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Abstract The need for efficient normal integration me-

thods is driven by several computer vision tasks such as

shape-from-shading, photometric stereo, deflectometry,

etc. In the first part of this survey, we select the most

important properties that one may expect from a nor-

mal integration method, based on a thorough study of

two pioneering works by Horn and Brooks [29] and by

Frankot and Chellappa [19]. Apart from accuracy, an in-

tegration method should at least be fast and robust to a

noisy normal field. In addition, it should be able to han-

dle several types of boundary condition, including the

case of a free boundary, and a reconstruction domain

of any shape i.e., which is not necessarily rectangular.

It is also much appreciated that a minimum number of

parameters have to be tuned, or even no parameter at

all. Finally, it should preserve the depth discontinuities.

In the second part of this survey, we review most of the

existing methods in view of this analysis, and conclude

that none of them satisfies all of the required proper-

ties. This work is complemented by a companion paper

entitled Variational Methods for Normal Integration, in

which we focus on the problem of normal integration in

the presence of depth discontinuities, a problem which

occurs as soon as there are occlusions.
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1 Introduction

Computing the 3D-shape of a surface from a set of nor-

mals is a classical problem of 3D-reconstruction called

normal integration. This problem is well-posed, except

that a constant of integration has to be fixed, but its

resolution is not as straightforward as it could appear,

even in the case where the normal is known at every

pixel of an image. One may well be surprised that such

a simple problem has given rise to such a large num-

ber of papers. This is probably due to the fact that,

like many computer vision problems, it simultaneously

meets several requirements. Of course, a method of in-

tegration is expected to be accurate, fast, and robust

re noisy data or outliers, but we will see that several

other criteria are important as well.

In this paper, a thorough study of two pioneering

works is done: a paper by Horn and Brooks based on

variational calculus [29]; another one by Frankot and

Chellappa resorting to Fourier analysis [19]. This pre-

liminary study allows us to select six criteria apart from

accuracy, through which we intend to qualitatively eval-

uate the main normal integration methods. Our sur-

vey is summarized in Table 1. Knowing that no exist-

ing method is completely satisfactory, this preliminary

study impels us to suggest several new methods of inte-

gration which will be found in a companion paper [48].

The organization of the present paper is the follow-

ing. We derive the basic equations of normal integra-

tion in Section 2. Horn and Brooks’ and Frankot and

Chellappa’s methods are reviewed in Section 3. This al-

lows us, in Section 4, to select several properties that

are required by any normal integration method, and to

comment the most relevant related works. In Section 5,

we conclude that a completely satisfactory method of

integration is still lacking.
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2 Basic Equations of Normal Integration

Suppose that, in each point x = [u, v]> of the image

of a surface, the outer unit-length normal n(u, v) =

[n1(u, v), n2(u, v), n3(u, v)]> is known. Integrating the

normal field n amounts to searching for three functions

x, y and z such that the normal to the surface at the

surface point x(u, v) = [x(u, v), y(u, v), z(u, v)]>, which

is conjugate to x, is equal to n(u, v). Following [28], let

us rigorously formulate this problem when the projec-

tion model is either orthographic, weak-perspective or

perspective.

2.1 Orthographic Projection

We attach to the camera a 3D-frame cxyz whose ori-

gin c is located at the optical center, and such that cz

coincides with the optical axis (see Figure 1).
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Fig. 1 Orthographic projection: x1 and x2 are conjugate to
xo
1 and xo

2, respectively. The visible part of the surface is
highlighted in gray. Point xo

2 lies on the occluding contour.

The origin of pixel coordinates is taken as the inter-

section o of the optical axis cz and the image plane π.

In practice, π coincides with the focal plane z = f ,

where f denotes the focal length.

Assuming orthographic projection, a 3D-point x pro-

jects orthogonally onto the image plane, i.e.:{
x(u, v) = u

y(u, v) = v
(1)

By normalizing the cross product of both partial deriva-

tives ∂ux and ∂vx, and choosing the sign so that n

points towards the camera, we obtain (the dependen-

cies in u and v are omitted, for the sake of simplicity):

n =
1√

1 + ‖∇z‖2

∂uz∂vz

−1

 (2)

where ∇z = [∂uz, ∂vz]
> denotes the gradient of the

depth map z. From (2), we conclude that n3 < 0.

Of course, 3D-points such that n3 ≥ 0 also exist.

Such points are non-visible if n3 > 0. If n3 = 0, they are

visible and project onto the occluding contour (see point

xo2 in Figure 1). Thus, even if the normal n is easily

determined on the occluding contour, since n is both

parallel to π, and orthogonal to the contour, computing

the depth z by integration in such points is impossible.

Now, let us consider the image points which do not

lie on the occluding contour. Equation (2) immediately

gives the following pair of linear PDEs in z:

∇z = [p, q]> (3)

where:
p = −n1

n3

q = −n2
n3

(4)

Equations (3) show that integrating a normal field i.e.,

computing z from n, amounts to integrating the vector

field [p, q]>. The solution of (3) is straightforward:

z(u, v) = z(u0, v0) +

∫ (u,v)

(r,s)=(u0,v0)

[p(r, s) dr + q(r, s) ds] (5)

regardless of the integration path between some point

(u0, v0) and (u, v), as soon as p and q satisfy the con-

straint of integrability ∂vp = ∂uq (Schwartz theorem).

If they do not, the integral in Equation (5) depends on

the integration path.

If there is no point (u0, v0) where z is known, it

follows from (5) that z(u, v) is computable up to an

additive constant. This constant can be chosen so as

to minimize the root mean square error (RMSE) in z,

provided that the ground-truth is available1.

2.2 Weak-perspective Projection

Weak-perspective projection assumes that the camera

is focused on a plane π of equation z = d, supposed

to match the mean location of the surface. Any visible

point x projects first orthogonally onto π, then perspec-

tively onto π, with c as projection center (see Figure 2).

Assuming weak-perspective projection, we have:
x(u, v) =

d

f
u

y(u, v) =
d

f
v

(6)

1 The same procedure is used by Klette and Schlüns in [37]:
“The reconstructed height values are shifted in the range of
the original surface using LSE optimization”.
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Fig. 2 Weak-perspective projection: x1 and x2 are conjugate
to xw

1 and xw
2 , respectively. Point xw

2 lies on the occluding
contour. The plane π, which is conjugate to π, is supposed to
match the mean location of the surface.

Denoting by m the image magnification f/d, the

outer unit-length normal n now reads:

n =
1√

1 + m2‖∇z‖2

m ∂uz

m ∂vz

−1

 (7)

For the image points which do not lie on the occlud-

ing contour, the pair of PDEs (3) becomes:

∇z =
1

m
[p, q]> (8)

which explains why “weak-perspective projection” is

also called “scaled orthographic projection”. From (8),

analogously to (5):

z(u, v) = z(u0, v0) +
1

m

∫ (u,v)

(r,s)=(u0,v0)

[p(r, s) dr + q(r, s) ds] (9)

2.3 Perspective Projection

We now consider perspective projection (see Figure 3).
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Fig. 3 Perspective projection: x1 and x3 are conjugate to
xp
1 and xp

3 , respectively (xp
3 lies on the occluding contour).

As major difference to weak-perspective, d must be

replaced with z(u, v) in Equations (6):
x(u, v) =

z(u, v)

f
u

y(u, v) =
z(u, v)

f
v

(10)

The cross product of ∂ux and ∂vx is a little more com-

plicated than in the previous case:

∂uxp × ∂vxp =
z

f2

 −f ∂uz
−f ∂vz

z + u ∂uz + v ∂vz

 (11)

Writing that this vector is parallel to n(u, v), this pro-

vides us with the three following equations:
f n3 ∂uz + n1 [z + u ∂uz + v ∂vz] = 0

f n3 ∂vz + n2 [z + u ∂uz + v ∂vz] = 0

n2 ∂uz − n1 ∂vz = 0

(12)

Since this system is homogeneous in z, and knowing

that z > 0, we introduce the change of variable:

z̃ = ln(z) (13)

which makes (12) linear with respect to ∂uz̃ and ∂v z̃:
[f n3 + un1] ∂uz̃ + v n1 ∂v z̃ = −n1
un2 ∂uz̃ + [f n3 + v n2] ∂v z̃ = −n2
n2 ∂uz̃ − n1 ∂v z̃ = 0

(14)

System (14) is non-invertible if it has rank less than 2

i.e., if its three determinants are zero:
f n3 [un1 + v n2 + f n3] = 0

−n1 [un1 + v n2 + f n3] = 0

−n2 [un1 + v n2 + f n3] = 0

(15)

As n1, n2 and n3 cannot simultaneously vanish, because

vector n is unit-length, the equalities (15) holds true

if and only if un1 + v n2 + f n3 = 0. Knowing that

[u, v, f]> are the coordinates of the image point xp in

the 3D-frame cxyz, this happens if and only if xp lies

on the occluding contour (see point xp3 in Figure 3). It is

noticeable that for a given object, the occluding contour

depends on which projection model is assumed.

