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ON THE DERIVATION OF THE HARTREE EQUATION

IN THE MEAN FIELD LIMIT: UNIFORMITY

IN THE PLANCK CONSTANT

FRANÇOIS GOLSE, THIERRY PAUL, AND MARIO PULVIRENTI

Abstract. In this paper the Hartree equation is derived from the N-body
Schrödinger equation uniformly in the Planck constant in two different cases,
specifically (a) for Töplitz initial data and Lipschitz interaction force, and (b)
for analytic initial data and interaction potential, and over short time intervals,
independent of the Planck constant. The convergence rates in these two cases
are 1/ log logN and 1/N respectively. The treatment of the second case is
entirely self-contained and all the constants appearing in the final estimate are
explicit. Moreover it provides a derivation of the Vlasov equation out of the
N-body classical dynamics using hierarchies and not empirical measures.
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1. Introduction

We consider the evolution of a system ofN quantum particles interacting through
a (real-valued) two-body, even potential Φ, described by the Schrödinger equation

i~∂tψ = HNψ , ψ
∣∣
t=0

= ψin ∈ HN := L2(Rd)⊗N ,

where

HN = − 1
2~

2
N∑

k=1

∆xk
+

1

2N

∑

1≤k,l≤N

Φ(xk − xl)

is the N -body Hamiltonian. With the notation

XN := (x1, . . . , xN ) ∈ (Rd)N ,

the N -body Hamiltonian is recast as

HN = 1
2~

2∆XN
+ VN (XN ) ,

where VN is the N -body potential in the mean field scaling, i.e. with 1/N coupling
constant:

VN (XN ) :=
1

2N

∑

1≤k,l≤N

Φ(xk − xl) .

Instead of the Schrödinger equation written in terms of wave functions, we shall
rather consider the quantum evolution of density matrices. A N -body density
matrix is an operator DN such that

0 ≤ DN = D∗
N ∈ L(HN ) , traceHN

(DN ) = 1

(here L(HN ) denotes the set of bounded linear operators on HN ).
The evolution of the density matrix of a N -particle system is governed by the

von Neumann equation

(1) ∂tD
N =

1

i~
[HN , D

N ] , DN

∣∣
t=0

= Din
N .

The density matrix DN for a N -particle system described in terms of the N -particle
wave function ΨN ≡ ΨN (t,XN ) is the orthogonal projection in HN on the one
dimensional subspace CΨN . In other words, DN (t) is the integral operator on

HN with integral kernel ΨN (t,XN )ΨN(t, YN ). Up to multiplying the N -body wave
function by a global phase factor, both formulations of the quantum dynamics of a
N -particle system are equivalent.

If DN
in is factorized, that is of the form

DN
in = D⊗N

in

where Din is a density matrix on H := L2(Rd), then DN (t) is in general not
factorized for t > 0. However, it is known that DN (t) has a “tendency to become
factorized” for all t > 0 as N → ∞, i.e. in the mean field limit, for each ~ > 0.

The precise formulation of this “tendency to become factorized” involves the
notion of marginal of a density operator.

For each j = 1, . . . , N , the j-particle marginal DN
j (t) of DN(t) is the unique

operator on Hj such that, for all A1, . . . , Aj ∈ L(H), one has

traceHN
[DN (t)(A1 ⊗ · · · ⊗Aj ⊗ IHN−j

)] = traceHj
[DN

j (t)(A1 ⊗ · · · ⊗Aj)] .
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In terms of this notion of j-particle marginal, the tendency of DN (t) to become
factorized is expressed as follows: for each ~ > 0 and each t > 0, one has

DN
j (t) → (DH(t))⊗j for all j ≥ 1 in the limit as N → ∞ ,

(in some appropriate topology on the algebra of operators on Hj) where D
H is the

solution of the Hartree equation

(2) i~∂tD
H(t) =

[
− 1

2~
2∆Rd +ΦρH (t), D

H(t)
]
, DH(0) = Din.

Here

ΦρH (t) = Φ ⋆ ρH(t, ·) ,
where

ρH(t, x) := DH(t, x, x)

abusing the notation DH(t, x, y) to designate the integral kernel of the operator
DH(t) on H := L2(Rd).

This program has been carried out in a sequence of papers: see [19, 1] for bounded
interaction potentials Φ, and in [7, 16] for interaction potentials that have a singu-
larity at the origin, such as the Coulomb potential (see also [2]). In all these results
the convergence rate as N → ∞ deteriorates as ~ → 0. See [3] for a more detailed
discussion of this subject, supplemented with an extensive bibliography.

The analogous result in the classical setting, where (1) and (2) are replaced
respectively by the Liouville and the Vlasov equations, have been known for a long
time: see [14, 4, 6], where this limit has been established by different methods.

This suggests that the mean field limit in quantum dynamics holds uniformly in
~, at least for some appropriate class of solutions.

This problem has been addressed in [15] where the mean field limit is estabished
by means of a semiclassical expansion for which the term by term convergence can
be established rigorously. The limit of the N -body quantum dynamics as N → ∞
and ~ → 0 jointly, leading to the Vlasov equation, has been discussed in [13] (in
the case of fermions and assuming that ~ ∼ N−1/3), and in [11]. (See also [8] for
a uniform in ~ estimate of some appropriate distance between the N -body and the
Hartree dynamics, for velocity dependent interaction potentials.)

More recently, a new approach based on the quantization of the quadratic Monge-
Kantorovich (or Wasserstein) distance, analogous to the one used in [6], has been
introduced in [9, 10]. It provides an estimate of the convergence rate in the mean
field limit (N → ∞) of the N -body quantum dynamics that is uniform in ~ as
~ → 0.

In the present paper, we complete the results recalled above on the mean field
limit of the N -body quantum dynamics leading to the Hartree equation with two
different theorems. Both statements estimate some distance between the solutions
of (1) and of (2) as N → ∞ uniformly in ~ ∈ [0, 1], without assuming that ~ → 0.

First, by some kind of interpolation between the convergence rate obtained in
[9] and the “standard” convergence rate from [19, 1] for ~ > 0 fixed, we establish
a O(1/ lnN) convergence rate for the mean field (N → ∞) limit of the quantum
N -body problem leading to the Hartree equation, uniformly in ~ ∈ [0, 1]. This
estimate is formulated in terms of a Monge-Kantorovich type distance analogous
to Dobrushin’s in [6], and holds true for initial data which are Töplitz operators.



4 F. GOLSE, T. PAUL, AND M. PULVIRENTI

Our second result will establish the convergence in a much stronger topology
using the trace norm together with the formalism of Wigner functions, a tool par-
ticularly well adapted to the transition from quantum to classical dynamics. Using
this approach requires strong analytic assumptions on both the potential and the
initial data. The advantage of this result over the previous one is a faster con-
vergence rate, of order O(1/N), much more satisfying than O(1/ ln lnN) from the
physical point of view. Keeping in mind that the total number of nucleons in the
universe is estimated to be of the order of 1080, an O(1/ ln lnN) convergence rate
may be satisfying from the mathematical point of view, but is of little practical
interest.

2. Quantum hierarchies, Töplitz operators,

and Wigner and Husimi functions

First we recall the formalism of BBGKY hierarchies in the quantum context.
Let us callSN the group of permutations of the set ofN elements. For each σ ∈ SN

and each XN = (x1, . . . , xN ) ∈ (Rd)N , we denote

UσΨN (XN ) := Ψ(σ ·XN ) , with σ ·XN := (xσ(1), . . . , xσ(N)) .

Everywhere in this paper, it is assumed that the N particles under consideration
are indistinguishable, meaning that, for each t ≥ 0, one has

(3) UσD
N (t)U∗

σ = DN (t) for all σ ∈ SN .

A straightforward computation shows that this condition is verified provided that

UσD
N
inU

∗
σ = DN

in for all σ ∈ SN .

