}_{\hbar}\left[D_{2}^{\hbar}\right] \rightarrow \mu_{2} \quad \text { in } \mathcal{S}^{\prime}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)
$$
in the limit as $\hbar \rightarrow 0$, then
$$
\operatorname{dist}_{1}\left(\widetilde{W}_{\hbar}\left[D_{1}^{\hbar}\right], \widetilde{W}_{\hbar}\left[D_{2}^{\hbar}\right]\right) \rightarrow \operatorname{dist}_{1}\left(\mu_{1}, \mu_{2}\right)
$$

For that reason (11) provides a convergence rate for the mean-field limit of the quantum N-body dynamics that is uniform in \hbar.

Our second uniform convergence is based on Cauchy-Kovalevska type estimates on the BBGKY hierarchy. It gives a better convergence rate, at the expense of much more stringent conditions on the interaction potential Φ and evolution over finite time intervals only. These time intervals depend on the size of the potential and (\hbar-dependent) initial data in convenient topologies, but have no other dependence on the Planck constant. The convergence rate obtained in this second result is formulated in terms of the following family of norms. For each $\beta>0$ and each $f \in L^{1}\left(\left(\mathbf{R}^{n} \times \mathbf{R}^{n}\right)^{2}\right)$, we set

$$
\|f\|_{\rho}:=\sup _{\xi, \eta \in \mathbf{R}^{n}}|\widehat{f}(\xi, \eta)| e^{\rho(|\xi|+|\eta|)}
$$

where \widehat{f} is the symplectic Fourier transform of f

$$
\begin{equation*}
\widehat{f}(\xi ; \eta):=\frac{1}{(2 \pi)^{2 n}} \int_{\mathbf{R}^{n} \times \mathbf{R}^{n}} e^{-i(x \cdot \xi-v \cdot \eta)} f(x ; v) d x d v \tag{12}
\end{equation*}
$$

By a slight abuse of notation, for each trace class operator F on $\mathfrak{H}_{j}:=L^{2}\left(\mathbf{R}^{d j}\right)$, we also denote

$$
\begin{equation*}
\|F\|_{\rho}:=\left\|W_{\hbar}[F]\right\|_{\rho} . \tag{13}
\end{equation*}
$$

Theorem 3.2. Assume that, for some $\beta^{\prime}>0$, one has both

$$
\left\|F^{i n}\right\|_{\beta^{\prime}}<\infty \quad \text { and } \int|h||\widehat{\Phi}(h)| e^{\beta^{\prime}|h|} d h<\infty
$$

Let $\alpha>\log \left\|F^{\text {in }}\right\|_{\beta^{\prime}}$ and let β satisfy $0<\beta<\beta^{\prime}$; in addition, let $T=T\left(\beta^{\prime}, \beta, \alpha, \Phi\right)$ be defined by (28) below.

Let $F(t)$ be the solution of the Hartree equation with initial condition $F^{i n}$, and let $F^{N}(t)$ be the solution of the N-body Schrödinger equation with initial condition $\left(F^{i n}\right)^{\otimes N}$.

Then for all $t,|t|<T$ and $j \in \mathbf{N}^{\star}$, we have for $N \geq j$,

$$
\begin{equation*}
\left\|F_{j}^{N}(t)-F(t)^{\otimes j}\right\|_{\beta} \leq \frac{C(j, t)}{N} \frac{|t|}{T} \frac{\left\|F^{i n}\right\|_{\beta^{\prime}}}{1-e^{-\alpha}\left\|F^{i n}\right\|_{\beta^{\prime}}} \tag{14}
\end{equation*}
$$

For all $t \in[0, T)$, the constant $C(j, t)>0$ is defined by formula (37) below, is independent of N, and satisfies

$$
C(j, t) \sim \frac{2}{(1-|t| / T)^{2}} j e^{\alpha j} \text { as } j \rightarrow \infty
$$

(see (37) for a more precise result).
A straightforward consequence of this theorem is the following statement.

Corollary 3.3. Let $0 \leq|t| / T<1$. Then, for all $\beta<\beta^{\prime}$,

$$
\left\|F_{j}^{N}(t)-F(t)^{\otimes j}\right\|_{\beta} \rightarrow 0 \text { as } N \rightarrow \infty
$$

uniformly in $j \leq \frac{1}{\alpha^{\prime}} \log \left(N \frac{(1-|t| / T)^{2}}{2}\right)$ for any $\alpha^{\prime}>\alpha$.
(Remember that T depends on α.)
Notice that estimate (14) implies that the N-particle system converges to the Hartree dynamics uniformly in $\hbar \in[0,1]$ for a suitable class of relevant initial states, e.g. states for which $\|F\|_{\beta}$ is uniformly bounded for some $\beta>0$. Examples of such initial data are superpositions of orthogonal projectors on coherent states with a positive density f with $\|f\|_{L^{1}\left(\mathbf{R}^{d}\right)}=1$ and $\|f\|_{\beta}$ uniformly bounded for a some $\beta>0$. Indeed consider

$$
F=\int_{\mathbf{R}^{2 d}} f(x ; v)|x, v\rangle\langle x, v| d x d v
$$

An easy computation shows that the Wigner function of F, W_{F}, satisfies

$$
W_{\hbar}[F](x ; v)=e^{\hbar \frac{\Delta_{x, v}}{4}} f(x ; v)
$$

Therefore

$$
\widehat{W_{\hbar}[F]}(\xi ; \eta)=e^{-\frac{\hbar}{4}\left(\xi^{2}+\eta^{2}\right)} \widehat{f}(\xi ; \eta)
$$

and

$$
\|F\|_{\beta}:=\left\|W_{\hbar}[F]\right\|_{\beta} \leq\|f\|_{\beta} .
$$

Moreover

$$
\begin{aligned}
\left\|F_{j}^{N}(t)-F(t)^{\otimes j}\right\|_{\beta^{\prime}} & =\left\|W_{\hbar}\left[F_{j}^{N}(t)\right]-W_{\hbar}\left[F(t)^{\otimes j}\right]\right\|_{\beta^{\prime}} \\
& =\left\|W_{\hbar}\left[F^{N}(t)\right]_{j}-W_{\hbar}[F(t)]^{\otimes j}\right\|_{\beta^{\prime}} .
\end{aligned}
$$

By, e.g., Theorem IV. 2 in [12], $W_{\hbar}\left[F^{N}(t)\right] \rightarrow f^{N}(t)$ and $W_{\hbar}[F(t)] \rightarrow f(t)$ as $\hbar \rightarrow$ 0 , where $f(t)$ is the solution of the Vlasov equation with initial condition $f^{i n}$, while $f^{N}(t)$ is the solution of the N-body Liouville equation with initial condition $\left(f^{i n}\right)^{\otimes N}$. Therefore, taking the limit $\hbar \rightarrow 0$ in (14), we arrive at our last main result.

Corollary 3.4. Assume that $\left\|f^{i n}\right\|_{\beta^{\prime}}<\infty$ and that

$$
\int|h||\widehat{\Phi}(h)| e^{\beta^{\prime}|h|} d h<\infty
$$

for some $\beta^{\prime}>0$. Let $\alpha>\log \|F\|_{\beta^{\prime}}$, let $0<\beta<\beta^{\prime}$, and let T and $C(j, t)$ be given by the same prescription as in Theorem 3.2. Let $f(t)$ be the solution of the Vlasov equation with initial condition $f^{i n}$ and $f^{N}(t)$ the solution of the N - body Liouville equation with initial condition $\left(f^{i n}\right)^{\otimes N}$.

Then, for all t satisfying $|t|<T$ and all $j \in \mathbf{N}^{\star}$,

$$
\left\|f_{j}^{N}(t)-f(t)^{\otimes j}\right\|_{\beta} \leq \frac{C(j, t)}{N} \frac{|t|}{T} \frac{\left\|f^{i n}\right\|_{\beta^{\prime}}}{1-e^{-\alpha}\left\|f^{i n}\right\|_{\beta^{\prime}}}
$$

and $\left\|f_{j}^{N}(t)-f(t)^{\otimes j}\right\|_{\beta} \rightarrow 0$ as $N \rightarrow \infty$, uniformly in $j \leq \frac{1}{\alpha^{\prime}} \log \left(N \frac{(1-|t| / T)^{2}}{2}\right)$ for any $\alpha^{\prime}>\alpha$.

Part 1. Results with analytic data

4. Bounds on the solutions of the hierarchies

Integrating the Wigner equation (9), with

$$
V_{N}\left(\underline{x}_{N}\right)=\frac{1}{2 N} \sum_{1 \leq l \neq r \leq N} \Phi\left(x_{l}-x_{r}\right)
$$

over the $N-j$ last variables leads to the following finite hierarchy, henceforth referred to as the "Wigner hierarchy", of course equivalent to (4),

$$
\begin{equation*}
\partial_{t} f_{j}^{N}+\sum_{i=1}^{j} v_{i} \cdot \nabla_{x_{i}} f_{j}^{N}=\frac{1}{N} T_{j} f_{j}^{N}+\frac{N-j}{N} C_{j+1} f_{j+1}^{N} \tag{15}
\end{equation*}
$$

where
$\begin{cases}f_{j}^{N}\left(x_{1}, \ldots, \underline{x}_{j} ; \underline{v}_{1}, \ldots, \underline{v}_{j}\right):=\int f^{N}\left(\underline{x}_{N} ; \underline{v}_{N}\right) d x_{j+1} d v_{j+1} \ldots d x_{N} d v_{N} & \text { for } j \leq N, \\ f_{j}^{N}:=0 \quad \text { for } j>N .\end{cases}$
Considering the definition of the norm $\|\cdot\|_{\beta}$, it is more convenient for our purpose to express T_{j} and C_{j+1} through their action on the Fourier transforms of f_{j}^{N} and f_{j+1}^{N} as defined by (12): this is done by Lemma 4.4 below.

Passing to the limit as $N \rightarrow \infty$, one arrives at the infinite hierarchy

$$
\partial_{t} f_{j}+\sum_{i=1}^{j} v_{i} \cdot \nabla_{x_{i}} f_{j}=C_{j+1} f_{j+1}, \quad j \geq 1
$$

henceforth referred to as the "Hartree hierarchy". So far, this is a formal statement, and one of the goals in our study is to turn this formal statement into a precise convergence statement with an estimate of the convergence rate.

From now on, we regard both the Wigner and the Hartree hierarchies as governing the evolution of infinite sequences of Wigner distributions. It is therefore natural to seek controls on these hierarchies in appropriate functional spaces of sequences $\underline{f}=\left\{f_{j}\right\}_{j=1 \ldots \infty}$. These functional spaces are metrized by the following family of norms

$$
\|\underline{f}\|_{\alpha, \beta}:=\sum_{j=1}^{\infty} e^{-\alpha j}\left\|f_{j}\right\|_{\beta}, \quad \alpha, \beta>0
$$

For $\beta>0$ we set

$$
C_{\Phi}^{\beta}(t):=\int_{\mathbf{R}^{d}}|h||\widehat{\Phi}(h)| e^{2 \beta|h|(1+|t|)} d h, \quad C_{\Phi}^{0}:=\int_{\mathbf{R}^{d}}|h||\widehat{\Phi}(h)| d h .
$$

Theorem 4.1. Let $\underline{f}^{N}(t)$ be the solution of the N-body Wigner hierarchy with initial data $\underline{f}^{i n}=\left\{f_{j}^{i n}\right\}_{j=1 \ldots \infty}$ defined by

$$
\begin{array}{ll}
f_{j}^{i n}=\left(f^{i n}\right)^{\otimes j}, & \\
f_{j}^{i n}=0, &
\end{array}
$$

and satisfying $\left\|f^{i n}\right\|_{\beta^{\prime}}<\infty$ for some $\beta^{\prime}>0$.