For the image points which do not lie on the occlud-

ing contour, System (14) is easily inverted, which gives

us the following pair of linear PDEs in z̃:

∇z̃ = [p̃, q̃]> (16)

where:
p̃ = − n1

un1 + v n2 + f n3

q̃ = − n2
un1 + v n2 + f n3

(17)
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Hence, under perspective projection, integrating a nor-

mal field n amounts to integrating the vector field [p̃, q̃]>.

The solution of Equation (16) is straightforward:

z̃(u, v) = z̃(u0, v0)+

∫ (u,v)

(r,s)=(u0,v0)

[p̃(r, s) dr + q̃(r, s) ds] (18)

from which we deduce, using (13):

z(u, v) = z(u0, v0) exp

{∫ (u,v)

(r,s)=(u0,v0)

[p̃(r, s) dr + q̃(r, s) ds]

}
(19)

It follows from (19) that z is computable up to

a multiplicative constant. Notice also that (17), and

therefore (19), require that the focal length f is known,

as well as the location of the principal point o, since

the coordinates u and v depend on it (see Figure 3).

The similarity between (3), (8) and (16) shows that

any normal integration method can be extended to weak-

perspective or perspective, provided that the intrinsic

parameters of the camera are known2. Let us empha-

size that such extensions are generic i.e., not restricted

to a given method of integration. We can thus limit

ourselves to solving the following pair of linear PDEs,

which we consider as the model problem:

∇z = g (20)

where (z,g) means (z, [p, q]>), (z, 1
m [p, q]>), or (z̃, [p̃, q̃]>),

depending on whether the projection model is ortho-

graphic, weak-perspective, or perspective, respectively.

2.4 Integration Using Quadratic Regularization

From now on, we do not care more about the projection

model. We just have to solve the generic equation (20).

As already noticed, the respective solutions (5), (9)

and (18) of Equations (3), (8) and (16), are independent

from the integration path if and only if the constraint

of integrability ∂vp = ∂uq, or ∂vp̃ = ∂uq̃, is satisfied. In

practice, a normal field is never rigorously integrable (or

curl-free). Apart from using several integration paths

and averaging the integrals [12,26,60], a natural way

to deal with the lack of integrability is to turn (20) into

an optimization problem [29]. Using quadratic regular-

ization, this amounts to minimizing the functional:

FL2
(z) =

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖2 dudv (21)

where Ω ⊂ R2 is the reconstruction domain, and the

gradient field g = [p, q]> is the datum of the problem.

2 This is advocated in [54] for the method designed in [31].

The functional FL2 is strictly convex in∇z, but does

not admit a unique minimizer z∗ since, for any κ ∈ R,

FL2
(z∗ + κ) = FL2

(z∗). Its minimization requires that

the associated Euler-Lagrange equation is satisfied. The

calculus of variation provides us with the following:

∇FL2(z) = 0 ⇐⇒ −2 div (∇z − g) = 0 (22)

This necessary condition is rewritten as the following

Poisson equation3:

∆z = ∂up+ ∂vq (23)

Solving Equation (23) is not a sufficient condition

for minimizing FL2
(z), except if z is known on the

boundary ∂Ω (Dirichlet boundary condition), see [40]

and the references therein. Otherwise, the so-called nat-

ural boundary condition, which is of the Neumann type,

must be considered. In the case of FL2(z), this condi-

tion is written [29]:

(∇z − g) · η = 0 (24)

where vector η is normal to ∂Ω in the image plane.

Using different boundary conditions, one could ex-

pect that the different solutions of (23) would coincide

on most part of Ω, but this is not true. For a given gra-

dient field g, the choice of a boundary condition has a

great influence on the recovered surface. This is noted

in [29]: “Equation [(23)] does not uniquely specify a so-

lution without further constraint. In fact, we can add

any harmonic function to a solution to obtain a differ-

ent solution also satisfying [(23)]”. A harmonic function

is a solution of the Laplace equation:

∆z = 0 (25)

As an example, let us search for the harmonic functions

taking the form z(u, v) = z1(u) z2(v). Knowing that

z1 6= 0 and z2 6= 0, since z > 0, Equation (25) gives:

z′′1 (u)

z1(u)
= −z

′′
2 (v)

z2(v)
(26)

Both sides of Equation (26) are thus equal to the same

constant K ∈ R. Two cases may occur, according to

the sign of K. If K < 0, we pose K = −ω2, ω ∈ R:{
z′′1 (u) + ω2 z1(u) = 0

z′′2 (v)− ω2 z2(v) = 0
⇒
{
z1(u) = z1(0) ejωu

z2(v) = z2(0) eωv
(27)

where j is such that j2 = −1. Finally, we obtain:

z(u, v) = z(0, 0) eω(ju+v) (28)

3 Similar equations arise in other computer vision problems
[3,46,52].



Normal Integration: A Survey 5

Note that a real harmonic function defined on R2

can be considered as the real part or as the imaginary

part of a holomorphic function. All the functions of the

form (28) are indeed holomorphic. Their real and imag-

inary parts thus provide us with the following two fam-

ilies of harmonic functions:

{cos(ωu) eωv}ω∈R ; {sin(ωu) eωv}ω∈R (29)

Adding to a given solution of Equation (23) any linear

combination of these harmonic functions (many other

such functions exist), we obtain other solutions. The

way to select the right solution is to carefully manage

the boundary.

In the case of a free boundary, the variational cal-

culus tells us that minimizing FL2
(z) requires that (24)

is imposed on the boundary, but the solution is still

non-unique, since it is known up to an additive con-

stant. The same conclusion holds true for any Neumann

boundary condition. On the other hand, as soon as Ω

is bounded, a Dirichlet boundary condition ensures ex-

istence and uniqueness of the solution4.

3 Two Pioneering Normal Integration Methods

Before a more exhaustive review, we first make a thor-

ough study of two pioneering normal integration meth-

ods which have very different peculiarities. This will

allow us to detect the most important properties that

one may expect from any method of integration5.

3.1 Horn and Brooks’ Method

A well-known method due to Horn and Brooks [29],

which we denote by MHB, attempts to solve the fol-

lowing discrete analogue of the Poisson equation (23),

where the (u, v) denote the pixels of a square 2D-grid:

zu+1,v + zu−1,v + zu,v+1 + zu,v−1 − 4 zu,v
=

pu+1,v−pu−1,v

2 +
qu,v+1−qu,v−1

2

(30)

The left-hand and right-hand sides of (30) are second

order finite differences approximations of the Laplacian

and of the divergence, respectively. As stated in [25],

other approximations can be considered, as long as the

orders of the finite differences are consistent.

4 See for instance Theorem 2.4.2.6 on page 125 in [22] for
the Dirichlet case, and Theorem 2.4.2.7 on page 126 in [22]
for the Neumann case.
5 A Matlab implementation of the methods presented

in this section is available at https://github.com/yqueau/

normal_integration.

In [29], the equations (30) are solved using a Jacobi

iteration, for (u, v) ∈ Ω̊ i.e., for the pixels (u, v) ∈ Ω

whose four nearest neighbors are inside Ω:

z
(k+1)
u,v =

z
(k)
u+1,v+z

(k)
u−1,v+z

(k)
u,v+1+z

(k)
u,v−1

4

−pu+1,v−pu−1,v

8 − qu,v+1−qu,v−1

8

(31)

The values of z for the pixels (u, v) ∈ ∂Ω can be de-

duced from a discrete analogue of the natural boundary

condition (24), “provided that the boundary curve is

polygonal, with horizontal and vertical segments only”.

It is standard to show the convergence of this scheme

[53], whatever the initialization, but it converges very

slowly if the initialization is far from the solution [16].

