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Introduction

Computing the 3D-shape of a surface from a set of normals is a classical problem of 3D-reconstruction called normal integration. This problem is well-posed, except that a constant of integration has to be fixed, but its resolution is not as straightforward as it could appear, even in the case where the normal is known at every pixel of an image. One may well be surprised that such a simple problem has given rise to such a large number of papers. This is probably due to the fact that, like many computer vision problems, it simultaneously meets several requirements. Of course, a method of integration is expected to be accurate, fast, and robust re noisy data or outliers, but we will see that several other criteria are important as well.

In this paper, a thorough study of two pioneering works is done: a paper by Horn and Brooks based on variational calculus [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF]; another one by Frankot and Chellappa resorting to Fourier analysis [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF]. This preliminary study allows us to select six criteria apart from accuracy, through which we intend to qualitatively evaluate the main normal integration methods. Our survey is summarized in Table 1. Knowing that no existing method is completely satisfactory, this preliminary study impels us to suggest several new methods of integration which will be found in a companion paper [START_REF] Quéau | Variational Methods for Normal Integration[END_REF].

The organization of the present paper is the following. We derive the basic equations of normal integration in Section 2. Horn and Brooks' and Frankot and Chellappa's methods are reviewed in Section 3. This allows us, in Section 4, to select several properties that are required by any normal integration method, and to comment the most relevant related works. In Section 5, we conclude that a completely satisfactory method of integration is still lacking.

Basic Equations of Normal Integration

Suppose that, in each point x = [u, v] of the image of a surface, the outer unit-length normal n(u, v) = [n 1 (u, v), n 2 (u, v), n 3 (u, v)] is known. Integrating the normal field n amounts to searching for three functions x, y and z such that the normal to the surface at the surface point x(u, v) = [x(u, v), y(u, v), z(u, v)] , which is conjugate to x, is equal to n(u, v). Following [START_REF] Horn | Robot Vision[END_REF], let us rigorously formulate this problem when the projection model is either orthographic, weak-perspective or perspective.

Orthographic Projection

We attach to the camera a 3D-frame cxyz whose origin c is located at the optical center, and such that cz coincides with the optical axis (see Figure 1). The origin of pixel coordinates is taken as the intersection o of the optical axis cz and the image plane π. In practice, π coincides with the focal plane z = f , where f denotes the focal length.

Assuming orthographic projection, a 3D-point x projects orthogonally onto the image plane, i.e.:

x(u, v) = u y(u, v) = v (1) 
By normalizing the cross product of both partial derivatives ∂ u x and ∂ v x, and choosing the sign so that n points towards the camera, we obtain (the dependencies in u and v are omitted, for the sake of simplicity):

n = 1 1 + ∇z 2   ∂ u z ∂ v z -1   (2) 
where ∇z = [∂ u z, ∂ v z] denotes the gradient of the depth map z. From (2), we conclude that n 3 < 0. Of course, 3D-points such that n 3 ≥ 0 also exist. Such points are non-visible if n 3 > 0. If n 3 = 0, they are visible and project onto the occluding contour (see point x o 2 in Figure 1). Thus, even if the normal n is easily determined on the occluding contour, since n is both parallel to π, and orthogonal to the contour, computing the depth z by integration in such points is impossible. Now, let us consider the image points which do not lie on the occluding contour. Equation [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF] immediately gives the following pair of linear PDEs in z:

∇z = [p, q] (3) 
where:

     p = - n 1 n 3 q = - n 2 n 3 (4) 
Equations [START_REF] Aubert | Poisson Skeleton Revisited: A New Mathematical Perspective[END_REF] show that integrating a normal field i.e., computing z from n, amounts to integrating the vector field [p, q] . The solution of ( 3) is straightforward:

z(u, v) = z(u 0 , v 0 ) + (u,v) (r,s)=(u0,v0)
[p(r, s) dr + q(r, s) ds] (

regardless of the integration path between some point (u 0 , v 0 ) and (u, v), as soon as p and q satisfy the constraint of integrability ∂ v p = ∂ u q (Schwartz theorem). If they do not, the integral in Equation ( 5) depends on the integration path.

If there is no point (u 0 , v 0 ) where z is known, it follows from (5) that z(u, v) is computable up to an additive constant. This constant can be chosen so as to minimize the root mean square error (RMSE) in z, provided that the ground-truth is available 1 .

Weak-perspective Projection

Weak-perspective projection assumes that the camera is focused on a plane π of equation z = d, supposed to match the mean location of the surface. Any visible point x projects first orthogonally onto π, then perspectively onto π, with c as projection center (see Figure 2).

Assuming weak-perspective projection, we have:

     x(u, v) = d f u y(u, v) = d f v (6)
1 The same procedure is used by Klette and Schlüns in [START_REF] Klette | Height Data from Gradient Fields[END_REF]: "The reconstructed height values are shifted in the range of the original surface using LSE optimization".
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Fig. 2 Weak-perspective projection: x 1 and x 2 are conjugate to x w 1 and x w 2 , respectively. Point x w 2 lies on the occluding contour. The plane π, which is conjugate to π, is supposed to match the mean location of the surface.

Denoting by m the image magnification f/d, the outer unit-length normal n now reads:

n = 1 1 + m 2 ∇z 2   m ∂ u z m ∂ v z -1   (7) 
For the image points which do not lie on the occluding contour, the pair of PDEs (3) becomes:

∇z = 1 m [p, q] (8) 
which explains why "weak-perspective projection" is also called "scaled orthographic projection". From (8), analogously to (5):

z(u, v) = z(u 0 , v 0 ) + 1 m (u,v) (r,s)=(u0,v0)
[p(r, s) dr + q(r, s) ds] (9)

Perspective Projection

We now consider perspective projection (see Figure 3).
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Fig. 3 Perspective projection: x 1 and x 3 are conjugate to x p 1 and x p 3 , respectively (x p 3 lies on the occluding contour).

As major difference to weak-perspective, d must be replaced with z(u, v) in Equations ( 6):

     x(u, v) = z(u, v) f u y(u, v) = z(u, v) f v (10) 
The cross product of ∂ u x and ∂ v x is a little more complicated than in the previous case:

∂ u x p × ∂ v x p = z f 2   -f ∂ u z -f ∂ v z z + u ∂ u z + v ∂ v z   (11) 
Writing that this vector is parallel to n(u, v), this provides us with the three following equations:

     f n 3 ∂ u z + n 1 [z + u ∂ u z + v ∂ v z] = 0 f n 3 ∂ v z + n 2 [z + u ∂ u z + v ∂ v z] = 0 n 2 ∂ u z -n 1 ∂ v z = 0 (12) 
Since this system is homogeneous in z, and knowing that z > 0, we introduce the change of variable:

z = ln(z) (13) 
which makes [START_REF] Coleman | Obtaining 3-Dimensional Shape of Textured and Specular Surfaces Using Four-Source Photometry[END_REF] linear with respect to ∂ u z and ∂ v z:

     [f n 3 + u n 1 ] ∂ u z + v n 1 ∂ v z = -n 1 u n 2 ∂ u z + [f n 3 + v n 2 ] ∂ v z = -n 2 n 2 ∂ u z -n 1 ∂ v z = 0 (14) 
System ( 14) is non-invertible if it has rank less than 2 i.e., if its three determinants are zero:

     f n 3 [u n 1 + v n 2 + f n 3 ] = 0 -n 1 [u n 1 + v n 2 + f n 3 ] = 0 -n 2 [u n 1 + v n 2 + f n 3 ] = 0 (15) 
As n 1 , n 2 and n 3 cannot simultaneously vanish, because vector n is unit-length, the equalities (15) holds true if and only if

u n 1 + v n 2 + f n 3 = 0. Knowing that [u, v, f]
are the coordinates of the image point x p in the 3D-frame cxyz, this happens if and only if x p lies on the occluding contour (see point x p 3 in Figure 3). It is noticeable that for a given object, the occluding contour depends on which projection model is assumed.

For the image points which do not lie on the occluding contour, System (14) is easily inverted, which gives us the following pair of linear PDEs in z:

∇z = [p, q] (16) 
where:

     p = - n 1 u n 1 + v n 2 + f n 3 q = - n 2 u n 1 + v n 2 + f n 3 (17)
Hence, under perspective projection, integrating a normal field n amounts to integrating the vector field [p, q] . The solution of Equation ( 16) is straightforward:

z(u, v) = z(u 0 , v 0 )+ (u,v) (r,s)=(u0,v0)
[p(r, s) dr + q(r, s) ds] [START_REF] Fraile | Combinatorial Surface Integration[END_REF] from which we deduce, using [START_REF] Crouzil | A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization[END_REF]:

z(u, v) = z(u 0 , v 0 ) exp (u,v) (r,s)=(u0,v0) [p(r, s) dr + q(r, s) ds] (19)
It follows from [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF] that z is computable up to a multiplicative constant. Notice also that [START_REF] Ettl | Shape Reconstruction from Gradient Data[END_REF], and therefore [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF], require that the focal length f is known, as well as the location of the principal point o, since the coordinates u and v depend on it (see Figure 3).

