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Abstract The need for efficient normal integration me-

thods is driven by several computer vision tasks such

as shape-from-shading, photometric stereo, deflectom-

etry, etc. Our work is divided into two papers. In the

present paper entitled Part I: A Survey, we select the

most important properties that one may expect from a

normal integration method, based on a thorough study

of two pioneering works by Horn and Brooks [27] and

by Frankot and Chellappa [19]. Apart from accuracy,

an integration method should at least be fast and ro-

bust to a noisy normal field. In addition, it should be

able to handle both several types of boundary condi-

tion, including the case of a free boundary, and a do-

main of reconstruction of any shape i.e., which is not

necessarily rectangular. It is also much appreciated that

a minimum number of parameters have to be tuned, or

even no parameter at all. Finally, it should preserve the

depth discontinuities. In view of this analysis, we review

most of the existing methods, and conclude that none

of them satisfies all of the required properties. In the

second paper entitled Part II: New Insights, we focus

on the problem of normal integration in the presence of

depth discontinuities, a problem which occurs as soon

as there are occlusions.
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Technical University Munich, Germany
E-mail: yvain.queau@tum.de

J.-D. Durou
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1 Introduction

Computing the 3D-shape of a surface from a set of nor-

mals is a classical problem of 3D-reconstruction called

normal integration. This problem is well-posed, except

that a constant of integration has to be fixed, but its

resolution is not as straightforward as it could appear,

even in the case of a dense discrete normal field i.e.,

when the normal to a surface is known at every pixel of

an image. One may well be surprised that such a sim-

ple problem has given rise to such a large number of

papers. This is probably due to the fact that, like many

computer vision problems, it simultaneously meets sev-

eral requirements. Of course, a method of integration is

expected to be accurate, fast, and robust re noisy data

or outliers, but we will see that several other criteria

are important as well.

The present contribution to the resolution of normal

integration is organized in two parts. In the present

paper entitled Part I: A Survey, a thorough study of

two pioneering works is done: a paper by Horn and

Brooks based on variational calculus [27]; another one

by Frankot and Chellappa resorting to Fourier analy-

sis [19]. This preliminary study allows us to select six

criteria apart from accuracy, through which we intend

to qualitatively evaluate the main existing normal inte-

gration methods. Our survey is summarized in Table 1.

Knowing that, in light of the selected criteria, no exist-

ing method is completely satisfactory, this preliminary

study impels us to suggest several new methods of inte-

gration, which will be found in a second paper entitled

Part II: New Insights.

The organization of the present paper is the follow-

ing. We derive the basic equations of normal integra-

tion in Section 2. Horn and Brooks’ and Frankot and

Chellappa’s methods are reviewed in Section 3. This al-
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lows us, in Section 4, to select several properties that

are required by any normal integration method, and to

comment the most relevant related works. In Section 5,

we conclude that a completely satisfactory method of

integration is still lacking, which justifies the need for

new methods.

2 Basic Equations of Normal Integration

Suppose that, in each point x′ = [u, v]> of the image

of a surface, the unit-length outgoing normal n(u, v) =

[n1(u, v), n2(u, v), n3(u, v)]> is known. Such a function

n constitutes what is called a normal field. Integrating

a normal field consists in searching for three functions

x, y and z (z is usually called the depth, or even the

height) such that the normal to the surface at the ob-

ject point x(u, v) = [x(u, v), y(u, v), z(u, v)]>, which is

conjugate to the image point x′, is equal to n(u, v).

In this section, we recall how to rigorously formulate

this problem when the projection model is either weak-

perspective or perspective. A preliminary version of this

study was originally conducted in [16].

We attach a 3D-frame cxyz to the camera, whose

origin c is located at the optical center and such that

the axis cz coincides with the optical axis (cf. Fig. 1).

The camera is focused on a plane π of equation z = d,

which is conjugate to the image plane π′. In practice, π′

coincides with the focal plane of equation z = f, where

f denotes the focal length.

d

π π′

xp

xw

x

c o

f

x′w

x′p

z

Fig. 1 Orthographic projection: xw is conjugate to x′w. Per-
spective projection: xp is conjugate to x′p.

2.1 Weak-perspective Projection

Under the assumption of weak-perspective projection

(see the points xw and x′w in Fig. 1), x(u, v) and y(u, v)

are worth:
x(u, v) =

d

f
u

y(u, v) =
d

f
v

(1)

Let us introduce the image magnification m = f/d. The

cross product of both partial derivatives ∂uxw and ∂vxw
reads (the dependencies in u and v are omitted, for the

sake of simplicity):

∂uxw × ∂vxw =
1

m2
[−m ∂uz,−m ∂vz, 1]> (2)

This vector being normal to the surface, its cross prod-

uct by n(u, v) is null. This gives us the three following

equations, which are linear with respect to the two un-

knowns ∂uz and ∂vz:
mn3 ∂uz = −n1

mn3 ∂vz = −n2

n2 ∂uz − n1 ∂vz = 0

(3)

System (3) is non-invertible if the rank of its matrix is

less than 2 i.e., if n2
3 = n1 n3 = n2 n3 = 0, which oc-

curs if and only if n3 = 0. This particular case must be

considered with attention, since it means that n(u, v)

is parallel to the image plane π′. Under the assumption

of weak-perspective projection, an image point satisfies

this property if and only if it lies on the occluding con-

tour. Thus, even if the normal is easy to determine for

the image points which lie on the occluding contour (the

normal is parallel to π′ and is normal to this contour),

z cannot be computed for such points.

Now, let us consider the image points which do not

lie on the occluding contour. System (3) is invertible

and its resolution easily gives us the following PDE in z:

∇z =
1

m
[p, q]> (4)

where the following classical notations are used:
p = −n1

n3

q = −n2

n3

(5)

Thus, the problem of integrating a normal field is the

same as integrating the gradient of z. The resolution of

Eq. (4) is straightforward:

z(u, v) = z(u0, v0) +
1

m

∫ (u,v)

(r,s)=(u0,v0)

[p(r, s) dr + q(r, s) ds] (6)



Normal Integration – Part I: A Survey 3

regardless of the integration path between some point

(u0, v0) and (u, v), as soon as p and q satisfy the con-

straint of integrability ∂vp = ∂uq (Schwartz theorem).

Otherwise, the integral in Eq. (6) would depend on the

integration path. If there is no point (u0, v0) where z

is known, it follows from Eq. (6) that z(u, v) is com-

putable up to an additive constant. In such a case, the

root mean square error (RMSE) in z depends on this

constant which is chosen, in the tests, so that the RMSE

is minimal.

2.2 Perspective Projection

Under the assumption of perspective projection (see

the points xp and x′p in Fig. 1), x(u, v) and y(u, v) are

worth:
x(u, v) =

z(u, v)

f
u

y(u, v) =
z(u, v)

f
v

(7)

The cross product of ∂uxp and ∂vxp is a little more

complicated to compute than in the weak-perspective

case:

∂uxp×∂vxp =
z

f2
[−f ∂uz,−f ∂vz, z+u ∂uz+v ∂vz]

> (8)

Knowing that this vector is parallel to n(u, v), this gives

us the three following equations:
f n3 ∂uz + n1 [z + u ∂uz + v ∂vz] = 0

f n3 ∂vz + n2 [z + u ∂uz + v ∂vz] = 0

n2 ∂uz − n1 ∂vz = 0

(9)

Since this system is homogeneous in z, it is useful to

introduce the following change of variable:

z̃ = ln |z| (10)

Thus, we obtain three equations which are linear with

respect to the two unknowns ∂uz̃ and ∂v z̃:
[f n3 + un1] ∂uz̃ + v n1 ∂v z̃ = −n1

un2 ∂uz̃ + [f n3 + v n2] ∂v z̃ = −n2

n2 ∂uz̃ − n1 ∂v z̃ = 0

(11)

This last system is non-invertible if the rank of its ma-

trix is less than 2, i.e.:
f n3 [un1 + v n2 + f n3] = 0

−n1 [un1 + v n2 + f n3] = 0

−n2 [un1 + v n2 + f n3] = 0

(12)

As n1, n2 and n3 cannot simultaneously vanish, because

n is a unit-length vector, System (12) holds if and only

if un1+v n2+f n3 = 0. Knowing that x′p−c = [u, v, f]>,

it happens that un1 +v n2 + f n3 = (x′p−c) ·n (Fig. 1).

Therefore, as in the weak-perspective case, System (12)

holds if and only if the image point x′p lies on the occlud-

ing contour (which differs from the previous occluding

contour, defined under weak-perspective projection).