However, it is not so easy to discretize the natural

boundary condition properly, because many cases have

to be considered (see, for instance, [7]).

3.2 Improvement of Horn and Brooks’ Method

Horn and Brooks’ method can be extended in order to

more properly manage the natural boundary condition,

by discretizing the functional FL2
(z) defined in (21),

and then solving the optimality condition, rather than

discretizing the continuous optimality condition (23).

This simple idea allowed Durou and Courteille to

design in [16] an improved version ofMHB, denoted by

MDC, which attempts to minimize the following dis-

crete approximation of FL2
(z):

FL2
(z) =

∑
(u,v)∈Ω1

[
zu+1,v−zu,v

δ − pu+1,v+pu,v

2

]2
+
∑

(u,v)∈Ω2

[
zu,v+1−zu,v

δ − qu,v+1+qu,v

2

]2 (32)

where δ is the distance between neighboring pixels (from

now on, the scale is chosen so that δ = 1), Ω1 and Ω2

contain the pixels (u, v) ∈ Ω such that (u + 1, v) ∈ Ω
or (u, v + 1) ∈ Ω, respectively, and z = [zu,v](u,v)∈Ω .

In (32), the values of p and q are averaged using

forward finite differences, in order to ensure the equiv-

alence withMHB. Indeed, one gets from (32) and from

the characterization ∇FL2
= 0 of an extremum, the

same optimality condition (30) as discretized by Horn

and Brooks, for the pixels (u, v) ∈ Ω̊.

However, handling the boundary is much simpler

than withMHB, because the appropriate discretization

along the boundary naturally arises from the optimality

condition∇FL2 = 0. Indeed, for a pixel (u, v) ∈ ∂Ω, the

equation ∂FL2
/∂zu,v = 0 does not take the form (30)

any more. Figure 4 shows the example of a pixel (u, v) ∈
∂Ω such that (u+1, v) and (u, v+1) are inside Ω, while

(u− 1, v) and (u, v − 1) are outside Ω.

https://github.com/yqueau/normal_integration
https://github.com/yqueau/normal_integration
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η D
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(u, v − 1)

(u− 1, v)

(u+ 1, v)

(u, v + 1)(u, v)

Fig. 4 Only the black pixels are inside Ω. The straight line
D is a plausible approximation of the tangent to ∂Ω at (u, v).

In this case, Equation (30) must be replaced with:

zu+1,v + zu,v+1 − 2 zu,v
=

pu+1,v+pu,v

2 +
qu,v+1+qu,v

2

(33)

Since η = −
√

2/2 [1, 1]> is a plausible unit-length nor-

mal to the boundary ∂Ω in this case, the natural bound-

ary condition (24) reads:

∂uz − p+ ∂vz − q = 0 (34)

It is obvious that (33) is a discrete approximation of

(34). More generally, it is easily shown that the equa-

tion ∂FL2/∂zu,v = 0, for any (u, v) ∈ ∂Ω, is a discrete

approximation of the natural boundary condition (24).

Let us testMDC on the surface Svase shown in Fig-

ure 5-a, which models a half-vase lying on a flat ground.

To this end, we sample the analytically computed gradi-

ent of Svase on a regular grid of size 312×312, which pro-

vides the gradient field gvase (see Figure 5-b). We sup-

pose that a preliminary segmentation allows us to use as

reconstruction domain the image of the vase, which con-

stitutes an additional datum. The reconstructed surface

obtained at convergence ofMDC is shown in Figure 5-c.

On the other hand, it is well-known that quadratic

regularization is not well-adapted to discontinuities. Let

us now test MDC using as reconstruction domain the

whole grid of size 312 × 312, which contains disconti-

nuities at the top and at the bottom of the vase. The

reconstructed surface at convergence is shown in Fig-

ure 5-d. It is not satisfactory, since the discontinuities

are not preserved. This is numerically confirmed by the

RMSE, which is much higher than that of Figure 5-c.

We know that removing the flat ground from the

reconstruction domain suffices to reach a better result

(see Figure 5-c), since this eliminates any depth discon-

tinuity. However, this requires a preliminary segmenta-

tion, which is known to be a hard task, and also re-

quires that the integration can be carried out on a non-

rectangular reconstruction domain.

Otherwise, it is necessary to appropriately handle

the depth discontinuities, in order to limit the bias.

The lack of integrability of the vector field [p, q]> is

a basic idea to detect the discontinuities, as shown in

our companion paper [48]. Unfortunately, this charac-

terization of the discontinuities is neither necessary nor

sufficient. On the one hand, shadows can induce outliers

if [p, q]> is estimated via photometric stereo [49], which

can therefore be non-integrable along shadow limits,

even in the absence of depth discontinuities. On the

other hand, the vector field [p, q]> of a scale seen from

above is uniform, i.e. perfectly integrable.

3.3 Frankot and Chellappa’s Method

A more general approach to overcome the possible non-

integrability of the gradient field g = [p, q]> is to first

define a set I of integrable vector fields i.e., of vector

fields of the form ∇z, and then compute the projection

∇z̄ of g on I i.e., the vector field ∇z̄ of I the closest to

g, according to some norm. Afterwards, the (approxi-

mate) solution of Equation (20) is easily obtained using

(5), (9) or (18), since ∇z̄ is integrable.

Nevertheless, the boundary conditions can be com-

plicated to manage, because I depends on which bound-

ary condition is imposed (including the case of the nat-

ural boundary condition). It is noticed in [2] that mini-

mizing the functional FL2(z) amounts to following this

general approach, in the case where I contains all inte-

grable vector fields and the Euclidean norm is used.

The most cited normal integration method, due to

Frankot and Chellappa [19], follows this approach in

the case where the Fourier basis is considered. Let us

use the standard definition of the Fourier transform:

f̂(ωu, ωv) =

∫∫
(u,v)∈R2

f(u, v) e−jωu u e−jωv v dudv (35)

where (ωu, ωv) ∈ R2. Computing the Fourier transforms

of both sides of (23), we obtain:

−(ω2
u + ω2

v) ẑ(ωu, ωv) = jωu p̂(ωu, ωv) + jωv q̂(ωu, ωv)

(36)

In Equation (36), the data p̂ and q̂, as well as the un-

known ẑ, depend on the variables ωu and ωv. For any

(ωu, ωv) such that ω2
u + ω2

v 6= 0, this equation gives us

the following expression of ẑ(ωu, ωv):

ẑ(ωu, ωv) =
ωu p̂(ωu, ωv) + ωv q̂(ωu, ωv)

j (ω2
u + ω2

v)
(37)

Indeed, computing the inverse Fourier transform of (37)

will provide us with a solution of (23). This method of

integration [19], which we denote by MFC, is very fast

thanks to the FFT algorithm.
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(a) Surface Svase (b) Gradient field gvase

(c) RMSE = 0.93 (d) RMSE = 4.51

Fig. 5 (a) Test surface Svase. (b) Gradient field gvase, obtained by sampling of the analytically computed gradient of Svase.
(c) Reconstructed surface obtained by integration of gvase, using as reconstruction domain the image of the vase, at convergence
ofMDC. (d) Same test, but on the whole grid. In both tests, the constant of integration is chosen so as to minimize the RMSE.

The definition of the Fourier transform may be con-

fusing, because several definitions exist. Instead of pul-

sations (ωu, ωv), frequencies (nu, nv) can be used. Know-

ing that (ωu, ωv) = 2π(nu, nv), Equation (37) then be-

comes:

ẑ(nu, nv) =
nu p̂(nu, nv) + nv q̂(nu, nv)

2π j (n2u + n2v)
(38)

It is written in [41] that the accuracy of Frankot and

Chellappa’s method “relies on a good input scale”. In

fact, it only happens that, in a publicly available code

of this method, the 2π coefficient in (38) is missing.

Since the right-hand side of Equation (37) is not

defined if (ωu, ωv) = (0, 0), Frankot and Chellappa as-

sert that it “simply means that we cannot recover the

average value of z without some additional informa-

tion”. This is true but incomplete, because MFC pro-

vides the solution of Equation (23) up to the addi-

tion of a harmonic function over Ω. Saracchini et al.

note in [51] that “the homogeneous version of [(23)]

is satisfied by an arbitrary linear function of position

z(u, v) = a u + b v + c, which when added to any so-

lution of [(23)] will yield infinitely many additional so-

lutions”. Affine functions are harmonic indeed, but we

know from Section 2.4 that many other harmonic func-

tions also exist.