Multiplying both sides of (1) by Bj ⊗ IHN−j
, with Bj ∈ L(Hj) such that

[∆(Rd)j , Bj] ∈ L(Hj), one arrives at the following system of coupled equations

satisfied by the sequence of marginals DN
j (t) of the N -particle density DN (t):

(4) i~∂tD
N
j = [− 1

2~
2∆(Rd)j , D

N
j ] +

1

N
TjDN

j +
N − j

N
Cj+1D

N
j+1

where

(5) TjDN
j =


1

2

j∑

l 6=r=1

Φ(xl − xr), D
N
j


 ,

and

(6) Cj+1D
N
j+1 =

([
j∑

l=1

Φ(xl − xj+1), D
N
j+1

])

j

,

where the subscript j is ment for taking the jth marginal as in Section 1 and where
we have set

DN
j = 0 for all j > N .

In the limit N → ∞ and for each j kept fixed, one expects that DN
j converges

in some sense to Dj satisfying the infinite sequence of equations

(7) i~∂tDj = [− 1
2~

2∆(Rd)j , Dj] + Cj+1Dj+1 , j ≥ 1 .

Since the linear map F 7→ [A,F ] is a derivation of the subalgebra of L(H) of the
operators F satisfying [A,F ] ∈ L(H), one easily checks that t 7→ {F (t)⊗j}j=1...∞ is
a solution of the infinite hierarchy (7) if t 7→ F (t) is a solution of (2).
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To each trace class operator F defined on HN = L2((Rd)N ) with integral kernel
F (XN , YN ), we associate its Wigner functionW~[F ] defined on the underlying phase
space (T ⋆Rd)N = (Rd ×Rd)N by the formula

(8) W~[F ](XN ; ΞN ) := 1
(2π)dN

∫

(Rd)N
F (XN + 1

2~YN , XN − 1
2~YN )eiΞN ·YNdYN

Notice that W~[F ] exists for each trace class operator F and for each ~ > 0, since

W~[F ](XN ,ΞN ) =

(
2

~

)Nd

trace[FM(XN ,ΞN )],

where M(XN ,ΞN ) is the unitary operator on L2((Rd)N ) defined by

M(XN ,ΞN ) : f(X) 7→ f(2XN −X)e−2iΞN ·(X−XN )/~.

By a straightforward computation

F (XN , YN ) =

∫

(Rd)N
W~[F ](

1
2 (XN + YN ); ΞN )e−iΞN ·(XN−YN )/~dΞN .

In particular

F (XN , XN ) =

∫

(Rd)N
W~[F ](XN ; ΞN )dΞN ,

so that

trace[F ] =

∫

(Rd×Rd)N
W~[F ](XN ; ΞN )dXNdΞN .

More generally one easily shows that

trace(F1F2) = (2π~)dN
∫

(Rd×Rd)N
W~[F1](XN ; ΞN )W~[F2](XN ; ΞN )dXNdΞN .

From this identity, writing XN = (x1, . . . , xN ) and ΞN = (ξ1, . . . , xN ), one easily
deduces that

W~[Fj ](Xj ,Ξj) =

∫

(Rd×Rd)N−j

W~[F ](XN ,ΞN )dxj+1dξj+1 . . . dxndξN

= (W~[F ])j(Xj ,Ξj)

A straightforward computation shows that t 7→ DN (t) is a solution of (1) if and
only if t 7→ W~[D

N ](t, ·, ·) = fN(t) is a solution of the following equation, referred
to as the “Wigner equation”
(9)

(∂t + ΞN · ∇XN
)fN (t,XN ,ΞN )

=

∫

(Rd)N
V̂N (ZN )eiZN ·XN

fN (t,XN ,ΞN− 1
2~ZN)−fN(t,XN ,ΞN+ 1

2~ZN)

i~

dZN

(2π)dN
,

where V̂N designates the Fourier transform of VN , normalized as follows

V̂N (ΞN ) =

∫

(Rd)N
VN (XN )e−iΞN ·XN dXN .
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In the limit as ~ → 0, the Wigner equation reduces formally to the Liouville equa-
tion, since
∫

(Rd)N
V̂N (ZN )eiZN ·XN

fN (t,XN ,ΞN − 1
2~ZN)− fN(t,XN ,ΞN + 1

2~ZN)

i~

dZN

(2π)dN

→
∫

(Rd)N
V̂N (ZN )eiZN ·XN iZN · ∇ΞN

fN(t,XN ,ΞN )
dZN

(2π)dN

= ∇VN (XN ) · ∇ΞN
fN (XN ,ΞN ) .

See Proposition II.1 in [12] for a rigorous discussion on the argument.

The Husimi transform of a density matrix F on H := L2(Rd) is defined as

W̃~[F ](q, p) := (2π~)−d〈p, q|F |p, q〉 ≥ 0 ,

where

|p, q〉(x) := (π~)−d/4e−(x−q)2/2~eip·x/~ .

Here and in the sequel, we use the Dirac bra-ket notation whenever convenient. At
variance with the Wigner function, there is no explicit “reconstruction” formula for

F out of W̃~[F ]. Observe that the Husimi function captures only the diagonal part
of the matrix elements of F on the (over)complete basis {|p, q〉 | (p, q) ∈ R2d}. Yet
W̃~[F ] determines all the numbers 〈p′, q′|F |p, q〉 as p, q, p′, q′ run through Rd, and
therefore F itself. Indeed, denoting z := q + ip and z′ = q′ + ip′, a straightforward
computation shows that

e(|q|
2+|q′|2)/2~〈p′, q′|F |p, q〉 = f(12 (z + z̄′), 12 i(z̄

′ − z))

where f is an entire function on C2d. Knowing W̃~[F ](q, p) for all q, p ∈ Rd is
equivalent to knowing f(12 (z+ z̄

′), 12 i(z̄
′− z)) for z = z′, which is in turn equivalent

to knowing the restriction of f to R2d ⊂ C2d. Since f is holomorphic on C2d,
knowing the restriction of f toR2d determines f uniquely. Therefore, the knowledge
of W̃~[F ] determines F uniquely.

The Husimi function is sometime called a mollification of the Wigner function
because of the following straightforward formula

W̃~[F ](x, ξ) = e~∆x,ξW~[F ](x, ξ) .

In particular, both the Wigner and the Husimi function of a ~-dependent family of
density matrices have the same limit (if any) as ~ → 0 in the sense of distributions.
Finally, we recall the definition of Töplitz operators used in [9]. For each positive

Borel measure µ on Rd ×Rd, the Töplitz operator with symbol µ is

OPT
~
[µ] := 1

(2π~)d

∫

(Rd×Rd)

|p, q〉〈p, q|µ(dpdq) .

For instance OPT
~
[1] = IH, where 1 designates the Lebesgue measure on Rd ×Rd.

Elementary computations show that

W~[OPT
~ [µ]] = e~∆p,q/4µ , W̃~[OPT

~ [µ]] = e~∆p,q/2µ .

Therefore trace(OPT
~
[µ]) =

∫
R2d dµ and probability measures give rise to physical

states (positive operators of trace one) through Töplitz quantization.
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The paper is organized as follows. The two main results of this article, Theorems
3.1 and 3.2, are presented in the next section. The proofs are essentially self-
contained and given respectively in Part 2 and Part 1. We have chosen this order
of presentation since part of the material if the proof of Theorem 3.2 is used in the
proof of Theorem 3.1.

3. The results

Our first uniform convergence result puts little regularity constraint on the in-
teraction potential V . As a result, we obtain a convergence rate in some weak
topology, which is most conveniently expressed in terms of a Monge-Kantorovich,
or Wasserstein distance, associated to the cost function (z, z′) 7→ min(1, |z − z′|)
on (Rd × Rd)j , for j ≥ 1. Specifically, let µ, ν be Borel probability measures on
(Rd × Rd)j , and let Π(µ, ν) be the set of probability measures on (Rd × Rd)j ×
(Rd ×Rd)j whose first and second marginals are µ and ν respectively. Define

(10) dist1(µ, ν) := inf
π∈Π(µ,ν)

∫∫

((Rd×Rd)j)2
min(1, |z − z′|)π(dzdz′) .

for each pair of Borel probability measures µ, ν on (Rd ×Rd)j .