The similarity between (3), ( 8) and [START_REF] Durou | Integration of a Normal Field without Boundary Condition[END_REF] shows that any normal integration method can be extended to weakperspective or perspective, provided that the intrinsic parameters of the camera are known2 . Let us emphasize that such extensions are generic i.e., not restricted to a given method of integration. We can thus limit ourselves to solving the following pair of linear PDEs, which we consider as the model problem:

∇z = g (20) 
where (z, g) means (z, [p, q] ), (z, 1 m [p, q] ), or (z, [p, q] ), depending on whether the projection model is orthographic, weak-perspective, or perspective, respectively.

Integration Using Quadratic Regularization

From now on, we do not care more about the projection model. We just have to solve the generic equation [START_REF] Galliani | Fast and Robust Surface Normal Integration by a Discrete Eikonal Equation[END_REF].

As already noticed, the respective solutions (5), ( 9) and [START_REF] Fraile | Combinatorial Surface Integration[END_REF] of Equations ( 3), ( 8) and ( 16), are independent from the integration path if and only if the constraint of integrability ∂ v p = ∂ u q, or ∂ v p = ∂ u q, is satisfied. In practice, a normal field is never rigorously integrable (or curl-free). Apart from using several integration paths and averaging the integrals [START_REF] Coleman | Obtaining 3-Dimensional Shape of Textured and Specular Surfaces Using Four-Source Photometry[END_REF][START_REF] Healey | Depth Recovery from Surface Normals[END_REF][START_REF] Wu | A Line-Integration Based Method for Depth Recovery from Surface Normals[END_REF], a natural way to deal with the lack of integrability is to turn [START_REF] Galliani | Fast and Robust Surface Normal Integration by a Discrete Eikonal Equation[END_REF] into an optimization problem [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF]. Using quadratic regularization, this amounts to minimizing the functional:

F L2 (z) = (u,v)∈Ω ∇z(u, v) -g(u, v) 2 du dv ( 21 
)
where Ω ⊂ R 2 is the reconstruction domain, and the gradient field g = [p, q] is the datum of the problem.

The functional F L2 is strictly convex in ∇z, but does not admit a unique minimizer z * since, for any κ ∈ R, F L2 (z * + κ) = F L2 (z * ). Its minimization requires that the associated Euler-Lagrange equation is satisfied. The calculus of variation provides us with the following:

∇F L2 (z) = 0 ⇐⇒ -2 div (∇z -g) = 0 (22)
This necessary condition is rewritten as the following Poisson equation 3 :

∆z = ∂ u p + ∂ v q (23) 
Solving Equation ( 23) is not a sufficient condition for minimizing F L2 (z), except if z is known on the boundary ∂Ω (Dirichlet boundary condition), see [START_REF] Miranda | Partial differential equations of elliptic type[END_REF] and the references therein. Otherwise, the so-called natural boundary condition, which is of the Neumann type, must be considered. In the case of F L2 (z), this condition is written [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF]:

(∇z -g) • η = 0 ( 24 
)
where vector η is normal to ∂Ω in the image plane. Using different boundary conditions, one could expect that the different solutions of (23) would coincide on most part of Ω, but this is not true. For a given gradient field g, the choice of a boundary condition has a great influence on the recovered surface. This is noted in [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF]: "Equation [ [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF]] does not uniquely specify a solution without further constraint. In fact, we can add any harmonic function to a solution to obtain a different solution also satisfying [ [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF]]". A harmonic function is a solution of the Laplace equation:

∆z = 0 (25) 
As an example, let us search for the harmonic functions taking the form z(u, v) = z 1 (u) z 2 (v). Knowing that z 1 = 0 and z 2 = 0, since z > 0, Equation [START_REF] Harker | Regularized Reconstruction of a Surface from its Measured Gradient Field[END_REF] gives:

z 1 (u) z 1 (u) = - z 2 (v) z 2 (v) (26) 
Both sides of Equation ( 26) are thus equal to the same constant K ∈ R. Two cases may occur, according to the sign of K. If K < 0, we pose K = -ω 2 , ω ∈ R:

z 1 (u) + ω 2 z 1 (u) = 0 z 2 (v) -ω 2 z 2 (v) = 0 ⇒ z 1 (u) = z 1 (0) e j ωu z 2 (v) = z 2 (0) e ωv ( 27 
)
where j is such that j 2 = -1. Finally, we obtain:

z(u, v) = z(0, 0) e ω(j u+v) ( 28 
)
3 Similar equations arise in other computer vision problems [START_REF] Aubert | Poisson Skeleton Revisited: A New Mathematical Perspective[END_REF][START_REF] Pérez | Poisson image editing[END_REF][START_REF] Simchony | Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems[END_REF].

Note that a real harmonic function defined on R 2 can be considered as the real part or as the imaginary part of a holomorphic function. All the functions of the form (28) are indeed holomorphic. Their real and imaginary parts thus provide us with the following two families of harmonic functions: {cos(ωu) e ωv } ω∈R ; {sin(ωu) e ωv } ω∈R [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF] Adding to a given solution of Equation ( 23) any linear combination of these harmonic functions (many other such functions exist), we obtain other solutions. The way to select the right solution is to carefully manage the boundary.

In the case of a free boundary, the variational calculus tells us that minimizing F L2 (z) requires that [START_REF] Harker | Least Squares Surface Reconstruction from Gradients: Direct Algebraic Methods with Spectral, Tikhonov, and Constrained Regularization[END_REF] is imposed on the boundary, but the solution is still non-unique, since it is known up to an additive constant. The same conclusion holds true for any Neumann boundary condition. On the other hand, as soon as Ω is bounded, a Dirichlet boundary condition ensures existence and uniqueness of the solution4 .

Two Pioneering Normal Integration Methods

Before a more exhaustive review, we first make a thorough study of two pioneering normal integration methods which have very different peculiarities. This will allow us to detect the most important properties that one may expect from any method of integration5 .

Horn and Brooks' Method

A well-known method due to Horn and Brooks [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF], which we denote by M HB , attempts to solve the following discrete analogue of the Poisson equation [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF], where the (u, v) denote the pixels of a square 2D-grid:

z u+1,v + z u-1,v + z u,v+1 + z u,v-1 -4 z u,v = pu+1,v-pu-1,v 2 + qu,v+1-qu,v-1 2 (30) 
The left-hand and right-hand sides of (30) are second order finite differences approximations of the Laplacian and of the divergence, respectively. As stated in [START_REF] Harker | Regularized Reconstruction of a Surface from its Measured Gradient Field[END_REF], other approximations can be considered, as long as the orders of the finite differences are consistent.

In [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF], the equations (30) are solved using a Jacobi iteration, for (u, v) ∈ Ω i.e., for the pixels (u, v) ∈ Ω whose four nearest neighbors are inside Ω:

z (k+1) u,v = z (k) u+1,v +z (k) u-1,v +z (k) u,v+1 +z (k) u,v-1 4 - pu+1,v-pu-1,v 8 - qu,v+1-qu,v-1 8 (31) 
The values of z for the pixels (u, v) ∈ ∂Ω can be deduced from a discrete analogue of the natural boundary condition [START_REF] Harker | Least Squares Surface Reconstruction from Gradients: Direct Algebraic Methods with Spectral, Tikhonov, and Constrained Regularization[END_REF], "provided that the boundary curve is polygonal, with horizontal and vertical segments only".

It is standard to show the convergence of this scheme [START_REF] Stoer | Introduction to Numerical Analysis[END_REF], whatever the initialization, but it converges very slowly if the initialization is far from the solution [START_REF] Durou | Integration of a Normal Field without Boundary Condition[END_REF].

However, it is not so easy to discretize the natural boundary condition properly, because many cases have to be considered (see, for instance, [START_REF] Bähr | Fast and Accurate Surface Normal Integration on Non-Rectangular Domains[END_REF]).

Improvement of Horn and Brooks' Method

Horn and Brooks' method can be extended in order to more properly manage the natural boundary condition, by discretizing the functional F L2 (z) defined in [START_REF] Goldman | Shape and Spatially-Varying BRDFs From Photometric Stereo[END_REF], and then solving the optimality condition, rather than discretizing the continuous optimality condition [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF].