Applying MFC to gvase would give the same result

as that of Figure 5-d, but much faster, when the re-

construction domain is equal to the whole grid. On the

other hand, such a result as that of Figure 5-c could

not be reached, since MFC is not designed to manage

a non-rectangular domain Ω.

Besides, MFC works well if and only if the surface

to be reconstructed is periodic. This clearly appears in

the example of Figure 6: the gradient field gface of a

face (see Figure 6-a), estimated via photometric stereo

[57], is integrated using MFC, which results in the re-

constructed surface shown in Figure 6-b. Since the face

is non-periodic, but the depth is forced to be the same

on the left and right edges of the face i.e., on the cheek

and on the nose, the result is much distorted.
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(a) (b)

Fig. 6 (a) Gradient field gface of a face estimated via photometric stereo. (b) Reconstructed surface obtained by integration
of gface, using Frankot and Chellappa’s method [19]. Since a periodic boundary condition is assumed, the depth is forced to
be the same on the cheek and on the nose. As a consequence, this much distorts the result.

This failure of MFC was first exhibited by Harker

and O’Leary in [23], who show on some examples that

the solution provided by MFC is not always a mini-

mizer of the functional FL2(z). They moreover explain:

“The fact that the solution [of Frankot and Chellappa]

is constrained to be periodic leads to a systematic bias

in the solution” (this periodicity is clearly visible on the

recovered surface of Figure 6-b). Harker and O’Leary

also conclude that “any approach based on the Euler-

Lagrange equation is only valid for a few special cases”.

The improvements ofMFC that we describe in the next

section make this assertion highly questionable.

3.4 Improvements of Frankot and Chellappa’s Method

A first improvement of MFC suggested by Simchony,

Chellappa and Shao in [52] amounts to solving the dis-

crete approximation (30) of the Poisson equation using

the discrete Fourier transform, instead of discretizing

the solution (37) of the Poisson equation (23).

Consider a rectangular 2D domain Ω = [0, du] ×
[0, dv], and choose a lattice of equally spaced points

(udum , v
dv
n ), u ∈ [0,m], v ∈ [0, n]. Let us denote by fu,v

the value of a function f : Ω → R at (udum , v
dv
n ). The

standard definition of the discrete Fourier transform of

f is as follows, for k ∈ [0,m− 1] and l ∈ [0, n− 1]:

f̂k,l =

m−1∑
u=0

n−1∑
v=0

fu,v e
−j2π uk

m e−j2π
vl
n (39)

The inverse transform of (39) reads:

fu,v =
1

mn

m−1∑
k=0

n−1∑
l=0

f̂k,l e
+j2π ku

m e+j2π lv
n (40)

Replacing any term in (30) by its inverse discrete

Fourier transform of the form (40), and knowing that

the Fourier family is a basis, we obtain:

2
[
cos
(
2π k

m

)
+ cos

(
2π l

n

)
− 2
]
ẑk,l

= j
[
sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l
] (41)

The expression in brackets of the left-hand side is zero

if and only if (k, l) = (0, 0). As soon as (k, l) 6= (0, 0),

Equation (41) provides us with the expression of ẑk,l:

ẑk,l =
sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l

4j
[
sin2

(
π k
m

)
+ sin2

(
π l
n

)] (42)

which is rewritten by Simchony et al. as follows:

ẑk,l =
sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l

j

[
sin2(2π k

m )
cos2(π k

m )
+

sin2(2π l
n )

cos2(π l
n )

] (43)

Comparing (35) and (39) shows us that ωu corre-

sponds to 2π k
m and ωv to 2π l

n . Using these correspon-

dences, we would expect to be able to identify (37) and

(43). This is true if sin
(
2π k

m

)
and sin

(
2π l

n

)
tend to-

ward 0, and cos2
(
π k
m

)
and cos2

(
π l
n

)
tend toward 1,

which occurs if k takes either the first values or the

last values inside [0,m − 1], and the same for l inside

[0, n − 1], which is interpreted by Simchony et al. as

follows: “At low frequencies our result is similar to the

result obtained in [19]. At high frequencies we atten-

uate the corresponding coefficients since our discrete

operator has a low-pass filter response [...] the surface

z obtained in [19] may suffer from high frequency oscil-

lations”. Actually, the low values of k and l correspond

to the lowest values of ωu and ωv inside R+, and the

high values of k and l may be interpreted as the lowest

absolute values of ωu and ωv inside R−.
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Moreover, using the inverse discrete Fourier trans-

form (40), the solution of (30) which follows from (42)

will be periodic in u with period du, and in v with pe-

riod dv. This means that zm,v = z0,v, for v ∈ [0, n], and

zu,n = zu,0, for u ∈ [0,m]. The discrete Fourier trans-

form is therefore appropriate only for problems which

satisfy periodic boundary conditions.

More relevant improvements of MFC due to Sim-

chony et al. are to suggest the use of the discrete sine or

cosine transforms if the problem involves, respectively,

Dirichlet or Neumann boundary conditions.

Dirichlet Boundary Condition It is easily checked that

any function that is expressed as an inverse discrete sine

transform of the following form6:

fu,v =
4

mn

m−1∑
k=1

n−1∑
l=1

f̄k,l sin

(
π
ku

m

)
sin

(
π
lv

n

)
(44)

satisfies the homogeneous Dirichlet condition fu,v = 0

on the boundary of the discrete domain Ω = [0,m] ×
[0, n] i.e., for u = 0, u = m, v = 0, and v = n.

To solve (30) on a rectangular domain Ω with the

homogeneous Dirichlet condition zu,v = 0 on ∂Ω, we

can therefore write zu,v as in (44). This is still possible

for a non-homogeneous Dirichlet boundary condition:

zu,v = bDu,v for (u, v) ∈ ∂Ω (45)

A first solution would be to solve a pair of problems.

We could search for both a solution z0u,v of (30) satisfy-

ing the homogeneous Dirichlet boundary condition, and

a harmonic function hu,v on Ω satisfying the boundary

condition (45). Then, z0u,v + hu,v is a solution of the

equations (30) satisfying this boundary condition.

But it is much easier to replace zu,v with z′u,v, such

that z′u,v = zu,v everywhere on Ω, except on its bound-

ary ∂Ω where z′u,v = zu,v − bDu,v. The Dirichlet bound-

ary condition satisfied by z′u,v is homogeneous, so we

can actually write z′u,v under the form (44).

In practice, we just have to change the right-hand

side gu,v of Equation (30) for the pixels (u, v) ∈ Ω which

are adjacent to ∂Ω. Either one or two neighbors of these

pixels lie on ∂Ω. For example, only the neighbor (0, v)

of pixel (1, v) lies on ∂Ω, for v ∈ [2, n − 2]. In such

a pixel, the right-hand side of Equation (30) must be

replaced with:

gD1,v =
p2,v − p0,v

2
+
q1,v+1 − q1,v−1

2
− bD0,v (46)

On the other hand, amongst the four neighbors of the

corner pixel (1, 1), both (0, 1) and (1, 0) lie on ∂Ω.

6 Whereas the Fourier transform coefficients of f are de-
noted by f̂ , the sine and cosine transform coefficients are
denoted by f̄ and ¯̄f , respectively.

Therefore, the right-hand side of Equation (30) must

be modified as follows, in this pixel:

gD1,1 =
p2,1 − p0,1

2
+
q1,2 − q1,0

2
− bD0,1 − bD1,0 (47)

Knowing that the products of sine functions in (44)

form a linearly independent family, we get from (30)

and (44), ∀(k, l) ∈ [1,m− 1]× [1, n− 1]:

z̄′k,l = −
ḡDk,l

4
(
sin2 πk

2m + sin2 πl
2n

) , (48)

From (48), we easily deduce z′u,v using the inverse dis-

crete sine transform (44), thus zu,v.

Neumann Boundary Condition The reasoning is simi-

lar, yet a little bit trickier, in the case of a Neumann

boundary condition. Any function that is expressed as

an inverse discrete cosine transform of the following

form:

fu,v =
4

mn

m−1∑
k=0

n−1∑
l=0

¯̄fk,l cos

(
π
ku

m

)
cos

(
π
lv

n

)
(49)

satisfies the homogeneous Neumann boundary condi-

tion ∇fu,v · ηu,v = 0 on ∂Ω, where ηu,v is the outer

unit-length normal to ∂Ω in pixel (u, v). To solve (30)

on a rectangular domain Ω with the homogeneous Neu-

mann condition on ∂Ω, we can thus write zu,v as in (49).