Theorem 3.1. Assume that the interaction potential Φ is a real-valued, even
differentiable function defined on Rd with Lipschitz continuous gradient, and let
Λ := 3+4Lip(∇Φ)2. Let F in be a Töplitz operator, and let F be the solution of the
Hartree equation (2) with initial data F in. On the other hand, for each N ≥ 1, let
FN be the solution of (1) with initial data (F in)⊗N , and FN

j its j-particle marginal

for each j = 1, . . . , N . Then, for each fixed integer j ≥ 1, and each T > 0, one has1

dist1(W̃FN
j

(t), W̃F (t)⊗j )2 .
64(log 2)dT ‖Φ‖L∞(1 + jeΛT )

log logN
(11)

for all t ∈ [0, T ] and all ~ ∈ [0, 1] in the limit as N → ∞.

Note that dist1 is the distance used by Dobrushin in [6]. For each φ ∈ Cb(R
d),

denote by L1(φ) the Lipschitz constant of φ for the distance (z, z′) 7→ min(1, |z−z′|),
i.e.

L1(φ) := sup
z 6=z′

|φ(z)− φ(z′)|
min(1, |z − z′|) .

By Monge-Kantorovich duality one has

dist1(µ, ν) = sup
L1(φ)≤1

∣∣∣∣
∫
φ(z)µ(dz)−

∫
φ(z)ν(dz)

∣∣∣∣ .

Hence the distance dist1 induces on the set of Borel probability measures onRd×Rd

a topology that is equivalent to the restriction of the Sobolev W−1,1(Rd × Rd)
metric. Since density matrices on H := L2(Rd) are determined by their Husimi
functions as recalled in the previous section, the expression

(D1, D2) 7→ dist1(W̃~[D1], W̃~[D2])

1The statement an . bn means that an ≤ bn(1 + ǫn) with ǫn → 0 as n → ∞.
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defines a distance on the set of density matrices. This distance obviously depends
on ~ through the Husimi functions. However, if D~

1 and D~
2 are ~-dependent density

matrices such that

W̃~[D
~

1 ] → µ1 and W̃~[D
~

2 ] → µ2 in S ′(Rd ×Rd)

in the limit as ~ → 0, then

dist1(W̃~[D
~

1 ], W̃~[D
~

2 ]) → dist1(µ1, µ2) .

For that reason (11) provides a convergence rate for the mean-field limit of the
quantum N -body dynamics that is uniform in ~.

Our second uniform convergence is based on Cauchy-Kovalevska type estimates
on the BBGKY hierarchy. It gives a better convergence rate, at the expense of much
more stringent conditions on the interaction potential Φ and evolution over short
time intervals, independent of the Planck constant. The convergence rate obtained
in this second result is formulated in terms of the following family of norms. For
each β > 0 and each f ∈ L1((Rn ×Rn)2), we set

‖f‖ρ := sup
ξ,η∈Rn

|f̂(ξ, η)|eρ(|ξ|+|η|)

where f̂ is the (twisted) Fourier transform of f

f̂(ξ, η) :=
1

(2π)2n

∫

Rn×Rn

e−i(q·ξ−p·η)f(q, p)dqdp

By a slight abuse of notation, for each trace class operator F on Hj := L2(Rdj), we
also denote

(12) ‖F‖ρ := ‖W~[F ]‖ρ .

Theorem 3.2. Assume that, for some β′ > 0, one has both

‖F in‖β′ <∞ and

∫
|h||Φ̂(h)|eβ′|h|dh <∞ .

Let α > log ‖F in‖β′ and let β satisfy 0 < β < β′; in addition, let T = T (β′, β, α,Φ)
be defined by (24) below.

Let F (t) be the solution of the Hartree equation with initial condition F in, and
let FN (t) be the solution of the N -body Schrödinger equation with initial condition
(F in)⊗N .

Then for all t, |t| < T and j ∈ N⋆, we have for N ≥ j,

(13) ‖FN
j (t)− F (t)⊗j‖β ≤ C(j, t)

N

|t|
T

‖F in‖β′

1− e−α‖F in‖β′

.

For all t ∈ [0, T ), the constant C(j, t) > 0 is defined by formula (35), is independent
of N , and satisfies

C(j, t) ∼ j
eαj + ej

|t|
T

/e log T
|t|

(1− |t|/T )2 as j → ∞

(see (35) for a more precise result).

A straightforward consequence of this theorem is the following statement.
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Corollary 3.3. Let 0 ≤ |t|/T < 1. Then, for all β < β′,

‖FN
j (t)− F (t)⊗j‖β → 0 as N → ∞,

uniformly in j ≤ C log
(

N
|t|/T

)
for any C <

(
max

(
α, |t|/T

e log T/|t|

))−1

.

Notice that estimate (13) implies that the N -particle system converges to the
Hartree dynamics uniformly in ~ ∈ [0, 1] for a suitable class of relevant initial states,
e.g. states for which ‖F‖β is uniformly bounded for some β > 0. Examples of such
initial data are superpositions of orthogonal projectors on coherent states with a
positive density f with ‖f‖L1(Rd) = 1 and ‖f‖β uniformly bounded for a some
β > 0. Indeed consider

F =

∫

R2d

f(x, v)|x, v〉〈x, v|dxdv .

Since
ŴF (ξ, η) = e−

~

4 (ξ
2+η2)WF (ξ, η)

we have
‖F‖β = ‖WF ‖β ≤ ‖f‖β .

Moreover

‖FN
j (t)− F (t)⊗j‖β′ = ‖W~[F

N
j (t)]−W~[F (t)

⊗j ]‖β′

= ‖W~[F
N (t)]j −W~[F (t)]

⊗j‖β′

and, by e.g. [12], W~[F
N (t)] → fN (t) and W~[F (t)] → f(t) as ~ → 0, where f(t)

is the solution of the Vlasov equation with initial condition f in, while fN (t) is the
solution of the N -body Liouville equation with initial condition (f in)⊗N . Therefore
taking the limit ~ → 0 in (13), we arrive at our last main result.

Corollary 3.4. Assume that ‖f in‖β′ <∞ and that
∫

|h||Φ̂(h)|eβ′|h|dh <∞,

for some β′ > 0. Let α > log ‖F‖β′, let 0 < β < β′, and let T and C(j, t) be given
by the same prescription as in Theorem 3.2. Let f(t) be the solution of the Vlasov
equation with initial condition f in and fN (t) the solution of the N - body Liouville
equation with initial condition (f in)⊗N .

Then for all t satisfying |t| < T and all j ∈ N⋆

‖fN
j (t)− f(t)⊗j‖β ≤ C(j, t)

N

|t|
T

‖f in‖β′

1− e−α‖f in‖β′

,

and ‖fN
j (t) − f(t)⊗j‖β → 0 as N → ∞, uniformly in j ≤ C log

(
N

|t|/T

)
for any

C <
(
max

(
α, |t|/T

e log T/|t|

))−1

.

Part 1. Results with analytic data

4. Bounds on the solutions of the hierarchies

Integrating the Wigner equation (9), with

VN (x) =
1

2N

∑

l 6=r

Φ(xl − xr)
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over the N − j last variables leads to the following finite hierarchy, henceforth
referred to as the “Wigner hierarchy”, of course equivalent to (4),

(14) ∂tf
N
j +

j∑

i=1

vi · ∇xi
fN
j =

1

N
Tjf

N
j +

N − j

N
Cj+1f

N
j+1,

where Tj and Cj+1 are defined below by formulas (26)–(27), while

fN
j (x1, . . . , xj ; ξ1 . . . , ξj) :=

∫
fN(x; ξ)dxj+1dξj+1 . . . dxNdξN for j ≤ N,

fN
j := 0 for j > N.