Then for each $\alpha \geq \log \left\|f^{\text {in }}\right\|_{\beta}$ and each β such that $0<\beta<\beta^{\prime}$, there exists $T \equiv T\left[\alpha, \beta, \beta^{\prime}\right]>0$ given by (28) below such that, for each $t \in[0, T)$

$$
\begin{equation*}
\left\|\underline{f}^{N}(t)\right\|_{\alpha, \beta} \leq \frac{\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}}{1-\frac{|t|}{T}} \tag{16}
\end{equation*}
$$

Proof. Our proof of Theorem 3.2 is based on the estimates in the next lemma, whose proof is deferred until the end of the present section.

Lemma 4.2 (Propagation estimates). Let $S_{j}(t)$ denote the group generated by the free transport operator in j variables

$$
-\sum_{k=1}^{j} \xi_{i} \cdot \nabla_{x_{i}}
$$

In other words,

$$
S_{j}(t) f_{j}:\left(x_{1}, \ldots, \underline{x}_{j} ; \xi_{1}, \ldots, \xi_{j}\right) \mapsto f_{j}\left(x_{1}-t \xi_{1}, \ldots, \underline{x}_{j}-t \xi_{j} ; \xi_{1}, \ldots, \xi_{j}\right)
$$

is the value at time t of the solution of the Cauchy problem

$$
\partial_{t} f_{j}^{0}+\sum_{k=1}^{j} \xi_{i} \cdot \nabla_{x_{i}} f_{j}^{0}=0,\left.\quad f_{j}^{0}\right|_{t=0}=f_{j}
$$

Then,

$$
\begin{equation*}
\left\|S_{j}(t) f_{j}\right\|_{\beta} \leq\left\|f_{j}\right\|_{\beta^{\prime}} \quad \text { provided that } \frac{\beta^{\prime}-\beta}{\beta} \geq|t| \tag{17}
\end{equation*}
$$

while

$$
\begin{equation*}
\left\|S_{j}(-t) C_{j+1} S_{j}(t) f_{j+1}\right\|_{\beta} \leq \frac{(1+|t|) C_{\Phi}^{0}}{e\left(\beta^{\prime}-\beta\right)}\left\|f_{j+1}\right\|_{\beta^{\prime}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{j}(-t) T_{j} S_{j}(t) f_{j}\right\|_{\beta} \leq \frac{j(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)}\left\|f_{j}\right\|_{\beta^{\prime}} \tag{19}
\end{equation*}
$$

whenever $\beta^{\prime}>\beta$.
Define

$$
\begin{equation*}
T^{N} \underline{f}:=\left\{\frac{T_{j}}{N} f_{j}\right\}_{j=1 \ldots \infty} \quad \text { and } \quad C^{N} \underline{f}:=\left\{\frac{N-j}{N} C_{j+1} f_{j+1}\right\}_{j=1 \ldots \infty} \tag{20}
\end{equation*}
$$

so that (15) reads

$$
\partial_{t} \underline{f}^{N}+\sum_{i=1}^{N} v_{i} \cdot \nabla_{x_{i}} \underline{f}^{N}=\left(T^{N}+C^{N}\right) \underline{f}^{N}
$$

and let

$$
S(t) \underline{f}^{N}:=\left\{S_{j}(t) f_{j}^{N}\right\}_{j=1 \ldots \infty} .
$$

As a straightforward consequence of Lemma 4.2, we arrive at the following estimates.

Corollary 4.3. Under the same hypothesis as in Lemma 4.2 and for $\beta^{\prime}>\beta$, one has

$$
\begin{gather*}
\left\|S(-t) C^{N} S(t) \underline{f}\right\|_{\alpha, \beta} \leq \frac{(1+|t|) C_{\Phi}^{0} e^{\alpha}}{e\left(\beta^{\prime}-\beta\right)}\|\underline{f}\|_{\alpha, \beta^{\prime}}, \tag{21}\\
\|\left(S(-t) T^{N} S(t) \underline{f}_{j}\left\|_{\beta} \leq \frac{j}{N} e^{\alpha j} \frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)}\right\| \underline{f} \|_{\alpha, \beta^{\prime}}\right. \tag{22}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|S(-t) T^{N} S(t) \underline{f}\right\|_{\alpha, \beta} \leq \frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)}\|\underline{f}\|_{\alpha, \beta^{\prime}} \tag{23}
\end{equation*}
$$

We shall compute the norm of the solution of the Wigner hierarchy by using a Dyson expansion. For $0 \leq t_{1} \leq t_{2} \cdots \leq t_{n} \leq t$, consider the string of distribution functions indexed by $n \geq 0$, and defined as follows: for $n>0$,
(24) $g_{n}^{N}\left(t, t_{1}, \ldots, t_{n}\right):=S(t) S\left(-t_{n}\right)\left(T^{N}+C^{N}\right) S\left(t_{n}\right) \ldots S\left(-t_{1}\right)\left(T^{N}+C^{N}\right) S\left(t_{1}\right) \underline{f}^{i n}$ while

$$
g_{0}^{N}(t):=S(t) \underline{f}^{i n}
$$

where $\underline{f}^{i n}=\left\{f_{j}^{i n}\right\}_{j=1 \ldots \infty}$ is the initial data.
For $\overline{\text { each }} K \geq 1$, set

$$
\underline{g}^{N, K}(t):=\sum_{n=0}^{K} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} g_{n}\left(t, t_{1}, \ldots, t_{n}\right)
$$

We see immediately that

$$
\partial_{t} \underline{g}^{N, K}+\sum_{i=1}^{N} v_{i} \cdot \nabla_{x_{i}} \underline{g}^{N, K}=\left(T^{N}+C^{N}\right) \underline{g}^{N, K-1}, \quad \underline{g}^{N, K}(0)=\underline{f}^{i n}
$$

The Dyson expansion is

$$
\lim _{K \rightarrow \infty} \underline{g}^{N, K}(t):=\underline{g}^{N}(t)
$$

and, if

$$
\lim _{K \rightarrow \infty}\left(T^{N}+C^{N}\right) \underline{g}^{N, K-1}=\left(T^{N}+C^{N}\right) \underline{g}^{N}
$$

then the Dyson expansion gives the solution \underline{f}^{N} of the N-body Wigner hierarchy with initial data $\underline{f}^{i n}$. Uniqueness is obvious for finite N, since the last equation in the Wigner hierarchy is equivalent to the N-body quantum problem.

For $\beta<\beta_{0}<\beta^{\prime}$, let us define $\beta_{k}:=\beta_{0}+k \frac{\beta^{\prime}-\beta_{0}}{n}, k=0, \ldots, n$ so that $\beta_{k=0}=\beta_{o}$, $\beta_{n}=\beta^{\prime}$ and $\beta_{k+1}-\beta_{k}=\frac{\beta^{\prime}-\beta_{0}}{n}$, and

$$
\Sigma_{N}\left(t_{k}\right):=S\left(-t_{k}\right)\left(T^{N}+C^{N}\right) S\left(t_{k}\right)
$$

By Corollary 4.3 (21)-(23), we get, since $C_{\Phi}^{0} \leq C_{\Phi}^{\beta}(t), \forall \beta>0$, and C_{Φ}^{β} is an increasing function,

$$
\left\|\Sigma_{N}\left(t_{k}\right) \underline{f}\right\|_{\alpha, \beta} \leq \frac{2\left(1+\left|t_{k}\right|\right) C_{\Phi}^{\beta^{\prime}}\left(t_{k}\right) e^{\alpha}}{e\left(\beta^{\prime}-\beta\right)}\|\underline{f}\|_{\alpha, \beta^{\prime}} \leq \frac{2(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta\right)}\|\underline{f}\|_{\alpha, \beta^{\prime}} \text { for } t_{k} \leq t
$$

Therefore, by applying Lemma 4.2 (17) with $|t| \leq \frac{\beta_{0}-\beta}{\beta}$, we get

$$
\begin{aligned}
\left\|g_{n}\left(t, t_{1}, \ldots, t_{n}\right)\right\|_{\alpha, \beta} & =\left\|S(t) \Sigma_{N}\left(t_{n}\right) \Sigma_{N}\left(t_{n-1}\right) \ldots \Sigma_{N}\left(t_{1}\right) \underline{f}^{i n}\right\|_{\alpha, \beta} \\
& \leq\left\|\Sigma_{N}\left(t_{n}\right) \Sigma_{N}\left(t_{n-1}\right) \ldots \Sigma_{N}\left(t_{1}\right) \underline{f}^{i n}\right\|_{\alpha, \beta_{0}} \\
& \leq \frac{2(1+|t|) C_{\Phi}^{\beta_{1}}(t) e^{\alpha}}{e\left(\beta_{1}-\beta_{0}\right)}\left\|\Sigma_{N}\left(t_{n-1}\right) \ldots \Sigma_{N}\left(t_{1}\right) \underline{f}^{i n}\right\|_{\alpha, \beta_{1}} \\
& \leq \frac{2(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta_{0}\right)} n\left\|\Sigma_{N}\left(t_{n-1}\right) \ldots \Sigma_{N}\left(t_{1}\right) \underline{f}^{i n}\right\|_{\alpha, \beta_{1}} \\
& \leq\left(\frac{2(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta_{0}\right)} n\right)^{2}\left\|\Sigma_{N}\left(t_{n-2}\right) \ldots \Sigma_{N}\left(t_{1}\right) \underline{f}^{i n}\right\|_{\alpha, \beta_{2}} \\
& \cdot \\
& \cdot \\
& \cdot\left(\frac{2(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta_{0}\right)} n\right)^{n}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}
\end{aligned}
$$

So that

$$
\begin{array}{r}
\sum_{n=0}^{K}\left\|\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \ldots \int_{0}^{t_{n-1}} d t_{n} g_{n}\left(t, t_{1}, \ldots, t_{n}\right)\right\|_{\alpha, \beta} \\
\quad \leq \sum_{n=0}^{K}\left(\frac{2(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta_{0}\right)} n\right)^{n} \frac{|t|^{n}}{n!}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \frac{|t|^{n}}{n!} \\
=\sum_{n=0}^{K}\left(\frac{2(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}\right)^{n} \frac{n^{n} e^{-n}}{n!}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \frac{|t|^{n}}{n!} \\
\quad \leq \sum_{n=0}^{K}\left(\frac{2(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}\right)^{n}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}
\end{array}
$$

where (26) follows from the fact that $n!\geq n^{n} e^{-n}$: indeed log being increasing we have $\log n!=\sum_{j=2}^{n} \log j \geq \int_{1}^{n} \log (x) d x=[x \log x-x]_{1}^{n}=n \log n-n+1$ which gives the desired inequality.