If we consider the image points which do not lie on

the occluding contour, System (11) is invertible and its

resolution gives us a PDE in z̃:

∇z̃ = [p̃, q̃]> (13)

where p̃ and q̃ stand for the following expressions:
p̃ = − n1

un1 + v n2 + f n3

q̃ = − n2

un1 + v n2 + f n3

(14)

As in the weak-perspective case, the problem of inte-

grating a normal field is that of integrating the gradient

of z̃. Solving Eq. (13) is straightforward:

z̃(u, v) = z̃(u0, v0)+

∫ (u,v)

(r,s)=(u0,v0)

[p̃(r, s) dr + q̃(r, s) ds] (15)

From (15) and (10), we deduce:

z(u, v) = z(u0, v0) exp

{∫ (u,v)

(r,s)=(u0,v0)

[p̃(r, s) dr + q̃(r, s) ds]

}
(16)

Once again, Eqs. (15) and (16) hold if and only if p̃ and

q̃ satisfy the constraint of integrability ∂vp̃ = ∂uq̃ (see

Section 2.3).

It follows from Eq. (16) that z can be computed up

to a multiplicative constant. Notice also that (14), and

therefore (16), require that the focal length f is known,

as well as the location of the principal point o, since

the coordinates u and v depend on it.

The strict similarity between (4) and (13) shows us

that any normal integration method can be extended

to the perspective case, provided that the intrinsic pa-

rameters of the camera are known1. Let us emphasize

that this possible extension to perspective projection

is generic i.e., it is not restricted to a given method

of integration. So we can limit ourselves to solve the

following equation:

∇z(u, v) = g(u, v) (17)

where (z,g) = (z, 1
m [p, q]>) in the weak-perspective

case, and (z,g) = (z̃, [p̃, q̃]>) in the perspective case.

In both cases, we will denote for simplicity:

g(u, v) =

[
p(u, v)

q(u, v)

]
(18)

1 In [51], such an extension is advocated for the integration
method designed in [29].
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2.3 Integration Using Quadratic Regularization

Knowing that any method of integration can be ex-

tended to the perspective case thanks to the change of

variable (10), we do not care more whether the projec-

tion is weak-perspective or perspective. From now, we

just have to solve the generic equation (17).

As already noticed, the solution (6) of Eq. (4), or

the solution (15) of Eq. (13), are independent from the

integration path if and only if the constraint of integra-

bility ∂vp = ∂uq, or ∂vp̃ = ∂uq̃, are satisfied. A normal

field is never rigorously integrable (or curl-free) in prac-

tice. Apart from using several integration paths and

then taking the means of the integrals [12,25,57], the

most natural way to deal with the lack of integrability

is to consider Eq. (17) as an optimization problem [27].

Using quadratic regularization, this amounts to mini-

mizing the following functional:

FL2(z) =

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖2 dudv (19)

where Ω ⊂ R2 denotes the domain of integration, and

g = [p, q]> is the datum of the problem, which we call

the gradient field. This functional is strictly convex in

∇z, but it does not admit a unique minimizer z∗ since,

for any constant K ∈ R, FL2
(z∗ +K) = FL2

(z∗).

The minimization of FL2
(z) requires that the associ-

ated Euler-Lagrange equation is satisfied. The calculus

of variation provides us with the following:

∇FL2
(z) = 0 ⇐⇒ −2 div (∇z − g) = 0 (20)

This necessary condition is rewritten as the following

Poisson equation2:

∆z = ∂up+ ∂vq (21)

Solving Eq. (21) is not a sufficient condition for min-

imizing FL2
(z), but this is the case if z is known on

the boundary ∂Ω of Ω (Dirichlet boundary condition),

see [38] and the references therein. In the absence of

such boundary condition, the so-called natural bound-

ary condition, which is of the Neumann type, must be

considered. In the case of FL2
(z), this boundary condi-

tion is written [27]:

(∇z − g) · η = 0 (22)

where η is the outer unit-length normal to the boundary

∂Ω in the image plane.

Solving the same Poisson equation (21), but using

different boundary conditions, one could expect that

2 Similar equations arise in several computer vision prob-
lems [3,44,49].

both solutions would coincide on most part of Ω, but

this is not true. For a given gradient field g, the choice of

a boundary condition, including the natural boundary

condition when only g is known, has a great influence

on the 3D-reconstructed shape. This is noted in [27]:

“[Eq. (21)] does not uniquely specify a solution without

further constraint. In fact, we can add any harmonic

function to a solution to obtain a different solution also

satisfying” Eq. (21). A harmonic function is a solution

of the Laplace equation:

∆z = 0 (23)

As an example, let us search for the harmonic func-

tions taking the particular form z(u, v) = z1(u) z2(v).

Writing Eq. (23), and knowing that z(u, v) 6= 0 implies

z1(u, v) 6= 0 and z2(u, v) 6= 0, we obtain:

z′′1 (u)

z1(u)
= −z

′′
2 (v)

z2(v)
(24)

Both sides of Eq. (24) must thus be equal to a common

constant K ∈ R. Two cases may occur, according to

the sign of K. For K = −ω2, ω ∈ R:{
z′′1 (u) + ω2 z1(u) = 0

z′′2 (v)− ω2 z2(v) = 0
=⇒

{
z1(u) = z1(0) ejωu

z2(v) = z2(0) eωv

(25)

where j is such that j2 = −1. Finally, we obtain:

z(u, v) = z(0, 0) eω(ju+v) (26)

Note that a real harmonic function defined on R2

can be considered as the real part or as the imaginary

part of a holomorphic function. All the functions of the

form (26) are indeed holomorphic. Their real and imag-

inary parts thus provide us with the following two fam-

ilies of harmonic functions:

{cos(ωu) eωv}ω∈R ; {sin(ωu) eωv}ω∈R (27)

Adding to a given solution of the Poisson equation (21)

any linear combination of these harmonic functions (the-

re exist many others), we obtain other solutions of the

same equation. The way to select the right solution is

to carefully manage the boundary. In the case of a free

boundary, the variational calculus tells us that min-

imizing FL2
(z) requires that Eq. (22) is imposed on

the boundary, but we know that the solution is still

non-unique, since it is known up to an additive con-

stant. The same conclusion holds true for any Neu-

mann boundary condition. On the other hand, as soon

as Ω is bounded, a Dirichlet boundary condition en-

sures uniqueness of the solution, but not existence.
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3 Two Pioneering Normal Integration Methods

Before a more exhaustive review, we first make a thor-

ough study of two pioneering normal integration meth-

ods which have very different peculiarities. This will

allow us to detect the most important properties that

one may expect from any method of integration.

3.1 Horn and Brooks’ Method

A well-known normal integration method due to Horn

and Brooks [27], which we denote byMHB, attempts to

minimize the following discrete approximation of FL2
(z),

where the (u, v) denote the pixels of a square 2D-grid:

FL2
(z) =

∑
(u,v)∈Ω1

[
zu+1,v − zu,v

δ
− pu+1,v + pu,v

2

]2

+
∑

(u,v)∈Ω2

[
zu,v+1 − zu,v

δ
− qu,v+1 + qu,v

2

]2

(28)

In (28), δ is the distance between neighbouring pixels

(in the following, the scale is chosen so that δ = 1),

Ω1 denotes the set of pixels (u, v) ∈ Ω such that (u +

1, v) ∈ Ω, Ω2 the set of pixels (u, v) ∈ Ω such that

(u, v+1) ∈ Ω, and z the vector [zu,v](u,v)∈Ω̊ , where Ω̊ =

Ω\∂Ω is the set of pixels (u, v) ∈ Ω whose four nearest

neighbours are inside Ω. Horn and Brooks suppose that

the values zu,v, for (u, v) ∈ ∂Ω, are known. This means

that a Dirichlet boundary condition is considered.

For any point (u, v) ∈ Ω̊, one gets from (28) and

from the characterization ∇FL2
= 0 of an extremum:

zu+1,v + zu−1,v + zu,v+1 + zu,v−1 − 4 zu,v

=
pu+1,v − pu−1,v

2
+
qu,v+1 − qu,v−1

2
(29)

Eqs. (29), for (u, v) ∈ Ω̊, form a discrete approxima-

tion of the Poisson equation (21), if finite differences

to the second order are used to approximate both the

Laplacian and the divergence. As stated in [24], other

choices can be considered, as long as the orders of the

finite differences are consistent. In [27], Eqs. (29) are

solved using a Jacobi iteration:

zk+1
u,v =

zku+1,v + zku−1,v + zku,v+1 + zku,v−1

4

−pu+1,v − pu−1,v

8
− qu,v+1 − qu,v−1

8

(30)

The initialization is not a cause for concern, since FL2
(z)

is convex. Moreover, it is standard to show the conver-

gence of this scheme [50], but it converges very slowly

if the initialization is far from the solution [16].

