
HAL Id: hal-01334289
https://hal.science/hal-01334289v1

Submitted on 20 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cybersecurity Through Secure Software Development
Audun Jøsang, Marte Ødegaard, Erlend Oftedal

To cite this version:
Audun Jøsang, Marte Ødegaard, Erlend Oftedal. Cybersecurity Through Secure Software Develop-
ment. 9th IFIP World Conference on Information Security Education (WISE), May 2015, Hamburg,
Germany. pp.53-63, �10.1007/978-3-319-18500-2_5�. �hal-01334289�

https://hal.science/hal-01334289v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Cybersecurity through Secure Software Development

Audun Jøsang1, Marte Ødegaard2, and Erlend Oftedal3

1 University of Oslo,josang@ifi.uio.no
2 BEKK Consulting,marte.odegaard@bekk.no

3 nSense,erlend@oftedal.no

Abstract. Reports about serious vulnerabilities in critical IT components have
triggered increased focus on cybersecurity worldwide. Among the many initia-
tives to strengthen cybersecurity it is common to see the establishment andstrength-
ening of CERTs and other centers for cybersecurity. On the other hand, strength-
ening education in IT security and applying methods for secure systems develop-
ment are methods that receive much less attention. In this paper we explain how
the lack of focus on security in IT education programs worldwide is a significant
contributor to security vulnerabilities, and we propose an agile method for secure
software design that requires team members to have received adequate security
education and training.

Keywords: Cybersecurity, Security education, Waterfall model, Agile model,
Secure agile, Secure software development

1 Introduction

Digitization of business processes and services entails huge savings and increased ef-
ficiency. To be sustainable, this development must not at thesame time introduce se-
rious security vulnerabilities, but unfortunately it often does. The exposure surface to
criminals and other malicious players increases by severalorders of magnitude when
business processes migrate completely or partially to online platforms. This global ex-
posure to security threats makes it natural to use the term cybersecurity in the sense
of protecting assets (information, systems and business processes) that directly or indi-
rectly are connected to the Internet. Robust cybersecurityat all levels is necessary for
maintaining a balanced risk profile in a digital economy.

Achieving a secure ICT infrastructure obviously requires that it is designed, built
and operated by people who understand the threats, know the security requirements and
have the skills to build and operate secure systems in general.

Security vulnerabilities in software are typically causedby programmers or teams
with inadequate skills in secure software development. Unfortunately, thousands of IT
designers and experts around the world are lacking securityskills precisely because
cybersecurity was not part of the study program they followed at the university. The
expanding ICT infrastructure worldwide is being built by ITexperts with IT degrees
from universities and colleges, but unfortunately many IT experts still have insufficient
security understanding and expertise. This is an unacceptable situation.

2

As an analogy, it would of course be irresponsible and even unthinkable to educate
building architects and civilly engineers without giving them adequate knowledge about
fire safety, otherwise the buildings in which we work and livewould be full of firetraps.
Likewise it is irresponsible to offer IT programs at universities without compulsory
modules in information security. Unfortunately, still today many IT graduates leave
university and go into industry without any competence in information security. Despite
their great skills in programming and IT design, without skills in security these IT
graduates will necessarily build vulnerable IT solutions.

This paper discusses how cybersecurity can be strengthened, not by investing in
more sophisticated attack detection and malware filtering tools, but by ensuring that
the very foundation of the ICT infrastructure is designed and built for strong security
and robustness. This can only be achieved by by ensuring thatsecure system design
becomes a natural element in all development projects, and by encouraging, stimulating
and maybe forcing technical colleges and universities to integrate mandatory security
modules in the curriculum of their IT education programs.

2 Patterns of Cybersecurity

There are currently available on the market a large number oftools and services for
strengthening cybersecurity. Vendors range from large andhighly profiled companies to
small and relatively unknown companies. Some security products are promoted to stop
APTs (Advanced Persistent Threats). Other products are promoted to detect and stop
singular zero-day attacks or to filter out malware. Intrusion detection and prevention
can be bought as a system or as a service. Security governanceframeworks such as
COBIT4, ITIL 5, ISO 27001 [6] and NIST SP-800-53 [8] can be adopted and applied
by in-house security management staff or by external consultants to ensure that the
organisation is managed according to best practice with regard to security. However,
none of these tools, services and frameworks – neither in isolation, nor in combination
– are sufficient to avoid serious cyber-vulnerabilities of the kind that e.g. Heartbleed,
Shellshock and BadUSB represent.