This simple idea allowed Durou and Courteille to design in [START_REF] Durou | Integration of a Normal Field without Boundary Condition[END_REF] an improved version of M HB , denoted by M DC , which attempts to minimize the following discrete approximation of F L2 (z):

F L2 (z) = (u,v)∈Ω1 zu+1,v-zu,v δ - pu+1,v+pu,v 2 2 + (u,v)∈Ω2 zu,v+1-zu,v δ - qu,v+1+qu,v 2 2 (32) 
where δ is the distance between neighboring pixels (from now on, the scale is chosen so that δ = 1), Ω 1 and

Ω 2 contain the pixels (u, v) ∈ Ω such that (u + 1, v) ∈ Ω or (u, v + 1) ∈ Ω, respectively, and z = [z u,v ] (u,v)∈Ω .
In [START_REF] Ikehata | Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces[END_REF], the values of p and q are averaged using forward finite differences, in order to ensure the equivalence with M HB . Indeed, one gets from [START_REF] Ikehata | Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces[END_REF] and from the characterization ∇F L2 = 0 of an extremum, the same optimality condition [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] as discretized by Horn and Brooks, for the pixels (u, v) ∈ Ω.

However, handling the boundary is much simpler than with M HB , because the appropriate discretization along the boundary naturally arises from the optimality condition ∇F L2 = 0. Indeed, for a pixel (u, v) ∈ ∂Ω, the equation ∂F L2 /∂z u,v = 0 does not take the form (30) any more. Figure 4 shows the example of a pixel (u, v) ∈ ∂Ω such that (u+1, v) and (u, v +1) are inside Ω, while (u -1, v) and (u, v -1) are outside Ω.

η D u v (u, v -1) (u -1, v) (u + 1, v) (u, v + 1) (u, v)
Fig. 4 Only the black pixels are inside Ω. The straight line D is a plausible approximation of the tangent to ∂Ω at (u, v).

In this case, Equation ( 30) must be replaced with:

z u+1,v + z u,v+1 -2 z u,v = pu+1,v+pu,v 2 + qu,v+1+qu,v 2 (33) 
Since

η = - √ 2/2 [1, 1
] is a plausible unit-length normal to the boundary ∂Ω in this case, the natural boundary condition [START_REF] Harker | Least Squares Surface Reconstruction from Gradients: Direct Algebraic Methods with Spectral, Tikhonov, and Constrained Regularization[END_REF] reads:

∂ u z -p + ∂ v z -q = 0 ( 34 
)
It is obvious that ( 33) is a discrete approximation of [START_REF] Karaçali | Reconstructing Discontinuous Surfaces from a Given Gradient Field using Partial Integrability[END_REF]. More generally, it is easily shown that the equation ∂F L2 /∂z u,v = 0, for any (u, v) ∈ ∂Ω, is a discrete approximation of the natural boundary condition [START_REF] Harker | Least Squares Surface Reconstruction from Gradients: Direct Algebraic Methods with Spectral, Tikhonov, and Constrained Regularization[END_REF].

Let us test M DC on the surface S vase shown in Figure 5-a, which models a half-vase lying on a flat ground. To this end, we sample the analytically computed gradient of S vase on a regular grid of size 312×312, which provides the gradient field g vase (see Figure 5-b). We suppose that a preliminary segmentation allows us to use as reconstruction domain the image of the vase, which constitutes an additional datum. The reconstructed surface obtained at convergence of M DC is shown in Figure 5-c.

On the other hand, it is well-known that quadratic regularization is not well-adapted to discontinuities. Let us now test M DC using as reconstruction domain the whole grid of size 312 × 312, which contains discontinuities at the top and at the bottom of the vase. The reconstructed surface at convergence is shown in Figure 5-d. It is not satisfactory, since the discontinuities are not preserved. This is numerically confirmed by the RMSE, which is much higher than that of Figure 5-c.

We know that removing the flat ground from the reconstruction domain suffices to reach a better result (see Figure 5-c), since this eliminates any depth discontinuity. However, this requires a preliminary segmentation, which is known to be a hard task, and also requires that the integration can be carried out on a nonrectangular reconstruction domain.

Otherwise, it is necessary to appropriately handle the depth discontinuities, in order to limit the bias.

The lack of integrability of the vector field [p, q] is a basic idea to detect the discontinuities, as shown in our companion paper [START_REF] Quéau | Variational Methods for Normal Integration[END_REF]. Unfortunately, this characterization of the discontinuities is neither necessary nor sufficient. On the one hand, shadows can induce outliers if [p, q] is estimated via photometric stereo [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF], which can therefore be non-integrable along shadow limits, even in the absence of depth discontinuities. On the other hand, the vector field [p, q] of a scale seen from above is uniform, i.e. perfectly integrable.

Frankot and Chellappa's Method

A more general approach to overcome the possible nonintegrability of the gradient field g = [p, q] is to first define a set I of integrable vector fields i.e., of vector fields of the form ∇z, and then compute the projection ∇z of g on I i.e., the vector field ∇z of I the closest to g, according to some norm. Afterwards, the (approximate) solution of Equation ( 20) is easily obtained using ( 5), ( 9) or ( 18), since ∇z is integrable.

Nevertheless, the boundary conditions can be complicated to manage, because I depends on which boundary condition is imposed (including the case of the natural boundary condition). It is noticed in [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF] that minimizing the functional F L2 (z) amounts to following this general approach, in the case where I contains all integrable vector fields and the Euclidean norm is used.

The most cited normal integration method, due to Frankot and Chellappa [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF], follows this approach in the case where the Fourier basis is considered. Let us use the standard definition of the Fourier transform:

f (ω u , ω v ) = (u,v)∈R 2
f (u, v) e -j ωu u e -j ωv v du dv [START_REF] Karaçali | Noise Reduction in Surface Reconstruction from a Given Gradient Field[END_REF] where (ω u , ω v ) ∈ R 2 . Computing the Fourier transforms of both sides of ( 23), we obtain:

-(ω 2 u + ω 2 v ) ẑ(ω u , ω v ) = j ω u p(ω u , ω v ) + j ω v q(ω u , ω v ) (36) 
In Equation [START_REF] Kimmel | An Algebraic Multigrid Approach for Image Analysis[END_REF], the data p and q, as well as the unknown ẑ, depend on the variables ω u and ω v . For any (ω u , ω v ) such that ω 2 u + ω 2 v = 0, this equation gives us the following expression of ẑ(ω u , ω v ):

ẑ(ω u , ω v ) = ω u p(ω u , ω v ) + ω v q(ω u , ω v ) j (ω 2 u + ω 2 v ) (37) 
Indeed, computing the inverse Fourier transform of (37) will provide us with a solution of [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF]. This method of integration [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF], which we denote by M FC , is very fast thanks to the FFT algorithm. The definition of the Fourier transform may be confusing, because several definitions exist. Instead of pulsations (ω u , ω v ), frequencies (n u , n v ) can be used. Knowing that (ω u , ω v ) = 2π(n u , n v ), Equation (37) then becomes:

ẑ(n u , n v ) = n u p(n u , n v ) + n v q(n u , n v ) 2π j (n 2 u + n 2 v ) (38) 
It is written in [START_REF] Ng | Surface-from-Gradients with incomplete data for single view modeling[END_REF] that the accuracy of Frankot and Chellappa's method "relies on a good input scale". In fact, it only happens that, in a publicly available code of this method, the 2π coefficient in [START_REF] Kovesi | Shapelets Correlated with Surface Normals Produce Surfaces[END_REF] is missing. Since the right-hand side of Equation ( 37) is not defined if (ω u , ω v ) = (0, 0), Frankot and Chellappa assert that it "simply means that we cannot recover the average value of z without some additional information". This is true but incomplete, because M FC provides the solution of Equation ( 23) up to the addition of a harmonic function over Ω. Saracchini et al. note in [START_REF] Saracchini | A Robust Multi-Scale Integration Method to Obtain the Depth From Gradient Maps[END_REF] that "the homogeneous version of [( 23)] is satisfied by an arbitrary linear function of position z(u, v) = a u + b v + c, which when added to any solution of [( 23)] will yield infinitely many additional solutions". Affine functions are harmonic indeed, but we know from Section 2.4 that many other harmonic functions also exist.

Applying M FC to g vase would give the same result as that of Figure 5-d, but much faster, when the reconstruction domain is equal to the whole grid. On the other hand, such a result as that of Figure 5-c could not be reached, since M FC is not designed to manage a non-rectangular domain Ω.

Besides, M FC works well if and only if the surface to be reconstructed is periodic. This clearly appears in the example of Figure 6: the gradient field g face of a face (see Figure 6-a), estimated via photometric stereo [START_REF] Woodham | Photometric Method for Determining Surface Orientation from Multiple Images[END_REF], is integrated using M FC , which results in the reconstructed surface shown in Figure 6-b. Since the face is non-periodic, but the depth is forced to be the same on the left and right edges of the face i.e., on the cheek and on the nose, the result is much distorted. Reconstructed surface obtained by integration of g face , using Frankot and Chellappa's method [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF]. Since a periodic boundary condition is assumed, the depth is forced to be the same on the cheek and on the nose. As a consequence, this much distorts the result.