3.2 Improvement of Horn and Brooks’ Method

Dirichlet boundary conditions are rarely available in

practice, but MHB can be extended, in order to prop-

erly manage any Neumann boundary condition, includ-

ing the natural boundary condition (22). An improved

version of Horn and Brooks’ method, originally designed

by Durou and Courteille in [16] and denoted by MDC,

considers all the values zu,v as unknowns i.e., even for

(u, v) ∈ ∂Ω. Of course, the equation ∂FL2
/∂zu,v = 0

does not take the form (29) any more, for (u, v) ∈ ∂Ω.

Let us take the example of a pixel (u, v) ∈ ∂Ω such that

(u+1, v) and (u, v+1) are inside Ω, while (u−1, v) and

(u, v−1) are outside Ω (cf. Fig. 2). Then, (29) must be

replaced with:

zu+1,v + zu,v+1− 2 zu,v =
pu+1,v + pu,v

2
+
qu,v+1 + qu,v

2
(31)

On the other hand, since η = −
√

2/2 [1, 1]> is a plau-

sible outer unit-length normal to the boundary ∂Ω in

this case, the natural boundary condition (22) reads:

∂uz − p+ ∂vz − q = 0 (32)

It is obvious that (31) is a discrete approximation of

(32). More generally, it is easily shown that the equation

∂FL2/∂zu,v = 0, for any (u, v) ∈ ∂Ω, is the discrete

approximation of the natural boundary condition (22).

η D

u

v

(u, v − 1)

(u− 1, v)

(u+ 1, v)

(u, v + 1)(u, v)

Fig. 2 Only the black pixels are inside Ω. The straight line
D is a plausible approximation of the tangent to ∂Ω at (u, v).

Therefore, this simple idea suffices to design an im-

proved version MDC of MHB which does not require

any extra knowledge on z, except that z has to be

fixed at one point of Ω, because of the additive con-

stant z(u0, v0) in (6) or z̃(u0, v0) in (15). However, even

if it is recommended to fix z(u0, v0) from a computa-

tional point of view, in order to avoid a possible drift,

the choice of this constant has no importance at all.

We choose it so that the RMSE is minimal, as soon as
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the ground truth is available3. Otherwise, it is chosen

so that the mean of z is equal to zero.

Let us test MHB and MDC on the surface Svase

shown in Fig. 3-a, which models a half-vase lying on a

flat ground. To this end, we discretize the analytically

computed gradient field of Svase on a regular grid of

size 312 × 312, and we first use as domain of integra-

tion Ωvase the set of points which lie on the vase. We

suppose that the only data are Ωvase and the gradient

of Svase. Since the method MHB requires the knowl-

edge of the depth on the boundary, we fix z = 0 on

∂Ωvase. Knowing that this is clearly false at the top

and at the bottom of the vase, the result will proba-

bly be degraded. The 3D-reconstructions obtained at

convergence, usingMHB (with the boundary condition

z = 0) and MDC (with the natural boundary condi-

tion), are shown in Figs. 3-b and 3-c. The second result

is qualitatively much better, since the top and the bot-

tom of the vase are not flattened. This is confirmed by

the RMSE. We conclude thatMDC improves Horn and

Brooks’ original methodMHB a lot, when the depth is

neither known nor equal to 0 on the boundary.

On the other hand, it is well-known that quadratic

regularization is not well-adapted to discontinuities. Let

us now test MDC on the whole gradient field of Svase

i.e., using the whole grid of size 312 × 312 as domain

of integration. The 3D-reconstruction at convergence

is shown in Fig. 3-d. It is not satisfactory, since the

discontinuities are not preserved, which is numerically

confirmed by the RMSE. We know that removing the

flat ground from the domain of integration suffices to

reach a better result (cf. Fig. 3-c), since this eliminates

any depth discontinuity from the domain of integration.

However, this requires a preliminary segmentation of

the scene, which is known to be a hard task, and also

requires that the integration can be carried out on a

non-rectangular domain of integration.

3.3 Frankot and Chellappa’s Method

A more general approach to overcome the possible non-

integrability of the gradient field g = [p, q]> is to first

define a set I of integrable vector fields i.e., of vector

fields of the form ∇z, and then compute the projection

∇z̄ of g on I i.e., the vector field ∇z̄ of I the clos-

est to g, according to some norm. Afterwards, the (ap-

proximate) solution of Eq. (17) is easily obtained using

Eq. (6) or Eq. (16), since ∇z̄ is integrable. Nevertheless,

the boundary conditions can be complicated to man-

age, because I depends on which boundary condition

3 The same procedure is used by Klette and Schlüns in [35]:
“The reconstructed height values are shifted in the range of
the original surface using LSE optimization”.

is imposed (including the case of the natural bound-

ary condition). It is noticed in [2] that minimizing the

functional FL2
(z) amounts to following this general ap-

proach, in the case where I contains all integrable vec-

tor fields and the Euclidean norm is used.

The most cited normal integration method, due to

Frankot and Chellappa [19], follows this approach in

the case where the Fourier basis is considered. Let us

use the standard definition of the Fourier transform:

f̂(ωu, ωv) =

∫∫
(u,v)∈R2

f(u, v) e−jωu u e−jωv v dudv (33)

where the pulsations (ωu, ωv) are real. Computing the

Fourier transforms of both sides of Eq. (21), we obtain:

−(ω2
u + ω2

v) ẑ(ωu, ωv) = jωu p̂(ωu, ωv) + jωv q̂(ωu, ωv)

(34)

For any (ωu, ωv) such that ω2
u + ω2

v 6= 0, Eq. (34) gives

us the following expression of ẑ(ωu, ωv):

ẑ(ωu, ωv) =
ωu p̂(ωu, ωv) + ωv q̂(ωu, ωv)

j (ω2
u + ω2

v)
(35)

Indeed, computing the inverse Fourier transform of the

expression (35) of ẑ(ωu, ωv) provides us a solution of

Eq. (21). This method of integration [19], denoted by

MFC, is very fast thanks to the FFT algorithm.

The Fourier transform can be confusing: with the

alternative definition using frequencies instead of pul-

sations, a 2π factor would arise in the denominator of

the right member of Eq. (35). In [39], it is written that

the accuracy of Frankot and Chellappa’s method relies

on a good input scale: we guess that this scale is (2π)−1.

Since Eq. (35) is not defined if (ωu, ωv) = (0, 0),

Frankot and Chellappa assert that it “simply means

that we cannot recover the average value of z without

some additional information”. This is true but incom-

plete, becauseMFC provides the solution of Eq. (21) up

to the addition of a harmonic function over Ω. Sarac-

chini et al. note in [48] that “the homogeneous version

of Eq. (21) is satisfied by an arbitrary linear function

of position z(u, v) = a u + b v + c, which when added

to any solution of Eq. (21) will yield infinitely many

additional solutions”. Affine functions are harmonic in-

deed, but we know from Section 2.3 that many other

harmonic functions also exist.

Applying MFC to the gradient field of Svase would

give us a similar result to that of Fig. 3-d, but much

faster, if the domain of integration is equal to the whole

grid. However, such a result as that of Fig. 3-c could

not be reached, since MFC is not designed to manage

a non-rectangular domain Ω.
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(a) Surface Svase (b) MHB: RMSE = 5.67

(c) MDC: RMSE = 0.93 (d) MDC: RMSE = 4.51

Fig. 3 (a) Surface Svase. 3D-reconstructions obtained by integration of the gradient field of Svase, when the domain of
integration Ωvase contains only the pixels lying on the vase, applying: (b) 100 iterations of MHB; (c) 100 iterations of MDC.
(d) 3D-reconstruction obtained by integration of the gradient field of Svase, if the domain of integration is equal to the whole
grid, applying 100 iterations of MDC. In order to limit the bias, it is important both to use the natural boundary condition
and to appropriately handle depth discontinuities.

On the other hand, MFC works well if and only if

the surface to be reconstructed is periodic. This clearly

appears in the example of Fig. 4: the gradient field of a

face (cf. Fig. 4-a), estimated via photometric stereo [54],

is integrated usingMFC, which results in the 3D-recons-

truction shown in Fig. 4-b. Since the real shape is non-

periodic, this method much distorts the 3D-reconstruc-

tion. This failure ofMFC was first exhibited by Harker

and O’Leary in [22], who show on some examples that

the solution provided by MFC is not always a mini-

mizer of the functional FL2
(z). They moreover explain:

“The fact that the solution [of Frankot and Chellappa]

is constrained to be periodic leads to a systematic bias

in the solution” (this periodicity is clearly visible on

the recovered shape of Fig. 4-b). Harker and O’Leary

also conclude that “any approach based on the Euler-

Lagrange equation is only valid for a few special cases”.