There seems to be no approach that can provide the level of security assurance
that governments and corporate managers aim for. In a recentarticle it is argued that
the cybersecurity product market is different from other markets where a few players
typically dominate the market [13]. However, for cybersecurity there is no single vendor
– not even a set of major vendors – who dominate the cybersecurity market, and from
which general cybersecurity solutions can be bought. This simple analysis indicates that
cybersecurity does not lend itself to a packaged solution [13].

It is up to the CISO (Chief Information Security Officer) or a similar executive
in organisations to set up and run the cybersecurity programas they see appropriate,
but since there is no commonly approved product, service or program that can provide
waterproof cybersecurity, this task is particularly challenging. Even when following
industry best practice there will be vulnerabilities that attackers can exploit to mount

4 COBIT: Control Objectives for Information and Related Technology
5 ITIL: Information Technology Infrastructure Library

3

successful attacks. In this situation, when a serious security incident occurs, although
there often is little the CISO could have done to prevent the incident, the CISO is the
obvious target of blame anyway [12]. In a study by the PonemonInstitute focusing on
the role of the security manager within companies, many of the CISOs who took part
in the study rated their position as the most difficult in the organization. Most of CISOs
questioned said their job was a bad one, or the worst job they had ever had [5].

Vulnerability management is an important branch of security management in or-
ganisations. Commonly known vulnerabilities are assignedunique identities under the
CVE (Common Vulnerabilities and Exposures) scheme startedby MITRE Corporation
in 1999, with funding from the National Cyber Security Division of the US Department
of Homeland Security. CVE IDs are used in SCAP (Security Content Automation Pro-
tocol) which is a protocol used by vulnerability managementtools. A complete list of
CVE IDs can be found on MITRE’s CVE system as well as in the US National Vul-
nerability Database. Prominent software vendors can become a CNA (CVE Numbering
Authority) for their products, and each CVE IDs is actually assigned by a CNA. There
are three primary types of CNAs:

– The MITRE Corporation functions as Editor and Primary CNA.
– Various CNAs assign CVE IDs for own products (e.g. Microsoft, Oracle, Red Hat).
– Red Hat also provides CVE numbers for open source projects that are not a CNA.

The original CVE-ID format had just four digits for numbering vulnerabilities per
year, such as CVE-2014-0160 which identifies the Heartbleedvulnerability. Only al-
lowing 9,999 vulnerabilities per year was seen as a limitation, so that from 2014 the
CVE-ID format can have five, six or more end digits to identifyan arbitrarily large
number of vulnerabilities each year. Figure 1 shows the number of identified vulnera-
bilities in the CVE scheme during the last 15 years.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

of CVE IDs

Year

Fig. 1.Number of CVE IDs registered in the period 1999 - 2014

4

The trend seen on Figure 1 is that the number of vulnerabilities is increasing. There
is also a wide range of different vulnerability types, and efforts have been made to
provide classifications, taxonomies and ontologies for security vulnerabilities [11]. One
purpose of vulnerability classification is to identify weaknesses in the SDLC (Software
Development Lifecycle) in order to avoid vulnerabilities in the first place.

It is of course impossible to completely avoid generating security vulnerabilities
during system and software design. However, the state of cybersecurity can be signifi-
cantly improved by reducing both the number and the severityof security vulnerabilities
generated. The question then is how best to work towards thisgoal. Several approaches
are already used to this end, such as automatic methods that can do code analysis and
fuzzing to discover and eliminate vulnerabilities before setting code into production.
The most important approach is to follow principles for secure software development,
and to ensure that software designers have sufficient security expertise. We discuss the
latter approaches below.

3 Software Development Lifecycle

Several software development models or approaches have been proposed and applied
during the last 30 years. Each model has its characteristics, advantages and disadvan-
tages, but common to them all is that they are typically not focusing on security [4]
(p.1111). A selection of five prominent development models are briefly analysed and
compared in [9]. These are:

– Waterfall model
– Iteration model
– V-shaped model
– Spiral model
– Agile model, aka. XP (Extreme Programming).

The waterfall model is the classical and most heavy-weight approach to software
development, whereas the agile model is the most light-weight and flexible approach.
We will briefly describe the waterfall and agile models, as they represent very different
approaches to secure programming. Figure 2 shows the waterfall model.

Verification

Maintenance

Design

Requirements

Implementation

Fig. 2.The waterfall model for software development

5

The basic idea behind the waterfall model is that the tasks ofeach phase must be
fully completed before the next phase, which is symbolized by the waterfall metaphor
where water only flows downwards. This also implies that the complete set of require-
ments must be defined and fixed at the beginning of the project.In case it is necessary to
revisit a previous stage, then a costly overhead is to be expected (metaphorically make
water flow upwards), so this should be avoided. However, it istypically the case that
requirements have to be changed in the middle of a software development project, so
that many software development projects based on the waterfall model have suffered
large blow-outs in cost and time.