Consider now a non-homogeneous Neumann boundary

condition:

∇zu,v · ηu,v = bNu,v for (u, v) ∈ ∂Ω (50)

A similar trick as before consists in defining an aux-

iliary function z′′u,v such that z′′u,v is equal to zu,v on Ω,

but differs from zu,v outside Ω and satisfies the homoge-

neous Neumann boundary condition on ∂Ω. Let us first

take the example of a pixel (0, v) ∈ ∂Ω, v ∈ [1, n − 1].

By discretizing (50) using first-order finite differences,

it is easily verified that z′′ satisfies the homogeneous

Neumann boundary condition in such a pixel if z′′−1,v =

z−1,v + bN0,v. Similar definitions of z′′ arise on the other

three edges of Ω.

Let us now take the example of a corner of Ω, for

instance pixel (0, 0). Knowing that η0,0 = − 1√
2

[1, 1]>,

one can easily check, by discretizing (50) using first-

order finite differences, that appropriate modifications

of z in this pixel are z′′−1,0 = z−1,0 +
√
2
2 bN0,0 and z′′0,−1 =

z0,−1 +
√
2
2 bN0,0. With these modifications, the function

z′′u,v indeed satisfies the homogeneous Neumann bound-

ary condition in pixel (0, 0).

In practice, we just have to change the right-hand

side gu,v of Equation (30) for the pixels (u, v) ∈ ∂Ω.

Either one or two neighbors of these pixels lie outside
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Ω. For example, only the neighbor (−1, v) of pixel (0, v)

lies outide Ω, for v ∈ [1, n−1]. In such a pixel, the right-

hand side of Equation (30) must be replaced with:

gN0,v =
p1,v − p−1,v

2
+
q0,v+1 − q0,v−1

2
− bN0,v (51)

A problem with this expression is that p−1,v is un-

known. Using a first-order discretization of the homo-

geneous Neumann boundary condition (on p, not on z)

∇p0,v · η0,v = 0, we obtain the approximation p−1,v ≈
p0,v, and thus (51) is turned into:

gN0,v =
p1,v − p0,v

2
+
q0,v+1 − q0,v−1

2
− bN0,v (52)

On the other hand, amongst the four neighbors of pixel

(0, 0), which is a corner of Ω, both (0,−1) and (−1, 0)

lie outside Ω. Therefore, the right-hand side of Equa-

tion (30) must be modified as follows:

gN0,0 =
p1,0 − p0,0

2
+
q0,1 − q0,0

2
−
√

2 bN0,0 (53)

Knowing that the products of cosine functions in

(49) form a linearly independent family, we get from

(30) and (49), ∀(k, l) ∈ [0,m− 1]× [0, n− 1]:

¯̄z′′k,l = −
¯̄gNk,l

4
(
sin2 πk

2m + sin2 πl
2n

) , (54)

except for (k, l) = (0, 0). Indeed, we cannot determine

the coefficient ¯̄z′′0,0, which simply means that the solu-

tion of the Poisson equation using a Neumann boundary

condition (as, for instance, the natural boundary condi-

tion) is computable up to an additive constant, because

the term which corresponds to the coefficient ¯̄f0,0 in the

double sum of (49) does not depend on (u, v). Keeping

this point in mind, we can deduce z′′u,v from (54) using

the inverse discrete cosine transform (49), thus zu,v.

Accordingly, the method MSCS designed by Sim-

chony, Chellappa and Shao in [52] works well even in

the case of a non-periodic surface (see Figure 7). Know-

ing moreover that this method is as fast as MFC, we

conclude that it improves Frankot and Chellappa’s orig-

inal method a lot.

On the other hand, the useful property of the so-

lutions (44) and (49) i.e., they satisfy a homogeneous

Dirichlet or Neumann boundary condition, is obviously

valid only if the reconstruction domain Ω is rectangu-

lar. This trick is hence not useable for any other form

of domain Ω. It is claimed in [52] that embedding tech-

niques can extend MSCS to non-rectangular domains,

but this is neither detailed, nor really proved. As a con-

sequence, such a result as that of Figure 5-c could not

be reached applying MSCS to the gradient field gvase:

the result would be the same as that of Figure 5-d.

4 Main Normal Integration Methods

4.1 A List of Expected Properties

This may appear as a truism, but a basic requirement

of 3D-reconstruction is accuracy. Anyway, the evalua-

tion/comparison of 3D-reconstruction methods is a dif-

ficult challenge. Firstly, it may happen that some meth-

ods require more data than the others, which makes the

evaluation/comparison biased in some sense. Secondly,

it usually happens that the choice of the benchmark has

a great influence on the final ranking. Finally, it is a

hard task to implement a method just from its descrip-

tion, which gives in practice a substantial advantage

to the designers of a ranking process, whatever their

methodology, in the case when they also promote their

own method. In Section 4.3, we will review the main

existing normal integration methods. However, in ac-

cordance with these remarks, we do not intend to eval-

uate their accuracy. We will instead quote their main

features.

In view of the detailed reviews of the methods of

Horn and Brooks and of Frankot and Chellappa (see

Section 3), we may expect, apart from accuracy, five

other properties from any normal integration method:

• PFast: The desired method should be as fast as pos-

sible.

• PRobust: It should be robust to a noisy normal field7.

• PFreeB: The method should be able to handle a free

boundary. Accordingly, each method aimed at solv-

ing the Poisson equation (23) should be able to solve

the natural boundary condition (30) in the same

time.

• PDisc: The method should preserve the depth dis-

continuities. This property could allow us, for ex-

ample, to use photometric stereo on a whole image,

without segmenting the scene into different parts

without discontinuity.

• PNoRect: The method should be able to work on a

non-rectangular domain. This happens for example

when photometric stereo is applied to an object with

background. This property could partly remedy a

method which would not satisfy PDisc, knowing that

segmentation is usually easier to manage than pre-

serving the depth discontinuities.

An additional property would also be much appreci-

ated:

7 If the normal field is estimated via photometric stereo, we
suppose that the images are corrupted by an additive Gaus-
sian noise, as recommended in [44]: “in previous work on pho-
tometric stereo, noise is [wrongly] added to the gradient of the
height function rather than camera images”.
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(a) (b)

Fig. 7 Reconstructed surfaces obtained by integration of gface (see Figure 6-a), using Simchony, Chellappa and Shao’s method
[52], and imposing two different boundary conditions. (a) Since the homogeneous Dirichlet boundary condition z = 0 is clearly
false, the surface is much distorted. (b) The (Neumann) natural boundary condition provides a much more realistic result.

• PNoPar: The method should have no parameter to

tune (only the critical parameters are involved here).

In practice, tuning more than one parameter often

means that an expert of the method is needed. One

parameter is often considered as acceptable, but no

parameter is even better.

4.2 Integration and Integrability

Among the required properties, we did not explicitly

quote the ability of a method to deal with non-integrable

normal fields, but this is implicitly expected through

PRobust and PDisc. In other words, the two sources of

non-integrability that we consider are noise and depth

discontinuities. A normal field estimated using shape-

from-shading could be very far from being integrable,

because of the ill-posedness of this technique, to such

a point that integrability is sometimes used to disam-

biguate the problem [19,29]. Also the uncalibrated pho-

tometric stereo problem is ill-posed, and can be disam-

biguated imposing integrability [63]. However, we are

over all interested in calibrated photometric stereo with

n ≥ 3 images, which is well-posed without resorting

to integrability. An error in the intensity of one light

source is enough to cause a bias [31], and outliers may

appear in shadow regions [49], thus providing normal

fields that can be highly non-integrable, but we argue

that such defects do not have to be compensated by the

integration method itself. In other words, we suppose

that the only outliers of the normal field we want to

integrate are located on depth discontinuities.