As we will see, this assertion is exaggerated.

3.4 Improvements of Frankot and Chellappa’s Method

A first improvement of MFC suggested by Simchony,

Chellappa and Shao in [49] consists in solving the dis-

crete approximation (29) of the Poisson equation using

the discrete Fourier transform, instead of discretizing

the solution (35) of the Poisson equation (21).

Consider a rectangular domainΩ = [0, du]×[0, dv] ⊂
R2, and choose a lattice of m×n equally spaced points

(udum , v
dv
n ), u ∈ [0,m−1], v ∈ [0, n−1]. Let us denote by

fu,v the value of a function f : Ω → R at (udum , v
dv
n ).

The standard definition of the discrete Fourier trans-

form of f is as follows, for k ∈ [0,m−1] and l ∈ [0, n−1]:

f̂k,l =

m−1∑
u=0

n−1∑
v=0

fu,v e
−j2π uk

m e−j2π
vl
n (36)
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(a) (b)

Fig. 4 (a) Gradient field estimated via photometric stereo. (b) Integration using a periodic boundary condition [19]. The depth
is exactly the same on the left and right edges, i.e. on the cheek and on the nose, which much distorts the 3D-reconstruction.

The inverse transform of (36) reads:

fu,v =
1

mn

m−1∑
k=0

n−1∑
l=0

f̂k,l e
+j2π ku

m e+j2π lv
n (37)

Replacing any term in (29) by its inverse discrete

Fourier transform of the form (37), and knowing that

the Fourier family is a basis, we obtain:

2
[
cos
(
2π k

m

)
+ cos

(
2π l

n

)
− 2
]
ẑk,l

= j
[
sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l
] (38)

Eq. (38) does not provide us any information on ẑ0,0.

On the other hand, as soon as (k, l) 6= (0, 0), Eq. (38)

gives us the expression of ẑk,l:

ẑk,l =
sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l

4j
[
sin2

(
π k
m

)
+ sin2

(
π l
n

)] (39)

which is rewritten by Simchony et al. as follows:

ẑk,l =
sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l

j

[
sin2(2π k

m )
cos2(π k

m )
+

sin2(2π l
n )

cos2(π l
n )

] (40)

Comparing (33) and (36) shows us that ωu corre-

sponds to 2π k
m and ωv to 2π l

n . Using these correspon-

dences, we would expect to be able to identify (35)

and (40). This is true if sin
(
2π k

m

)
and sin

(
2π l

n

)
tend

toward 0, and cos2
(
π k
m

)
and cos2

(
π l
n

)
tend toward 1,

which occurs if k takes either the first values or the

last values inside [0,m − 1], and the same for l inside

[0, n − 1], which is interpreted by Simchony et al. as

follows: “At low frequencies our result is similar to the

result obtained in [19]. At high frequencies we atten-

uate the corresponding coefficients since our discrete

operator has a low-pass filter response [...] the surface

z obtained in [19] may suffer from high frequency oscil-

lations”. Actually, the low values of k and l correspond

to the lowest values of ωu and ωv inside R+, and the

high values of k and l may be interpreted as the lowest

absolute values of ωu and ωv inside R−.

On the other hand, using the inverse discrete Fourier

transform (37), the solution of (29) which follows from

(39) will be periodic in u with period du, and in v with

period dv. This means that zm,v = z0,v, for v ∈ [1, n],

and zu,n = zu,0, for u ∈ [1,m]. The discrete Fourier

transform is therefore appropriate only for problems

which satisfy periodic boundary conditions.

Other improvements of MFC due to Simchony et

al. are to suggest that using the discrete sine transform

or the discrete cosine transform would be more appro-

priate if the problem involves, respectively, Dirichlet or

Neumann boundary conditions.

Dirichlet Boundary Condition Any function that is ex-

pressed in the form of an inverse discrete sine transform:

fu,v =
4

mn

m−1∑
k=1

n−1∑
l=1

f̄k,l sin

(
π
ku

m

)
sin

(
π
lv

n

)
(41)

satisfies the homogeneous Dirichlet condition fu,v = 0

on the boundary of the discrete domain Ω = [0,m] ×
[0, n] i.e., for u = 0, u = m, v = 0, and v = n.

To solve (29) on a rectangular domain Ω with the

homogeneous Dirichlet condition zu,v = 0 on ∂Ω, we

can therefore write zu,v as in (41). This is still possible

for a non-homogeneous Dirichlet boundary condition:

zu,v = bDu,v for (u, v) ∈ ∂Ω (42)

A first solution would be to solve a pair of problems.

Suppose, on the one hand, that z0
u,v is a solution of the
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equations (29) written in the form (41), and on the

other hand, that hu,v is a harmonic function on Ω (see

Section 2.3) that satisfies the boundary condition (42).

Then, z0
u,v+hu,v is a solution of the equations (29) that

satisfies this boundary condition.

But it is much easier to replace zu,v by zu,v − bDu,v
on ∂Ω. This trick has two advantages. First, it does not

change zu,v on Ω̊ i.e., where it is unknown. Second, the

Dirichlet boundary condition satisfied by this new defi-

nition of zu,v is homogeneous, so we can actually write

zu,v on Ω̊ under the form (41). In practice, we just have

to change the second members of the equations (29) for

the points of Ω which are adjacent to the boundary ∂Ω.

For all v ∈ [1, n− 1] and all u ∈ [1,m− 1]:

gD1,v =
p2,v − p0,v

2
+
q1,v+1 − q1,v−1

2
− bD0,v

gDm−1,v=
pm,v − pm−2,v

2
+
qm−1,v+1 − qm−1,v−1

2
− bDm,v

gDu,1 =
pu+1,1 − pu−1,1

2
+
qu,2 − qu,0

2
− bDu,0

gDu,n−1 =
pu+1,n−1 − pu−1,n−1

2
+
qu,n − qu,n−2

2
− bDu,n

(43)

Using the fact that the products of sine functions

in (41) form a free family, we get from (29) and (41):

z̄k,l = −
ḡDk,l

4
(
sin2 πk

2m + sin2 πl
2n

) , (k, l) ∈ [1,m−1]×[1, n−1]

(44)

From (44), we easily deduce zu,v using the inverse dis-

crete sine transform (41).

Neumann Boundary Condition The reasoning is simi-
lar in the case of a Neumann boundary condition. Any

function that is expressed in the form of an inverse dis-

crete cosine transform4:

fu,v =
4

mn

m∑
k=0

n∑
l=0

¯̄fk,l cos

(
π
ku

m

)
cos

(
π
lv

n

)
(45)

satisfies the homogeneous Neumann boundary condi-

tion ∇fu,v · ηu,v = 0 on ∂Ω, as soon as the following

discrete approximation of the gradient is used:

∇fu,v ≈
1

2

[
fu+1,v − fu−1,v

fu,v+1 − fu,v−1

]
(46)

To solve Eqs. (29) on a rectangular domain Ω with

the homogeneous Neumann condition ∇zu,v · ηu,v = 0

on ∂Ω, we can therefore write zu,v as in (45). This is

4 Note that, in the definitions of the three inverse discrete
transforms (37), (41) and (45), the sums on k and l are done
on three different pairs of intervals.

still possible for a non-homogeneous Neumann bound-

ary condition:

∇zu,v · ηu,v = bNu,v for (u, v) ∈ ∂Ω (47)

by changing the definition of zu,v on the outer bound-

ary of Ω5, which has the same two advantages as previ-

ously. First, this does not change zu,v on Ω i.e., where it

is unknown. Second, the Neumann boundary condition

satisfied by this new definition of zu,v is homogeneous,

so we can actually write zu,v on Ω under the form (45).