Passing to the limit as N → ∞, one arrives at the infinite hierarchy

∂tfj +

j∑

i=1

vi · ∇xi
fj = Cj+1fj+1

henceforth referred to as the “Hartree hierarchy”. So far, this is a formal statement,
and one of the goals in our study is to turn this formal statement into a precise
convergence statement with an estimate of the convergence rate.

From now on, we regard both the Wigner and the Hartree hierarchies as gov-
erning the evolution of infinite sequences of Wigner distributions. It is therefore
natural to seek controls on these hierarchies in appropriate functional spaces of
sequences f = {fj}j=1...∞. These functional spaces are metrized by the following
family of norms

‖f‖α,β :=
∞∑

j=1

e−αj‖fj‖β , α, β > 0.

For β > 0 we set

Cβ
Φ(t) :=

∫
|h||Φ̂(h)|e2β|h|(1+|t|)dh, C0

Φ :=

∫
|h||Φ̂(h)|dh.

Theorem 4.1. Let fN (t) be the solution of the N -body Wigner hierarchy with

initial data f in = {f in
j }j=1...∞ defined by

f in
j = (f in)⊗j , j ≤ N,

f in
j = 0, j > N,

and satisfying ‖f in‖β′ <∞ for some β′ > 0.
Then for each α ≥ log ‖f in‖β and each β such that 0 < β < β′, there exists

T ≡ T [α, β, β′] > 0 given by (24) below such that, for each t ∈ [0, T )

(15) ‖fN (t)‖α,β ≤
‖f in‖α,β′

1− |t|
T

Proof. Our proof of Theorem 3.2 based on the estimates in the next lemma, whose
proof is deferred until the end of the present section.

Lemma 4.2 (Propagation estimates). Let Sj(t) denote the group generated by the
free transport operator in j variables

−
j∑

k=1

ξi · ∇xi
.
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In other words,

Sj(t)fj : (x1, . . . , xj , ξ1, . . . , ξj) 7→ fj(x1 − tξ1, . . . , xj − tξj , ξ1, . . . , ξj)

is the value at time t of the solution of the Cauchy problem

∂tf
0
j +

j∑

k=1

ξi · ∇xi
f0
j = 0 , f0

j

∣∣
t=0

= fj

Then,

(16) ‖Sj(t)fj‖β ≤ ‖fj‖β′ provided that
β′ − β

β
≥ |t| ,

while

(17) ‖Sj(−t)Cj+1Sj(t)fj+1‖β ≤ (1 + |t|)C0
Φ

e(β′ − β)
‖fj+1‖β′

and

(18) ‖Sj(−t)TjSj(t)fj‖β ≤ 2j(1 + |t|)Cβ′

Φ (t)

e(β′ − β)
‖fj‖β′

whenever β′ > β.

Define

(19) TNf :=

{
Tj
N
fj

}

j=1...∞

and CNf :=

{
N − j

N
Cj+1fj+1

}

j=1...∞

so that (14) reads

∂tf
N +

N∑

i=1

vi · ∇xi
fN = (TN + CN )fN ,

and let

S(t)fN := {Sj(t)f
N
j }j=1...∞ .

As a straightforward consequence of Lemma 4.2, we arrive at the following esti-
mates.

Corollary 4.3. Under the same hypothesis as in Lemma 4.2 and for β′ > β, one
has

‖S(−t)CNS(t)f‖α,β ≤ (1 + |t|)C0
Φe

α

e(β′ − β)
‖f‖α,β′,

‖(S(−t)TNS(t)f)j‖β ≤ j

N
eαj

2(1 + |t|)Cβ′

Φ (t)

e(β′ − β)
‖f‖α,β′

and

‖S(−t)TNS(t)f‖α,β ≤ 2(1 + |t|)Cβ′

Φ (t)

e(β′ − β)
‖f‖α,β′.

We shall compute the norm of the solution of the Wigner hierarchy by using a
Dyson expansion. For 0 ≤ t1 ≤ t2 · · · ≤ tn ≤ t, consider the string of distribution
functions indexed by n ≥ 0, and defined as follows: for n > 0,

(20) gNn (t, t1, . . . , tn) := S(t)S(−tn)(TN+CN )S(tn) . . . S(−t1)(TN+CN )S(t1)f
in
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while

gN0 (t) := S(t)f in

where f in = {f in
j }j=1...∞ is the initial data.

For each K ≥ 1, set

gN,K(t) :=

K∑

n=0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1gn(t, t1, . . . , tn) .

We see immediately that

∂tg
N,K +

N∑

i=1

vi · ∇xi
gN,K = (TN + CN )gN,K−1, gN,K(0) = f in .

The Dyson expansion is

lim
K→∞

gN,K(t) := gN (t)

and, if

lim
K→∞

(TN + CN )gN,K−1 = (TN + CN )gN

then the Dyson expansion gives the solution fN of the N -body Wigner hierarchy

with initial data f in. Uniqueness is obvious for finite N , since the last equation in
the Wigner hierarchy is equivalent to the N -body quantum problem.

For β < β0 < β′, defining βk := β0 + k β′−β0

n and applying Lemma 4.2 (16) and

Corollary 4.3 with |t| ≤ β0−β
β , we get

‖gn(t, t1, . . . , tn)‖α,β = ‖S(t)ΣN(tn)ΣN (tn−1) . . .ΣN (t1)f
in‖α,β0

≤ ‖ΣN(tn)ΣN (tn−1) . . .ΣN (t1)f
in‖α,β0

≤ 3(1+|t|)C
β1
Φ (t)eα

e(β1−β0)
‖ΣN (tn−1) . . .ΣN (t1)f

in‖α,β1

≤ 3(1+|t|)Cβ′

Φ (t)eα

e(β′−β0)
n‖ΣN (tn−1) . . .ΣN (t1)f

in‖α,β1

≤
(

3(1+|t|)Cβ′

Φ (t)eα

e(β′−β0)
n

)n

‖f in‖α,β′(21)

where

ΣN (tk) := S(−tk)(TN + CN )S(tk) .

Therefore

K∑

n=0

∥∥∥∥
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtngn(t, t1, . . . , tn)

∥∥∥∥
α,β

≤
K∑

n=0

(
3(1 + |t|)Cβ′

Φ (t)eα

e(β′ − β0)
n

)n

‖f in‖α,β′

|t|n
n!

≤
K∑

n=0

(
3(1 + |t|)|t|Cβ′

Φ (t)eα

(β′ − β0)

)n

‖f in‖α,β′(22)
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where the inequality follows from Stirling’s formula. Hence the Dyson expansion
converges uniformly in N as soon as

|t| ≤ β0 − β

β
and

3(1 + |t|)|t|Cβ′

Φ (t)eα

(β′ − β0)
< 1.

By construction, the function t 7→ Cβ′

Φ (t) is continuous and increasing on R∗
+, so

that there exists a unique β0 := β0[α, β, β
′] satisfying

(23) β < β0 < β′ and 3(1 + β0−β
β )β0−β

β Cβ′

Φ (β0−β
β )eα = β′ − β0 .

Defining

(24) T [α, β, β′] :=
β0[α, β, β

′]− β

β
,

we see that

|t| < T [α, β, β′] ⇒ |t| ≤ β0 − β

β
and

3(1 + |t|)|t|Cβ′

Φ (t)eα

(β′ − β0)
< 1.

Hence the Dyson expansion converges uniformly in N for |t| < T [α, β, β′].
Applying Corollary 4.3 with t = 0, and using the geometric series estimates in

(22) shows that the term (TN+CN )fN,K−1 converges to (TN+CN )fN as K → ∞.

Therefore, gN,K converges to fN as K → ∞, and fN is given by the Dyson

expansion. In particular, the estimate (15) follows from (22), after noticing that

(25)
3(1 + |t|)|t|Cβ′

Φ (t)eα

(β′ − β0)
≤ |t|
T

× 3(1 + T )TCβ′

Φ (T )eα

(β′ − β0)
≤ |t|
T

since
3(1+T )TCβ′

Φ (T )eα

(β′−β0)
= 1 by (24) and (23). �

We conclude this section with the proof of Lemma 4.2.