In order to know whether a normal integration me-

thod satisfies PDisc, a shape like Svase (see Figure 5-a) is

well indicated, but a practical mistake must be avoided,

which is not obvious. A discrete approximation of the

integrability term
∫∫

(u,v)∈Ω [∂vp(u, v)−∂uq(u, v)]2 dudv,

which is used in [29] to measure the departure of a gra-

dient field [p, q]> from being integrable, is as follows:

Eint =
∑

(u,v)∈Ω3

[
pu,v+1 − pu,v

δ
− qu+1,v − qu,v

δ

]2
(55)

where Ω3 denotes the set of pixels (u, v) ∈ Ω such that

(u, v + 1) and (u + 1, v) are inside Ω. Let us suppose

in addition that the discrete values pu,v and qu,v are

numerically approximated using as finite differences:
pu,v =

zu+1,v − zu,v
δ

qu,v =
zu,v+1 − zu,v

δ

(56)

Reporting the expressions (56) of pu,v and qu,v in (55),

this always implies Eint = 0. Using such a numeri-

cally approximated gradient field is thus biased, since

it is integrable even in the presence of discontinuities8,

whereas for instance, Eint = 390 in the case of gvase.

8 This problem is also noted by Saracchini et al. in [51]:
“Note that taking finite differences of the reference height
map will not yield adequate test data”.
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4.3 Most Representative Normal Integration Methods

The problem of normal integration is sometimes consid-

ered as solved, because its mathematical formulation is

well established (see Section 2), but we will see that

none of the existing methods simultaneously satisfies

all the required properties. In 1996, Klette and Schlüns

stated that “there is a remarkable deficiency of litera-

ture about integration techniques, at least in computer

vision” [37]. Many contributions have appeared after-

wards, but a detailed review is still missing.

The way to cope with a possible non-integrable nor-

mal field was seen as a property of primary importance

in the first papers on normal integration. The most ob-

vious way to solve the problem amounts to use different

paths in the integrals of (5), (9) or (18), and to average

the different values. Apart from this approach, which

has given rise to several heuristics [12,26,60], we pro-

pose to separate the main existing normal integration

methods into two classes, depending on whether they

care about discontinuities or not.

4.3.1 Methods which do not care about Discontinuities

According to the discussion conducted in Section 2.4,

the most natural way to overcome non-integrability is

to solve the Poisson equation (23). This approach has

given rise to the method MHB (see Section 3.1), pio-

neered by Ikeuchi in [33] and then detailed by Horn and

Brooks in [29], which has been the source of inspiration

of several subsequent works. The methodMHB satisfies

the property PRobust (much better than the heuristics

cited above), as well as PNoPar (there is no parameter),

PNoRect and PFreeB. A drawback ofMHB is that it does

not satisfy PFast, since it uses a Jacobi iteration to solve

a large linear system whose size is equal to the num-

ber of pixels inside Ω̊ = Ω\∂Ω. Unsurprisingly, PDisc is

not satisfied by MHB, since this method does not care

about discontinuities.

Frankot and Chellappa address shape-from-shading

using a method which “also can be used as an integra-

tor” [19]. The gradient field is projected on a set I of

integrable vector fields ∇z. In practice, the set of func-

tions z is spanned by the Fourier basis. The method

MFC (see Section 3.3) not only satisfies PRobust and

PNoPar, but also PFast, since it is non-iterative and,

thanks to the FFT algorithm, much faster than MHB.

On the other hand, the reconstruction domain is im-

plicitly supposed to be rectangular, even if the follow-

ing is claimed: “The Fourier expansion could be formu-

lated on a finite lattice instead of a periodic lattice. The

mathematics are somewhat more complicated [...] and

more careful attention could then be paid to boundary

conditions”. Hence, PNoRect is not really satisfied, not

more than PDisc. Finally, PFreeB is not satisfied, since

the solution is constrained to be periodic9.

Simchony, Chellappa and Shao suggest in [52] a non-

iterative way to solve the Poisson equation (23) using

direct analytical methods. It is noteworthy that the

resolution of the discrete Poisson equation described

in Section 3.4, in the case of a Dirichlet or Neumann

boundary condition, does not exactly match the orig-

inal description in [52], but is rather intended to be

pedagogic. As observed by Lee in [39], the discretized

Laplacian operator on a rectangular domain is a sym-

metric tridiagonal Toeplitz matrix if a Dirichlet bound-

ary condition is used, whose eigenvalues are analytically

known. Simchony, Chellappa and Shao show how to use

the discrete sine transform to diagonalize such a ma-

trix. They design an efficient solver for Equation (23),

which satisfies PFast, PRobust and PNoPar. Another ex-

tension of MSCS to Neumann boundary conditions us-

ing the discrete cosine transform is suggested, which

allows PFreeB to be satisfied. Even if embedding tech-

niques are supposed to generalize this method to non-

rectangular domains, PNoRect is not satisfied in prac-

tice. Neither is PDisc.

In [30,31], Horovitz and Kiryati improve MHB in

two ways. They show how to incorporate the depth in

some sparse control points, in order to correct a possible

bias in the reconstruction. They also design a coarse-to-

fine multigrid computation, in order to satisfy PFast
10.

This acceleration technique however requires a param-

eter to be tuned, which loses PNoPar.

As in [19], Petrovic et al. enforce integrability [47],

but the normal field is directly handled under its dis-

crete writing, in a Bayesian framework. “Imposing the

integrability over elementary loops in [a] graphical model

will correct the irregularities in the data”. An iterative

algorithm known as belief propagation is used to con-

verge towards the MAP estimate of the unknown sur-

face. It is claimed that “discontinuities are maintained”,

but too few results are provided to evaluate PDisc.

In [36], Kimmel and Yavneh show how to accelerate

the multigrid method designed by Horovitz and Kiry-

ati [30] in the case where “the surface height at specific

coordinates or along a curve” is known, using an alge-

braic multigrid approach. Basically, their method has

the same properties as [30], although PFast is even bet-

ter satisfied.

9 Noakes, Kozera and Klette follow the same way as
Frankot and Chellappa but, since they use a set I of inte-
grable vector fields which is not spanned by the Fourier basis,
they cannot resort to the very efficient Fast Fourier Transform
algorithm any more [43,45].
10 Goldman et al. do the same using conjugate gradient [21].
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An alternative derivation of Equation (37) is yielded

by Wei and Klette in [56], in which the preliminary

derivation of the Euler-Lagrange equation (23) associ-

ated to FL2
(z) is not needed. They claim that “to solve

the minimization problem, we employ the Fourier trans-

form theory rather than variational approach to avoid

using the initial and boundary conditions”, but since

a periodic boundary condition is actually used instead,

PFreeB is not satisfied. They also add two regularization

terms to the functional FL2
(z) given in (21), “in order

to improve the accuracy and robustness”. The prop-

erty PNoPar is thus lost. On the other hand, even if Wei

and Klette note that “[MHB] is very sensitive to abrupt

changes in orientation, i.e., there are large errors at the

object boundary”, their method does not satisfy PDisc

either, whereas we will observe that loosing PNoPar is

often the price to satisfy PDisc.

Another method inspired byMFC is that of Kovesi

[38]. Instead of projecting the given gradient field on

a Fourier basis, Kovesi suggests to compute the cor-

relations of this gradient field with the gradient fields

of a bank of shapelets, which are in practice a family

of Gaussian surfaces11. This method globally satisfies

the same properties asMFC but, in addition, it can be

applied to an incomplete normal field i.e., to normals

whose tilts are known up to a certain ambiguity12. Al-

though photometric stereo computes the normals with-

out ambiguity, this peculiarity could indeed be useful

when a couple of images only is used, or a fortiori a

single image (shape-from-shading), since the problem

is not well-posed in both these cases.

In [27], Ho, Lim, Yang and Kriegman derive from

(20) the eikonal equation ‖∇z‖2 = p2 + q2, and aspire

to use the fast marching method for its resolution. Un-

fortunately, this method requires that the unknown z

has a unique global minimum over Ω. Thereby, a more

general eikonal equation ‖∇(z+λ f)‖2 = (p+λ∂uf)2+

(q+λ∂vf)2 is solved, where f is a known function and

the parameter λ has to be tuned so that z + λ f has

a unique global minimum. The main advantage is that

PFast is (widely) satisfied. Nothing is said about robust-

ness, but we guess that error accumulation occurs as the

depth is computed level set by level set.