This failure of M FC was first exhibited by Harker and O'Leary in [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF], who show on some examples that the solution provided by M FC is not always a minimizer of the functional F L2 (z). They moreover explain: "The fact that the solution [of Frankot and Chellappa] is constrained to be periodic leads to a systematic bias in the solution" (this periodicity is clearly visible on the recovered surface of Figure 6-b). Harker and O'Leary also conclude that "any approach based on the Euler-Lagrange equation is only valid for a few special cases". The improvements of M FC that we describe in the next section make this assertion highly questionable.

Improvements of Frankot and Chellappa's Method

A first improvement of M FC suggested by Simchony, Chellappa and Shao in [START_REF] Simchony | Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems[END_REF] amounts to solving the discrete approximation [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] of the Poisson equation using the discrete Fourier transform, instead of discretizing the solution (37) of the Poisson equation [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF].

Consider a rectangular 2D domain

Ω = [0, d u ] × [0, d v ],
and choose a lattice of equally spaced points

(u du m , v dv n ), u ∈ [0, m], v ∈ [0, n]. Let us denote by f u,v the value of a function f : Ω → R at (u du m , v dv n ). The standard definition of the discrete Fourier transform of f is as follows, for k ∈ [0, m -1] and l ∈ [0, n -1]: fk,l = m-1 u=0 n-1 v=0 f u,v e -j2π uk m e -j2π vl n ( 39 
)
The inverse transform of (39) reads:

f u,v = 1 mn m-1 k=0 n-1 l=0 fk,l e +j2π ku m e +j2π lv n (40) 
Replacing any term in (30) by its inverse discrete Fourier transform of the form [START_REF] Miranda | Partial differential equations of elliptic type[END_REF], and knowing that the Fourier family is a basis, we obtain:

2 cos 2π k m + cos 2π l n -2 ẑk,l = j sin 2π k m pk,l + sin 2π l n qk,l (41) 
The expression in brackets of the left-hand side is zero if and only if (k, l) = (0, 0). As soon as (k, l) = (0, 0), Equation [START_REF] Ng | Surface-from-Gradients with incomplete data for single view modeling[END_REF] provides us with the expression of ẑk,l :

ẑk,l = sin 2π k m pk,l + sin 2π l n qk,l 4j sin 2 π k m + sin 2 π l n [START_REF] Ng | Surface-from-Gradients without Discrete Integrability Enforcement: A Gaussian Kernel Approach[END_REF] which is rewritten by Simchony et al. as follows:

ẑk,l = sin 2π k m pk,l + sin 2π l n qk,l

j sin 2 (2π k m ) cos 2 (π k m ) + sin 2 (2π l n ) cos 2 (π l n ) (43) 
Comparing [START_REF] Karaçali | Noise Reduction in Surface Reconstruction from a Given Gradient Field[END_REF] and [START_REF] Lee | A Provably Convergent Algorithm for Shape from Shading[END_REF] shows us that ω u corresponds to 2π k m and ω v to 2π l n . Using these correspondences, we would expect to be able to identify [START_REF] Klette | Height Data from Gradient Fields[END_REF] and [START_REF] Noakes | The 2-D Leap-Frog: Integrability, Noise, and Digitization[END_REF]. This is true if sin 2π k m and sin 2π l n tend toward 0, and cos 2 π k m and cos 2 π l n tend toward 1, which occurs if k takes either the first values or the last values inside [0, m -1], and the same for l inside [0, n -1], which is interpreted by Simchony et al. as follows: "At low frequencies our result is similar to the result obtained in [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF]. At high frequencies we attenuate the corresponding coefficients since our discrete operator has a low-pass filter response [...] the surface z obtained in [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF] may suffer from high frequency oscillations". Actually, the low values of k and l correspond to the lowest values of ω u and ω v inside R + , and the high values of k and l may be interpreted as the lowest absolute values of ω u and ω v inside R -. Moreover, using the inverse discrete Fourier transform [START_REF] Miranda | Partial differential equations of elliptic type[END_REF], the solution of (30) which follows from [START_REF] Ng | Surface-from-Gradients without Discrete Integrability Enforcement: A Gaussian Kernel Approach[END_REF] will be periodic in u with period d u , and in v with period d v . This means that z m,v = z 0,v , for v ∈ [0, n], and z u,n = z u,0 , for u ∈ [0, m]. The discrete Fourier transform is therefore appropriate only for problems which satisfy periodic boundary conditions.

More relevant improvements of M FC due to Simchony et al. are to suggest the use of the discrete sine or cosine transforms if the problem involves, respectively, Dirichlet or Neumann boundary conditions.

Dirichlet Boundary Condition It is easily checked that any function that is expressed as an inverse discrete sine transform of the following form6 :

f u,v = 4 mn m-1 k=1 n-1 l=1 fk,l sin π ku m sin π lv n (44) 
satisfies the homogeneous Dirichlet condition f u,v = 0 on the boundary of the discrete domain Ω = [0, m] × [0, n] i.e., for u = 0, u = m, v = 0, and v = n.

To solve (30) on a rectangular domain Ω with the homogeneous Dirichlet condition z u,v = 0 on ∂Ω, we can therefore write z u,v as in (44). This is still possible for a non-homogeneous Dirichlet boundary condition:

z u,v = b D u,v for (u, v) ∈ ∂Ω (45) 
A first solution would be to solve a pair of problems. We could search for both a solution z 0 u,v of (30) satisfying the homogeneous Dirichlet boundary condition, and a harmonic function h u,v on Ω satisfying the boundary condition [START_REF] Noakes | The Lawn-Mowing Algorithm for Noisy Gradient Vector Fields[END_REF]. Then, z 0 u,v + h u,v is a solution of the equations [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] satisfying this boundary condition.

But it is much easier to replace z u,v with z u,v , such that z u,v = z u,v everywhere on Ω, except on its boundary ∂Ω where z u,v = z u,v -b D u,v . The Dirichlet boundary condition satisfied by z u,v is homogeneous, so we can actually write z u,v under the form (44).

In practice, we just have to change the right-hand side g u,v of Equation [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] for the pixels (u, v) ∈ Ω which are adjacent to ∂Ω. Either one or two neighbors of these pixels lie on ∂Ω. For example, only the neighbor (0, v) of pixel (1, v) 

lies on ∂Ω, for v ∈ [2, n -2].
In such a pixel, the right-hand side of Equation ( 30) must be replaced with:

g D 1,v = p 2,v -p 0,v 2 + q 1,v+1 -q 1,v-1 2 -b D 0,v (46) 
On the other hand, amongst the four neighbors of the corner pixel (1, 1), both (0, 1) and (1, 0) lie on ∂Ω.

Therefore, the right-hand side of Equation ( 30) must be modified as follows, in this pixel:

g D 1,1 = p 2,1 -p 0,1 2 + q 1,2 -q 1,0 2 -b D 0,1 -b D 1,0 (47) 
Knowing that the products of sine functions in (44) form a linearly independent family, we get from [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] and (44)

, ∀(k, l) ∈ [1, m -1] × [1, n -1]: z k,l = - ḡD k,l 4 sin 2 πk 2m + sin 2 πl 2n , (48) 
From ( 48), we easily deduce z u,v using the inverse discrete sine transform (44), thus z u,v .

Neumann Boundary Condition

The reasoning is similar, yet a little bit trickier, in the case of a Neumann boundary condition. Any function that is expressed as an inverse discrete cosine transform of the following form:

f u,v = 4 mn m-1 k=0 n-1 l=0 fk,l cos π ku m cos π lv n (49) 
satisfies the homogeneous Neumann boundary condition ∇f u,v • η u,v = 0 on ∂Ω, where η u,v is the outer unit-length normal to ∂Ω in pixel (u, v). To solve [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] on a rectangular domain Ω with the homogeneous Neumann condition on ∂Ω, we can thus write z u,v as in [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF].

Consider now a non-homogeneous Neumann boundary condition:

∇z u,v • η u,v = b N u,v for (u, v) ∈ ∂Ω (50) 
A similar trick as before consists in defining an auxiliary function z u,v such that z u,v is equal to z u,v on Ω, but differs from z u,v outside Ω and satisfies the homogeneous Neumann boundary condition on ∂Ω. Let us first take the example of a pixel (0, v) ∈ ∂Ω, v ∈ [1, n -1]. By discretizing (50) using first-order finite differences, it is easily verified that z satisfies the homogeneous Neumann boundary condition in such a pixel if

z -1,v = z -1,v + b N 0,v .
Similar definitions of z arise on the other three edges of Ω.