Proof of Lemma 4.2. We shall write everything in Fourier variables, henceforth de-
noted (ξ

j
; η

j
) := (ξ1, . . . , ξj ; η1, . . . , ηj) ∈ R2jd, together with hr := (0r−1, h, 0d−r)

for h ∈ Rd. In these definitions, we have used the notation 0r−1 := (0, . . . , 0) ∈
R(r−1)d. In other words, ξj is the Fourier variable corresponding to xj while ηj is
the Fourier variable corresponding to vj . With this, we get

j∑

k=1

̂vk · ∇xk
fN
j (ξ

j
; η

j
) = −ξ

j
· ∇η

j
f̂N
J (ξ

j
; η

j
)

T̂jfN
j (ξ; η) =

∑

l 6=r

∫
dh

(2π)d
Φ̂(h)

sin ~

2 (ηl − ηr)·h
~

f̂N
j (ξ

j
+ hl − hr; ηj)(26)

̂Cj+1fN
j+1(ξj ; ηj) =

j∑

r=1

∫
dh

(2π)d
Φ̂(h)

2 sin(~2ηr ·h)
~

f̂N
j+1(ξj − hr, h; ηj , 0)(27)

Observe that one recovers the classical BBGKY hierarchy as the formal limit of the
above as ~ → 0.

One also gets immediately

Ŝ(t)fj(ξj ; ηj) = f̂j(ξj ; ηj + tξ
j
)



14 F. GOLSE, T. PAUL, AND M. PULVIRENTI

and by explicit computations

̂S(−t)TjS(t)fN
j (ξ

j
; η

j
) =

∑

l 6=r

∫
dh

(2π)d
Φ̂(h)

sin (~2 (ηl − ηr − t(ξl − ξr)) · h)
~

·f̂N
j (ξ

j
+ hl − hr; ηj + t(hl − hr))

̂S(−t)Cj+1S(t)fN
j+1(ξj ; ηj) =

j∑

r=1

∫
dh

(2π)d Φ̂(h)
2 sin (~2 (ηr + tξr) · h)

~

·f̂N
j+1(ξj − hr, h; ηj − thr,−th)

For β′ > β we have

‖S(t)fj‖β ≤ ‖fj‖β′ sup
ξ
j
,η

j

exp

(
−β′

j∑

i=1

(|ξi|+ |ηi|) + β

j∑

i=1

(|ξi|+ |ηi + tξi|)
)

≤ ‖fj‖β′ exp

(
−(β′ − β)

j∑

i=1

(|ξi|+ |ηi|) + β|t|
j∑

i=1

(|ξi|)
)

≤ ‖fj‖β′

provided β′−β
β ≥ |t|, which proves (16).

Moreover, for β′ > β,

‖S(−t)Cj+1S(t)fj+1‖β ≤ ‖fj+1‖β′ sup
ξ
j
,η

j

eβ
∑j

i=1(|ξi|+|ηi|)

×
j∑

r=1

∫
dh|Φ̂(h)|h|(|ηr |+ |tξr|)e−β′ ∑j

i=1(|ξi−δr,ih|+|ηi−tδr,ih|)e−β′(|h|+|th|)

≤ ‖fj+1‖β′(1 + |t|)C0
Φ sup

ξ
j
,η

j

j∑

k=1

(|ξk|+ |ηk|)e(β−β′)
∑j

i=1(|ξi|+|ηi|)

≤ ‖fj+1‖β′

(1 + |t|)C0
Φ

e(β′ − β)

where the second inequality above uses the triangle inequalities |ηr+th| ≥ |ηr|−|th|
and |ξr − h| ≥ |ξr| − |h|. This establishes (17).

To derive (18) we use the same type of argument:

‖S(−t)TjS(t)fj‖β ≤ ‖fj‖β′ sup
ξ
j
,η

j

eβ
∑j

i=1(|ξi|+|ηi|)
∑

1≤r<l≤j

∫
dh

(2π)d
|Φ̂(h)|h|

×|ηl − ηr + t(ξl − ξr)|e−β′ ∑j
i=1(|ξi+δi,lh−δi,rh|+|ηi+tδi,lh−tδi,rh|)

≤ ‖fj‖β′ sup
ξ
j
,η

j

e(β−β′)
∑j

i=1(|ξi|+|ηi|)(28)

×(1 + |t|)
∑

1≤r<l≤j

(|ηr |+ |ηk|+ |ξr|+ |ξk|)
∫

dh
(2π)d

|Φ̂(h)|h|e2β′|h|(1+|t|)

≤ ‖fj‖β′2j
(1 + |t|)Cβ′

Φ (t)

e(β′ − β)

�
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5. Comparison with Hartree

We want now to compare the solution of the N -body Wigner hierarchy to the
solution of the infinite, Hartree hierarchy. The solution of the Hartree hierarchy,
namely the sequence {f(t)⊗j}j=1,... can be also constructed exactly as in the pre-
vious section out of the string gn given by the formula

{
gn(t, t1, . . . , tn) = S(t)S(−tn)CS(tn) . . . S(−t1)CS(t1)f in , n > 0 ,

g0(t) := S(t)f in ,

where

Cf := {Cj+1fj+1}j≥1 .

Let gNn be the string leading to the N -body Wigner hierarchy, that is

{
gNn (t, t1, . . . , tn) := S(t)S(−tn)(TN + CN )S(tn) . . . S(−t1)(TN + CN )S(t1)f

in,

gN0 (t) := S(t)f in ,

where we recall that TN and CN are given by (19). Finally we define gHHN
n by

{
gHHN
n (t, t1, . . . , tn) = S(t)S(−tn)CNS(tn) . . . S(−t1)CNS(t1)f

in , n > 0 ,

gHHN

0 (t) := S(t)f in .

Notice that g0 = gHHN

0 = gN0 .

5.1. Comparing gNn to gHHN
n . For n0 ≥ 1, one has

‖
∞∑

n=0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gNn − gHHN

n

)
j
(t, t1, . . . , tn))‖β

≤ ‖
n0∑

n=1

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gNn − gHHN

n

)
j
(t, t1, . . . , tn))‖β +R(n0)

where R(n0) is the sum of the two remainders of the (convergent) Dyson expansions
of gNn and gHHN

n . Using (25), one easily finds that

(29) R(n0) ≤
2eαj

1− |t|
T

( |t|
T

)n0+1

‖f‖α,β′ .

In order to estimate the sum up to n0, we expand the string gNn (t, t1, . . . , tn) as

(30) gNn =

n∑

k=0

∑

σ1,...,σn∈{0,1},
n
∑

i=1
σi=n−k

Oσn
(tn) . . . Oσ1(t1)f

in

where

O0(t) := S(−t)TNS(t) and O1(t) = S(−t)CNS(t),

so that we detect the number of TNs in the expansion.
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Since the number k of shifts satisfies k ≤ n and ‖fj‖β ≤ eαj‖f‖α,β, we deduce
from Lemma 4.2 that

‖(gNn − gHHN
n )j‖β ≤ eα(j+n)(nc)n

n∑

k=1

(
j + n

N

)k (
n

k

)
‖f‖α,β′

= eαj(nce)n
((

1 +
j + n

N

)n

− 1

)
‖f‖α,β′

with

c =
2(1 + |t|)Cβ′

Φ (t)eα

e(β′ − β)

(notice that the term corresponding to k = 0 is precisely fHHN
n ).

For n ≤ n0, one has
(
1 +

j + n

N

)n

− 1 ≤ n
j + n

N
(1 + (j + n0)/N)n0−1;

besides

(1 + (j + n0)/N)n0−1 = e(n0−1) log 1+(j+n0)/N ≤ e(n0−1)(j+n0)/N := cn0 ,

with cn0 → 1 as N → ∞ and n0 ≪
√
N .