Hence the Dyson expansion converges uniformly in N as soon as

$$
|t| \leq \frac{\beta_{0}-\beta}{\beta} \quad \text { and } \frac{2(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}<1
$$

By construction, the function $t \mapsto C_{\Phi}^{\beta^{\prime}}(t)$ is continuous and increasing on \mathbf{R}_{+}^{*}, so that there exists a unique $\beta_{0}:=\beta_{0}\left[\alpha, \beta, \beta^{\prime}\right]$ satisfying

$$
\begin{equation*}
\beta<\beta_{0}<\beta^{\prime} \quad \text { and } \quad 2\left(1+\frac{\beta_{0}-\beta}{\beta}\right) \frac{\beta_{0}-\beta}{\beta} C_{\Phi}^{\beta^{\prime}}\left(\frac{\beta_{0}-\beta}{\beta}\right) e^{\alpha}=\beta^{\prime}-\beta_{0} \tag{27}
\end{equation*}
$$

Defining

$$
\begin{equation*}
T\left[\alpha, \beta, \beta^{\prime}\right]:=\frac{\beta_{0}\left[\alpha, \beta, \beta^{\prime}\right]-\beta}{\beta} \tag{28}
\end{equation*}
$$

we see that

$$
|t|<T\left[\alpha, \beta, \beta^{\prime}\right] \Rightarrow|t| \leq \frac{\beta_{0}-\beta}{\beta} \quad \text { and } \frac{2(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}<1
$$

Hence the Dyson expansion converges uniformly in N for $|t|<T\left[\alpha, \beta, \beta^{\prime}\right]$.
Applying Corollary 4.3 with $t=0$, and using the geometric series estimates in (26) shows that the term $\left(T^{N}+C^{N}\right) \underline{f}^{N, K-1}$ converges to $\left(T^{N}+C^{N}\right) \underline{f}^{N}$ as $K \rightarrow \infty$.

Therefore, $\underline{g}^{N, K}$ converges to \underline{f}^{N} as $K \rightarrow \infty$, and \underline{f}^{N} is given by the Dyson expansion. In particular, the estimate (16) follows from (26), after noticing that

$$
\begin{equation*}
\frac{2(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)} \leq \frac{|t|}{T} \times \frac{2(1+T) T C_{\Phi}^{\beta^{\prime}}(T) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)} \leq \frac{|t|}{T} \tag{29}
\end{equation*}
$$

since $\frac{2(1+T) T C_{\alpha}^{\beta^{\prime}}(T) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}=1$ by (28) and (27).

We conclude this section with the proof of Lemma 4.2.
Proof of Lemma 4.2. We shall write (9) in Fourier variables, henceforth denoted $\left(\underline{\xi}_{N} ; \underline{\eta}_{N}\right)$ where we define more generally $\left(\underline{\xi}_{j} ; \underline{\eta}_{j}\right):=\left(\xi_{1}, \ldots, \xi_{j} ; \eta_{1}, \ldots, \eta_{j}\right) \in \mathbf{R}^{2 j d}$. In other words, ξ_{j} is the Fourier variable corresponding to \underline{x}_{j} while η_{j} is the Fourier variable corresponding to v_{j}. For $h \in \mathbf{R}^{d}$ and $j=1, \ldots, N$ we define

$$
\begin{equation*}
\underline{h}_{j}^{r}:=\left(0_{r-1}, h, 0_{j-r}\right) \tag{30}
\end{equation*}
$$

In this definition, we have used the notation $0_{r-1}:=(0, \ldots, 0) \in \mathbf{R}^{(r-1) d}$.
Lemma 4.4. The N-Schrödinger hierarchy (4) is equivalent to the Wigner hierarchy

$$
\partial_{t} f_{j}^{N}+\sum_{i=1}^{j} v_{i} \cdot \nabla_{x_{i}} f_{j}^{N}=\frac{1}{N} T_{j} f_{j}^{N}+\frac{N-j}{N} C_{j+1} f_{j+1}^{N}
$$

where f_{j}^{N} is the Wigner function of D_{j}^{N} and T_{j}, C_{j+1} are defined by

The proof is given in Appendix A.
An easy exercice shows that one recovers the classical BBGKY hierarchy as the formal limit of the above as $\hbar \rightarrow 0$.

One also gets easily

$$
\widehat{S(t) f_{j}}\left(\underline{\xi}_{j} ; \underline{\eta}_{j}\right)=\widehat{f}_{j}\left(\underline{\xi}_{j} ; \underline{\eta}_{j}+t \underline{\xi}_{j}\right)
$$ and therefore

$$
\begin{array}{r}
\frac{S(-t) \widehat{T_{j} S}(t) f_{j}^{N}\left(\underline{\xi}_{j} ; \underline{\eta}_{j}\right)=}{2} \sum_{1 \leq l \neq r \leq j} \int_{\mathbf{R}^{d}} d h \widehat{\Phi}(h) \frac{2 \sin \left(\frac{\hbar}{2}\left(\eta_{r}-\eta_{l}-t\left(\xi_{r}-\xi_{l}\right)\right) \cdot h\right)}{\hbar} \\
\times \widehat{f_{j}^{N}}\left(\underline{\xi}_{j}+\underline{h}_{l}-\underline{h}_{r} ; \underline{\eta}_{j}+t\left(\underline{h}_{l}-\underline{h}_{r}\right)\right) \\
\sum_{r=1}^{j} \int_{\mathbf{R}^{d}} d h \widehat{\Phi}(h) \frac{2 \sin \left(\frac{\hbar}{2}\left(\eta_{r}+t \xi_{r}\right) \cdot h\right)}{\hbar} \\
\times \widehat{f_{j+1}^{N}}\left(\underline{\xi}_{j}-\underline{h}_{r}, h ; \underline{\eta}_{j}-t \underline{h}_{r},-t h\right) .
\end{array}
$$

For $\beta^{\prime}>\beta$ we have

$$
\begin{aligned}
\left\|S(t) f_{j}\right\|_{\beta} & \leq\left\|f_{j}\right\|_{\beta^{\prime}} \sup _{\underline{\xi}_{j}, \underline{\eta}_{j}} \exp \left(-\beta^{\prime} \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)+\beta \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}+t \xi_{i}\right|\right)\right) \\
& \leq\left\|f_{j}\right\|_{\beta^{\prime}} \exp \left(-\left(\beta^{\prime}-\beta\right) \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)+\beta|t| \sum_{i=1}^{j}\left|\xi_{i}\right|\right) \leq\left\|f_{j}\right\|_{\beta^{\prime}}
\end{aligned}
$$

provided $\frac{\beta^{\prime}-\beta}{\beta} \geq|t|$, which proves (17).
Moreover, for $\beta^{\prime}>\beta$ again,

$$
\begin{array}{r}
\left\|S(-t) C_{j+1} S(t) f_{j+1}\right\|_{\beta} \leq\left\|f_{j+1}\right\|_{\beta^{\prime}} \sup _{\underline{\xi}_{j}, \underline{\eta}_{j}} e^{\beta \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)} \\
\times \sum_{r=1}^{j} \int_{\mathbf{R}^{d}} d h|\widehat{\Phi}(h)| h \mid\left(\left|\eta_{r}\right|+\left|t \xi_{r}\right|\right) e^{-\beta^{\prime} \sum_{i=1}^{j}\left(\left|\xi_{i}-\delta_{r, i} h\right|+\left|\eta_{i}-t \delta_{r, i} h\right|\right)} e^{-\beta^{\prime}(|h|+|t h|)} \\
\leq\left\|f_{j+1}\right\|_{\beta^{\prime}}(1+|t|) C_{\Phi}^{0} \sup _{\underline{\xi}_{j}, \underline{\eta}_{j}} \sum_{k=1}^{j}\left(\left|\xi_{k}\right|+\left|\eta_{k}\right|\right) e^{\left(\beta-\beta^{\prime}\right) \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)} \\
\leq\left\|f_{j+1}\right\|_{\beta^{\prime}} \frac{(1+|t|) C_{\Phi}^{0}}{e\left(\beta^{\prime}-\beta\right)}
\end{array}
$$

The second inequality above uses the inequalities $\left|\eta_{r}+t h\right| \geq\left|\eta_{r}\right|-|t h|$ and $\left|\xi_{r}-h\right| \geq\left|\xi_{r}\right|-|h|$. This establishes (18).

To derive (19) we use the same type of argument:

$$
\begin{array}{r}
\left.\left\|S(-t) T_{j} S(t) f_{j}\right\|_{\beta} \leq\left\|f_{j}\right\|_{\beta^{\prime}} \sup _{\underline{\xi}_{j}, \eta_{j}} e^{\beta \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)} \frac{1}{2} \sum_{1 \leq r<l \leq j} \int_{\mathbf{R}^{d}} d h|\widehat{\Phi}(h)| h \right\rvert\, \\
\times\left|\eta_{l}-\eta_{r}+t\left(\xi_{l}-\xi_{r}\right)\right| e^{-\beta^{\prime} \sum_{i=1}^{j}\left(\left|\xi_{i}+\delta_{i, l} h-\delta_{i, r} h\right|+\left|\eta_{i}+t \delta_{i, l} h-t \delta_{i, r} h\right|\right)} \\
\leq\left\|f_{j}\right\|_{\beta^{\prime}} \sup _{\underline{\xi}_{j}, \underline{n}_{j}} e^{\left(\beta-\beta^{\prime}\right) \sum_{i=1}^{j}\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)} \\
\left.\times(1+|t|) \frac{1}{2} \sum_{1 \leq r<l \leq j}\left(\left|\eta_{r}\right|+\left|\eta_{k}\right|+\left|\xi_{r}\right|+\left|\xi_{k}\right|\right) \int_{\mathbf{R}^{d}} d h|\widehat{\Phi}(h)| h \right\rvert\, e^{2 \beta^{\prime}|h|(1+|t|)} \\
\leq\left\|f_{j}\right\|_{\beta^{\prime}} j \frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)}
\end{array}
$$

5. Comparison with Hartree

We want now to compare the solution of the N-body Wigner hierarchy to the solution of the infinite, Hartree hierarchy. The solution of the Hartree hierarchy, namely the sequence $\left\{f(t)^{\otimes j}\right\}_{j=1, \ldots}$ can be also constructed exactly as in the previous section out of the string g_{n} given by the formula

$$
\left\{\begin{array}{l}
g_{n}\left(t, t_{1}, \ldots, t_{n}\right)=S(t) S\left(-t_{n}\right) C S\left(t_{n}\right) \ldots S\left(-t_{1}\right) C S\left(t_{1}\right) \underline{f}^{i n}, \quad n>0 \\
g_{0}(t):=S(t) \underline{f}^{i n}
\end{array}\right.
$$

where

$$
C \underline{f}:=\left\{C_{j+1} f_{j+1}\right\}_{j \geq 1} .
$$

Let g_{n}^{N} be the string leading to the N-body Wigner hierarchy, that is

$$
\left\{\begin{array}{l}
g_{n}^{N}\left(t, t_{1}, \ldots, t_{n}\right):=S(t) S\left(-t_{n}\right)\left(T^{N}+C^{N}\right) S\left(t_{n}\right) \ldots S\left(-t_{1}\right)\left(T^{N}+C^{N}\right) S\left(t_{1}\right) \underline{f}^{i n} \\
g_{0}^{N}(t):=S(t) \underline{f}^{i n}
\end{array}\right.
$$

where we recall that T^{N} and C^{N} are given by (20). Finally we define $g_{n}^{H H_{N}}$ by

$$
\left\{\begin{array}{l}
g_{n}^{H H_{N}}\left(t, t_{1}, \ldots, t_{n}\right)=S(t) S\left(-t_{n}\right) C^{N} S\left(t_{n}\right) \ldots S\left(-t_{1}\right) C^{N} S\left(t_{1}\right) \underline{f}^{i n}, \quad n>0 \\
g_{0}^{H H_{N}}(t):=S(t) \underline{f}^{i n}
\end{array}\right.
$$

Notice that $g_{0}=g_{0}^{H H_{N}}=g_{0}^{N}$.
5.1. Comparing g_{n}^{N} to $g_{n}^{H H_{N}}$. For $n_{0} \geq 1$, one has

$$
\begin{array}{r}
\left.\| \sum_{n=0}^{\infty} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}^{N}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta} \\
\left.\leq \| \sum_{n=1}^{n_{0}} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}^{N}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta}+R\left(n_{0}\right)
\end{array}
$$

where $R\left(n_{0}\right)$ is the sum of the two remainders of the (convergent) Dyson expansions of g_{n}^{N} and $g_{n}^{H H_{N}}$. Using (29), one easily finds that

$$
\begin{equation*}
R\left(n_{0}\right) \leq \frac{2 e^{\alpha j}}{1-\frac{|t|}{T}}\left(\frac{|t|}{T}\right)^{n_{0}+1}\|\underline{f}\|_{\alpha, \beta^{\prime}} \tag{31}
\end{equation*}
$$

In order to estimate the sum up to n_{0}, we expand the string $g_{n}^{N}\left(t, t_{1}, \ldots, t_{n}\right)$ as

$$
\begin{equation*}
g_{n}^{N}\left(t, t_{1}, \ldots, t_{n}\right)=\sum_{k=0}^{n} \sum_{\substack{\sigma_{1}, \ldots, \sigma_{n} \in\{0,1\}, \sum_{i=1}^{n} \sigma_{i}=n-k}} O_{\sigma_{n}}\left(t_{n}\right) \ldots O_{\sigma_{1}}\left(t_{1}\right) \underline{f}^{i n} \tag{32}
\end{equation*}
$$

where

$$
O_{0}(t):=S(-t) T^{N} S(t) \quad \text { and } O_{1}(t)=S(-t) C^{N} S(t)
$$

so that we detect the number of $T^{N_{\mathrm{S}}}$ in the expansion which is precisely k. Notice that the term corresponding to $k=0$ is precisely $g_{n}^{H H_{N}}$.