In practice, we just have to change the second mem-

bers of the equations (29) for the points of ∂Ω. For all

v ∈ [1, n− 1] and all u ∈ [1,m− 1]:

gN0,v = p1,v − p0,v +
q0,v+1 − q0,v−1

2
+ 2 bN0,v

gNm,v = pm,v − pm−1,v +
qm,v+1 − qm,v−1

2
+ 2 bNm,v

gNu,0 =
pu+1,0 − pu−1,0

2
+ qu,1 − qu,0 + 2 bNu,0

gNu,n =
pu+1,n − pu−1,n

2
+ qu,n − qu,n−1 + 2 bNu,n

(48)

Moreover, in the four corners of ∂Ω:
gN0,0 = p1,0 − p0,0 + q0,1 − q0,0 + 2

√
2 bN0,0

gN0,n = p1,n − p0,n + q0,n − q0,n−1 + 2
√

2 bN0,n
gNm,0 = pm,0 − pm−1,0 + qm,1 − qm,0 + 2

√
2 bNm,0

gNm,n = pm,n − pm−1,n + qm,n − qm,n−1 + 2
√

2 bNm,n

(49)

Knowing that the products of cosine functions in (45)

form a free family, we get from (29) and (45):

¯̄zk,l = −
¯̄gNk,l

4
(
sin2 πk

2m + sin2 πl
2n

) , (50)

∀(k, l) ∈ [0,m]× [0, n], except (k, l) = (0, 0) or (k, l) =

(m,n). Indeed, we cannot determine the coefficients ¯̄z0,0

and ¯̄zm,n, which simply means that the solution of the

Poisson equation using a Neumann boundary condition

(as, for instance, the natural boundary condition) is

computable up to an additive constant, because the

terms which correspond to the coefficients ¯̄f0,0 and ¯̄fm,n
in the double sum of (45) do not depend on (u, v). Keep-

ing this point in mind, we easily deduce zu,v from (50)

using the inverse discrete cosine transform (45).

Accordingly, the method MSCS designed by Sim-

chony, Chellappa and Shao in [49] works well even if the

surface to be reconstructed is non-periodic (cf. Fig. 5-

b). Knowing moreover that it is as fast as MFC, we

conclude thatMSCS improves Frankot and Chellappa’s

original method a lot. Let us however note that the

5 This is a bit more complicated than in the previous case,
since the outgoing unit-length normal ηu,v can have eight
different orientations on ∂Ω.
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(a) (b)

Fig. 5 (a) Integration of the gradient field of Fig. 4-a using the homogeneous Dirichlet boundary condition z = 0: since this is
clearly false, the 3D-reconstruction is much distorted. (b) Integration using the (Neumann) natural boundary condition [49].
The natural boundary condition provides much more realistic results.

resolution of the discrete Poisson equation we just de-

scribed in the case of a Dirichlet or Neumann boundary

condition does not exactly match the methodMSCS de-

scribed in [49], but is rather intended to be pedagogic.

On the other hand, the useful property of the so-

lutions (41) and (45) i.e., they satisfy a homogeneous

Dirichlet or Neumann boundary condition, is obviously

valid only if the domain of integration Ω is rectangular.

This trick is hence not useable for any other form of do-

main Ω. It is claimed in [49] that embedding techniques

can extendMSCS to non-rectangular domains, but this

is not really proved. As a consequence, such a result as

that of Fig. 3-c could not be reached applyingMSCS to

the gradient field of Svase: the result would be the same

as that of Fig. 3-d.

4 Main Normal Integration Methods

4.1 A List of Expected Properties

This may appear as a truism, but a basic requirement

of 3D-reconstruction is accuracy. Anyway, the evalua-

tion/comparison of 3D-reconstruction methods is a dif-

ficult challenge. On the one hand, it may happen that

some methods require more data than the others, which

makes the evaluation/comparison biased in some sense.

On the other hand, it usually happens that the choice of

the benchmark has a great influence on the final rank-

ing. Finally, it is a hard task to implement a method

just from its description, which gives in practice a sub-

stantial advantage to the designers of a ranking pro-

cess, whatever their methodology, in the case when they

also promote their own method. In Section 4.3, we will

review the main existing normal integration methods.

However, in accordance with these remarks, we do not

intend to evaluate their accuracy. We will instead quote

their main features.

In view of the detailed reviews of the methods of

Horn and Brooks and of Frankot and Chellappa (see

Section 3), we may expect, apart from accuracy, five

other properties from any normal integration method:

• PFast: The desired method should be as fast as pos-

sible.

• PRobust: It should be robust to a noisy normal field.

If the normal field is estimated through photomet-

ric stereo, we suppose that the images are corrupted

by an additive Gaussian noise, as recommended in

[42]: “in previous work on photometric stereo, noise

is [wrongly] added to the gradient of the height func-

tion rather than camera images”.

• PFreeB: The method should be able to handle a free

boundary. Accordingly, each method aimed at solv-

ing the Poisson equation (21) should be able to solve

the natural boundary condition (29) in the same

time.

• PDisc: The method should preserve the depth discon-

tinuities. This property could allow us to use photo-

metric stereo on a whole image, without segmenting

the scene into different parts without discontinuity.

• PNoRect: The method should be able to work on a

non-rectangular domain. This happens when pho-

tometric stereo is applied to an object with back-
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ground. This property could partly remedy a method

which would not satisfy PDisc, knowing that segmen-

tation is usually easier to manage than preserving

the depth discontinuities.

An additional property would also be much appreci-

ated:

• PNoPar: The method should have no parameter to

tune (only the critical parameters are involved here).

In practice, tuning more than one parameter means

that an expert of the method is needed. One pa-

rameter is often considered as acceptable, but no

parameter is even better.

4.2 Integration and Integrability

Among the required properties, we did not explicitly

quote the ability of a method to deal with non-integrable

normal fields, but this is implicitly expected through

PRobust and PDisc. In other words, the two sources of

non-integrability that we consider are noise and depth

discontinuities. A normal field estimated using shape-

from-shading could be very far from being integrable,

because of the ill-posedness of this technique, to such

a point that integrability is sometimes used to disam-

biguate the problem [19,27]. Also the uncalibrated pho-

tometric stereo problem is ill-posed, and is systemat-

ically disambiguated imposing integrability [60]. How-

ever, we are over all interested in calibrated photometric

stereo with n ≥ 3 images, which is well-posed without

resorting to integrability. An error in the intensity of

one light source is enough to cause a bias [29], and out-

liers may appear in shadow regions [46], thus providing

normal fields that can be highly non-integrable, but we

argue that such defects do not have to be compensated

by the integration method itself. In other words, we

suppose that the only outliers of the normal field we

want to integrate are located on depth discontinuities.

In order to know whether a normal integration me-

thod satisfies PDisc, a shape like Svase (cf. Fig. 3-a) is

well indicated, but a practical mistake must be avoided,

which is not obvious. A discrete approximation of the

integrability term
∫∫

(u,v)∈Ω [∂vp(u, v)−∂uq(u, v)]2 dudv,

which is used in [27] to measure the departure of a gra-

dient field [p, q]> from being integrable, is as follows:

Eint =
∑

(u,v)∈Ω3

[
pu,v+1 − pu,v

δ
− qu+1,v − qu,v

δ

]2

(51)

where Ω3 denotes the set of pixels (u, v) ∈ Ω such that

(u, v + 1) and (u + 1, v) are inside Ω. Let us suppose

in addition that the discrete values pu,v and qu,v are

numerically approximated using the following finite dif-

ferences:
pu,v =

zu+1,v − zu,v
δ

qu,v =
zu,v+1 − zu,v

δ

(52)

Reporting the expressions (52) of pu,v and qu,v in (51),

this always implies Eint = 0. Using such a numeri-

cally approximated gradient field is thus biased, since

it is integrable even in the presence of discontinuities6,

whereas the analytically computed gradient field of Svase

is such that Eint = 390.

4.3 Most Representative Normal Integration Methods

The problem of normal integration is sometimes con-

sidered as solved, because its mathematical formula-

tion is well established (see Section 2), but we will see

that none of the existing methods simultaneously sat-

isfies all the required properties. In the first survey pa-

per on normal integration [35], Klette and Schlüns con-

cluded that “there is a remarkable deficiency of litera-

ture about integration techniques, at least in computer

vision”. Many contributions have appeared afterwards,

as well as several surveys [40,46,48], but a detailed re-

view is still missing.

The way to cope with a possible non-integrable nor-

mal field was seen as a property of primary importance

in the first papers on normal integration. The most ob-

vious way to solve the problem amounts to use differ-

ent paths in the integral of Eq. (6) and to average the

different values. Apart from this approach, which has

given rise to several heuristics [12,25,57], we propose to

separate the main existing normal integration methods

into two classes, depending on whether they care about

discontinuities or not.

4.3.1 Methods which do not care about Discontinuities

According to the discussion conducted in Section 2.3,

the most natural way to overcome non-integrability is

to solve the Poisson equation (21). This approach has

given rise to the method MHB (see Section 3.1), pio-

neered by Ikeuchi in [31] and then detailed by Horn and

Brooks in [27], which has been the source of inspiration

of several subsequent works. The methodMHB satisfies

the property PRobust (much better than the heuristics

cited above), as well as PNoPar (there is no parame-

ter) and PNoRect, but not PFreeB. Another drawback of

6 This problem is also noted by Saracchini et al. in [48]:
“Note that taking finite differences of the reference height
map will not yield adequate test data”.
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MHB is that it does not satisfy PFast, since it uses a Ja-

cobi iteration to solve a large linear system whose size

is equal to the number of pixels inside Ω̊ = Ω\∂Ω. Un-

surprisingly, PDisc is not satisfied by MHB, since this

method does not care about discontinuities.