Let us now take the example of a corner of Ω, for instance pixel (0, 0). Knowing that η 0,0 = -1 √ 2 [1, 1] , one can easily check, by discretizing (50) using firstorder finite differences, that appropriate modifications of z in this pixel are z -1,0 = z -1,0 + In practice, we just have to change the right-hand side g u,v of Equation [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] for the pixels (u, v) ∈ ∂Ω. Either one or two neighbors of these pixels lie outside Ω. For example, only the neighbor (-1, v) of pixel (0, v) lies outide Ω, for v ∈ [1, n-1]. In such a pixel, the righthand side of Equation ( 30) must be replaced with:

g N 0,v = p 1,v -p -1,v 2 + q 0,v+1 -q 0,v-1 2 -b N 0,v (51) 
A problem with this expression is that p -1,v is unknown. Using a first-order discretization of the homogeneous Neumann boundary condition (on p, not on z) ∇p 0,v • η 0,v = 0, we obtain the approximation p -1,v ≈ p 0,v , and thus ( 51) is turned into:

g N 0,v = p 1,v -p 0,v 2 + q 0,v+1 -q 0,v-1 2 -b N 0,v (52) 
On the other hand, amongst the four neighbors of pixel (0, 0), which is a corner of Ω, both (0, -1) and (-1, 0) lie outside Ω. Therefore, the right-hand side of Equation (30) must be modified as follows:

g N 0,0 = p 1,0 -p 0,0 2 + q 0,1 -q 0,0 2 - √ 2 b N 0,0 (53) 
Knowing that the products of cosine functions in (49) form a linearly independent family, we get from ( 30) and ( 49

), ∀(k, l) ∈ [0, m -1] × [0, n -1]: z k,l = - ḡN k,l 4 sin 2 πk 2m + sin 2 πl 2n , (54) 
except for (k, l) = (0, 0). Indeed, we cannot determine the coefficient z 0,0 , which simply means that the solution of the Poisson equation using a Neumann boundary condition (as, for instance, the natural boundary condition) is computable up to an additive constant, because the term which corresponds to the coefficient f0,0 in the double sum of (49) does not depend on (u, v). Keeping this point in mind, we can deduce z u,v from (54) using the inverse discrete cosine transform [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF], thus z u,v . Accordingly, the method M SCS designed by Simchony, Chellappa and Shao in [START_REF] Simchony | Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems[END_REF] works well even in the case of a non-periodic surface (see Figure 7). Knowing moreover that this method is as fast as M FC , we conclude that it improves Frankot and Chellappa's original method a lot.

On the other hand, the useful property of the solutions (44) and [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF] i.e., they satisfy a homogeneous Dirichlet or Neumann boundary condition, is obviously valid only if the reconstruction domain Ω is rectangular. This trick is hence not useable for any other form of domain Ω. It is claimed in [START_REF] Simchony | Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems[END_REF] that embedding techniques can extend M SCS to non-rectangular domains, but this is neither detailed, nor really proved. As a consequence, such a result as that of Figure 5-c could not be reached applying M SCS to the gradient field g vase : the result would be the same as that of Figure 5-d.

Main Normal Integration Methods

A List of Expected Properties

This may appear as a truism, but a basic requirement of 3D-reconstruction is accuracy. Anyway, the evaluation/comparison of 3D-reconstruction methods is a difficult challenge. Firstly, it may happen that some methods require more data than the others, which makes the evaluation/comparison biased in some sense. Secondly, it usually happens that the choice of the benchmark has a great influence on the final ranking. Finally, it is a hard task to implement a method just from its description, which gives in practice a substantial advantage to the designers of a ranking process, whatever their methodology, in the case when they also promote their own method. In Section 4.3, we will review the main existing normal integration methods. However, in accordance with these remarks, we do not intend to evaluate their accuracy. We will instead quote their main features.

In view of the detailed reviews of the methods of Horn and Brooks and of Frankot and Chellappa (see Section 3), we may expect, apart from accuracy, five other properties from any normal integration method:

• P Fast : The desired method should be as fast as possible. • P Robust : It should be robust to a noisy normal field 7 .

• P FreeB : The method should be able to handle a free boundary. Accordingly, each method aimed at solving the Poisson equation ( 23) should be able to solve the natural boundary condition [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] in the same time. • P Disc : The method should preserve the depth discontinuities. This property could allow us, for example, to use photometric stereo on a whole image, without segmenting the scene into different parts without discontinuity. • P NoRect : The method should be able to work on a non-rectangular domain. This happens for example when photometric stereo is applied to an object with background. This property could partly remedy a method which would not satisfy P Disc , knowing that segmentation is usually easier to manage than preserving the depth discontinuities.

An additional property would also be much appreciated: • P NoPar : The method should have no parameter to tune (only the critical parameters are involved here).

In practice, tuning more than one parameter often means that an expert of the method is needed. One parameter is often considered as acceptable, but no parameter is even better.

Integration and Integrability

Among the required properties, we did not explicitly quote the ability of a method to deal with non-integrable normal fields, but this is implicitly expected through P Robust and P Disc . In other words, the two sources of non-integrability that we consider are noise and depth discontinuities. A normal field estimated using shapefrom-shading could be very far from being integrable, because of the ill-posedness of this technique, to such a point that integrability is sometimes used to disambiguate the problem [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF][START_REF] Horn | The Variational Approach to Shape From Shading[END_REF]. Also the uncalibrated photometric stereo problem is ill-posed, and can be disambiguated imposing integrability [START_REF] Yuille | Shape and Albedo from Multiple Images using Integrability[END_REF]. However, we are over all interested in calibrated photometric stereo with n ≥ 3 images, which is well-posed without resorting to integrability. An error in the intensity of one light source is enough to cause a bias [START_REF] Horovitz | Depth from Gradient Fields and Control Points: Bias Correction in Photometric Stereo[END_REF], and outliers may appear in shadow regions [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF], thus providing normal fields that can be highly non-integrable, but we argue that such defects do not have to be compensated by the integration method itself. In other words, we suppose that the only outliers of the normal field we want to integrate are located on depth discontinuities. In order to know whether a normal integration method satisfies P Disc , a shape like S vase (see Figure 5-a) is well indicated, but a practical mistake must be avoided, which is not obvious. A discrete approximation of the integrability term (u,v)∈Ω [∂ v p(u, v)-∂ u q(u, v)] 2 du dv, which is used in [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF] to measure the departure of a gradient field [p, q] from being integrable, is as follows:

E int = (u,v)∈Ω3 p u,v+1 -p u,v δ - q u+1,v -q u,v δ 2 ( 55 
)
where Ω 3 denotes the set of pixels (u, v) ∈ Ω such that (u, v + 1) and (u + 1, v) are inside Ω. Let us suppose in addition that the discrete values p u,v and q u,v are numerically approximated using as finite differences:

     p u,v = z u+1,v -z u,v δ q u,v = z u,v+1 -z u,v δ (56) 
Reporting the expressions (56) of p u,v and q u,v in (55), this always implies E int = 0. Using such a numerically approximated gradient field is thus biased, since it is integrable even in the presence of discontinuities8 , whereas for instance, E int = 390 in the case of g vase .

Most Representative Normal Integration Methods

The problem of normal integration is sometimes considered as solved, because its mathematical formulation is well established (see Section 2), but we will see that none of the existing methods simultaneously satisfies all the required properties. In 1996, Klette and Schlüns stated that "there is a remarkable deficiency of literature about integration techniques, at least in computer vision" [START_REF] Klette | Height Data from Gradient Fields[END_REF]. Many contributions have appeared afterwards, but a detailed review is still missing. The way to cope with a possible non-integrable normal field was seen as a property of primary importance in the first papers on normal integration. The most obvious way to solve the problem amounts to use different paths in the integrals of ( 5), ( 9) or ( 18), and to average the different values. Apart from this approach, which has given rise to several heuristics [START_REF] Coleman | Obtaining 3-Dimensional Shape of Textured and Specular Surfaces Using Four-Source Photometry[END_REF][START_REF] Healey | Depth Recovery from Surface Normals[END_REF][START_REF] Wu | A Line-Integration Based Method for Depth Recovery from Surface Normals[END_REF], we propose to separate the main existing normal integration methods into two classes, depending on whether they care about discontinuities or not.

Methods which do not care about Discontinuities

According to the discussion conducted in Section 2.4, the most natural way to overcome non-integrability is to solve the Poisson equation [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF]. This approach has given rise to the method M HB (see Section 3.1), pioneered by Ikeuchi in [START_REF] Ikeuchi | Constructing A Depth Map from Images[END_REF] and then detailed by Horn and Brooks in [START_REF] Horn | The Variational Approach to Shape From Shading[END_REF], which has been the source of inspiration of several subsequent works. The method M HB satisfies the property P Robust (much better than the heuristics cited above), as well as P NoPar (there is no parameter), P NoRect and P FreeB . A drawback of M HB is that it does not satisfy P Fast , since it uses a Jacobi iteration to solve a large linear system whose size is equal to the number of pixels inside Ω = Ω\∂Ω. Unsurprisingly, P Disc is not satisfied by M HB , since this method does not care about discontinuities.