For $\beta<\beta^{\prime}$, let us define now $\beta_{k}:=\beta+k \frac{\beta^{\prime}-\beta}{n}, k=0, \ldots, n$, so that $\beta_{0}=\beta$, $\beta_{n}=\beta^{\prime}$ and $\beta_{k+1}-\beta_{k}=\frac{\beta^{\prime}-\beta}{n}$. We have that

$$
\left.\left.=\sum_{k=1}^{n} \sum_{\substack{\sigma_{1}, \ldots, \sigma_{n} \in\{0,1\}, \sum_{i=1}^{n} \sigma_{i}=n-k}}\left(g_{n}^{N}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right) t_{n}\right)\right)_{j+\sigma_{n}}\left(O_{\sigma_{n-1}}\left(t_{n-1}\right) \ldots O_{\sigma_{1}}\left(t_{1}\right) \underline{f}^{i n}\right)_{j+\sigma_{n}} .
$$

So, using Lemma 4.2 and iterating as in Section 5.1,

$$
\begin{aligned}
& \left\|\left(g_{n}^{N}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right\|_{\beta} \\
& \leq \sum_{k=1}^{n} \sum_{\substack{\sigma_{1}, \ldots, \sigma_{n} \in\{0,1\}, \sum_{i=1}^{n} \sigma_{i}=n-k}}\left(\frac{j}{N}\right)^{1-\sigma_{n}}\left(\frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)} n\right) \\
& \times\left\|\left(O_{\sigma_{n-1}}\left(t_{n-1}\right) \ldots O_{\sigma_{1}}\left(t_{1}\right) \underline{f}^{i n}\right)_{j+\sigma_{n}}\right\|_{\beta_{1}} \\
& \leq \sum_{k=1}^{n} \sum_{\substack{\sigma_{1}, \ldots, \sigma_{n} \in\{0,1\}, \sum_{i=1}^{n} \sigma_{i}=n-k}}\left(\frac{j}{N}\right)^{1-\sigma_{n}}\left(\frac{j+\sigma_{n}}{N}\right)^{1-\sigma_{n-1}} \\
& \times\left(\frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)} n\right)^{2}\left\|\left(O_{\sigma_{n-2}}\left(t_{n-2}\right) \ldots O_{\sigma_{1}}\left(t_{1}\right) \underline{f}^{i n}\right)_{j+\sigma_{n}+\sigma_{n-1}}\right\|_{\beta_{2}} \\
& \leq \sum_{k=1}^{n}\left(\frac{j+n}{N}\right)^{k}\left(\sum_{\substack{\sigma_{1}, \ldots, \sigma_{n} \in\{0,1\}, \sum_{i=1}^{n} \sigma_{i}=n-k}} 1\right)\left(\frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)} n\right)^{n}\left\|f_{j+\sigma_{n}+\sigma_{n-1}+\cdots+\sigma_{1}}^{n}\right\|_{\beta^{\prime}} \\
& \leq e^{\alpha(j+n)}\left(\frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t)}{e\left(\beta^{\prime}-\beta\right)} n\right)^{n} \sum_{k=1}^{n}\left(\frac{j+n}{N}\right)^{k}\binom{n}{k}\|f\|_{\alpha, \beta^{\prime}} \\
& =e^{\alpha j}\left(\frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta\right)} n\right)^{n}\left(\left(1+\frac{j+n}{N}\right)^{n}-1\right)\|\underline{f}\|_{\alpha, \beta^{\prime}} .
\end{aligned}
$$

Here we have used that $\left\|f_{j}\right\|_{\beta} \leq e^{\alpha j}\|\underline{f}\|_{\alpha, \beta}$ and $\sigma_{n}+\sigma_{n-1}+\cdots+\sigma_{1} \leq n$.

For $n \leq n_{0}$, one has

$$
\left(1+\frac{j+n}{N}\right)^{n}-1 \leq n \frac{j+n}{N}\left(1+\left(j+n_{0}\right) / N\right)^{n_{0}-1}
$$

besides

$$
\begin{equation*}
\left(1+\left(j+n_{0}\right) / N\right)^{n_{0}-1}=e^{\left(n_{0}-1\right) \log 1+\left(j+n_{0}\right) / N} \leq e^{\left(n_{0}-1\right)\left(j+n_{0}\right) / N}:=c_{n_{0}} \tag{33}
\end{equation*}
$$

Therefore, using again (29),

$$
\begin{array}{r}
\left.\| \sum_{n=0}^{n_{0}} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}^{N}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta} \\
\leq\left(c_{n_{0}} e^{\alpha j} \sum_{n=1}^{n_{0}} \frac{1}{n!}\left(|t| \frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha} n}{e\left(\beta^{\prime}-\beta\right)}\right)^{n} \frac{j+n}{N} n\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \\
\quad \leq\left(c_{n_{0}} \frac{e^{\alpha j}}{N} \sum_{n=1}^{\infty}\left(|t| \frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta\right)}\right)^{n}(j+n) n\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \\
=\frac{|t|}{T} e^{\alpha j}\left(c_{n_{0}} \frac{c_{1}}{N}\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}
\end{array}
$$

with

$$
\begin{equation*}
c_{1}=\frac{j+1}{\left(1-\frac{|t|}{T}\right)^{2}}+\frac{2|t| / T}{\left(1-\frac{|t|}{T}\right)^{3}} \text { and } c_{n_{0}}=e^{\left(n_{0}-1\right)\left(j+n_{0}\right) / N} \tag{34}
\end{equation*}
$$

We finally get

$$
\begin{align*}
\| \sum_{n=0}^{\infty} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} & \left.\ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}^{N}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta} \\
& \leq \frac{|t|}{T} e^{\alpha j}\left(c_{n_{0}} \frac{c_{1}}{N}+\frac{2(|t| / T)^{n_{0}}}{1-\frac{|t|}{T}}\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \tag{35}
\end{align*}
$$

5.2. Comparing g_{n} and $g_{n}^{H H_{N}}$. We first remark that

$$
\begin{aligned}
& \left(g_{n}^{H H_{N}}\left(t, t_{1}, \ldots, t_{n}\right)\right)_{j} \\
& =S(t) S\left(-t_{1}\right) C_{j+1}^{N} S\left(t_{1}\right) S\left(-t_{2}\right) C_{j+2}^{N} S\left(t_{2}\right) \ldots S\left(-t_{n}\right) C_{j+n}^{N} S\left(t_{n}\right) f_{j+n}^{i n},
\end{aligned}
$$

and that the same holds for g_{n} :

$$
=S(t) S\left(-t_{1}\right) C_{j+1} S\left(t_{1}\right) S\left(-t_{2}\right) C_{j+2} S\left(t_{2}\right) \ldots S\left(-t_{n}\right) C_{j+n} S\left(t_{n}\right) f_{j+n}^{i n} .
$$

Since $C_{j+1}^{N}=\left(1-\frac{j}{N}\right) C_{j+1}$, one has

$$
\left(g_{n}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)=\left(1-\prod_{l=1}^{n}\left(1-\frac{j+l}{N}\right)\right)\left(g_{n}\left(t, t_{1}, \ldots, t_{n}\right)\right)_{j}
$$

As before we truncate the summation at n_{0}, and consider

$$
\sum_{n=1}^{n_{0}} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)
$$

For $j+n_{0} \leq N$ and $n \leq n_{0}$,

$$
1-\prod_{l=1}^{n}\left(1-\frac{j+l}{N}\right) \leq 1-\left(1-\frac{j+n}{N}\right)^{n} \leq \frac{n(j+n)}{N}
$$

Therefore

$$
\begin{array}{r}
\left.\| \sum_{n=1}^{n_{0}} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta} \\
\left.\leq \sum_{n=1}^{n_{0}} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} \frac{n(j+n)}{N} \|\left(g_{n}\left(t, t_{1}, \ldots, t_{n}\right)\right)\right)_{j} \|_{\beta} \\
\left.\leq \sum_{n=1}^{n_{0}} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} \frac{n(j+n)}{N} e^{\alpha j} \| g_{n}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\alpha, \beta} \\
\leq \sum_{n=1}^{\infty} \frac{|t|^{n}}{n!} \frac{n(j+n)}{N} e^{\alpha j}\left(\frac{(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{e\left(\beta^{\prime}-\beta\right)} n\right)^{n}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \\
\leq e^{\alpha j} \sum_{n=1}^{\infty}\left(\frac{|t|}{T}\right)^{n} \frac{n(j+n)}{N}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \\
\quad=\frac{e^{\alpha j}}{N} \frac{|t|}{T} c_{1}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}
\end{array}
$$

Here we have used (25) and (29) with $\beta<\beta_{0}$ and c_{1} is defined in (34).
The same argument as for $g_{n}^{N}-g_{n}^{H H_{N}}$ in Section 5.1 gives the same estimate (31) of the remainder. Recalling that, by (29),

$$
\frac{(1+|t|)|t| C_{\Phi}^{0} e^{\alpha}}{\beta^{\prime}-\beta} \leq \frac{2(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)} \leq \frac{|t|}{T}
$$

we easily arrive at

$$
\begin{align*}
\| \sum_{n=0}^{\infty} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots & \left.\int_{0}^{t_{2}} d t_{1}\left(g_{n}-g_{n}^{H H_{N}}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta} \tag{36}\\
& \leq \frac{|t|}{T} e^{\alpha j}\left(\frac{c_{1}}{N}+\frac{2(|t| / T)^{n_{0}}}{1-\frac{|t|}{T}}\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} .
\end{align*}
$$