As already explained in Section 3.2, Durou and Cour-

teille improve MHB in [16], in order to better satisfy

PFreeB
13. A very similar improvement of MHB is pro-

posed by Harker and O’Leary in [23]. The latter loses

11 According to [2], Kovesi uses “a redundant set of non-
orthogonal basis functions”.
12 http://www.peterkovesi.com/matlabfns/index.html#

shapelet
13 A preliminary version of this method was already de-
scribed in [13].

the ability to handle any reconstruction domain, whereas

the reformulation of the problem as a Sylvester equa-

tion provides two appreciable improvements. First, it

deals with matrices of the same size as the initial (reg-

ular) grid and resorts to very efficient solvers dedicated

to Sylvester equations, thus satisfying PFast. Moreover,

any form of discrete derivatives is allowed. In [24,25],

Harker and O’Leary moreover propose several variants

including regularization, which are still written as Syl-

vester equations, but one of them loses the property

PFreeB, whereas the others lose PNoPar.

In [17], Ettl et al. propose a method specifically

designed for deflectometry, which aims at measuring

“height variations as small as a few nanometers” and

delivers normal fields “with small noise and curl”, but

the normals are provided on an irregular grid. This is

why Ettl et al. search for an interpolating/approximating

surface rather than for one unknown value per sample.

Of course, this method is highly parametric, but PNoPar

is still satisfied, since the parameters are the unknowns.

Its main problem is that PFast is rarely satisfied, de-

pending on the number of parameters that are used.

The fast-marching method [27] is improved in [20]

by Galliani, Breuß and Ju in three ways. First, the

method by Ho et al. is shown to be inaccurate, due

to the use of analytical derivatives ∂uf and ∂vf in the

eikonal equation, instead of discrete derivatives. An up-

wind scheme is more appropriate to solve such a PDE.

Second, the new method is more stable and the choice

of λ is no more a cause for concern. This implies that

PNoPar is satisfied de facto. Finally, any form of domain

Ω can be handled, but it is not clear whether PNoRect

was not satisfied by the former method yet. Not sur-

prisingly, this new method is not robust, even its if ro-

bustness is improved in a more recent paper [6], but it

can be used as initialization for more robust methods

based, for instance, on quadratic regularization [7].

The integration method proposed by Balzer in [9]

is based on second order shape derivatives, allowing

for the use of a fast Gauss-Newton algorithm. Hence

PFast is satisfied. A careful meshing of the problem,

as well as the use of a finite element method, make

PNoRect to be satisfied. However, for the very same rea-

son, PNoPar is not satisfied. Moreover, the method is

limited to smooth surfaces, and therefore PDisc cannot

be satisfied. Finally, PRobust can be achieved thanks to

a premiminary filtering step. Balzer and Mörwald de-

sign in [10] another finite element method, where the

surface model is based on B-splines. It satisfies the same

properties as the previous method14.

14 https://github.com/jonabalzer/iga-integration/

tree/master/core

http://www.peterkovesi.com/matlabfns/index.html#shapelet
http://www.peterkovesi.com/matlabfns/index.html#shapelet
https://github.com/jonabalzer/iga-integration/tree/master/core
https://github.com/jonabalzer/iga-integration/tree/master/core
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In [61], Xie et al. deform a mesh “to let its facets

follow the demanded normal vectors”, resorting to dis-

crete geometry processing. As a non-parametric surface

model is used, PFreeB, PNoPar and PNoRect are satis-

fied. In order to avoid oversmoothing, sharp features

can be preserved. However, PDisc is not addressed. On

the other hand, PFast is not satisfied since the proposed

method alternates local and global optimization.

In [62], Yamaura et al. design a new method based

on B-splines, which has the same properties as that

proposed in [10]. But since the latter “relies on second-

order partial differential equations, which is inefficient

and unnecessary, as normal vectors consist of only first-

order derivatives”, a simpler formalism with higher per-

formances is proposed. Moreover, a nice application to

surface editing is exhibited.

4.3.2 Methods which care about Discontinuities

The first work which really addresses the problem of

PDisc is by Karaçali and Snyder [34,35], who show how

to define a new orthonormal basis of integrable vec-

tor fields which can incorporate depth discontinuities.

They moreover show how to detect such discontinu-

ities, in order to partially enforce integrability. The de-

signed method thus satisfies PDisc, as well as PRobust

and PFreeB, but PFast is lost, despite the use of a block

processing technique inspired by the work of Noakes et

al. [43,45]. In accordance with a previous remark, since

it is often the price to satisfy PDisc, PNoPar is also lost.

In [1], Agrawal, Chellappa and Raskar consider the

pixels as a weighted graph, such that the weights are of

the form pu,v+1− pu,v − qu+1,v + qu,v. Each edge whose

weight is greater than a threshold is cut. A minimal
number of suppressed edges are then restored, in or-

der to reconnect the graph while minimizing the total

weight. As soon as an edge is still missing, one gradient

value pu,v or qu,v is considered as possibly corrupted.

It is shown how these suspected gradient values can

be corrected, in order to enforce integrability “with the

important property of local error confinement”. Neither

PFreeB nor PNoPar is satisfied, and PFast is not guaran-

teed as well, even if the method is non-iterative. More-

over, the following is asserted in [49]: “Under noise, the

algorithm in [1] confuses correct gradients as outliers

and performs poorly”. Finally, PDisc may be satisfied

since strict integrability is no more uniformly imposed

over the entire gradient field.

In [2], Agrawal, Raskar and Chellappa propose a

general framework “based on controlling the anisotropy

of weights for gradients during the integration”15. They

15 http://www.amitkagrawal.com/eccv06/

RangeofSurfaceReconstructions.html

are much inspired by classical image restoration tech-

niques. It is shown how the (isotropic) Laplacian op-

erator in Equation (23) must be modified using “spa-

tially varying anisotropic kernels”, thus obtaining four

methods: two based on robust estimation, one on reg-

ularization, and one on anisotropic diffusion16. A ho-

mogeneous Neumann boundary condition ∇z · η = 0 is

assumed, which looks rather unrealistic. Thus, the four

proposed methods do not satisfy PFreeB, neither PFast

nor PNoPar. Nevertheless, a special attention is given to

satisfy PRobust and PDisc.

A similar method to the first one proposed in [2]

is designed by Fraile and Hancock in [18]. A minimum

spanning tree is constructed from the same graph of

pixels as in [1], except that the weights are different

(several weights are tested). The integral in (6) along

the unique path joining each pixel to a root pixel is

then computed. Of course, this method is less robust

than those based on quadratic regularization (or than

the weighted quadratic regularization proposed in [2]),

since “the error due to measurement noise propagates

along the path”, and it is rather slow because of the

search for a minimum spanning tree. But, depending

on which weights are used, it could preserve depth dis-

continuities: in such a case as that of Figure 5-a, each

pixel could be reached from a root pixel without cross-

ing any discontinuity.

In [59], Wu and Tang try to find the best compro-

mise between integrability and discontinuity preserva-

tion. In order to segment the scene into pieces without

discontinuities, “one plausible method [...] is to identify

where the integrability constraint is violated”, but “in

real case, [this] may produce very poor discontinuity

maps rendering them unusable at all”. A probabilistic

method using the EM (Expectation-Maximization) al-

gorithm is thus proposed, which provides a weighted

discontinuity map. The alternating iterative optimiza-

tion is very slow and a parameter is used, but this ap-

proach is promising, even if the evaluation of the results

remains qualitative.

In [41,42], Ng, Wu and Tang do not enforce in-

tegrability over the entire domain, because with such

an enforcement “sharp features will be smoothed out

and surface distortion will be produced”. Since “either

sparse or dense, residing on a 2D regular (image) or ir-

regular grid space” gradient fields may be integrated, it

is concluded that “a continuous formulation for surface-

from-gradients is preferred”. Gaussian kernel functions

are used, in order to linearize the problem and to avoid

the need for extra knowledge on the boundary17. Unfor-

16 A similar approach will be detailed in [48].
17 http://www.cse.ust.hk/~pang/papers/supp_

materials/pami_sur3d_code.zip

http://www.amitkagrawal.com/eccv06/RangeofSurfaceReconstructions.html
http://www.amitkagrawal.com/eccv06/RangeofSurfaceReconstructions.html
http://www.cse.ust.hk/~pang/papers/supp_materials/pami_sur3d_code.zip
http://www.cse.ust.hk/~pang/papers/supp_materials/pami_sur3d_code.zip
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tunately, at least two parameters must be tuned. Also

PFast is not satisfied, not more than PFreeB, as shown in

[10] on the basis of several examples. On the other hand,

the proposed method outputs “continuous 3D represen-

tation not limited to a height field”.