Therefore

‖
n0∑

n=0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gNn − gHHN

n

)
j
(t, t1, . . . , tn))‖β

≤
(
cn0e

αj
n0∑

n=1

(tCe)n
j + n

N
n

)
‖f in‖α,β′

≤
(
cn0

eαj

N

∞∑

n=1

(tce)n(j + n)n

)
‖f in‖α,β′ =

|t|
T

(
cn0

c1
N

)
‖f in‖α,β′ ,

with

(31) c1 = eαj
|t|
T

(
j

(1 − |t|
T )2

+
2

(1− |t|
T )3

)
and cn0 = e(n0−1)(j+n0)/N .

We finally get

(32)

∥∥∥∥∥
∞∑

n=0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gNn − gHHN

n

)
j
(t, t1, . . . , tn))

∥∥∥∥∥
β

≤ |t|
T

(
cn0

c1
N

+
2eαj (|t|/T )n0

1− |t|
T

)
‖f in‖α,β′

5.2. Comparing gn and gHHN
n . We first remark that

(gHHN
n (t, t1, . . . , tn))j

= S(t)S(−t1)CN
j+1S(t1)S(−t2)CN

j+2S(t2) . . . S(−tn)CN
j+nS(tn)f

in
j+n ,

and that the same holds for gn:

(gn(t, t1, . . . , tn))j

= S(t)S(−t1)Cj+1S(t1)S(−t2)Cj+2S(t2) . . . S(−tn)Cj+nS(tn)f
in
j+n .
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Since CN
j+1 = (1− j

N )Cj+1, one has

(gHHN
n (t, t1, . . . , tn)− gn(t, t1, . . . , tn))j =

(
n∏

l=1

(1− j + l

N
)− 1

)
(gn(t, t1, . . . , tn))j .

As before we truncate the summation at n0, and consider

n0∑

n=1

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gn − gHHN

n

)
j
(t, t1, . . . , tn) .

For j + n0 < N and n ≤ n0,∣∣∣∣∣
n∏

l=1

(1− j + l

N
)− 1

∣∣∣∣∣ ≤
∣∣∣∣
(
1− j

N

)n0

− 1

∣∣∣∣ ≤ c′n0
n0

j

N
,

with c′n0
= ej(n0−1)/N → 1 as N → ∞ while n0 << N and j is kept fixed.

Therefore∥∥∥∥∥
n0∑

n=1

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gn − gHHN

n

)
j
(t, t1, . . . , tn))

∥∥∥∥∥
β

≤ c′n0

(1+|t|)|t|C0
Φeα

β′−β(
1− (1+|t|)|t|C0

Φeα

β′−β

)2 ‖f
in‖α,β′ ≤ |t|

T

(
c′n0

c3
N

)
‖f in‖α,β′ ,

where

(33) c3 =
j

(1− |t|
T )2

and c′n0
= ej(n0−1)/N .

Here we have used the fact that

(1 + |t|)|t|C0
Φe

α

β′ − β
≤ |t|
T

following (25), since C0
Φ ≤ Cβ

Φ(t) for all β > 0 and all t.
The same argument as for gNn − gHHN

n gives the estimate of the remainder.
Recalling that

(1 + |t|)|t|C0
Φe

α

β′ − β
≤ |t|
T
,

we easily arrive at

(34)

∥∥∥∥∥
∞∑

n=0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gn − gHHN

n

)
j
(t, t1, . . . , tn))

∥∥∥∥∥
β

≤ |t|
T

(
c′n0

c3
N

+
2eαj (|t|/T )n0

1− |t|
T

)
‖f in‖α,β′ .

5.3. End of the proof of Theorem 3.2. Choosing now n0 = log(N)/ log(T/|t|),
we see that (|t|/T )n0 = 1/N . Optimizing over N we find that

cn0 =e(n0−1)(j+n0)/N

≤ exp
x(j, t)2 + (j − 1) log(T/|t|)x(j, t)− j(log(T/|t|))2

(log(T/|t|))2ex(j,t) =: γ(j, t)
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with

x(j, t) := 1
2 log

T

|t|


j − 1 +

2

log T
|t|

+

√√√√
(
j − 1 +

2

log T
|t|

)2

+ 4

(
j − 1

log T
|t|

+ j

)


and

c′n0
= ej(n0−1)/N ≤ e

j
|t|
T

e log T
|t| =: γ′(j, t)

Observe that

γ(j, t) → 1 and γ′(j, t) → 1 as |t| → 0 , γ(j, t) ≤ 1 and γ(j, t) → 1 as j → ∞ .

Adding (32) and (34) and applying the triangle inequality, we find that
∥∥∥∥∥

∞∑

n=0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1
(
gNn − gn

)
j
(t, t1, . . . , tn))

∥∥∥∥∥
β

≤ |t|
T

1

N

(
c′n0

c3 + cn0c1 +
4eαj

1− |t|
T

)
‖f in‖α,β′

and therefore (recalling (12))
(35)

‖FN
j (t)− F (t)⊗j‖β = ‖fN

j (t)− f(t)⊗j‖β

≤ 1

N

|t|
T

(
eαj

|t|
T
cn0

(
j

(1− |t|
T )2

+
2

(1− |t|
T )3

)
+c′n0

j

(1− |t|
T )2

+
4eαj

1− |t|
T

)
‖f in‖α,β′

≤ 1

N

|t|
T


e

αj |t|
T

(
jγ(j, t)

(1− |t|
T )2

+
2γ(j, t)

(1− |t|
T )3

)
+
je

j
|t|
T

e log T
|t|

(1− |t|
T )2

+
4eαj

1− |t|
T




‖f in‖β′

1− e−α‖f in‖β′

=:
C(j, |t|)
N

|t|
T

‖f in‖β′

1− e−α‖f in‖β′

,

where C(j, t) is defined by this last equality.

6. Final remarks

Our result, based on the Wigner formalism, holds for a short time only, provided
that both the potential and initial data are smooth enough. However, this regularity
assuption is used exclusively for obtaining estimates that are independent of ~.

If one is prepared to give up this requirement, a global in time convergence (under
much less stringent assumptions) can indeed be recovered along the following lines,
in the same spirit as in [20, 1, 16]. In terms of the L1 norm of the Fourier transform
of the Wigner function in the x variable only, it is easy to see that both operators
TN and CN are bounded, with a norm that tends to ∞ as ~ → 0, while S(t) is
isometric. Proceeding as above, we prove the convergence in the mean-field limit,
for a short time which depends only on the size of the norm of f in.

However the procedure can be iterated because uniform bounds (in an arbitrary
finite time interval) on the norm of the solutions can be obtained by means of Hs

(with s > d/2) estimates on the Hartree dynamics.
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Moreover, although not needed in the present paper, the following estimate im-
proves on (15), and may be of independent interest:

(36) ‖fN (t)− f in‖α,β ≤ |t|




‖f in‖α,β′

β′−β

3(1+|t|)Cβ′

Φ (t)eα
− |t|

+

d∑
l=1

‖vlf in‖α,β′

e(β′ − β)


 .

This bound is obtained in the following manner. First, an explicit computation
based on the mean value theorem shows that

‖f in − S(t)f in‖α,β ≤ |t|
e(β′ − β)

d∑

l=1

‖vlf in‖α,β′ .

Notice that the second indices on the norms used in both sides of the inequality
above are different and satisfy β′ > β; observe indeed that

‖∂xj
φ‖α,β ≤

‖φ‖α,β′

e(β′ − β)
, j = 1, . . . , d,

this inequality is applied to φ = vjf
in. This account for the second term on the

right hand side of (36). The first term on the right hand side of (36) is obtained
by applying the geometric series estimate (22) to

gN (t)− S(t)f in =
∑

n≥1

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1gn(t, t1, . . . , tn) .