As a reaction to the rigid structure of the waterfall model several other models have
been proposed, where the most recent and radical is the agilemodel (also known as XP:
eXtreme Programming) illustrated in Figure 3 below.

Evaluate current system Release new software
Develop, integrate &

test new functionality

Plan new release
Break down user stories

into functional tasks

Select user stories for

the next release

Deploy system

Project planning

Fig. 3.The agile model for software development

The basic idea behind the agile model is that new or evolving requirements can
be specified in parallel with, or after already implemented requirements [1]. This is
possible by splitting the development into separatestorieswhere each story covers a
set of requirements implemented as functions that can be developed and tested more or
less independently of other stories. Each cyclic iterationin the agile model is asprint
which can be completed in only a few weeks. The major drawbackof the agile model
is that it often does not scale well to large and complex development projects.

Specific security related tasks should be included in the various phases of the SDLC,
whether the development follows the waterfall model, the agile model, or any other
model. Due to the radical difference between the waterfall and agile models, the devel-
opment team needs to adapt the specific approach to secure development depending on
the model followed, as described in the next section.

6

4 Secure Software Development

4.1 Secure Software Development in the Waterfall Model

There are several recommended and ‘best practice’ models toensure secure develop-
ment, including the NIST framework for Security Considerations in the System Devel-
opment Life Cycle [7], as well as Microsoft’s Security Development Lifecycle (SDL)
[2] illustrated in Figure 4 below. Both the NIST model and theMicrosoft SDL model
are based on the waterfall model for SDLC.

Training

CCoorree

TTrraaiinniinngg

Requirements Design Implementation Verification Release Response

AAnnaallyyzzee

sseeccuurriittyy

aanndd

pprriivvaaccyy rriisskk

DDeeffiinnee

qquuaalliittyy ggaatteess

TThhrreeaatt

mmooddeelliinngg

AAttttaacckk

ssuurrffaaccee

aannaallyyssiiss

AAnnaallyyzzee

sseeccuurriittyy aanndd

pprriivvaaccyy rriisskk

DDeeffiinnee qquuaalliittyy

ggaatteess

DDyynnaammiicc

// ffuuzzzz

tteessttiinngg

VVeerriiffyy

aattttaacckk

mmooddeell //

tthhrreeaatt

ssuurrffaaccee

RReessppoonnssee

ppllaann

FFiinnaall

sseeccuurriittyy

rreevviieeww

RReelleeaassee

aarrcchhiivvee

RReessppoonnssee

eexxeeccuuttiioonn

Fig. 4.SDL: Microsoft Security Development Lifecycle [2]

The 1st phase of Microsoft SDL is security training which emphasizes how impor-
tant it is that programmers and other team members have acquired adequate security
skills for their job. Security training empowers developers to have awareness for threats
and vulnerabilities and to create secure applications.

In Microsoft SDL, every phase of the waterfall model includes security related
tasks, such as in the planning phase, requirements phase anddesign phase. Risk analysis
is for example included in the design phase.

According to [4] (p.1102) most vulnerabilities emerge during coding. It is therefore
crucial that the programmer follows strict and secure methods of secure programming.
By looking at the list of 25 most common software errors maintained by SANS6, we see
that many of these are directly related to irresponsible or sloppy programming practice.

4.2 Security Software Development in the Agile Model

There are relatively few studies in the literature on secureagile software development
models. In Wichers’ proposal [14] it is argued that secure software development in the
agile model needs a quite different approach to that of the waterfall model.

In [14] it is recommended to identify all stakeholders and clarify what their main
security concerns are. From this analysis a set of threat models can be extracted which
in turn form the basis for stakeholder security stories. Then during the development
phase, one has periodic security sprints in between the regular development sprints. It
is also proposed to include a final security review before deploying the final system.

6 http://www.sans.org/top25-software-errors/

7

Microsoft has presented a version of SDL for agile software development [3]. The
Agile SDL model contains the same security steps as in the waterfall SDL model, where
these steps are grouped in 3 categories:

– One-Time practices: Foundational security practices thatmust be established once
at the start of every new Agile project.

– Every-Sprint practices: Essential security practices to be performed in every sprint.
– Bucket practices: Important security practices that must be completed on a regular

basis but can be spread across multiple sprints during the project lifetime.