5.3. End of the proof of Theorem 3.2. Choosing now

$$
n_{0}=\log (N) / \log (T /|t|):=n_{0}(N),
$$

we see that $(|t| / T)^{n_{0}}=1 / N$.
Moreover it is easy to check that the function $f(N):=c_{n_{0}(N)}$ given by (33) has only one extremum in $(1,+\infty), f(1)=e^{-j}, f(+\infty)=1$ and $f^{\prime}(1)>0$. Therefore this extremum is a maximum and an easy computation gives

$$
\begin{aligned}
c_{n_{0}} & =e^{\left(n_{0}-1\right)\left(j+n_{0}\right) / N} \\
& \leq \exp \frac{x(j, t)^{2}+(j-1) \log (T /|t|) x(j, t)-j(\log (T /|t|))^{2}}{(\log (T /|t|))^{2} e^{x(j, t)}}=: \gamma(j, t)
\end{aligned}
$$

with

$$
x(j, t):=-\frac{1}{2} \log \frac{T}{|t|}\left(j-1-\frac{2}{\log \frac{T}{|t|}}-\sqrt{\left(j-1-\frac{2}{\log \frac{T}{|t|}}\right)^{2}+4\left(\frac{j-1}{\left.\log \frac{T}{|t|}+j\right)}\right)} .\right.
$$

Observe that $x(j, t) \rightarrow+\infty$ as $t \rightarrow 0$ and/or $j \rightarrow \infty$ so that

$$
\gamma(j, t) \rightarrow 1 \text { as }|t| \rightarrow 0 \text { and/or } j \rightarrow \infty
$$

Adding (35) and (36) and applying the triangle inequality, we find that

$$
\begin{array}{r}
\left.\| \sum_{n=0}^{\infty} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1}\left(g_{n}^{N}-g_{n}\right)_{j}\left(t, t_{1}, \ldots, t_{n}\right)\right) \|_{\beta} \\
\leq \frac{|t|}{T} \frac{e^{\alpha j}}{N}\left(\left(1+c_{n_{0}}\right) c_{1}+\frac{4}{1-\frac{|t|}{T}}\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}
\end{array}
$$

and therefore (recalling (13))

$$
\begin{array}{r}
\left\|F_{j}^{N}(t)-F(t)^{\otimes j}\right\|_{\beta}=\left\|f_{j}^{N}(t)-f(t)^{\otimes j}\right\|_{\beta} \tag{37}\\
\leq \frac{e^{\alpha j}}{N} \frac{|t|}{T}\left(\left(1+c_{n_{0}}\right)\left(\frac{j+1}{\left(1-\frac{|t|}{T}\right)^{2}}+\frac{2|t| / T}{\left(1-\frac{|t|}{T}\right)^{3}}\right)+\frac{4}{1-\frac{|t|}{T}}\right)\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \\
\leq \frac{e^{\alpha j}}{N} \frac{|t|}{T}\left((1+\gamma(j, t))\left(\frac{j+1}{\left(1-\frac{|t|}{T}\right)^{2}}+\frac{2|t| / T}{\left(1-\frac{|t|}{T}\right)^{3}}\right)+\frac{4}{1-\frac{|t|}{T}}\right) \frac{\left\|f^{i n}\right\|_{\beta^{\prime}}}{1-e^{-\alpha}\left\|f^{i n}\right\|_{\beta^{\prime}}} \\
=\frac{C(j, t)}{N} \frac{|t| \mid}{T} \frac{\left\|f^{i n}\right\|_{\beta^{\prime}}}{1-e^{-\alpha}\left\|f^{i n}\right\|_{\beta^{\prime}}}
\end{array}
$$

where $C(j, t)$ is defined by the last equality above.
Let us remark that (37) has been derived under the only condition that $1 \leq j \leq N$ and that $C(j, t) \sim \frac{2}{(1-|t| / T)^{2}} j e^{\alpha j}$, as $j \rightarrow \infty$ since $\gamma(j, t) \rightarrow 1$ as $j \rightarrow \infty$.

6. Final Remarks

Our result, based on the Wigner formalism, holds for a short time only, provided that both the potential and initial data are smooth enough. However, this regularity assuption is used exclusively for obtaining estimates that are independent of \hbar.

If one is prepared to give up this requirement, a global in time convergence (under much less stringent assumptions) can indeed be recovered along the following lines, in the same spirit as in $[20,1,16]$. In terms of the L^{1} norm of the Fourier transform of the Wigner function in the x variable only, it is easy to see that both operators T^{N} and C^{N} are bounded, with a norm that tends to ∞ as $\hbar \rightarrow 0$, while $S(t)$ is isometric. Proceeding as above, we prove the convergence in the mean-field limit, for a short time which depends only on the size of the norm of $f^{i n}$.

However the procedure can be iterated because uniform bounds (in an arbitrary finite time interval) on the norm of the solutions can be obtained by means of H_{s} (with $s>d / 2$) estimates on the Hartree dynamics.

Moreover, although not needed in the present paper, the following estimate improves on (16), and may be of independent interest:

$$
\begin{equation*}
\left\|\underline{f}^{N}(t)-\underline{f}^{i n}\right\|_{\alpha, \beta} \leq|t|\left(\frac{\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}}{\frac{\beta^{\prime}-\beta}{3(1+|t|) C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}-|t|}+\frac{\sum_{l=1}^{d}\left\|v_{l} \underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}}{e\left(\beta^{\prime}-\beta\right)}\right) \tag{38}
\end{equation*}
$$

This bound is obtained in the following manner. First, an explicit computation based on the mean value theorem shows that

$$
\left\|\underline{f}^{i n}-S(t) \underline{f}^{i n}\right\|_{\alpha, \beta} \leq \frac{|t|}{e\left(\beta^{\prime}-\beta\right)} \sum_{l=1}^{d}\left\|v_{l} \underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}}
$$

Notice that the second indices on the norms used in both sides of the inequality above are different and satisfy $\beta^{\prime}>\beta$; observe indeed that

$$
\left\|\partial_{\underline{x}_{j}} \underline{\phi}\right\|_{\alpha, \beta} \leq \frac{\|\underline{\phi}\|_{\alpha, \beta^{\prime}}}{e\left(\beta^{\prime}-\beta\right)}, \quad j=1, \ldots, d
$$

this inequality is applied to $\phi=v_{j} \underline{f}^{i n}$. This account for the second term on the right hand side of (38). The first term on the right hand side of (38) is obtained by applying the geometric series estimate (26) to

$$
\underline{g}^{N}(t)-S(t) \underline{f}^{i n}=\sum_{n \geq 1} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} g_{n}\left(t, t_{1}, \ldots, t_{n}\right)
$$

At variance with (26), the summation here starts with $n=1$; hence

$$
\begin{aligned}
\left\|\underline{f}^{N}(t)-S(t) \underline{f}^{i n}\right\|_{\alpha, \beta} \leq \sum_{n=1}^{\infty} & \left(\frac{3(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}\right)^{n}\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \\
& =\left\|\underline{f}^{i n}\right\|_{\alpha, \beta^{\prime}} \frac{\frac{3\left(1+|t|| | t \mid C_{\top}^{\beta^{\prime}}(t) e^{\alpha}\right.}{\left(\beta^{\prime}-\beta_{0}\right)}}{1-\frac{3(1+|t|)|t| C_{\Phi}^{\beta^{\prime}}(t) e^{\alpha}}{\left(\beta^{\prime}-\beta_{0}\right)}}
\end{aligned}
$$

Appendix A. Proof of Lemma 4.4

Taking the Fourier transform of both sides of (9) we get easily

$$
\begin{gathered}
\partial_{t} \widehat{f^{N}}\left(t, \underline{\xi}_{N} ; \underline{\eta}_{N}\right)+\underline{\xi}_{N} \cdot \nabla_{\underline{\eta}_{N}} \widehat{f^{N}}\left(t, \underline{\xi}_{N} ; \underline{\eta}_{N}\right) \\
=\int_{\mathbf{R}^{N d}} d \underline{h}_{N} \widehat{V_{N}}\left(\underline{h}_{N}\right) \frac{2 \sin \left(\frac{\hbar}{2} \underline{\eta}_{N} \cdot \underline{h}_{N}\right)}{\hbar} \widehat{f^{N}}\left(t, \underline{\xi}_{N}-\underline{h}_{N} ; \underline{\eta}_{N}\right)
\end{gathered}
$$

Since $V_{N}\left(\underline{x}_{N}\right)=\frac{1}{2 N} \sum_{l \neq r} \Phi\left(x_{l}-x_{r}\right)$, we have

$$
\begin{aligned}
\widehat{V_{N}}\left(\underline{h}_{N}\right) & :=\frac{1}{(2 \pi)^{d N}} \int_{\mathbf{R}^{d N}} V_{N}\left(\underline{x}_{N}\right) e^{-i \underline{x}_{N} \cdot \underline{h}_{N}} d \underline{x}_{N} \\
& =\frac{1}{2 N} \sum_{l \neq r=1}^{N} \widehat{\Phi}\left(\hbar_{l}\right) \delta\left(h_{l}+h_{r}\right) \prod_{l \neq k \neq r} \delta\left(h_{k}\right)
\end{aligned}
$$

so that, with the definition (30),

$$
\begin{gather*}
\int_{\mathbf{R}^{N d}} d \underline{h}_{N} \widehat{V_{N}}\left(\underline{h}_{N}\right) \frac{2 \sin \left(\frac{\hbar}{2} \underline{\eta}_{N} \cdot \underline{h}_{N}\right) \widehat{f^{N}}\left(t, \underline{\xi}_{N}-\underline{h}_{N} ; \underline{\eta}_{N}\right)}{\hbar} \\
=\frac{1}{2 N} \sum_{l \neq r=1}^{N} \int_{\mathbf{R}^{d}} d h \widehat{\Phi}(h) \frac{\sin \left(\frac{\hbar}{2}\left(\eta_{r}-\eta_{l}\right) \cdot h\right) \widehat{f^{N}}\left(t, \underline{\xi}_{N}+\underline{h}_{N}^{l}-\underline{h}_{N}^{r} ; \underline{\eta}_{N}\right)}{\hbar} . \tag{39}
\end{gather*}
$$

Let us remark now that

$$
\widehat{f_{j}^{N}}\left(\underline{\xi}_{j}, \underline{\eta}_{j}\right)=(2 \pi)^{2 d(N-j)} \widehat{f^{N}}\left(\underline{\xi}_{j}, 0_{N-j} ; \underline{\eta}_{j}, 0_{N-j}\right)
$$

Moreover

$$
\begin{gathered}
\int_{\mathbf{R}^{N d}} d \underline{h}_{N} \widehat{V_{N}}\left(\underline{h}_{N}\right) \frac{2 \sin \left(\frac{\hbar}{2}\left(\underline{\eta}_{j}, 0_{N-j}\right) \cdot \underline{h}_{N}\right) \widehat{f^{N}}\left(t,\left(\underline{\xi}_{j}, 0_{N-j}\right)-\underline{h}_{N} ; \underline{\eta}_{j}, 0_{N-j}\right)}{\hbar} \\
=\frac{1}{N} \widehat{T_{j}} \widehat{f_{j}^{N}}\left(t, \underline{\xi}_{j} ; \underline{\eta}_{j}\right)+\frac{N-j}{N} \widehat{C_{j+1}} \widehat{f_{j+1}^{N}}\left(t, \underline{\xi}_{j} ; \underline{\eta}_{j}\right)
\end{gathered}
$$

with
(40) $\widehat{T_{j}} \widehat{f_{j}^{N}}\left(t, \underline{\xi}_{j} ; \underline{\eta}_{j}\right)=\frac{1}{2} \sum_{l \neq r=1}^{j} \int_{\mathbf{R}^{d}} d h \widehat{\Phi}(h) \frac{2 \sin \frac{\hbar}{2}\left(\eta_{r}-\eta_{l}\right) \cdot h \widehat{f_{j}^{N}}}{\hbar}\left(t, \underline{\xi}_{j}+\underline{h}_{j}^{l}-\underline{h}_{j}^{r} ; \underline{\eta}_{j}\right)$

$$
\begin{equation*}
\widehat{C_{j+1}} \widehat{f_{j+1}^{N}}\left(t, \underline{\xi}_{j} ; \underline{\eta}_{j}\right)=\sum_{r=1}^{j} \int_{\mathbf{R}^{d}} d h \widehat{\Phi}(h) \frac{2 \sin \left(\frac{\hbar}{2} \eta_{r} \cdot h\right)}{\hbar} \widehat{f_{j+1}^{N}}\left(t, \underline{\xi}_{j}-\underline{h}_{j}^{r}, h ; \underline{\eta}_{j}, 0\right) . \tag{41}
\end{equation*}
$$

Indeed the contribution given by $l, r \leq j$ in (39) is precisely $\frac{1}{N}$ times the right hand-side of (40) by the fact that $\underline{h}_{N}^{m}=\underline{h}_{j}^{m}$ if $m \leq j$, so that

$$
\widehat{f^{N}}\left(t,\left(\underline{\xi}_{j}, 0_{N-j}\right)+\underline{h}_{N}^{l}-\underline{h}_{N}^{r} ; \underline{\eta}_{j}, 0_{N-j}\right)=\widehat{f_{j}^{N}}\left(t,\left(\underline{\xi}_{j}+\underline{h}_{j}^{l}-\underline{h}_{j}^{r} ; \underline{\eta}_{j}\right) .\right.
$$

Moreover the contribution given by $j<l, r \leq N$ in (39) vanishes because $\eta_{l}, \eta_{r}=0$ for $\underline{\eta}_{N}=\underline{\eta}_{j}+0_{N-j}$ and $l, r>j$.