Frankot and Chellappa address shape-from-shading

using a method which “also can be used as an integra-

tor” [19]. The gradient field is projected on a set I of

integrable vector fields ∇z. In practice, the set of func-

tions z is spanned by the Fourier basis. The method

MFC (see Section 3.3) not only satisfies PRobust and

PNoPar, but also PFast, since it is non-iterative and,

thanks to the FFT algorithm, much faster than MHB.

On the other hand, the domain of integration is im-

plicitly supposed to be rectangular, even if the follow-

ing is claimed: “The Fourier expansion could be formu-

lated on a finite lattice instead of a periodic lattice. The

mathematics are somewhat more complicated [...] and

more careful attention could then be paid to boundary

conditions”. Hence, PNoRect is not really satisfied, not

more than PDisc. Finally, PFreeB is not satisfied, since

the solution is constrained to be periodic, which can

cause large errors7.

Simchony, Chellappa and Shao suggest in [49] a non-

iterative way to solve the Poisson equation (21) us-

ing direct analytical methods (see Section 3.4). As ob-

served by Lee in [37], the discretized Laplacian oper-

ator on a rectangular domain is a symmetric tridiago-

nal Toeplitz matrix if a Dirichlet boundary condition

is used, whose eigenvalues are analytically known. Sim-

chony, Chellappa and Shao show how to use the discrete

sine transform to diagonalize such a matrix. They de-

sign an efficient solver for Eq. (21), which satisfies PFast,

PRobust and PNoPar. Another extension of MSCS to

Neumann boundary conditions using the discrete cosine

transform is suggested, which allows PFreeB to be satis-

fied as well. Even if embedding techniques are supposed

to generalize this method to non-rectangular domains,

PNoRect is not satisfied in practice. Neither is PDisc.

Horovitz and Kiryati improve MHB in three ways

[28,29]. They suggest how to ensure PFreeB. They also

show how to incorporate the depth in some sparse con-

trol points, in order to correct a possible bias in the re-

construction. Finally, they design a coarse-to-fine multi-

grid computation, in order to satisfy PFast
8. This accel-

eration technique however requires a parameter to be

tuned, which loses PNoPar.

7 Noakes, Kozera and Klette follow the same way as
Frankot and Chellappa but, since they use a set I of inte-
grable vector fields which is not spanned by the Fourier basis,
they cannot resort to the very efficient Fast Fourier Transform
algorithm any more [41,43].
8 Goldman et al. do the same using the conjugate gradient

method [21].

As in [19], Petrovic et al. enforce integrability [45],

but the normal field is directly handled under its dis-

crete writing, in a Bayesian framework. Using the no-

tations of Section 3.3, a graphical model is constructed.

An iterative algorithm known as belief propagation is

used to converge towards the MAP estimate of the un-

known surface gradient. It is claimed that “discontinu-

ities are maintained”, but too few results are provided

to decide whether PDisc is really satisfied.

In [34], Kimmel and Yavneh show how to accelerate

the multigrid method designed by Horovitz and Kiry-

ati [28] in the case where “the surface height at specific

coordinates or along a curve” is known, using an alge-

braic multigrid approach. Basically, their method has

the same properties as [28], although PFast is even bet-

ter satisfied.

An alternative derivation of Eq. (35) is yielded by

Wei and Klette in [53], in which the preliminary deriva-

tion of the Euler-Lagrange equation (21) associated to

FL2
(z) is not needed. They claim that “to solve the

minimization problem, we employ the Fourier trans-

form theory rather than variational approach to avoid

using the initial and boundary conditions”, but since

a periodic boundary condition is actually used instead,

PFreeB is not satisfied. They also add two regulariza-

tion terms to the functional FL2(z) given in Eq. (19),

“in order to improve the accuracy and robustness”. The

property PNoPar is thus lost. On the other hand, even

if Wei and Klette note that “[MHB] is very sensitive

to abrupt changes in orientation, i.e., there are large

errors at the object boundary”, their method does not

satisfy PDisc either, whereas we will observe that loos-

ing PNoPar is often the price to satisfy PDisc.

Another method inspired byMFC is that of Kovesi

[36]. Instead of projecting the given gradient field on a

Fourier basis, Kovesi suggests to compute the correla-

tions of this gradient field with the gradient fields of a

bank of shapelets, which are in practice a family of Gaus-

sian surfaces9. This method globally satisfies the same

properties as MFC but, in addition, it can be applied

to an incomplete normal field i.e., to normals whose

tilts are known up to a certain ambiguity10. Although

photometric stereo computes the normals without am-

biguity, this peculiarity could indeed be useful when

a couple of images only is used, or a fortiori a single

image (shape-from-shading), since the problem is not

well-posed in both these cases.

In [26], Ho, Lim, Yang and Kriegman derive from

Eq. (4) the eikonal equation ‖∇z‖2 = p2+q2 (under the

9 According to [2], Kovesi uses “a redundant set of non-
orthogonal basis functions”.
10 http://www.peterkovesi.com/matlabfns/index.html#

shapelet

http://www.peterkovesi.com/matlabfns/index.html#shapelet
http://www.peterkovesi.com/matlabfns/index.html#shapelet
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assumption m = 1), and aspire to use the fast marching

method for its resolution. Unfortunately, this method

requires that the unknown z has a unique global mini-

mum over Ω. Thereby, a more general eikonal equation

‖∇(z + λ f)‖2 = (p + λ∂uf)2 + (q + λ∂vf)2 is solved,

where f is a known function and the parameter λ has to

be tuned so that z+λ f has a unique global minimum.

The main advantage is that PFast is (widely) satisfied.

Nothing is said about robustness, but we guess that er-

ror accumulation occurs as the depth is computed from

the global minimum, level set by level set.

As already explained in Section 3.2, Durou and Cour-

teille improveMHB in [16], in order to satisfy PFreeB
11.

A very similar improvement of MHB is proposed by

Harker and O’Leary in [22]. The latter loses the ability

to handle any domain of integration, whereas the re-

formulation of the problem as a Sylvester equation pro-

vides two appreciable improvements. First, it deals with

matrices of the same size as the initial (regular) grid and

resorts to very efficient solvers dedicated to Sylvester

equations, thus satisfying PFast. Moreover, any form of

discrete derivatives is allowed. In [23,24], Harker and

O’Leary moreover propose several variants including

regularization, which are still written as Sylvester equa-

tions, but one of them loses the property PFreeB, whereas

the others lose PNoPar.

In [17], Ettl et al. propose a method specifically

designed for deflectometry, which aims at measuring

“height variations as small as a few nanometers” and

delivers normal fields “with small noise and curl”, but

the normals are provided on an irregular grid. This is

why Ettl et al. search for an interpolating/approximating

surface rather than for one unknown value per sample.

Of course, this method is highly parametric, but PNoPar

is still satisfied, since the parameters are the unknowns.

Its main problem is that PFast is rarely satisfied, de-

pending on the number of parameters that are used.

The fast-marching method [26] is improved in [20]

by Galliani, Breuss and Ju in three ways. First, the

method by Ho et al. is shown to be inaccurate, due

to the use of analytical derivatives ∂uf and ∂vf in the

eikonal equation, instead of discrete derivatives. An up-

wind scheme is more appropriate to solve such a PDE.

Second, the new method is more stable and the choice

of λ is no more a cause for concern. This implies that

PNoPar is satisfied de facto. Finally, any form of domain

Ω can be handled, but it is not clear whether PNoRect

was not satisfied by the former method yet. Not sur-

prisingly, this new method is not robust, even its if ro-

bustness is improved in a more recent paper [6], but it

11 A preliminary version of this method was already de-
scribed in [13].

can be used as initialization for more robust methods

based, for instance, on quadratic regularization [10].

The integration method proposed by Balzer in [8]

is based on second order shape derivatives, allowing for

the use of a fast Gauss-Newton algorithm. Hence PFast

is satisfied. A careful meshing of the problem, as well as

the use of a finite element method, make PNoRect to be

satisfied. However, for the very same reason, PNoPar is

not satisfied. Moreover, the method is limited to smooth

surfaces, and therefore PDisc cannot be satisfied. Fi-

nally, PRobust can be achieved thanks to a premiminary

filtering step. Balzer and Mörwald design in [9] another

finite element method, where the surface model is based

on B-splines. It satisfies the same properties as the pre-

vious method12.

In [58], Xie et al. deform a mesh “to let its facets

follow the demanded normal vectors”, resorting to dis-

crete geometry processing. As a non-parametric surface

model is used, PFreeB, PNoPar and PNoRect are satisfied.