At variance with (22), the summation here starts with n = 1; hence

‖fN (t)− S(t)f in‖α,β ≤
∞∑

n=1

(
3(1 + |t|)|t|Cβ′

Φ (t)eα

(β′ − β0)

)n

‖f in‖α,β′

= ‖f in‖α,β′

3(1+|t|)|t|Cβ′

Φ (t)eα

(β′−β0)

1− 3(1+|t|)|t|Cβ′

Φ (t)eα

(β′−β0)

.

Part 2. Interpolation

7. ~-dependent bound

In this section we give a proof of the convergence of the N -body density operator
to the solution of the Hartree equation in trace norm. This result does not require
any regularity condition on the two-body potential but the convergence is non
uniform in the the Planck constant. Indeed, the estimate bearing on the interaction
term will treats commutators as if they were anticommutators. In other words,
we estimate both terms in the commutator separately and add the corresponding
bounds, without taking into consideration any compensation that might come from
the difference. This procedure is of course not original and there is a considerable
amount of literature on this subject, starting with the seminal paper of Spohn [20].

The new feature in the analysis below is that we keep track of the dependence in
~ of the rate of convergence so obtained in Theorem 7.1. Indeed, in the next section,
the estimate in Theorem 7.1 is interpolated with the convergence rate obtained in
[9] in order to obtain the uniform in ~ bound stated in Theorem 3.1.
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The explicit rate of convergence of the mean-field limit has been discussed in
[18] and [5], among others. For ~ = 1 and an initial condition in the form of a pure
state with appropriate regularity, one can bound the error by CeCt/N : see [5]. This
result involves the formalism of quantum field theory in Fock space. Iterating the
convergence rate obtained from estimating the BBGKY hierarchy for ~ = 1 over
short time intervals leads to a bound that is much less sharp. It is interesting to
compare the result obtained in [21] with the bound obtained in the forthcoming
Theorem 7.1 with ~ = 1.

In our present context we need to track precisely the ~-dependence in the mean-
field estimate, in view of the interpolation with the results in [9]. Therefore we
discuss in detail the iteration procedure, similar to the one used in [17] for a different
problem.

Since we seek a trace norm error estimate, it is more convenient to work directly
on density operators rather than with their Wigner functions.

Consider the unitary flow Uj(t) defined on L2(Rjd) by the formula

i~U̇j(t) := −~
2∆RjdUj(t) , Uj(0) = IdL2(Rjd) .

Consider the operator Sj(t) defined on density matrices by conjugation with Uj(t):

Sj(t)F = Uj(t)FUj(−t).
Obviously, Sj(t) is a linear isometry on L1(L2((Rdj))), the space of trace class
operators equipped with the trace norm.

We recall the definition of Cj and Tj given by (6) and (5). For notational conve-
nience we also denote

(37) C~

j =
C
i~

; T ~

j =
Tj
i~

Henceforth we denot by FN
j (t) the solutions of the N -particle BBGKY hierarchy,

and by F (t) the solution of the Hartree equation. Thus Fj(t) = F (t)⊗j is a solution
of the Hartree hierarchy, and we arrive at the following estimate.

Theorem 7.1. Let Φ ∈ L∞(Rd). Then there exists N0(j) such that the following

estimate holds true for N ≥ N0(j) and logN ≥ j2
16‖Φ‖L∞t

~
+1

‖FN
j (t)− F (t)⊗j‖L1 ≤ 2j+

16t‖Φ‖L∞
~

N

(

2−
16t‖Φ‖L∞

~ log 2

)

for all t ≥ 0.

Proof. We first rephrase (4) and (7) in the following mild form
(38)

FN
j (t) = S(t)F0,j +

∫ t

0

dτ

(
S(t− τ)

T ~
j

N
FN
j (τ) +

N − j

N
S(t− τ)C~

j+1F
N
j+1(τ)

)

and

(39) Fj(t) = S(t)F0,j +

∫ t

0

dτS(t − τ)C~

j+1Fj+1(τ).

Here {F0,j}∞j=1 denotes the common initial datum for both sequences, assumed

to be factorized, i.e. F0,j = f⊗j
0 . Using the group property S(t) = S(t − t1)S(t1)
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for all 0 ≤ t1 ≤ t, and splitting the integral into two parts, we see that
(40)

FN
j (t)=S(t−t1)FN

j (t1)+

∫ t

t1

dτ

(
S(t−τ)

T ~
j

N
FN
j (τ)+

N−j
N

S(t−τ)C~

j+1F
N
j+1(τ)

)

and

(41) Fj(t) = S(t− t1)Fj(t1) +

∫ t

t1

dτS(t − τ)C~

j+1Fj+1(τ).

We are interested in bounding the difference

(42) ∆j(t) = FN
j (t)− Fj(t) ,

which is recast as

(43) ∆j(t) = Rj(t) +

∫ t

t1

dt2S(t− t2)C~

j+1∆j+1(t2) ,

where

(44)

Rj(t) = S(t− t1)∆j(t1)

+
1

N

∫ t

t1

dt2S(t − t2)T ~

j F
N
j (t2)−

j

N

∫ t

t1

dt2S(t− t2)C~

j+1F
N
j+1(t2) .

The following estimates rephrase Lemma 4.2 in the present context, and are
obvious consequences of the definitions. For each j > 0,

‖Sj(t)Fj‖L1 = ‖Fj‖L1 ,(45)

‖C~

j+1Fj+1‖L1 ≤ 2j‖Φ‖L∞

~
‖Fj+1‖L1 ,(46)

‖T ~

j Sj(t)Fj‖L1 ≤ j(j − 1)‖Φ‖L∞

~
‖Fj‖L1 .(47)

As a consequence

(48) ‖R(t)‖ ≤ ‖∆(t1)‖ +
3|t− t1|j2‖Φ‖L∞

N~
.

Finally, we infer from (43) and (48) that

(49) ‖∆j(t)‖L1 ≤ ‖∆j(t1)‖L1 +
3j2

16N
+

j

8T~

∫ t

t1

dt2‖∆j+1(t2)‖L1 .

Here

T~ =
~

16‖Φ‖L∞

and 0 ≤ t− t1 ≤ T~ .

Notice that, with this choice, the Dyson expansions associated to the two hierarchies
are absolutely convergent (uniformly in N) for any t ∈ (t1, t1 + T~). However, in
contrast with the previous section, we will not consider the full Dyson expansion
but only an its finite truncation.
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Iterating n times (49) we obtain, for t− t1 ≤ T~,
(50)

‖∆j(t)‖L1 ≤
n∑

ℓ=0

1

8ℓ
j(j + 1) · · · (j + ℓ− 1)

ℓ!

(
sup

t1≤s≤t
‖∆j+ℓ(s)‖L1 +

3(j + ℓ)2

16N

)

+
1

8n
j(j + 1) · · · (j + n− 1)

n!

≤ 2j−1
n∑

ℓ=0

1

4ℓ
sup

t1≤s≤t
‖∆j+ℓ(t1)‖L1 +

1

4
2j−1 (j + n)2

N
+

1

4n
2j−1.

Here we have used the obvious bound

‖∆N
j (t)‖L1 ≤ 2 , for all j ≥ 1and t ≥ 0 ,

together with the prescription

2
2‖Φ‖L∞T

~
=

1

8

and the inequality

j(j + 1) · · · (j + ℓ− 1)

ℓ!
=

(
j + ℓ− 1

ℓ

)
≤ 2j−1+ℓ .

At this point, we split the time interval (0, t) into small intervals of length T~.
Specifically, for k = 1, . . . , [ t

T~

] + 1, so that t < kT~, we set

Ak
j = sup

s∈((k−1)T~,kT~]

‖∆j(s)‖L1 .

Setting

(51) ϕ(k,N) := 2−k logN ,

we seek to prove that

(52) Ak
j ≤ 2j+k−ϕ(k,N) for j ≤ ϕ(k,N) ,

which implies the thesis.
Setting n = ϕ(k,N), the identity ϕ(k,N) = ϕ(k − 1, N)− ϕ(k,N) implies that

j + ℓ ≤ ϕ(k − 1, N) for j ≤ ϕ(k,N), so that (50) becomes

(53) Ak
j ≤ 2j−1

n∑

ℓ=0

1

4ℓ
Ak−1

j+ℓ +
1

4
2j−1 (j + n)2

N
+

1

4n
2j−1 .