We find that Microsoft’s agiler SDL has merit. However, it haslimitations by not
separating between functional and non-functional security requirements.

We therefore propose an agile model for secure software development which is par-
tially inspired by the model described in [14] and by Microsoft’s Agile SDL model, but
which is also an improvement over these because it does not share their disadvantages
mentioned above. Our model is also inspired by previous workin [10].

Our approach to handling security in the agile model is basedon the distinction
between what we call functional security controls and non-functional security controls.

– Functional security controls reflect and implement user stories that are directly re-
lated to security, such as when password management and verification is used as a
control to implement a user story for logon, or when ACLs (Access Control Lists)
are used as a control for specifying and enforcing policies for using various re-
sources within a domain.

– Non-functional security controls are applied in order to eliminate or mitigate vul-
nerabilities in the implementation of other user stories, such as when applying
secure programming techniques in order to avoid buffer overflow bugs, or when
applying input filtering when designing a front-end to an SQLdatabase in order
to avoid SQL-injection. Software designer must understandthat any type of user
stories, both ordinary user stories as well as specific security related user stories,
must be implemented in a secure way. The way to do that is precisely through non-
functional security controls. The idea is that security threats that are intrinsic to a
specific user story should be handled during the sprint for the same user story.

A further example of non-functional security controls is when implementing a user
story about the logic for handling the check-out of a shopping basket on an e-commerce
website, where a threat could be that the customer is able to trick the system into chang-
ing the number of items after the price has been computed, so that he could receive many
items but only pay for one. This security concern must be handled during the sprint that
implements the check-out of shopping baskets. Based on these considerations we pro-
pose to introduce a new security phase into the sprint iteration. This security phase fo-
cuses specifically on identifying threats against the current user stories. The new phase
should also specify how the threats can be controlled or mitigated, and should specify
tests for those mitigation controls. The implementation ofnon-functional security con-
trols is then handled in the ordinary phase that develops, integrates and tests the new
functionality for the current sprint.

8

Finally, we propose to include a security review in the phaseof the sprint iteration
cycle where the current version of the system is evaluated. This modified phase, as well
as the two new phases that are specific to security, are indicated as yellow boxes in
Figure 5 which illustrates our proposed model for secure agile software development.

Evaluate current system

& review security
Release new software

Develop, integrate &

test new functionality

Plan new release
Break down user stories

into functional tasks

Select user stories for

the next release

Collect stakeholder

security concerns

Identify threat

scenarios to control

Project planning

Deploy system

Fig. 5.Proposed model for secure agile software development

It may sometimes be unclear whether a security requirement is functional or non-
functional, in which case there is a danger that security requirements are not handled
according to the model. The question is what happens when trying to handle functional
security as part of other user stories, or when trying to handle non-functional security as
a separate user story, which is the opposite of what the modelrecommends. We analyse
these two irregular cases separately below.

– Handling an obvious non-functional security requirement as a functional security
requirement would generate unnecessary overhead. This is because non-functional
security is an integral part of other user stories, so if non-functional security is
handled separately it would lead to re-iteration of those user stories. Nevertheless,
the non-functional security requirements could be adequately taken care of. The
conclusion is that development efficiency would suffer, notsecurity.

– In case as an obvious functional security requirements is not handled as a separate
user story then the design team has no clear strategy for handling such require-
ments. At the limit, such functional security requirementscould be awkwardly in-
cluded as a sub-story of other user stories. Alternatively the requirements would
not be handled at all, which would be a serious design failure.

If in doubt, it is always safe to consider a security requirement as a separate user
story. However, to optimize agility, clearly non-functional security requirements should
be integrated as part of other relevant user stories whenever possible.

9

5 Cybersecurity Training

Security design is challenging, and requires strong skillsto get it right. It can therefore
not be expected that IT graduates without security traininghave the necessary skills
for developing secure systems. A typical approach to security design in the industry
is to let security specialists do a security review of systems that have been developed
by software designers without security skills. However, this approach wastes time and
manpower. The right approach is to have system designers with security skills who are
able to identify vulnerabilities and threat scenarios during the design and development.

It is interesting to notice that in the Microsoft SDL model for secure software de-
sign, the 1st phase focuses on security training. In other words, SDL assumed that the
design team has acquired security skills before the proper development project starts.