What remain in the sum in (39) are the terms $1 \leq r \leq j<l \leq N$ and $1 \leq l \leq$ $j<r \leq N$. The first case will give a contribution in (39) equal to

$$
\frac{1}{2 N} \sum_{1 \leq r \leq j<l \leq N} \int d h \widehat{\Phi}(h) \frac{2 \sin \left(\frac{\hbar}{2} \eta_{r} \cdot h\right)}{\hbar} \widehat{f^{N}}\left(t,\left(\underline{\xi}_{j}, 0_{N-j}\right)+\underline{h}_{N}^{l}-\underline{h}_{j}^{r} ; \underline{\eta}_{j}, 0_{N-j}\right)
$$

$\operatorname{But}\left(\underline{\xi}_{j}+0_{N-j}\right)+\underline{h}_{N}^{l}-\underline{h}_{j}^{r}=\left(\underline{\xi}_{j}-\underline{h}_{j}^{r}, 0_{N-j}\right)+\underline{h}_{N}^{l}$ and because of the symmetry property of $f^{N}(t, \cdot ; \cdot \cdot$,

$$
\begin{gathered}
\widehat{f^{N}}\left(t,\left(\underline{\xi}_{j}-\underline{h}_{j}^{r}, 0_{N-j}\right)+\underline{h}_{N}^{l} ; \eta_{j}, 0_{N-j}\right) \\
=\widehat{f^{N}}\left(t,\left(\underline{\xi}_{j}-\underline{h}_{j}^{r}, h, 0_{N-j-1}\right) ; \eta_{j}, 0_{N-j}\right)=\widehat{f_{j+1}^{N}}\left(t, \underline{\xi}_{j}-\underline{h}_{j}^{r}, h ; \underline{\eta}_{j}, 0\right)
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\frac{1}{2 N} \sum_{1 \leq r \leq j<l \leq N} \int d h \widehat{\Phi}(h) \frac{2 \sin \left(\frac{\hbar}{2} \eta_{r} \cdot h\right)}{\hbar} \widehat{f^{N}}\left(t,\left(\underline{\xi}_{j}, 0_{N-j}\right)+\underline{h}_{N}^{l}-\underline{h}_{j}^{r} ; \underline{\eta}_{j}, 0_{N-j}\right) \\
\quad=\frac{N-j}{2 N} \sum_{r=1}^{j} \int d h \widehat{\Phi}(h) \frac{2 \sin \left(\frac{\hbar}{2} \eta_{r} \cdot h\right)}{\hbar} \widehat{f_{j+1}^{N}}\left(t, \underline{\xi}_{j}-\underline{h}_{j}^{r}, h ; \underline{\eta}_{j}, 0\right)
\end{gathered}
$$

It is easy to check thta the contribution coming from $1 \leq l \leq j<r \leq N$ in (39) gives (after a change of variable $h \rightarrow-h$) the same expression, and the sum of the two gives (41).

Finally we get that equation (9) is equivalent to

$$
\begin{align*}
& \partial_{t} \widehat{f_{j}^{N}}\left(t, \underline{\xi}_{j}, \underline{\eta}_{j}\right)+\underline{\xi}_{j} \cdot \nabla_{\underline{\eta}_{j}} \widehat{f_{j}^{N}} \tag{42}\\
&\left.t, \underline{\xi}_{j}, \underline{\eta}_{j}\right) \\
&=\frac{1}{N} \widehat{T_{j}} \widehat{f_{j}^{N}}\left(t, \underline{\xi}_{j} ; \underline{\eta}_{j}\right)+\frac{N-j}{N}\left(\widehat{C_{j+1}} \widehat{f_{j+1}^{N}}\right)\left(t, \underline{\xi}_{j} ; \underline{\eta}_{j}\right), \\
& j=1 \ldots N,
\end{align*}
$$

and the Lemma is proved by defining $\widehat{T_{j} f_{j}}=\widehat{T_{j}} \widehat{f_{j}}, \widehat{C_{j+1} f_{j+1}}=\widehat{C_{j+1}} \widehat{f_{j+1}}$ and taking the inverse Fourier transform of (42).

Part 2. Interpolation

2. \hbar-DEPENDENT BOUND

In this section we give a proof of the convergence of the (marginals of the) N-body density operator to the (tensorial products of the) solution of the Hartree equation in trace norm. This result does not require any regularity condition on the two-body potential but the convergence is non uniform in the the Planck constant. Indeed, the estimate bearing on the interaction term will treats commutators as if they were anticommutators. In other words, we estimate both terms in the commutator separately and add the corresponding bounds, without taking into consideration any compensation that might come from the difference and might insure, after division by \hbar, the desired uniformity in the Planck constant. This procedure is of course not original and there is a considerable amount of literature on this subject, starting with the seminal paper of Spohn [20].

The new feature in the analysis below is that we keep track of the dependence in \hbar of the rate of convergence so obtained in Theorem 2.1. Indeed, in the next section, the estimate in Theorem 2.1 is interpolated with the convergence rate obtained in [9] in order to obtain the uniform in \hbar bound stated in Theorem 3.1.

The explicit rate of convergence of the mean-field limit has been discussed in [18] and [5], among others: For $\hbar=1$ and an initial condition in the form of a pure state with appropriate regularity, one can bound the error by $C e^{C t} / N$, see [5]. This result involves the formalism of quantum field theory in Fock space with $\hbar=1$ and semiclassical methods using $\frac{1}{N}$ as effective Planck constant. Therefore it is not obvious to manage how the true Planck constant \hbar and the fake one $\frac{1}{N}$ would compete as $\hbar \rightarrow 0, N \rightarrow \infty$.

On the other side, iterating the convergence rate obtained from estimating the BBGKY hierarchy for $\hbar=1$ over short time intervals leads to a bound that is much less sharp. It is interesting to compare the result stated in [21] with the bound obtained in the forthcoming Theorem 2.1 with $\hbar=1$.

Since we couldn't find in the literature a proof of the iteration procedure and need anyway, in our present context, to track precisely its \hbar-dependence, we will discuss it in detail, in a way similar to the one used in [17] for a different problem.

Since we seek a trace norm error estimate, it is more convenient to work directly on density operators rather than with their Wigner functions.

Consider the unitary flow $U_{j}(t)$ defined on $L^{2}\left(\mathbf{R}^{j d}\right)$ by the formula

$$
i \hbar \dot{U}_{j}(t):=-\hbar^{2} \Delta_{\mathbf{R}^{j d}} U_{j}(t), \quad U_{j}(0)=\operatorname{Id}_{L^{2}\left(\mathbf{R}^{j d}\right)}
$$

Consider the operator $\mathcal{S}_{j}(t)$ defined on density matrices by conjugation with $U_{j}(t)$:

$$
\mathcal{S}_{j}(t) F=U_{j}(t) F U_{j}(-t)
$$

Obviously, $\mathcal{S}_{j}(t)$ is a linear isometry on $\mathcal{L}^{1}\left(L^{2}\left(\left(\mathbf{R}^{d j}\right)\right)\right)$, the space of trace class operators equipped with the trace norm.

We recall the definition of \mathcal{C}_{j} and \mathcal{T}_{j} given by (6) and (5). For notational convenience we also denote

$$
\begin{equation*}
\mathcal{C}_{j}^{\hbar}=\frac{\mathcal{C}}{i \hbar} ; \quad \mathcal{T}_{j}^{\hbar}=\frac{\mathcal{T}_{j}}{i \hbar} \tag{43}
\end{equation*}
$$

Henceforth we denot by $F_{j}^{N}(t)$ the solutions of the N-particle BBGKY hierarchy, and by $F(t)$ the solution of the Hartree equation. Thus $F_{j}(t)=F(t)^{\otimes j}$ is a solution of the Hartree hierarchy, and we arrive at the following estimate.

Theorem 2.1. Let $\Phi \in L^{\infty}\left(\mathbf{R}^{d}\right)$. Then there exists $N_{0}(j)$ such that the following estimate holds true for $N \geq N_{0}(j)$ and $\log N \geq j 2 \frac{16\|\Phi\|_{L \infty t}}{h}+1$

$$
\left\|F_{j}^{N}(t)-F(t)^{\otimes j}\right\|_{\mathcal{L}_{1}} \leq \frac{2^{j+\frac{16 t\|\Phi\|_{L^{\infty}}}{\hbar}}}{N^{\left(2^{-\frac{16 t\|\Phi\|_{L^{\infty}}}{\hbar}} \log 2\right)}}
$$

for all $t \geq 0$.
Proof. We first rephrase (4) and (7) in the following mild form

$$
\begin{equation*}
F_{j}^{N}(t)=S(t) F_{0, j}+\int_{0}^{t} d \tau\left(\mathcal{S}(t-\tau) \frac{\mathcal{T}_{j}^{\hbar}}{N} F_{j}^{N}(\tau)+\frac{N-j}{N} \mathcal{S}(t-\tau) \mathcal{C}_{j+1}^{\hbar} F_{j+1}^{N}(\tau)\right) \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{j}(t)=\mathcal{S}(t) F_{0, j}+\int_{0}^{t} d \tau \mathcal{S}(t-\tau) \mathcal{C}_{j+1}^{\hbar} F_{j+1}(\tau) \tag{45}
\end{equation*}
$$

Here $\left\{F_{0, j}\right\}_{j=1}^{\infty}$ denotes the common initial datum for both sequences, assumed to be factorized, i.e. $F_{0, j}=f_{0}^{\otimes j}$. Using the group property $\mathcal{S}(t)=\mathcal{S}\left(t-t_{1}\right) \mathcal{S}\left(t_{1}\right)$ for all $0 \leq t_{1} \leq t$, and splitting the integral into two parts, we see that

$$
\begin{equation*}
F_{j}^{N}(t)=S\left(t-t_{1}\right) F_{j}^{N}\left(t_{1}\right)+\int_{t_{1}}^{t} d \tau\left(\mathcal{S}(t-\tau) \frac{\mathcal{T}_{j}^{\hbar}}{N} F_{j}^{N}(\tau)+\frac{N-j}{N} \mathcal{S}(t-\tau) \mathcal{C}_{j+1}^{\hbar} F_{j+1}^{N}(\tau)\right) \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{j}(t)=\mathcal{S}\left(t-t_{1}\right) F_{j}\left(t_{1}\right)+\int_{t_{1}}^{t} d \tau \mathcal{S}(t-\tau) \mathcal{C}_{j+1}^{\hbar} F_{j+1}(\tau) \tag{47}
\end{equation*}
$$