We prove (52) by induction: for k = 1, the inequality (52) is obvious by (43).
Assuming now that the inequality (52) holds for k − 1, we get

2j−1
n∑

ℓ=0

1

4ℓ
Ak−1

j+ℓ ≤ 2 · 2j−1 · 2k−1−(ϕ(k−1,N)−ϕ(k,N)) ≤ 1

2
· 2j+k−ϕ(k,N) .

Moreover
1

4
· 2j−1 (j + n)2

N
+

1

4n
· 2j−1 ≤ 1

2
· 2j+k−ϕ(k,N)

for n = ϕ(k,N) and N > N0 with N0 = N0(j) chosen so that (52) holds true.
This concludes the proof of Theorem 7.1. �
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8. Proof of Theorem 3.1

We begin with the following elementary observation.

Lemma 8.1. For each trace-class operator ρ, one has

‖W̃ρ‖L1 ≤ ‖ρ‖L1.

Proof. For z = (q, p), one has

W̃ρ(z) = (2π~)−d〈z|ρ|z〉 = (2π~)−d trace(ρ|z〉〈z|)

so that

(2π~)d|W̃ρ(z)| ≤ trace |ρ|z〉〈z|| = trace |ρ||z〉〈z|

because |z〉〈z| ≥ 0. Therefore

‖W̃ρ‖L1 ≤ trace

(
|ρ|(2π~)−d

∫
|z〉〈z|dz

)
= ‖ρ‖L1

since

(2π~)−d

∫
|z〉〈z|dz = I .

�

Therefore, applying Theorem 7.1 implies that, for all T > 0 and for |t| < T ,

‖W̃FN
j (t) − W̃F (t)⊗j‖L1 ≤ 2j+

16t‖Φ‖L∞
~

N

(

2−
16t‖Φ‖L∞

~ log 2

) .

Assume that F in is a Töplitz operator in the sense of [9]. Then one knows from
[9] that

distMK,2(W̃FN
j

(t) − W̃F (t)⊗j )2 ≤ j

(
2d~+

C

N

)
eΛt + 2d~,

where

Λ := 3 + 4Lip(∇V )2 and C := 8j‖∇Φ‖L∞/Λ

while distMK,2 is the Wasserstein distance of exponent 2. We recall that, for each
pair of Borel probability measures on Rd with finite second order moments,

(54) distMK,2(µ, ν) := inf
π∈Π(µ,ν)

√∫∫

((Rd×Rd)j)2
|z − z′|2π(dzdz′) ,

where Π(µ, ν) is the set of couplings of µ and ν defined before (10) — see chapter
7 in [22].

Then, we deduce from Theorem 7.1 that



24 F. GOLSE, T. PAUL, AND M. PULVIRENTI

• for ϕ([ t
T~

], N) < j or N < N0(j)

inf
(
‖W̃FN

j
(t) − W̃F (t)⊗j‖2L1 , distMK,2(W̃FN

j
(t) − W̃F (t)⊗j )2

)

≤ inf

(
2, j

(
2d~+

C

N

)
eΛt + 2d~

)

≤ j

(
2d~+

C

N

)
eΛt + 2d~

∣∣∣∣∣
ϕ([ t

T~
],N)<j

≤ j

(
2d~+

C

N

)
eΛt + 2d~

∣∣∣∣∣
~≤

16‖Φ‖L∞
log log N−log j

≤ 32dT ‖Φ‖L∞(1 + jeΛT )

log logN − log j
+
C

N
eΛT .

If N → ∞ (in which case obviously N ≥ N0(j)), one has

32dT ‖Φ‖L∞(1 + jeΛT )

log logN − log j
+
C

N
eΛT ∼ 32dT ‖Φ‖L∞(1 + jeΛT )

log logN
.

• for j ≤ ϕ([ t
T~

], N) and N ≥ N0(j)

inf
(
‖W̃FN

j
(t) − W̃F (t)⊗j‖2L1 , distMK,2(W̃FN

j
(t) − W̃F (t)⊗j )2

)

≤ inf


 22j+

32t‖Φ‖L∞
~

N

(

2−
32t‖Φ‖L∞

~ log 2

) , j

(
2d~+

C

N

)
eΛt + 2d~




≤ inf


 22j+

32t‖Φ‖L∞
~

N

(

2−
32t‖Φ‖L∞

~ log 2

) , 2d~(1 + jeΛt)


+

jC

N
eΛt

≤ 2d~(1 + jeΛt)

∣∣∣∣∣
2
2j+

32t‖Φ‖L∞
~

N



2
−

32t‖Φ‖L∞
~ log 2





=2d~(1+jeΛt)

+
jC

N
eΛt ,

the two arguments of the inf being respectively decreasing and increasing functions
of ~.

Observe that

22j+
32t‖Φ‖L∞

~

N

(

2−
32t‖Φ‖L∞

~ log 2

) = 2d~(1 + jeΛt) ⇔ 22j+
32t‖Φ‖L∞

~

2d~(1 + jeΛt)
= N

(

2−
32t‖Φ‖L∞

~ log 2

)

⇔
(

22j+
32t‖Φ‖L∞

~

2d~(1 + jeΛt)

)2
32t‖Φ‖L∞

~ / log 2

= N

is an equation for ~ in terms of N with only one solution ~(N), since the left hand
side of the last equality is a continuous function of ~ decreasing from +∞ to 0.

We find that

logN =
2

32t‖Φ‖L∞
~(N)

log 2

((
2j +

32t‖Φ‖L∞

~(N)

)
log 2− log

(
2d~(N)(1 + jeΛt)

))
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and therefore

log logN =
32t‖Φ‖L∞

~(N)
log 2− log log 2

+ log

((
2j +

32t‖Φ‖L∞

~(N)

)
log 2− log

(
2d~(N)(1 + jeΛt)

))
,

so that, as N → ∞ with j kept fixed,

~(N) ∼ 32T ‖Φ‖L∞ log 2

log logN
.

Finally

inf
(
‖W̃FN

j
(t) − W̃F (t)⊗j‖2L1 , distMK,2(W̃FN

j
(t) − W̃F (t)⊗j )2

)

≤ 2d~(N)(1 + jeΛT ) + j
C

N
eΛT

∼ 64(log 2)
dT ‖Φ‖L∞

log logN
(1 + jeΛT ) as N → ∞ with

log j

log logN
= o(1).

Theorem 3.1 is then proven by our last result:

Lemma 8.2. Let µ and ν be two Borel probability measures absolutely continuous
with respect to the Lebesgue measure. Then

dist1(µ, ν) ≤ inf (‖µ− ν‖L1 , distMK,2(µ, ν)) .

Proof. Let D1(z, z
′) = min (|z − z′|, 1). Obviously D1(z, z

′)2 ≤ |z−z′|2 so that, for
each Borel probability measure π,

(∫∫
π(dz, dz′)D1(z, z

′)

)2

≤
∫∫

π(dz, dz′)

∫∫
π(dz, dz′)|z − z′|2

=

∫∫
π(dz, dz′)|z − z′|2 .

In particular
dist1(µ, ν) ≤ distMK,2(µ, ν) .

Consider now the particular coupling π defined as follows:

π(µ, ν) :=





µ(z)δ(z − z′) if µ = ν ,

λ(z)δ(z − z′) +
(µ(z)− λ(z))(ν(z′)− λ(z′))

1−
∫
λ(dz′′)

if µ 6= ν ,

where λ = min(µ, ν). Then

dist1(µ, ν) ≤
∫
π(dz, dz′)min (|z − z′|, 1) ≤ 1−

∫
λ(dz) ≤ ‖µ− ν‖L1

and this completes the proof. �
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