In agile models for secure software design there is no separate phase for security
training, neither in the model presented [14] nor in our model presented in Section 4.2.
For both models it is assumed that team members already have the required knowledge
and skills to identify threat scenarios and to craft the corresponding security controls
for mitigating those threats. In other words, without security skills among the develop-
ment team members, no agile model for secure software development would be prac-
tical. Given that a large proportion of students following IT programs today still get
no or only limited exposure to cybersecurity it is obvious that practicing agile mod-
els for secure development is problematic. For this reason there are maturity models
for secure software development, where the most prominent are Building Security In
Maturity Model 2(BSIMM2) and OWASP’sOpen Software Assurance Maturity Model
(OpenSAMM).

Governments or interest organisations in many countries are aware of this deficiency
and have therefore launched programs to strengthen security education.

In the USA for example, NICE (National Initiative for Cybersecurity Education)
established in 2014 builds on the previous Comprehensive National Cybersecurity Ini-
tiative started in 2008 as an initiative to strengthen cybersecurity skills in the US federal
government sector. NICE has been extended to include the commercial sector, where
the goal is to strengthen cybersecurity skills from kindergarten through post-graduate
school. The goal of NICE is to establish an operational, sustainable and continually
improving cybersecurity education program for the nation to use sound cyber practices
that will enhance USA’s security.

However, NICE is a US-based imitative and it is still too early to tell how it will
influence security education in university IT-programs. The global higher education
sector has not yet reached a common consensus that cybersecurity should be an integral
part of IT education. In contrast to IT education, in the domain of architecture and
civilly engineering education it is obvious that students must acquire knowledge about
fire safety. Admittedly there is a difference between these two domains. In architecture
and civilly engineering there are strict regulations regarding fire safety, whereas there
are no specific regulation for information security in IT systems.

We think initiatives like NICE in the USA should be copied in other countries as
well, and could be supported by national computer societiesand their umbrella organi-
sation IFIP . National governments could also encourage thehigher education sector to
strengthen cybersecurity education as part of their IT education programs.

10

6 Conclusion

There is a consensus in the industry that security must be part of the software develop-
ment lifecycle. It is not a question of which development model is used, but how well
the organisation is able to integrate security in the process.

A weak spot in all the models is that they all depend on the teammembers having
adequate security skills. It can not be expected that every organisation must provide se-
curity training to their own staff. Security training must therefore be part of IT education
programs in higher education. There is an urgent need to strengthen IT education pro-
grams worldwide with regard to cybersecurity. For this purpose it would be interesting
to define a security education maturity model for the university sector. If a university
offers an IT education program with insufficient security, then that university is part
of the problem of causing cybersecurity vulnerabilities. It is time for all IT education
institutes to become part of the solution.

References

1. K. Beck et al. Manifesto for Agile Software Development. Online article at:
www.agilemanifesto.org, February 2001.

2. Microsoft Corporation. SDL: Microsoft Security Development Lifecycle. Version 4.1., 2009.
3. Microsoft Corporation. Security Development Lifecycle for Agile Development. Ver. 1.0.,

30 June 2009.
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx.

4. Shon Harris.CISSP All-in-One Exam Guide, Sixth Edition. McGraw-Hill, 2013.
5. Ponemon Institute. Understaffed and at Risk: Today’s IT Security Department. Technical

report, Ponemon Institute, January 2014.
6. ISO. ISO/IEC 27001:2013 - Information technology – Security Techniques – Information

security management systems – Requirements. ISO/IEC, 2013.
7. Richard Kissel et al. Security Considerations in the System Development Life Cycle – NIST

Special Publication 800-64, Rev. 2. Technical report, National Instituteof Standards and
Technology, October 2008.

8. Joint Task Force Transformation Initiative; Computer Security Division; Information Tech-
nology Laboratory. Security and Privacy Controls for Federal Information Systems and
Organizations – NIST Special Publication 800-53 Rev.4. Technical report, National Institute
of Standards and Technology, April 2013.

9. N.M.A. Munassar and A. A. Govardhan. A Comparison between Five Models of Software
Engineering.Int. Journal of Computer Science Issues (IJCSI), 7(5), September 2010.

10. Erlend Oftedal. Leveraging agile to gain better security: An agile developer’s perspective.
In OWASP AppSec Europe, Poland, 2009.

11. Meunier Pascal.Handbook of Science and Technology for Homeland Security, Classes of
vulnerabilities and attacks. Wiley, 2007.

12. Nicole Perlroth. A Tough Corporate Job Asks One Question: Can YouHack It? New York
Times Online, 20 July 2014.

13. Stephen J. Ross. Whiz Bang 2000.ISACA Journal, 6, 2014.
14. Dave Wichers. Breaking the Waterfall Mindset of the Security Industry. In OWASP AppSec

USA, New York, 2008.