In [49], Reddy, Agrawal and Chellappa propose a

method specifically designed to handle heavily corrupted

gradient fields, which combines “the best of least squares

and combinatorial search to handle noise and correct

outliers respectively”. Even if it is claimed that “L1

solution performs well across all scenarios without the

need for any tunable parameter adjustments”, PNoPar

is not satisfied in practice. Neither is PFreeB.

In [15], Durou, Aujol and Courteille are mainly con-

cerned by PDisc. Knowing that quadratic regularization

works well in the case of smooth surfaces, but is not well

adapted to discontinuities, the use of other regularizers,

or of other variational models inspired by image pro-

cessing, as in [2], allows PDisc to be satisfied. This is

detailed in the companion paper [48].

The integration method proposed in [50,51] by Sarac-

chini, Stolfi, Leitão, Atkinson and Smith18 is a multi-

scale version of MHB. A system is solved at each scale

using a Gauss-Seidel iteration in order to satisfy PFast.

Since reliability in the gradient is used as local weight,

“each equation can be tuned to ignore bad data sam-

ples and suspected discontinuities”, thus allowing PDisc

to be satisfied. Finally, setting the weights outside Ω

to zero allows PFreeB and PNoRect to be satisfied as

well. However, this method “assumes that the slope

and weight maps are given”. But such a weight map

is a crucial clue, and the following assertion somehow

avoids the problem: “practical integration algorithms

require the user to provide a weight map”.

A similar approach is followed by Wang, Bu, Li,

Song and Tan in [55], but the weight map is binary

and automatically computed. In addition to the gradi-

ent map, the photometric stereo images themselves are

required. Eight cues are used by two SVM classifiers,

which have to be trained using synthetic labelled data.

Even if the results are nice, the proposed method seems

rather difficult to manage in practice, and clearly loses

PFast and PNoPar.

In [4,5], Badri, Yahia and Aboutajdine resort to Lp
norms, p ∈ ]0, 1[. As p decreases, the L0 norm is ap-

proximated, which is a sparse estimator well adapted to

outliers. Indeed, the combination of four terms allows

Badri et al. to design a method which simultaneously

handles noise and outliers, thus ensuring that PRobust

and PDisc are satisfied. However, since the problem be-

comes non-convex, the proposed half-quad resolution

18 http://www.ic.unicamp.br/stolfi/EXPORT/projects/

photo-stereo/

is iterative and requires a good initialization: PFast is

lost. It happens that neither PNoPar is satisfied. Finally,

each iteration resorts to FFT, which implies a rectan-

gular domain and a periodic boundary condition, hence

PFreeB and PNoRect are not satisfied either.

4.4 Summary of the Review

Our discussion on the most representative methods of

integration is summarized in Table 1, where the meth-

ods are listed in chronological order. It appears that

none of them satisfies all the required properties, which

is not surprising. Moreover, even if accuracy is the most

basic property of any 3D-reconstruction technique, let

us recall that it would have been impossible in practice

to numerically compare all these methods.

In view of Table 1, almost every method differs from

all the others, regarding the six selected properties. Of

course, it may appear that such a binary (+/−) table

is hardly informative, but more levels in each criterion

would have led to more arbitrary scores. On the other

hand, the number of + should not be considered as

a global score for a given method: it happens that a

method perfectly satisfies a subset of properties, while

it does not care at all about the others.

5 Conclusion and Perspectives

Even if robustness to outliers was not selected in our

list of required properties, let us cite a paper specifically

dedicated to this problem. In [14], Du, Robles-Kelly and

Lu compare the L2 and L1 norms, as well as a number

of M-estimators, faced to the presence of outliers in the

normal field: L1 is shown to be the globally best parry.

This paper being worthwhile, one can wonder why it

does not appear in Table 1. On the one hand, even if

PRobust is satisfied at best, none of the other criteria

are considered. On the other hand, let us recall why

we did not select robustness to outliers as a pertinent

feature: the presence of outliers in the normal field does

not have to be compensated by the integration method.

In [5], it is said that “[photometric stereo] can fail due

to the presence of shadows and noise”, but recall that

photometric stereo can be robust to outliers [32,58].

Another property was ignored: whether the depth

can be fixed at some points or not. As integration is a

well-posed problem without any additional knowledge

on the solution, we considered that this property is ap-

preciable, although not required. Let us however quote,

once again, the papers by Horovitz and Kiryati [31] and

by Kimmel and Yavneh [36], in which this problem is

specifically dealt with.

http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/
http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/
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Table 1 Main methods of integration listed in chronological order.

Authors Year Ref. PFast PRobust PFreeB PDisc PNoPar PNoRect

Coleman and Jain 1982 [12] + − + − + +
Horn and Brooks 1986 [29] − + + − + +

Frankot and Chellappa 1988 [19] + + − − + −
Simchony, Chellappa and Shao 1990 [52] + + + − + −

Noakes, Kozera and Klette 1999 [45] − + − − + −
Horovitz and Kiryati 2000 [30] + + + − − +

Petrovic et al. 2001 [47] − + + − − +
Kimmel and Yavneh 2003 [36] + + + − − +

Wei and Klette 2003 [56] + + − − − −
Karaçali and Snyder 2003 [34] − + + + − −

Kovesi 2005 [38] + + − − + −
Agrawal, Chellappa and Raskar 2005 [1] − − − + − +
Agrawal, Raskar and Chellappa 2006 [2] − + − + − +

Fraile and Hancock 2006 [18] − − + + + +
Ho, Lim, Yang and Kriegman 2006 [27] + − + − − +

Wu and Tang 2006 [59] − + + + − +
Ng, Wu and Tang 2007 [41] − + − + − +

Durou and Courteille 2007 [16] − + + − + +
Harker and O’Leary 2008 [23] + + + − + −

Ettl, Kaminski, Knauer and Häusler 2008 [17] − + + − + +
Reddy, Agrawal and Chellappa 2009 [49] − + − + − +

Durou, Aujol and Courteille 2009 [15] − + + + − +
Saracchini et al. 2010 [50] + + + + − +

Galliani, Breuß and Ju 2012 [20] + − + − + +
Balzer 2012 [9] + + + − − +

Wang, Bu, Li, Song and Tan 2012 [55] − + + + − +
Balzer and Mörwald 2012 [10] + + + − − +

Xie, Zhang, Wang and Chung 2014 [61] − + + − + +
Badri, Yahia and Aboutajdine 2014 [5] − + − + − −

Yamaura, Nanya, Imoto and Maekawa 2015 [62] + + + − − +
Bähr et al. 2016 [7] + + + − + +

Some other works on normal integration have not

been mentioned in our review, since they address other

problems or do not face the same challenges. Let us first

cite a work by Balzer [8], in which a specific problem

with the normals delivered by deflectometry is high-

lighted: as noted by Ettl et al. in [17], such normals

are usually not noisy, but Balzer points out that they

are distant-dependent, which means that the gradient

field g = [p, q]> also depends on the depth z. The iter-

ative method proposed in [8] to solve this more general

problem seems to be quite limited, but an interesting

extension to normals provided by photometric stereo is

suggested: “one could abandon the widespread assump-

tion that the light sources are distant and the lighting

directions thus constant”.

Finally, Chang et al. address in [11] the problem

of multiview normal integration, which aims at recon-

structing a full 3D-shape in the framework of multiview

photometric stereo. The original variational formula-

tion (21) is extended to such normal fields, and the

resulting PDE is solved via a level set method, which

has to be soundly initialized. The results are nice but

are limited to synthetic multiview photometric stereo

images. However, this approach should be continued,

since it provides complete 3D-models. Moreover, it is

noted in [11] that the use of multiview inputs is the

most intuitive way to satisfy PDisc.

As noticed by Agrawal et al. about the range of
solutions proposed in [2], but this is more generally true,

“the choice of using a particular algorithm for a given

application remains an open problem”. We hope this

review will help the reader to make up its own mind,

faced to so many existing approaches.

Finally, even if none of the reviewed methods satis-

fies all the selected criteria, this work helped us to de-

velop some new normal integration methods. In a com-

panion paper entitled Variational Methods for Normal

Integration [48], we particularly focus on the problem

of normal integration in the presence of discontinuities,

which occurs as soon as there are occlusions.

Acknowledgements We are grateful to the reviewers for
the constructive discussion during the reviewing process.
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