Frankot and Chellappa address shape-from-shading using a method which "also can be used as an integrator" [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF]. The gradient field is projected on a set I of integrable vector fields ∇z. In practice, the set of functions z is spanned by the Fourier basis. The method M FC (see Section 3.3) not only satisfies P Robust and P NoPar , but also P Fast , since it is non-iterative and, thanks to the FFT algorithm, much faster than M HB . On the other hand, the reconstruction domain is implicitly supposed to be rectangular, even if the following is claimed: "The Fourier expansion could be formulated on a finite lattice instead of a periodic lattice. The mathematics are somewhat more complicated [...] and more careful attention could then be paid to boundary conditions". Hence, P NoRect is not really satisfied, not more than P Disc . Finally, P FreeB is not satisfied, since the solution is constrained to be periodic 9 .

Simchony, Chellappa and Shao suggest in [START_REF] Simchony | Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems[END_REF] a noniterative way to solve the Poisson equation ( 23) using direct analytical methods. It is noteworthy that the resolution of the discrete Poisson equation described in Section 3.4, in the case of a Dirichlet or Neumann boundary condition, does not exactly match the original description in [START_REF] Simchony | Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems[END_REF], but is rather intended to be pedagogic. As observed by Lee in [START_REF] Lee | A Provably Convergent Algorithm for Shape from Shading[END_REF], the discretized Laplacian operator on a rectangular domain is a symmetric tridiagonal Toeplitz matrix if a Dirichlet boundary condition is used, whose eigenvalues are analytically known. Simchony, Chellappa and Shao show how to use the discrete sine transform to diagonalize such a matrix. They design an efficient solver for Equation [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF], which satisfies P Fast , P Robust and P NoPar . Another extension of M SCS to Neumann boundary conditions using the discrete cosine transform is suggested, which allows P FreeB to be satisfied. Even if embedding techniques are supposed to generalize this method to nonrectangular domains, P NoRect is not satisfied in practice. Neither is P Disc .

In [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF][START_REF] Horovitz | Depth from Gradient Fields and Control Points: Bias Correction in Photometric Stereo[END_REF], Horovitz and Kiryati improve M HB in two ways. They show how to incorporate the depth in some sparse control points, in order to correct a possible bias in the reconstruction. They also design a coarse-tofine multigrid computation, in order to satisfy P Fast 10 . This acceleration technique however requires a parameter to be tuned, which loses P NoPar .

As in [START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF], Petrovic et al. enforce integrability [START_REF] Petrovic | Enforcing Integrability for Surface Reconstruction Algorithms Using Belief Propagation in Graphical Models[END_REF], but the normal field is directly handled under its discrete writing, in a Bayesian framework. "Imposing the integrability over elementary loops in [a] graphical model will correct the irregularities in the data". An iterative algorithm known as belief propagation is used to converge towards the MAP estimate of the unknown surface. It is claimed that "discontinuities are maintained", but too few results are provided to evaluate P Disc .

In [START_REF] Kimmel | An Algebraic Multigrid Approach for Image Analysis[END_REF], Kimmel and Yavneh show how to accelerate the multigrid method designed by Horovitz and Kiryati [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF] in the case where "the surface height at specific coordinates or along a curve" is known, using an algebraic multigrid approach. Basically, their method has the same properties as [START_REF] Horovitz | Bias Correction in Photometric Stereo Using Control Points[END_REF], although P Fast is even better satisfied.

An alternative derivation of Equation ( 37) is yielded by Wei and Klette in [START_REF] Wei | Depth Recovery from Noisy Gradient Vector Fields Using Regularization[END_REF], in which the preliminary derivation of the Euler-Lagrange equation ( 23) associated to F L2 (z) is not needed. They claim that "to solve the minimization problem, we employ the Fourier transform theory rather than variational approach to avoid using the initial and boundary conditions", but since a periodic boundary condition is actually used instead, P FreeB is not satisfied. They also add two regularization terms to the functional F L2 (z) given in [START_REF] Goldman | Shape and Spatially-Varying BRDFs From Photometric Stereo[END_REF], "in order to improve the accuracy and robustness". The property P NoPar is thus lost. On the other hand, even if Wei and Klette note that "[M HB ] is very sensitive to abrupt changes in orientation, i.e., there are large errors at the object boundary", their method does not satisfy P Disc either, whereas we will observe that loosing P NoPar is often the price to satisfy P Disc .

Another method inspired by M FC is that of Kovesi [START_REF] Kovesi | Shapelets Correlated with Surface Normals Produce Surfaces[END_REF]. Instead of projecting the given gradient field on a Fourier basis, Kovesi suggests to compute the correlations of this gradient field with the gradient fields of a bank of shapelets, which are in practice a family of Gaussian surfaces 11 . This method globally satisfies the same properties as M FC but, in addition, it can be applied to an incomplete normal field i.e., to normals whose tilts are known up to a certain ambiguity 12 . Although photometric stereo computes the normals without ambiguity, this peculiarity could indeed be useful when a couple of images only is used, or a fortiori a single image (shape-from-shading), since the problem is not well-posed in both these cases.

In [START_REF] Ho | Integrating Surface Normal Vectors Using Fast Marching Method[END_REF], Ho, Lim, Yang and Kriegman derive from (20) the eikonal equation ∇z 2 = p 2 + q 2 , and aspire to use the fast marching method for its resolution. Unfortunately, this method requires that the unknown z has a unique global minimum over Ω. Thereby, a more general eikonal equation

∇(z +λ f ) 2 = (p+λ ∂ u f ) 2 + (q + λ ∂ v f ) 2 is
solved, where f is a known function and the parameter λ has to be tuned so that z + λ f has a unique global minimum. The main advantage is that P Fast is (widely) satisfied. Nothing is said about robustness, but we guess that error accumulation occurs as the depth is computed level set by level set.

As already explained in Section 3.2, Durou and Courteille improve M HB in [START_REF] Durou | Integration of a Normal Field without Boundary Condition[END_REF], in order to better satisfy P FreeB 13 . A very similar improvement of M HB is proposed by Harker and O'Leary in [START_REF] Harker | Least Squares Surface Reconstruction from Measured Gradient Fields[END_REF]. The latter loses 11 According to [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF], Kovesi uses "a redundant set of nonorthogonal basis functions". 12 http://www.peterkovesi.com/matlabfns/index.html# shapelet 13 A preliminary version of this method was already described in [START_REF] Crouzil | A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization[END_REF].

the ability to handle any reconstruction domain, whereas the reformulation of the problem as a Sylvester equation provides two appreciable improvements. First, it deals with matrices of the same size as the initial (regular) grid and resorts to very efficient solvers dedicated to Sylvester equations, thus satisfying P Fast . Moreover, any form of discrete derivatives is allowed. In [START_REF] Harker | Least Squares Surface Reconstruction from Gradients: Direct Algebraic Methods with Spectral, Tikhonov, and Constrained Regularization[END_REF][START_REF] Harker | Regularized Reconstruction of a Surface from its Measured Gradient Field[END_REF], Harker and O'Leary moreover propose several variants including regularization, which are still written as Sylvester equations, but one of them loses the property P FreeB , whereas the others lose P NoPar .

In [START_REF] Ettl | Shape Reconstruction from Gradient Data[END_REF], Ettl et al. propose a method specifically designed for deflectometry, which aims at measuring "height variations as small as a few nanometers" and delivers normal fields "with small noise and curl", but the normals are provided on an irregular grid. This is why Ettl et al. search for an interpolating/approximating surface rather than for one unknown value per sample. Of course, this method is highly parametric, but P NoPar is still satisfied, since the parameters are the unknowns. Its main problem is that P Fast is rarely satisfied, depending on the number of parameters that are used.

The fast-marching method [START_REF] Ho | Integrating Surface Normal Vectors Using Fast Marching Method[END_REF] is improved in [START_REF] Galliani | Fast and Robust Surface Normal Integration by a Discrete Eikonal Equation[END_REF] by Galliani, Breuß and Ju in three ways. First, the method by Ho et al. is shown to be inaccurate, due to the use of analytical derivatives ∂ u f and ∂ v f in the eikonal equation, instead of discrete derivatives. An upwind scheme is more appropriate to solve such a PDE. Second, the new method is more stable and the choice of λ is no more a cause for concern. This implies that P NoPar is satisfied de facto. Finally, any form of domain Ω can be handled, but it is not clear whether P NoRect was not satisfied by the former method yet. Not surprisingly, this new method is not robust, even its if robustness is improved in a more recent paper [START_REF] Bähr | An Improved Eikonal Equation for Surface Normal Integration[END_REF], but it can be used as initialization for more robust methods based, for instance, on quadratic regularization [START_REF] Bähr | Fast and Accurate Surface Normal Integration on Non-Rectangular Domains[END_REF].