We are interested in bounding the difference

$$
\begin{equation*}
\Delta_{j}(t)=F_{j}^{N}(t)-F_{j}(t) \tag{48}
\end{equation*}
$$

which is recast as

$$
\begin{equation*}
\Delta_{j}(t)=\mathcal{R}_{j}(t)+\int_{t_{1}}^{t} d t_{2} \mathcal{S}\left(t-t_{2}\right) \mathcal{C}_{j+1}^{\hbar} \Delta_{j+1}\left(t_{2}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{array}{r}
\mathcal{R}_{j}(t)=\mathcal{S}\left(t-t_{1}\right) \Delta_{j}\left(t_{1}\right) \\
+\frac{1}{N} \int_{t_{1}}^{t} d t_{2} \mathcal{S}\left(t-t_{2}\right) \mathcal{T}_{j}^{\hbar} F_{j}^{N}\left(t_{2}\right)-\frac{j}{N} \int_{t_{1}}^{t} d t_{2} \mathcal{S}\left(t-t_{2}\right) \mathcal{C}_{j+1}^{\hbar} F_{j+1}^{N}\left(t_{2}\right) \tag{50}
\end{array}
$$

The following estimates rephrase Lemma 4.2 in the present context, and are obvious consequences of the definitions. For each $j>0$,

$$
\begin{align*}
\left\|\mathcal{S}_{j}(t) F_{j}\right\|_{\mathcal{L}^{1}} & =\left\|F_{j}\right\|_{\mathcal{L}^{1}} \tag{51}\\
\left\|\mathcal{C}_{j+1}^{\hbar} F_{j+1}\right\|_{\mathcal{L}^{1}} & \leq \frac{2 j\|\Phi\|_{L^{\infty}}}{\hbar}\left\|F_{j+1}\right\|_{\mathcal{L}^{1}} \tag{52}\\
\left\|\mathcal{T}_{j}^{\hbar} \mathcal{S}_{j}(t) F_{j}\right\|_{\mathcal{L}^{1}} & \leq \frac{j(j-1)\|\Phi\|_{L^{\infty}}}{\hbar}\left\|F_{j}\right\|_{\mathcal{L}^{1}} \tag{53}
\end{align*}
$$

As a consequence

$$
\begin{equation*}
\|\mathcal{R}(t)\| \leq\left\|\Delta\left(t_{1}\right)\right\|+\frac{3\left|t-t_{1}\right| j^{2}\|\Phi\|_{L^{\infty}}}{N \hbar} \tag{54}
\end{equation*}
$$

Finally, we infer from (49) and (54) that

$$
\begin{equation*}
\left\|\Delta_{j}(t)\right\|_{\mathcal{L}^{1}} \leq\left\|\Delta_{j}\left(t_{1}\right)\right\|_{\mathcal{L}^{1}}+\frac{3 j^{2}}{16 N}+\frac{j}{8 T_{\hbar}} \int_{t_{1}}^{t} d t_{2}\left\|\Delta_{j+1}\left(t_{2}\right)\right\|_{\mathcal{L}^{1}} \tag{55}
\end{equation*}
$$

Here

$$
T_{\hbar}=\frac{\hbar}{16\|\Phi\|_{L^{\infty}}} \text { and } 0 \leq t-t_{1} \leq T_{\hbar}
$$

Notice that, with this choice, the Dyson expansions associated to the two hierarchies are absolutely convergent (uniformly in N) for any $t \in\left(t_{1}, t_{1}+T_{\hbar}\right)$. However, in contrast with the previous section, we will not consider the full Dyson expansion but only an its finite truncation.

Iterating n times (55) we obtain, for $t-t_{1} \leq T_{\hbar}$,

$$
\begin{align*}
\left\|\Delta_{j}(t)\right\|_{\mathcal{L}^{1}} \leq & \sum_{\ell=0}^{n} \frac{1}{8^{\ell}} \frac{j(j+1) \cdots(j+\ell-1)}{\ell!}\left(\sup _{t_{1} \leq s \leq t}\left\|\Delta_{j+\ell}(s)\right\|_{\mathcal{L}^{1}}+\frac{3(j+\ell)^{2}}{16 N}\right) \tag{56}\\
& +\frac{1}{8^{n}} \frac{j(j+1) \cdots(j+n-1)}{n!} \\
& \leq 2^{j-1} \sum_{\ell=0}^{n} \frac{1}{4^{\ell}} \sup _{t_{1} \leq s \leq t}\left\|\Delta_{j+\ell}\left(t_{1}\right)\right\|_{\mathcal{L}^{1}}+\frac{1}{4} 2^{j-1} \frac{(j+n)^{2}}{N}+\frac{1}{4^{n}} 2^{j-1}
\end{align*}
$$

Here we have used the obvious bound

$$
\left\|\Delta_{j}^{N}(t)\right\|_{\mathcal{L}^{1}} \leq 2, \quad \text { for all } j \geq 1 \text { and } t \geq 0
$$

together with the prescription

$$
2 \frac{2\|\Phi\|_{L^{\infty}} T}{\hbar}=\frac{1}{8}
$$

and the inequality

$$
\frac{j(j+1) \cdots(j+\ell-1)}{\ell!}=\binom{j+\ell-1}{\ell} \leq 2^{j-1+\ell}
$$

At this point, we split the time interval $(0, t)$ into small intervals of length T_{\hbar}. Specifically, for $k=1, \ldots,\left[\frac{t}{T_{\hbar}}\right]+1$, so that $t<k T_{\hbar}$, we set

$$
A_{j}^{k}=\sup _{s \in\left((k-1) T_{\hbar}, k T_{\hbar}\right]}\left\|\Delta_{j}(s)\right\|_{\mathcal{L}^{1}} .
$$

Setting

$$
\begin{equation*}
\varphi(k, N):=2^{-k} \log N \tag{57}
\end{equation*}
$$

we seek to prove that

$$
\begin{equation*}
A_{j}^{k} \leq 2^{j+k-\varphi(k, N)} \quad \text { for } j \leq \varphi(k, N) \tag{58}
\end{equation*}
$$

which implies the thesis.
Setting $n=\varphi(k, N)$, the identity $\varphi(k, N)=\varphi(k-1, N)-\varphi(k, N)$ implies that $j+\ell \leq \varphi(k-1, N)$ for $j \leq \varphi(k, N)$, so that (56) becomes

$$
\begin{equation*}
A_{j}^{k} \leq 2^{j-1} \sum_{\ell=0}^{n} \frac{1}{4^{\ell}} A_{j+\ell}^{k-1}+\frac{1}{4} 2^{j-1} \frac{(j+n)^{2}}{N}+\frac{1}{4^{n}} 2^{j-1} \tag{59}
\end{equation*}
$$

We prove (58) by induction: for $k=1$, the inequality (58) is obvious by (49).
Assuming now that the inequality (58) holds for $k-1$, we get

$$
2^{j-1} \sum_{\ell=0}^{n} \frac{1}{4^{\ell}} A_{j+\ell}^{k-1} \leq 2 \cdot 2^{j-1} \cdot 2^{k-1-(\varphi(k-1, N)-\varphi(k, N))} \leq \frac{1}{2} \cdot 2^{j+k-\varphi(k, N)} .
$$

Moreover

$$
\frac{1}{4} \cdot 2^{j-1} \frac{(j+n)^{2}}{N}+\frac{1}{4^{n}} \cdot 2^{j-1} \leq \frac{1}{2} \cdot 2^{j+k-\varphi(k, N)}
$$

for $n=\varphi(k, N)$ and $N>N_{0}$ with $N_{0}=N_{0}(j)$ chosen so that (58) holds true.
This concludes the proof of Theorem 2.1.

3. Proof of Theorem 3.1

We begin with the following elementary observation.
Lemma 3.1. For each trace-class operator ρ, one has

$$
\left\|\widetilde{W}_{\rho}\right\|_{L^{1}} \leq\|\rho\|_{\mathcal{L}^{1}}
$$

Proof. For $z=(q, p)$, one has

$$
\widetilde{W}_{\rho}(z)=(2 \pi \hbar)^{-d}\langle z| \rho|z\rangle=(2 \pi \hbar)^{-d} \operatorname{trace}(\rho|z\rangle\langle z|)
$$

so that

$$
\left.(2 \pi \hbar)^{d}\left|\widetilde{W}_{\rho}(z)\right| \leq \operatorname{trace}|\rho| z\right\rangle\langle z||=\operatorname{trace}| \rho||z\rangle\langle z|
$$

because $|z\rangle\langle z| \geq 0$. Therefore

$$
\left\|\widetilde{W}_{\rho}\right\|_{L^{1}} \leq \operatorname{trace}\left(|\rho|(2 \pi \hbar)^{-d} \int|z\rangle\langle z| d z\right)=\|\rho\|_{\mathcal{L}^{1}}
$$

since

$$
(2 \pi \hbar)^{-d} \int|z\rangle\langle z| d z=I
$$

Therefore, applying Theorem 2.1 implies that, for all $T>0$ and for $|t|<T$,

$$
\left\|\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t) \otimes j}\right\|_{L^{1}} \leq \frac{2^{j+\frac{16 t\|\Phi\|_{L^{\infty}}}{h}}}{N^{\left(2^{-\frac{16 t\|\Phi\|_{L^{\infty}}}{h}} \log 2\right)}}
$$

Assume that $F^{i n}$ is a Töplitz operator in the sense of [9]. Then one knows from [9] (using formula (17) of Theorem 2.4 coupled with point (2) of Theorem 2.3) that

$$
\operatorname{dist}_{\mathrm{MK}, 2}\left(\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t)^{\otimes j}}\right)^{2} \leq j\left(2 d \hbar+\frac{C}{N}\right) e^{\Lambda t}+2 d \hbar
$$

where

$$
\Lambda:=3+4 \operatorname{Lip}(\nabla V)^{2} \quad \text { and } C:=8 j\|\nabla \Phi\|_{L \infty} / \Lambda
$$

while dist $_{\mathrm{MK}, 2}$ is the Wasserstein distance of exponent 2. We recall that, for each pair of Borel probability measures on \mathbf{R}^{d} with finite second order moments,

$$
\begin{equation*}
\operatorname{dist}_{\mathrm{MK}, 2}(\mu, \nu):=\inf _{\pi \in \Pi(\mu, \nu)} \sqrt{\iint_{\left(\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)^{j}\right)^{2}}\left|z-z^{\prime}\right|^{2} \pi\left(d z d z^{\prime}\right)} \tag{60}
\end{equation*}
$$

where $\Pi(\mu, \nu)$ is the set of couplings of μ and ν defined before (10) - see chapter 7 in [22].