In order to avoid the oversmoothing effect of many pre-

vious methods, sharp features can be preserved. How-

ever, PDisc is not addressed. On the other hand, PFast is

not satisfied since the proposed method alternates local

and global optimization.

In [59], Yamaura et al. design a new method based

on B-splines, which has the same properties as that

proposed in [9]. But since the latter “relies on second-

order partial differential equations, which is inefficient

and unnecessary, as normal vectors consist of only first-

order derivatives”, a simpler formalism with higher per-

formances is proposed. Moreover, a nice application to

surface editing is exhibited.

4.3.2 Methods which care about Discontinuities

The first work which really addresses the problem of

PDisc is by Karaçali and Snyder [32,33], who show how

to define a new orthonormal basis of integrable vec-

tor fields which can incorporate depth discontinuities.

They moreover show how to detect such discontinu-

ities, in order to partially enforce integrability. The de-

signed method thus satisfies PDisc, as well as PRobust

and PFreeB, but PFast is lost, despite the use of a block

processing technique inspired by the work of Noakes et

al. [41,43]. In accordance with a previous remark, since

it is often the price to satisfy PDisc, PNoPar is also lost.

In [1], Agrawal, Chellappa and Raskar consider the

pixels as a weighted graph, such that the weights are of

the form pu,v+1− pu,v − qu+1,v + qu,v. Each edge whose

weight is greater than a threshold is cut. A minimal

12 https://github.com/jonabalzer/iga-integration/

tree/master/core

https://github.com/jonabalzer/iga-integration/tree/master/core
https://github.com/jonabalzer/iga-integration/tree/master/core
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number of suppressed edges are then restored, in or-

der to reconnect the graph while minimizing the total

weight. As soon as an edge is still missing, one gradient

value pu,v or qu,v is considered as possibly corrupted.

It is shown how these suspected gradient values can

be corrected, in order to enforce integrability “with the

important property of local error confinement”. Neither

PFreeB nor PNoPar is satisfied, and PFast is not guaran-

teed as well, even if the method is non-iterative. More-

over, the following is asserted in [46]: “Under noise, the

algorithm in [1] confuses correct gradients as outliers

and performs poorly”. Finally, PDisc may be satisfied

since strict integrability is no more uniformly imposed

over the entire gradient field.

In [2], Agrawal, Raskar and Chellappa propose a

general framework “based on controlling the anisotropy

of weights for gradients during the integration”13. They

are much inspired by classical image restoration tech-

niques. It is shown how the (isotropic) Laplacian op-

erator in Eq. (21) must be modified using “spatially

varying anisotropic kernels”, thus obtaining four meth-

ods: two based on robust estimation, one on regular-

ization, and one on anisotropic diffusion14. A homo-

geneous Neumann boundary condition ∇z · η = 0 is

assumed, which looks rather unrealistic. Thus, the four

proposed methods do not satisfy PFreeB, neither PFast

nor PNoPar. Nevertheless, a special attention is given to

satisfy PRobust and PDisc.

A similar method to the first one proposed in [2]

is designed by Fraile and Hancock in [18]. A minimum

spanning tree is constructed from the same graph of pix-

els as in [1], except that the weights are different (sev-

eral weights are tested). The integral of Eq. (6) along

the unique path joining each pixel to a root pixel is

then computed. Of course, this method is less robust

than those based on quadratic regularization (or than

the weighted quadratic regularization proposed in [2]),

since “the error due to measurement noise propagates

along the path”, and it is rather slow because of the

search for a minimum spanning tree. But, depending

on which weights are used, it could preserve depth dis-

continuities: in such a case as that of Fig. 3-a, each pixel

could be reached from a root pixel without crossing any

discontinuity.

In [56], Wu and Tang try to find the best compro-

mise between integrability and discontinuity preserva-

tion. In order to segment the scene into pieces without

discontinuities, “one plausible method [...] is to identify

where the integrability constraint is violated”, but “in

real case, [this] may produce very poor discontinuity

13 http://www.amitkagrawal.com/eccv06/

RangeofSurfaceReconstructions.html
14 A similar approach will be detailed in our second paper.

maps rendering them unusable at all”. A probabilistic

method using the EM (Expectation-Maximization) al-

gorithm is thus proposed, which provides a weighted

discontinuity map. The alternating iterative optimiza-

tion is very slow and a parameter is used, but this ap-

proach is promising, even if the evaluation of the results

remains qualitative.

In [39,40], Ng, Wu and Tang do not enforce in-

tegrability over the entire domain, because with such

an enforcement “sharp features will be smoothed out

and surface distortion will be produced”. Since “either

sparse or dense, residing on a 2D regular (image) or ir-

regular grid space” gradient fields may be integrated, it

is concluded that “a continuous formulation for surface-

from-gradients is preferred”. Gaussian kernel functions

are used, in order to linearize the problem and to avoid

the need for extra knowledge on the boundary15. Unfor-

tunately, at least two parameters must be tuned. Also

PFast is not satisfied, not more than PFreeB, as shown in

[9] on the basis of several examples. On the other hand,

the proposed method outputs “continuous 3D represen-

tation not limited to a height field”.

In [46], Reddy, Agrawal and Chellappa propose a

method specifically designed to handle heavily corrupted

gradient fields, which combines “the best of least squares

and combinatorial search to handle noise and correct

outliers respectively”. Even it is claimed that “L1 solu-

tion performs well across all scenarios without the need

for any tunable parameter adjustments”, PNoPar is not

satisfied in practice. Neither is PFreeB.

In [15], Durou, Aujol and Courteille are mainly con-

cerned by PDisc. Knowing that quadratic regularization

works well in the case of smooth surfaces, but is not well

adapted to discontinuities, the use of other regularizers,

or of other variational models inspired by image pro-

cessing, as in [2], allows PDisc to be satisfied. This will

be detailed in our second paper.

The integration method proposed in [47,48] by Sarac-

chini, Stolfi, Leitão, Atkinson and Smith16 is a multi-

scale version of MHB. A system is solved at each scale

using a Gauss-Seidel iteration in order to satisfy PFast.

Since reliability in the gradient is used as local weight,

“each equation can be tuned to ignore bad data sam-

ples and suspected discontinuities”, thus allowing PDisc

to be satisfied. Finally, setting the weights outside Ω

to zero allows PFreeB and PNoRect to be satisfied as

well. However, this method “assumes that the slope

and weight maps are given”. But such a weight map

is a crucial clue, and the following assertion somehow

15 http://www.cse.ust.hk/~pang/papers/supp_

materials/pami_sur3d_code.zip
16 http://www.ic.unicamp.br/stolfi/EXPORT/projects/

photo-stereo/

http://www.amitkagrawal.com/eccv06/RangeofSurfaceReconstructions.html
http://www.amitkagrawal.com/eccv06/RangeofSurfaceReconstructions.html
http://www.cse.ust.hk/~pang/papers/supp_materials/pami_sur3d_code.zip
http://www.cse.ust.hk/~pang/papers/supp_materials/pami_sur3d_code.zip
http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/
http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/
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avoids the problem: “practical integration algorithms

require the user to provide a weight map”.

A similar approach is followed by Wang, Bu, Li,

Song and Tan in [52], but the weight map is binary

and automatically computed. In addition to the gradi-

ent map, the photometric stereo images themselves are

required. Eight cues are used by two SVM classifiers,

which have to be trained using synthetic labelled data.

Even if the results are nice, the proposed method seems

rather difficult to manage in practice, and clearly loses

PFast and PNoPar.

In [4,5], Badri, Yahia and Aboutajdine resort to Lp
norms, p ∈ ]0, 1[. As p decreases, the L0 norm is ap-

proximated, which is a sparse estimator well adapted to

outliers. Indeed, the combination of four terms allows

Badri et al. to design a method which simultaneously

handles noise and outliers, thus ensuring that PRobust

and PDisc are satisfied. However, since the problem be-

comes non-convex, the proposed half-quad resolution

is iterative and requires a good initialization: PFast is

lost. It happens that neither PNoPar is satisfied. Finally,

even if each iteration resorts to FFT, which implies a

rectangular domain and a periodic boundary condition,

the proposed scheme seems easily extendable so as to

satisfy PFreeB and PNoRect.

4.4 Summary of the Review

Our discussion on the most representative methods of

integration is summarized in Table 1, where the meth-

ods are listed in chronological order. It appears that

none of them satisfies all the required properties, which

is not surprising. On the other hand, even if accuracy is

the most basic property of any 3D-reconstruction tech-

nique, let us recall that it would have been impossible

in practice to numerically compare all these methods.