The integration method proposed by Balzer in [START_REF] Balzer | A Gauss-Newton Method for the Integration of Spatial Normal Fields in Shape Space[END_REF] is based on second order shape derivatives, allowing for the use of a fast Gauss-Newton algorithm. Hence P Fast is satisfied. A careful meshing of the problem, as well as the use of a finite element method, make P NoRect to be satisfied. However, for the very same reason, P NoPar is not satisfied. Moreover, the method is limited to smooth surfaces, and therefore P Disc cannot be satisfied. Finally, P Robust can be achieved thanks to a premiminary filtering step. Balzer and Mörwald design in [START_REF] Balzer | Isogeometric Finite-Elements Methods and Variational Reconstruction Tasks in Vision -A Perfect Match[END_REF] another finite element method, where the surface model is based on B-splines. It satisfies the same properties as the previous method 14 .

In [START_REF] Xie | Surface-from-Gradients: An Approach Based on Discrete Geometry Processing[END_REF], Xie et al. deform a mesh "to let its facets follow the demanded normal vectors", resorting to discrete geometry processing. As a non-parametric surface model is used, P FreeB , P NoPar and P NoRect are satisfied. In order to avoid oversmoothing, sharp features can be preserved. However, P Disc is not addressed. On the other hand, P Fast is not satisfied since the proposed method alternates local and global optimization.

In [START_REF] Yamaura | Shape reconstruction from a normal map in terms of uniform bi-quadratic B-spline surfaces[END_REF], Yamaura et al. design a new method based on B-splines, which has the same properties as that proposed in [START_REF] Balzer | Isogeometric Finite-Elements Methods and Variational Reconstruction Tasks in Vision -A Perfect Match[END_REF]. But since the latter "relies on secondorder partial differential equations, which is inefficient and unnecessary, as normal vectors consist of only firstorder derivatives", a simpler formalism with higher performances is proposed. Moreover, a nice application to surface editing is exhibited.

Methods which care about Discontinuities

The first work which really addresses the problem of P Disc is by Karaçali and Snyder [START_REF] Karaçali | Reconstructing Discontinuous Surfaces from a Given Gradient Field using Partial Integrability[END_REF][START_REF] Karaçali | Noise Reduction in Surface Reconstruction from a Given Gradient Field[END_REF], who show how to define a new orthonormal basis of integrable vector fields which can incorporate depth discontinuities. They moreover show how to detect such discontinuities, in order to partially enforce integrability. The designed method thus satisfies P Disc , as well as P Robust and P FreeB , but P Fast is lost, despite the use of a block processing technique inspired by the work of Noakes et al. [START_REF] Noakes | The 2-D Leap-Frog: Integrability, Noise, and Digitization[END_REF][START_REF] Noakes | The Lawn-Mowing Algorithm for Noisy Gradient Vector Fields[END_REF]. In accordance with a previous remark, since it is often the price to satisfy P Disc , P NoPar is also lost.

In [START_REF] Agrawal | An Algebraic Approach to Surface Reconstruction from Gradient Fields[END_REF], Agrawal, Chellappa and Raskar consider the pixels as a weighted graph, such that the weights are of the form p u,v+1 -p u,v -q u+1,v + q u,v . Each edge whose weight is greater than a threshold is cut. A minimal number of suppressed edges are then restored, in order to reconnect the graph while minimizing the total weight. As soon as an edge is still missing, one gradient value p u,v or q u,v is considered as possibly corrupted. It is shown how these suspected gradient values can be corrected, in order to enforce integrability "with the important property of local error confinement". Neither P FreeB nor P NoPar is satisfied, and P Fast is not guaranteed as well, even if the method is non-iterative. Moreover, the following is asserted in [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF]: "Under noise, the algorithm in [START_REF] Agrawal | An Algebraic Approach to Surface Reconstruction from Gradient Fields[END_REF] confuses correct gradients as outliers and performs poorly". Finally, P Disc may be satisfied since strict integrability is no more uniformly imposed over the entire gradient field.

In [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF], Agrawal, Raskar and Chellappa propose a general framework "based on controlling the anisotropy of weights for gradients during the integration"15 . They are much inspired by classical image restoration techniques. It is shown how the (isotropic) Laplacian operator in Equation ( 23) must be modified using "spatially varying anisotropic kernels", thus obtaining four methods: two based on robust estimation, one on regularization, and one on anisotropic diffusion 16 . A homogeneous Neumann boundary condition ∇z • η = 0 is assumed, which looks rather unrealistic. Thus, the four proposed methods do not satisfy P FreeB , neither P Fast nor P NoPar . Nevertheless, a special attention is given to satisfy P Robust and P Disc .

A similar method to the first one proposed in [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF] is designed by Fraile and Hancock in [START_REF] Fraile | Combinatorial Surface Integration[END_REF]. A minimum spanning tree is constructed from the same graph of pixels as in [START_REF] Agrawal | An Algebraic Approach to Surface Reconstruction from Gradient Fields[END_REF], except that the weights are different (several weights are tested). The integral in (6) along the unique path joining each pixel to a root pixel is then computed. Of course, this method is less robust than those based on quadratic regularization (or than the weighted quadratic regularization proposed in [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF]), since "the error due to measurement noise propagates along the path", and it is rather slow because of the search for a minimum spanning tree. But, depending on which weights are used, it could preserve depth discontinuities: in such a case as that of Figure 5-a, each pixel could be reached from a root pixel without crossing any discontinuity.

In [START_REF] Wu | Visible Surface Reconstruction from Normals with Discontinuity Consideration[END_REF], Wu and Tang try to find the best compromise between integrability and discontinuity preservation. In order to segment the scene into pieces without discontinuities, "one plausible method [...] is to identify where the integrability constraint is violated", but "in real case, [this] may produce very poor discontinuity maps rendering them unusable at all". A probabilistic method using the EM (Expectation-Maximization) algorithm is thus proposed, which provides a weighted discontinuity map. The alternating iterative optimization is very slow and a parameter is used, but this approach is promising, even if the evaluation of the results remains qualitative.

In [START_REF] Ng | Surface-from-Gradients with incomplete data for single view modeling[END_REF][START_REF] Ng | Surface-from-Gradients without Discrete Integrability Enforcement: A Gaussian Kernel Approach[END_REF], Ng, Wu and Tang do not enforce integrability over the entire domain, because with such an enforcement "sharp features will be smoothed out and surface distortion will be produced". Since "either sparse or dense, residing on a 2D regular (image) or irregular grid space" gradient fields may be integrated, it is concluded that "a continuous formulation for surfacefrom-gradients is preferred". Gaussian kernel functions are used, in order to linearize the problem and to avoid the need for extra knowledge on the boundary 17 . Unfor- 16 A similar approach will be detailed in [START_REF] Quéau | Variational Methods for Normal Integration[END_REF]. 17 http://www.cse.ust.hk/ ~pang/papers/supp_ materials/pami_sur3d_code.zip tunately, at least two parameters must be tuned. Also P Fast is not satisfied, not more than P FreeB , as shown in [START_REF] Balzer | Isogeometric Finite-Elements Methods and Variational Reconstruction Tasks in Vision -A Perfect Match[END_REF] on the basis of several examples. On the other hand, the proposed method outputs "continuous 3D representation not limited to a height field".

In [START_REF] Reddy | Enforcing Integrability by Error Correction using l1-minimization[END_REF], Reddy, Agrawal and Chellappa propose a method specifically designed to handle heavily corrupted gradient fields, which combines "the best of least squares and combinatorial search to handle noise and correct outliers respectively". Even if it is claimed that "L 1 solution performs well across all scenarios without the need for any tunable parameter adjustments", P NoPar is not satisfied in practice. Neither is P FreeB .

In [START_REF] Durou | Integration of a Normal Field in the Presence of Discontinuities[END_REF], Durou, Aujol and Courteille are mainly concerned by P Disc . Knowing that quadratic regularization works well in the case of smooth surfaces, but is not well adapted to discontinuities, the use of other regularizers, or of other variational models inspired by image processing, as in [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF], allows P Disc to be satisfied. This is detailed in the companion paper [START_REF] Quéau | Variational Methods for Normal Integration[END_REF].

The integration method proposed in [START_REF] Saracchini | Multi-Scale Depth from Slope with Weights[END_REF][START_REF] Saracchini | A Robust Multi-Scale Integration Method to Obtain the Depth From Gradient Maps[END_REF] by Saracchini, Stolfi, Leitão, Atkinson and Smith 18 is a multiscale version of M HB . A system is solved at each scale using a Gauss-Seidel iteration in order to satisfy P Fast . Since reliability in the gradient is used as local weight, "each equation can be tuned to ignore bad data samples and suspected discontinuities", thus allowing P Disc to be satisfied. Finally, setting the weights outside Ω to zero allows P FreeB and P NoRect to be satisfied as well. However, this method "assumes that the slope and weight maps are given". But such a weight map is a crucial clue, and the following assertion somehow avoids the problem: "practical integration algorithms require the user to provide a weight map". A similar approach is followed by Wang, Bu, Li, Song and Tan in [START_REF] Wang | Detecting Discontinuities for Surface Reconstruction[END_REF], but the weight map is binary and automatically computed. In addition to the gradient map, the photometric stereo images themselves are required. Eight cues are used by two SVM classifiers, which have to be trained using synthetic labelled data. Even if the results are nice, the proposed method seems rather difficult to manage in practice, and clearly loses P Fast and P NoPar .