Then, we deduce from Theorem 2.1 that

- for $\varphi\left(\left[\frac{t}{T_{\hbar}}\right], N\right)<j$ or $N<N_{0}(j)$

$$
\begin{aligned}
\inf \left(\left\|\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t)^{\otimes j}}\right\|_{L^{1}}^{2},\right. & \left.\operatorname{dist}_{\mathrm{MK}, 2}\left(\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t)^{\otimes j}}\right)^{2}\right) \\
& \leq \inf \left(2, j\left(2 d \hbar+\frac{C}{N}\right) e^{\Lambda t}+2 d \hbar\right) \\
& \leq j\left(2 d \hbar+\frac{C}{N}\right) e^{\Lambda t}+\left.2 d \hbar\right|_{\varphi\left(\left[\frac{t}{T_{\hbar}}\right], N\right)<j} \\
& \leq j\left(2 d \hbar+\frac{C}{N}\right) e^{\Lambda t}+\left.2 d \hbar\right|_{\hbar \leq \frac{16\|\Phi\| L \infty}{\log \log N-\log j}} \\
& \leq \frac{32 d T\|\Phi\|_{L^{\infty}\left(1+j e^{\Lambda T}\right)}^{\log \log N-\log j}+\frac{C}{N} e^{\Lambda T}}{}
\end{aligned}
$$

If $N \rightarrow \infty$ (in which case obviously $N \geq N_{0}(j)$), one has

$$
\frac{32 d T\|\Phi\|_{L^{\infty}}\left(1+j e^{\Lambda T}\right)}{\log \log N-\log j}+\frac{C}{N} e^{\Lambda T} \sim \frac{32 d T\|\Phi\|_{L^{\infty}}\left(1+j e^{\Lambda T}\right)}{\log \log N}
$$

- for $j \leq \varphi\left(\left[\frac{t}{T_{\hbar}}\right], N\right)$ and $N \geq N_{0}(j)$

$$
\begin{aligned}
& \inf \left(\left\|\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t) \otimes j}\right\|_{L^{1}}^{2}, \operatorname{dist}_{M K, 2}\left(\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t) \otimes j}\right)^{2}\right) \\
& \leq \inf \left(\frac{2^{2 j+\frac{32 t\|\Phi\|_{L} \infty}{\hbar}}}{N^{\left(2^{-\frac{32 t\|\Phi\|_{L} \infty}{\hbar}} \log 2\right)}}, j\left(2 d \hbar+\frac{C}{N}\right) e^{\Lambda t}+2 d \hbar\right) \\
& \leq \inf \left(\frac{2^{2 j+\frac{32 t\|\Phi\|_{L^{\infty}} \infty}{\hbar}}}{N\left(2^{-\frac{32 t\|\Phi\|_{L^{\infty}}}{\hbar}} \log 2\right)}, 2 d \hbar\left(1+j e^{\Lambda t}\right)\right)+\frac{j C}{N} e^{\Lambda t}
\end{aligned}
$$

the two arguments of the \inf being respectively decreasing and increasing functions of \hbar.

Observe that

$$
\begin{aligned}
\frac{2^{2 j+\frac{32 t\|\Phi\|_{L} \infty}{\hbar}}}{N^{\left(2^{-\frac{32 t\|\Phi\|_{L} \infty}{\hbar}} \log 2\right)}}=2 d \hbar\left(1+j e^{\Lambda t}\right) & \Leftrightarrow \frac{2^{2 j+\frac{32 t\|\Phi\|_{L^{\infty}}}{\hbar}}}{2 d \hbar\left(1+j e^{\Lambda t}\right)}
\end{aligned} N^{\left(2^{-\frac{32 t\|\Phi\|_{L} \infty}{\hbar}} \log 2\right)}
$$

is an equation for \hbar in terms of N with only one solution $\hbar(N)$, since the left hand side of the last equality is a continuous function of \hbar decreasing from $+\infty$ to 0 .

We find that

$$
\log N=\frac{2^{\frac{32 t\|\Phi\|_{L} \infty}{\hbar(N)}}}{\log 2}\left(\left(2 j+\frac{32 t\|\Phi\|_{L^{\infty}}}{\hbar(N)}\right) \log 2-\log \left(2 d \hbar(N)\left(1+j e^{\Lambda t}\right)\right)\right)
$$

and therefore

$$
\begin{aligned}
\log \log N= & \frac{32 t\|\Phi\|_{L^{\infty}}}{\hbar(N)} \log 2-\log \log 2 \\
& +\log \left(\left(2 j+\frac{32 t\|\Phi\|_{L^{\infty}}}{\hbar(N)}\right) \log 2-\log \left(2 d \hbar(N)\left(1+j e^{\Lambda t}\right)\right)\right)
\end{aligned}
$$

so that, as $N \rightarrow \infty$ with j kept fixed,

$$
\hbar(N) \sim \frac{32 T\|\Phi\|_{L^{\infty}} \log 2}{\log \log N}
$$

Finally

$$
\begin{aligned}
& \inf \left(\left\|\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t)^{\otimes j}}\right\|_{L^{1}}^{2}, \operatorname{dist}_{\mathrm{MK}, 2}\left(\widetilde{W}_{F_{j}^{N}(t)}-\widetilde{W}_{F(t)^{\otimes j}}\right)^{2}\right) \\
& \leq 2 d \hbar(N)\left(1+j e^{\Lambda T}\right)+j \frac{C}{N} e^{\Lambda T} \\
& \sim 64(\log 2) \frac{d T\|\Phi\|_{L^{\infty}}}{\log \log N}\left(1+j e^{\Lambda T}\right) \quad \text { as } N \rightarrow \infty \text { with } \frac{\log j}{\log \log N}=o(1)
\end{aligned}
$$

Theorem 3.1 is then proven by our last result:

Lemma 3.2. Let μ and ν be two Borel probability measures absolutely continuous with respect to the Lebesgue measure. Then

$$
\operatorname{dist}_{1}(\mu, \nu) \leq \inf \left(\|\mu-\nu\|_{L^{1}}, \operatorname{dist}_{\mathrm{MK}, 2}(\mu, \nu)\right) .
$$

Proof. Let $D_{1}\left(z, z^{\prime}\right)=\min \left(\left|z-z^{\prime}\right|, 1\right)$. Obviously $D_{1}\left(z, z^{\prime}\right)^{2} \leq\left|z-z^{\prime}\right|^{2}$ so that, for each Borel probability measure π,

$$
\begin{aligned}
\left(\iint \pi\left(d z, d z^{\prime}\right) D_{1}\left(z, z^{\prime}\right)\right)^{2} & \leq \iint \pi\left(d z, d z^{\prime}\right) \iint \pi\left(d z, d z^{\prime}\right)\left|z-z^{\prime}\right|^{2} \\
& =\iint \pi\left(d z, d z^{\prime}\right)\left|z-z^{\prime}\right|^{2}
\end{aligned}
$$

In particular

$$
\operatorname{dist}_{1}(\mu, \nu) \leq \operatorname{dist}_{\mathrm{MK}, 2}(\mu, \nu)
$$

Consider now the particular coupling π defined as follows:

$$
\pi(\mu, \nu):= \begin{cases}\mu(z) \delta\left(z-z^{\prime}\right) & \text { if } \mu=\nu, \\ \lambda(z) \delta\left(z-z^{\prime}\right)+\frac{(\mu(z)-\lambda(z))\left(\nu\left(z^{\prime}\right)-\lambda\left(z^{\prime}\right)\right)}{1-\int \lambda\left(d z^{\prime \prime}\right)} & \text { if } \mu \neq \nu,\end{cases}
$$

where $\lambda=\min (\mu, \nu)$. Then

$$
\operatorname{dist}_{1}(\mu, \nu) \leq \int \pi\left(d z, d z^{\prime}\right) \min \left(\left|z-z^{\prime}\right|, 1\right) \leq 1-\int \lambda(d z) \leq\|\mu-\nu\|_{L^{1}}
$$

and this completes the proof.

Acknowledgments: This work has been partially carried out thanks to the support of the A^{*} MIDEX project (n^{o} ANR-11-IDEX-0001-02) funded by the "Investissements d'Avenir" French Government program, managed by the French National Research Agency (ANR). T.P. thanks also the Dipartimento di Matematica, Sapienza Università di Roma, for its kind hospitality during the completion of this work.

References

[1] C. Bardos, F. Golse, N. Mauser: Weak coupling limit of the N particles Schrödinger equation, Methods Appl. Anal. 7 (2000), no.2, 275-293.
[2] C. Bardos, L. Erdös, F. Golse, N. Mauser, H.-T. Yau: Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Acad. Sci. Paris, Sér. I 334 (2002), 515520.
[3] N. Benedikter, M. Porta and B. Schlein: Effective Evolution Equations from Quantum Dynamics, preprint February 10, 2015.
[4] W. Braun, K. Hepp: The Vlasov Dynamics and Its Fluctuations in the $1 / N$ Limit of Interacting Classical Particles, Commun. Math. Phys. 56 (1977), 101-113.
[5] L. Chen, J. Oon Lee, B. Schlein: Rate of Convergence Towards Hartree Dynamics, J. Stat. Phys. 144 (2011), 872-903
[6] R. Dobrushin: Vlasov equations, Funct. Anal. Appl. 13 (1979), 115-123.
[7] L. Erdös, H.-T. Yau: Derivation of the nonlinear Schrdinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5(6) (2001), 1169-1205.
[8] J. Frölich, S. Graffi and S. Schwartz: Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons, Commun. Math. Phys. 271 (2007), 681-697.
[9] F. Golse, C. Mouhot, T. Paul: On the Mean-Field and Classical Limits of Quantum Mechanics, Commun. Math. Phys. 343 (2016), 165205.
[10] F. Golse, T. Paul: The Schrödinger Equation in the Mean-Field and Semiclassical Regime, arXiv:1510.06681.
[11] S. Graffi, A. Martinez, M. Pulvirenti: Mean-field approximation of quantum systems and classical limit; Math. Models Methods Appl. Sci. 13 (2003), 59-73.
[12] P.-L. Lions, T. Paul: Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993), 553618.
[13] H. Narnhofer, G. Sewell: Vlasov hydrodynamics of a quantum mechanical model, Commun. Math. Phys. 79 (1981), 9-24.
[14] H. Neunzert, J. Wick: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen; Lecture Notes in Math. vol. 395, 275-290, Springer, Berlin (1974).
[15] F. Pezzoti, M Pulvirenti: Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System, Ann. Henri Poincaré 10 (2009), 145-187.
[16] P. Pickl: A simple derivation of mean field limits for quantum systems, Lett. Math. Phys. 97 (2011), no. 2, 151-164.
[17] M. Pulvirenti, W. Wagner and M.B. Zavelani Rossi: Convergence of particle schemes for the Boltzmann equation, Eur. J. Mech. B/Fluids, 133 (1994), 339-351.
[18] I. Rodnianski, B. Schlein: Quantum fluctuations and rateof convergence towards mean field dynamics, Commun. Math. Phys. 291(1) (2009), 31-61.
[19] H. Spohn: Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys. 52 (1980), no.3, 600-640.
[20] H. Spohn: On the Vlasov hierarchy, Math. Meth. in the Appl. Sci. 3 (1981), 445-455.
[21] B. Schlein: Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics, preprint.
[22] C. Villani: "Topics in Optimal Transportation", American Mathematical Soc, Providence (RI) (2003)
(F.G.) CMLS, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau

Cedex, France
E-mail address: francois.golse@polytechnique.edu
(T.P.) CMLS, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France

E-mail address: thierry.paul@polytechnique.edu
(M.P.) Sapienza Università di Roma, Dipartimento di Matematica, Piazzale Aldo Moro 5, 00185 Roma

E-mail address: pulvirenti@mat.uniroma1.it

[^0]: Date: September 16, 2016.
 1991 Mathematics Subject Classification. 82C10, 35Q41, 35Q55 (82C05,35Q83).
 Key words and phrases. Schrödinger equation, Hartree equation, Liouville equation, Vlasov equation, Mean field limit, Classical limit.

[^1]: ${ }^{1}$ The statement $a_{n} \lesssim b_{n}$ in the limit as $n \rightarrow \infty$ means that $a_{n} \leq b_{n}\left(1+\epsilon_{n}\right)$ with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