In view of Table 1, it appears that almost every

method differs from all the others, regarding the six

selected properties. Of course, it may appear that such

a binary (+/−) table is hardly informative, but more

levels in each criterion would have led to more arbitrary

scores. On the other hand, the number of + should not

be considered as a global score for a given method: it

happens that a method perfectly satisfies a subset of

properties, while it does not care at all about the others.

5 Conclusion and Perspectives

Even if robustness to outliers was not selected in our

list of required properties, let us cite a paper specifically

dedicated to this problem. In [14], Du, Robles-Kelly and

Lu compare the L2 and L1 norms, as well as a number

of M-estimators, faced to the presence of outliers in the

normal field: L1 is shown to be the globally best parry.

This paper being worthwhile, one can wonder why it

does not appear in Table 1. On the one hand, even if

PRobust is satisfied at best, none of the other criteria

are considered. On the other hand, let us recall why

we did not select robustness to outliers as a pertinent

feature: the presence of outliers in the normal field does

not have to be compensated by the integration method.

In [5], it is said that “[photometric stereo] can fail due

to the presence of shadows and noise”, but recall that

photometric stereo can be robust to outliers [30,55].

Another property was ignored: whether the depth

can be fixed at some points or not. As integration is a

well-posed problem without any additional knowledge

on the solution, we considered that this property is ap-

preciable, although not required. Let us however quote,

once again, the papers by Horovitz and Kiryati [29] and

by Kimmel and Yavneh [34], in which this problem is

specifically dealt with.

Some other works on normal integration have not

been mentioned in our review, since they address other

problems or do not face the same challenges. Let us first

cite a work by Balzer [7], in which a specific problem

with the normals delivered by deflectometry is high-

lighted: as noted by Ettl et al. in [17], such normals

are usually not noisy, but Balzer points out that they

are distant-dependent, which means that the gradient

field g = [p, q]> also depends on the depth z. The iter-

ative method proposed in [7] to solve this more general

problem seems to be quite limited, but an interesting

extension to normals provided by photometric stereo is

suggested: “one could abandon the widespread assump-

tion that the light sources are distant and the lighting

directions thus constant”.

On the other hand, Chang et al. address in [11] the

problem of multiview normal integration, which aims at

reconstructing a full 3D-shape in the framework of mul-

tiview photometric stereo. The original variational for-

mulation (19) is extended to such normal fields, and the

resulting PDE is solved via a level set method, which

has to be soundly initialized. The 3D-reconstructions

are nice but are limited to synthetic multiview photo-

metric stereo images. However, this approach should be

continued, since it provides complete 3D-models. More-

over, it is noted in [11] that the use of multiview inputs

is the most intuitive way to satisfy PDisc.

As noticed by Agrawal et al. about the range of

solutions proposed in [2], but this is more generally true,

“the choice of using a particular algorithm for a given

application remains an open problem”. We hope this

review will help the reader to make up its own mind,

faced to so many existing approaches.
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Table 1 Main methods of integration listed in chronological order.

Authors Year Ref. PFast PRobust PFreeB PDisc PNoPar PNoRect

Coleman and Jain 1982 [12] + − + − + +
Horn and Brooks 1986 [27] − + − − + +

Frankot and Chellappa 1988 [19] + + − − + −
Simchony, Chellappa and Shao 1990 [49] + + + − + −

Noakes, Kozera and Klette 1999 [43] − + − − + −
Horovitz and Kiryati 2000 [28] + + + − − +

Petrovic et al. 2001 [45] − + + − − +
Kimmel and Yavneh 2003 [34] + + + − − +

Wei and Klette 2003 [53] + + − − − −
Karaçali and Snyder 2003 [32] − + + + − −

Kovesi 2005 [36] + + − − + −
Agrawal, Chellappa and Raskar 2005 [1] − − − + − +
Agrawal, Raskar and Chellappa 2006 [2] − + − + − +

Fraile and Hancock 2006 [18] − − + + + +
Ho, Lim, Yang and Kriegman 2006 [26] + − + − − +

Wu and Tang 2006 [56] − + + + − +
Ng, Wu and Tang 2007 [39] − + − + − +

Durou and Courteille 2007 [16] − + + − + +
Harker and O’Leary 2008 [22] + + + − + −

Ettl, Kaminski, Knauer and Häusler 2008 [17] − + + − + +
Reddy, Agrawal and Chellappa 2009 [46] − + − + − +

Durou, Aujol and Courteille 2009 [15] − + + + − +
Saracchini et al. 2010 [47] + + + + − +

Galliani, Breuss and Ju 2012 [20] + − + − + +
Balzer 2012 [8] + + + − − +

Wang, Bu, Li, Song and Tan 2012 [52] − + + + − +
Balzer and Mörwald 2012 [9] + + + − − +

Xie, Zhang, Wang and Chung 2014 [58] − + + − + +
Badri, Yahia and Aboutajdine 2014 [5] − + + + − +

Yamaura, Nanya, Imoto and Maekawa 2015 [59] + + + − − +
Breuss, Quéau, Bähr and Durou 2016 [10] + + + − + +

Finally, even if none of the reviewed methods sat-

isfies all the selected criteria, this work helped us to

develop some new normal integration methods. In the

second part of our work, entitled Part II: New Insights,

we will particularly focus on the problem of normal inte-

gration in the presence of discontinuities, which occurs

as soon as there are occlusions.
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Reconstruction from Gradient Data. Applied Optics
47(12), 2091–2097 (2008) 13, 15, 16

18. Fraile, R., Hancock, E.R.: Combinatorial Surface Inte-
gration. In: Proceedings of the 18th International Con-
ference on Pattern Recognition (volume I), pp. 59–62.
Hong Kong (2006) 14, 16

19. Frankot, R.T., Chellappa, R.: A Method for Enforcing
Integrability in Shape from Shading Algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 10(4), 439–451 (1988) 1, 7, 8, 11, 12, 16

20. Galliani, S., Breuss, M., Ju, Y.C.: Fast and Robust Sur-
face Normal Integration by a Discrete Eikonal Equation.
In: Proceedings of the 23rd British Machine Vision Con-
ference. Guildford, UK (2012) 13, 16

21. Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.:
Shape and Spatially-Varying BRDFs From Photomet-
ric Stereo. In: Proceedings of the 10th IEEE Interna-
tional Conference on Computer Vision (volume I). Bei-
jing, China (2005) 12

22. Harker, M., O’Leary, P.: Least Squares Surface Recon-
struction from Measured Gradient Fields. In: Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition. Anchorage, Alaska, USA (2008) 7,
13, 16

23. Harker, M., O’Leary, P.: Least Squares Surface Recon-
struction from Gradients: Direct Algebraic Methods with
Spectral, Tikhonov, and Constrained Regularization. In:
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. Colorado Springs, Colorado,
USA (2011) 13

24. Harker, M., O’Leary, P.: Regularized Reconstruction of
a Surface from its Measured Gradient Field. Journal of
Mathematical Imaging and Vision 51(1), 46–70 (2015) 5,
13

25. Healey, G., Jain, R.: Depth Recovery from Surface Nor-
mals. In: Proceedings of the 7th International Conference
on Pattern Recognition, pp. 894–896. Montreal, Canada
(1984) 4, 11

26. Ho, J., Lim, J., Yang, M.H.: Integrating Surface Normal
Vectors Using Fast Marching Method. In: Proceedings of
the 9th European Conference on Computer Vision (vol-
ume III), Lecture Notes in Computer Science, vol. 3953,
pp. 239–250. Graz, Austria (2006) 12, 13, 16

27. Horn, B.K.P., Brooks, M.J.: The Variational Approach to
Shape From Shading. Computer Vision, Graphics, and
Image Processing 33(2), 174–208 (1986) 1, 4, 5, 11, 16

28. Horovitz, I., Kiryati, N.: Bias Correction in Photomet-
ric Stereo Using Control Points. Tech. rep., Department
of Electrical Engineering Systems, Tel Aviv University,
Israel (2000) 12, 16

29. Horovitz, I., Kiryati, N.: Depth from Gradient Fields and
Control Points: Bias Correction in Photometric Stereo.
Image and Vision Computing 22(9), 681–694 (2004) 3,
11, 12, 15

30. Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Pho-
tometric Stereo Using Sparse Bayesian Regression for
General Diffuse Surfaces. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 36(9), 1816–1831
(2014) 15

31. Ikeuchi, K.: Constructing A Depth Map from Images.
Technical Memo AIM-744, Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA (1983) 11

32. Karaçali, B., Snyder, W.: Reconstructing Discontinuous
Surfaces from a Given Gradient Field using Partial In-
tegrability. Computer Vision and Image Understanding
92(1), 78–111 (2003) 13, 16
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