In [4, 5], Badri, Yahia and Aboutajdine resort to L p norms, p ∈ ]0, 1[. As p decreases, the L 0 norm is approximated, which is a sparse estimator well adapted to outliers. Indeed, the combination of four terms allows Badri et al. to design a method which simultaneously handles noise and outliers, thus ensuring that P Robust and P Disc are satisfied. However, since the problem becomes non-convex, the proposed half-quad resolution 18 http://www.ic.unicamp.br/stolfi/EXPORT/projects/ photo-stereo/ is iterative and requires a good initialization: P Fast is lost. It happens that neither P NoPar is satisfied. Finally, each iteration resorts to FFT, which implies a rectangular domain and a periodic boundary condition, hence P FreeB and P NoRect are not satisfied either.

Summary of the Review

Our discussion on the most representative methods of integration is summarized in Table 1, where the methods are listed in chronological order. It appears that none of them satisfies all the required properties, which is not surprising. Moreover, even if accuracy is the most basic property of any 3D-reconstruction technique, let us recall that it would have been impossible in practice to numerically compare all these methods.

In view of Table 1, almost every method differs from all the others, regarding the six selected properties. Of course, it may appear that such a binary (+/-) table is hardly informative, but more levels in each criterion would have led to more arbitrary scores. On the other hand, the number of + should not be considered as a global score for a given method: it happens that a method perfectly satisfies a subset of properties, while it does not care at all about the others.

Conclusion and Perspectives

Even if robustness to outliers was not selected in our list of required properties, let us cite a paper specifically dedicated to this problem. In [START_REF] Du | Robust Surface Reconstruction from Gradient Field Using the L1 Norm[END_REF], Du, Robles-Kelly and Lu compare the L 2 and L 1 norms, as well as a number of M-estimators, faced to the presence of outliers in the normal field: L 1 is shown to be the globally best parry. This paper being worthwhile, one can wonder why it does not appear in Table 1. On the one hand, even if P Robust is satisfied at best, none of the other criteria are considered. On the other hand, let us recall why we did not select robustness to outliers as a pertinent feature: the presence of outliers in the normal field does not have to be compensated by the integration method. In [START_REF] Badri | Robust Surface Reconstruction via Triple Sparsity[END_REF], it is said that "[photometric stereo] can fail due to the presence of shadows and noise", but recall that photometric stereo can be robust to outliers [START_REF] Ikehata | Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces[END_REF][START_REF] Wu | Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery[END_REF].

Another property was ignored: whether the depth can be fixed at some points or not. As integration is a well-posed problem without any additional knowledge on the solution, we considered that this property is appreciable, although not required. Let us however quote, once again, the papers by Horovitz and Kiryati [START_REF] Horovitz | Depth from Gradient Fields and Control Points: Bias Correction in Photometric Stereo[END_REF] and by Kimmel and Yavneh [START_REF] Kimmel | An Algebraic Multigrid Approach for Image Analysis[END_REF], in which this problem is specifically dealt with. Some other works on normal integration have not been mentioned in our review, since they address other problems or do not face the same challenges. Let us first cite a work by Balzer [START_REF] Balzer | Shape from Specular Reflection in Calibrated Environments and the Integration of Spatial Normal Fields[END_REF], in which a specific problem with the normals delivered by deflectometry is highlighted: as noted by Ettl et al. in [START_REF] Ettl | Shape Reconstruction from Gradient Data[END_REF], such normals are usually not noisy, but Balzer points out that they are distant-dependent, which means that the gradient field g = [p, q] also depends on the depth z. The iterative method proposed in [START_REF] Balzer | Shape from Specular Reflection in Calibrated Environments and the Integration of Spatial Normal Fields[END_REF] to solve this more general problem seems to be quite limited, but an interesting extension to normals provided by photometric stereo is suggested: "one could abandon the widespread assumption that the light sources are distant and the lighting directions thus constant".

Finally, Chang et al. address in [START_REF] Chang | Multiview Normal Field Integration Using Level Set Methods[END_REF] the problem of multiview normal integration, which aims at reconstructing a full 3D-shape in the framework of multiview photometric stereo. The original variational formulation [START_REF] Goldman | Shape and Spatially-Varying BRDFs From Photometric Stereo[END_REF] is extended to such normal fields, and the resulting PDE is solved via a level set method, which has to be soundly initialized. The results are nice but are limited to synthetic multiview photometric stereo images. However, this approach should be continued, since it provides complete 3D-models. Moreover, it is noted in [START_REF] Chang | Multiview Normal Field Integration Using Level Set Methods[END_REF] that the use of multiview inputs is the most intuitive way to satisfy P Disc .

As noticed by Agrawal et al. about the range of solutions proposed in [START_REF] Agrawal | What Is the Range of Surface Reconstructions from a Gradient Field?[END_REF], but this is more generally true, "the choice of using a particular algorithm for a given application remains an open problem". We hope this review will help the reader to make up its own mind, faced to so many existing approaches.

Finally, even if none of the reviewed methods satisfies all the selected criteria, this work helped us to develop some new normal integration methods. In a companion paper entitled Variational Methods for Normal Integration [START_REF] Quéau | Variational Methods for Normal Integration[END_REF], we particularly focus on the problem of normal integration in the presence of discontinuities, which occurs as soon as there are occlusions.
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 11 Fig. 1 Orthographic projection: x 1 and x 2 are conjugate to x o 1 and x o 2 , respectively. The visible part of the surface is highlighted in gray. Point x o 2 lies on the occluding contour.
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 515 Fig. 5 (a) Test surface S vase . (b) Gradient field g vase , obtained by sampling of the analytically computed gradient of S vase .(c) Reconstructed surface obtained by integration of g vase , using as reconstruction domain the image of the vase, at convergence of M DC . (d) Same test, but on the whole grid. In both tests, the constant of integration is chosen so as to minimize the RMSE.

Fig. 6

 6 Fig.6(a) Gradient field g face of a face estimated via photometric stereo. (b) Reconstructed surface obtained by integration of g face , using Frankot and Chellappa's method[START_REF] Frankot | A Method for Enforcing Integrability in Shape from Shading Algorithms[END_REF]. Since a periodic boundary condition is assumed, the depth is forced to be the same on the cheek and on the nose. As a consequence, this much distorts the result.

  . With these modifications, the function z u,v indeed satisfies the homogeneous Neumann boundary condition in pixel (0, 0).
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 7 Fig. 7 Reconstructed surfaces obtained by integration of g face (see Figure 6-a), using Simchony, Chellappa and Shao's method [52], and imposing two different boundary conditions. (a) Since the homogeneous Dirichlet boundary condition z = 0 is clearly false, the surface is much distorted. (b) The (Neumann) natural boundary condition provides a much more realistic result.

Table 1

 1 Main methods of integration listed in chronological order.

This is advocated in[START_REF] Tankus | Photometric Stereo under Perspective Projection[END_REF] for the method designed in[START_REF] Horovitz | Depth from Gradient Fields and Control Points: Bias Correction in Photometric Stereo[END_REF].

See for instance Theorem 2.4.2.6 on page 125 in[START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] for the Dirichlet case, and Theorem 2.4.2.7 on page 126 in[START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] for the Neumann case.

A Matlab implementation of the methods presented in this section is available at https://github.com/yqueau/ normal_integration.

Whereas the Fourier transform coefficients of f are denoted by f , the sine and cosine transform coefficients are denoted by f and f , respectively.

If the normal field is estimated via photometric stereo, we suppose that the images are corrupted by an additive Gaussian noise, as recommended in[44]: "in previous work on photometric stereo, noise is [wrongly] added to the gradient of the height function rather than camera images".

This problem is also noted by Saracchini et al. in[START_REF] Saracchini | A Robust Multi-Scale Integration Method to Obtain the Depth From Gradient Maps[END_REF]: "Note that taking finite differences of the reference height map will not yield adequate test data".

Noakes, Kozera and Klette follow the same way as Frankot and Chellappa but, since they use a set I of integrable vector fields which is not spanned by the Fourier basis, they cannot resort to the very efficient Fast Fourier Transform algorithm any more[START_REF] Noakes | The 2-D Leap-Frog: Integrability, Noise, and Digitization[END_REF][START_REF] Noakes | The Lawn-Mowing Algorithm for Noisy Gradient Vector Fields[END_REF].

https://github.com/jonabalzer/iga-integration/ tree/master/core

http://www.amitkagrawal.com/eccv06/ RangeofSurfaceReconstructions.html
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